Inverse Problems - Exercise Sheet 6

Publication date: 12 January, 2023

Due date: 24 January, 2023

Exercise 6.1 (20 pts) - Tikhonov regularization with semi-norms. Let X, Y, and Z be Banach spaces, where X is additionally reflexive and Z is separable. Further, let $T : X \to Y$ be a linear and continuous operator, and $A : \operatorname{dom}(A) \to Z^*$ be a densely defined, linear operator on the Banach space X. Moreover, assume that the range of A is closed in Z^* , the kernel of A is finite-dimensional, and that A is weakly-weakly* closed, which means that $x_n \to x$ and $Ax_n \stackrel{*}{\to} z$ implies $x \in \operatorname{dom}(A)$ and Ax = z. For each $y^{\delta} \in Y, p, q \ge 1$, and $\alpha > 0$, show that there exists a solution of the minimization problem

$$\min_{x \in X} \frac{1}{q} \|Tx - y^{\delta}\|_{Y}^{q} + \frac{\alpha}{p} \|Ax\|_{Z^{*}}^{p}$$

Hint: You may exploit: if the linear operator $S : \operatorname{dom}(S) \to Y$ between the dense subspace $\operatorname{dom}(S) \subset X$ and Y is closed and bijective, then S^{-1} is continuous. Further, note that the finite-dimensional subspace $\operatorname{ker}(A)$ is complemented in X.

Convex analysis. Let X be a Banach space, X^* its dual, and $f : X \to \mathbb{R} \cup \{-\infty, +\infty\}$ a function. We define the convex conjugate of f as the function $f^* : X^* \to \mathbb{R} \cup \{-\infty, +\infty\}$ defined by

$$f^*(x^*) = \sup_{x \in X} \langle x^*, x \rangle - f(x) , \qquad (1)$$

where $\langle x^*, x \rangle$ denotes the dual pairing between X and X^{*}. The convex conjugate satisfies the following properties:

- f^* is always convex and lower-semicontinuous.
- The convex biconjugate f^{**} (that is to apply the convex conjugate twice), corresponds to the closed convex hull of f, i.e. the largest lower semi-continuous convex function such that $f^{**} \leq f$. If f is proper, convex and lower semicontinuous, then $f^{**} = f$.
- Fenchel duality: For $f: X \to \mathbb{R} \cup \{\pm \infty\}$, $g: Y \to \mathbb{R} \cup \{\pm \infty\}$ convex functions and $A: X \to Y$ bounded linear operator, the following inequality holds

$$\inf_{x \in X} f(Ax) + g(x) \ge \sup_{y^* \in Y^*} -f^*(-y^*) - g^*(A^*y^*) \,.$$

Equality holds under certain regularity conditions. The above inequality is also named the weak duality of the *primal* and *dual* optimization problems. In the case of equality of the two optimization problems, it is said that there is strong duality.

Exercise 6.2 (30 pts) - The convex conjugate.

a) Consider a Banach space X with norm $\|\cdot\|_X$. Prove that the convex conjugate (1) of the norm is the convex indicator function over the unitary ball in the dual space, that is,

$$(\|\cdot\|_X)^* (x^*) = \mathbb{1}_{B^*} (x^*) = \begin{cases} 0 & \text{if } \|x^*\|_{X^*} \le 1, \\ \infty & \text{if } \|x^*\|_{X^*} > 1. \end{cases}$$

b) Consider the space $X = \mathbb{R}^n \times \mathbb{R}^n$ endowed with the norm $||x|| = \sum_{i=1}^n \sqrt{y_i^2 + z_i^2}$, for x = (y, z). Prove that for $x^* = (y^*, z^*) \in X$ one has

$$(||\cdot||)^{*}(x^{*}) = \begin{cases} 0 & \text{if} \quad \max_{i} \sqrt{(y_{i}^{*})^{2} + (z_{i}^{*})^{2}} \leq 1, \\ \infty & \text{if} \quad \max_{i} \sqrt{(y_{i}^{*})^{2} + (z_{i}^{*})^{2}} > 1, \end{cases}$$
(2)

The primal-dual algorithm. We want to compute a solution to the problem

$$\min_{x \in X} f(Ax) + g(x), \qquad (3)$$

where:

- X, Y are two finite-dimensional real vector spaces equipped with an inner product $\langle \cdot, \cdot \rangle$ and norm.
- $A: X \to Y$ is a continuous linear operator
- $g: X \to [0, \infty)$ and $f: Y \to [0, \infty)$ are proper, convex, lower-semicontinuous functions.

For a function h the *resolvent operator* is defined as

$$(I + \tau \partial h)^{-1}(y) = \arg\min_{x} \left\{ \frac{\|x - y\|^2}{2\tau} + h(x) \right\}.$$

Then, for selected constants $\tau, \sigma > 0, \theta \in [0, 1]$, initial guess $(x^0, y^0) \in X \times Y$, f^* the convex conjugate of f, and A^* the adjoint operator of A, the *primal-dual algorithm* stopped at N iterations is

Algorithm 1 Primal-dual Algorithm

1: procedure PRIMAL-DUAL $(\tau, \sigma, \theta, N, x^0, y^0)$ 2: $\overline{x}^0 = x^0$ 3: for n = 0, 1, 2, ..., N do 4: $y^{n+1} = (I + \sigma \partial f^*)^{-1} (y^n + \sigma A \overline{x}^n)$ 5: $x^{n+1} = (I + \tau \partial g)^{-1} (x^n - \tau A^* y^{n+1})$ 6: $\overline{x}^{n+1} = x^{n+1} + \theta (x^{n+1} - x^n)$ 7: end for 8: return x^{N+1} . 9: end procedure **The ROF model:** We now introduce the ROF model for image denoising. We model a 2D image u by a $N \times N$ matrix, N > 0 integer. Thus $u \in \mathbb{R}^{N \times N}$. The discrete gradient of u with Neumann boundary conditions is defined by $\nabla u = (\nabla_x u, \nabla_y u)$, where $\nabla_x u, \nabla_y u \in \mathbb{R}^{N \times N}$ are matrices defined by

$$(\nabla_x u)_{i,j} := \begin{cases} u_{i+1,j} - u_{i,j} & \text{if } i < N-1, \\ 0 & \text{if } i = N-1, \end{cases} \quad (\nabla_y u)_{i,j} := \begin{cases} u_{i,j+1} - u_{i,j} & \text{if } j < N-1, \\ 0 & \text{if } j = N-1. \end{cases}$$
(4)

For $u \in \mathbb{R}^{N \times N}, \, p = (p^x, p^y), \, p^x, p^y \in \mathbb{R}^{N \times N}$ we define

$$\|u\|_{2} := \sqrt{\sum_{i,j=1}^{N} u_{i,j}^{2}}, \qquad \|p\|_{1,2} := \|p^{x}\|_{2} + \|p^{y}\|_{2}.$$
(5)

Given a noisy image $D \in \mathbb{R}^{N \times N}$, the denoised image $u \in \mathbb{R}^{N \times N}$ according to the ROF model is a solution to the minimization problem

$$\min_{\in \mathbb{R}^{N \times N}} \|\nabla u\|_{1,2} + \frac{\lambda}{2} \|u - D\|_2^2 , \qquad (6)$$

where $\lambda > 0$ is a fixed regularization parameter.

Exercise 6.3 (50 pts) - Implementing the primal-dual algorithm for ROF. In this exercise we will implement the primal-dual algorithm to compute solutions of the ROF model for image denoising at (6). We define the following:

• $X := \mathbb{R}^{N \times N}$ normed by $\|\cdot\|_X := \|\cdot\|_2$ as defined in (5). Notice that such norm is induced by the Hilbert product

$$\langle u, v \rangle_X := \langle u, v \rangle_2 := \sum_{i,j=1}^N u_{i,j} v_{i,j} ,$$

for $u, v \in X$.

• $Y := \mathbb{R}^{N \times N} \times \mathbb{R}^{N \times N}$ normed by $\|\cdot\|_Y := \|\cdot\|_{1,2}$ as defined in (5). This norm is induced by the Hilbert product

$$\langle p,q \rangle_Y := \langle p,q \rangle_{1,2} := \langle p^x,q^x \rangle_2 + \langle p^y,q^y \rangle_2$$

for $p = (p^x, p^y), q = (q^x, q^y) \in Y$.

- A: $X \to Y$ linear continuous operator defined by $Au := \nabla u$ where $\nabla = (\nabla_x, \nabla_y)$ is as in (4).
- $f: Y \to [0, \infty)$ defined by $f(p) := \|p\|_{1,2}$.
- Given $\lambda > 0$ and $D \in X$, define $g_{\lambda} : X \to [0, \infty)$ as $g_{\lambda}(u) := \frac{\lambda}{2} \|u D\|_2^2$.

With the above definitions, please address the following questions.

- a) Compute A^* , the adjoint of the operator A.
- b) Following the provided template primal_dual.py, implement the operators A and A^* .
- c) By Exercise 6.2 we have that

$$f^*(p) = \begin{cases} 0 & \text{if} & \max_{i,j} \sqrt{(p_{i,j}^x)^2 + (p_{i,j}^y)^2} \le 1, \\ \infty & \text{if} & \max_{i,j} \sqrt{(p_{i,j}^x)^2 + (p_{i,j}^y)^2} > 1. \end{cases}$$

Prove that the resolvent of f^* has the following form:

$$p = (I + \sigma \partial f^*)^{-1} (\tilde{p}) \quad \Longleftrightarrow \qquad p_{i,j} = \frac{\tilde{p}_{i,j}}{\max\left(1, \sqrt{(\tilde{p}_{i,j}^x)^2 + (\tilde{p}_{i,j}^y)^2}\right)}.$$

- d) Following the provided template primal_dual.py, implement the resolvent of f^* .
- e) Prove that the resolvent of g_{λ} has the following form:

$$(I + \tau \partial g_{\lambda})^{-1} (\tilde{u}) = \frac{\tilde{u} + \lambda \tau D}{1 + \lambda \tau}.$$

- f) Following the provided template primal_dual.py, implement the resolvent of g_{λ} .
- g) Following the provided template primal_dual.py, implement the primal-dual algorithm. Then run the code to obtain reconstructions for two noise cases. Feel free to change the parameters to see different results (λ , the number of iterations, noise level). Changing the values of σ and τ is discouraged, as it is related to the convergence properties of this algorithm, topic not discussed in this exercise.