Inverse Problems - Exercise Sheet 5

Exercise 5.1 (50 pts) - Singular values of the Radon transform For this exercise we fix the weight function $w(s)=\sqrt{1-s^{2}}$. Furthermore, we will require the Chebyshev polynomials

$$
U_{m}(s)=\frac{\sin [(m+1) \arccos (s)]}{\sin (\arccos (s))}
$$

They satisfy the following properties:

- They are orthogonal in the $L^{2}([-1,1], w)$, the w - weighted space. That is

$$
\int_{-1}^{1} w(s) U_{m}(s) U_{m^{\prime}}(s) d s=\frac{\pi}{2} \delta_{m, m^{\prime}}
$$

- They form an orthogonal basis for $L^{2}([-1,1], w)$. Consequently, the functions $U_{m}(s) w^{-1}(s)$ form a basis of $Z=L^{2}\left([-1,1], w^{-1}\right)$.
- They satisfy the following integral property

$$
\int_{-w(s)}^{w(s)} U_{m}\left(\mathbf{w}\left(\theta^{\prime}\right) \cdot\left(s \mathbf{w}(\theta)+t \mathbf{w}^{\perp}(\theta)\right)\right) d t=\frac{2}{m+1} \frac{\sin \left((m+1)\left(\theta-\theta^{\prime}\right)\right) \sin ((m+1) \arccos (s))}{\sin \left(\theta-\theta^{\prime}\right)}
$$

a) Prove that the Radon transform is continuous from $L^{2}(B)$ to $Z=L^{2}\left(\Omega, w(s)^{-1}\right)$, the L^{2} space weighted with w^{-1}, that is, show the following inequality

$$
\|\mathcal{R} f\|_{L^{2}\left(\Omega, w^{-1}\right)}=\int_{0}^{2 \pi} \int_{-1}^{1}|\mathcal{R}[f](\theta, s)|^{2} w(s)^{-1} d s d \theta \leq 4 \pi\|f\|_{L^{2}(B)}
$$

Hint 1: Notice that the interval $[-w(s), w(s)]$ corresponds to the effective interval in which the Radon transform integrates, for any direction θ and displacement s.
Hint 2: To integrate, reuse the same idea presented in the last exercise sheet.
b) Under this new metric on the image space of the Radon transform, find the adjoint operator \mathcal{R}^{*}. Hint: you can use the results from the previous exercise class.
c) Consider functions of the form $g(s, \theta)=U(s) w(s) v(\theta)$, for $U \in L^{2}([-1,1]), v \in L^{2}([0,2 \pi))$. Check that

$$
\left(\mathcal{R} \mathcal{R}^{*} g\right)(\theta, s)=\int_{-w(s)}^{w(s)} \int_{0}^{2 \pi} U\left(\mathbf{w}\left(\theta^{\prime}\right) \cdot\left(s \mathbf{w}(\theta)+t \mathbf{w}^{\perp}(\theta)\right)\right) v\left(\theta^{\prime}\right) d \theta^{\prime} d t
$$

d) Check that

$$
\left(\mathcal{R}^{*} g_{m}\right)(\theta, s)=\frac{4 \pi}{m+1} w(s) U_{m}(s) \bar{v}(\theta)
$$

where U_{m} are the Chebyshev polynomials, and $\bar{v}(\theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sin \left((m+1)\left(\theta-\theta^{\prime}\right)\right.}{\sin \left(\theta-\theta^{\prime}\right)} v\left(\theta^{\prime}\right) d \theta^{\prime}$.
e) Consider the family $Y_{l}(\theta)=\frac{1}{\sqrt{2 \pi}} e^{-i l \theta}$ of functions that form a basis for $L^{2}([0,2 \pi))$ and satisfy

$$
\bar{Y}_{l}=\left\{\begin{array}{rc}
Y_{l} & \text { if }-m \leq l \leq m \text { and } l-m \text { is even } \\
0 & \text { otherwise }
\end{array}\right.
$$

Write a basis for Z. From it, find the eigenfunctions and nonzero eigenvectors of $\mathcal{R} \mathcal{R}^{*}$.
f) Obtain the singular values for the Radon transform \mathcal{R}. How ill-posed is the respective inverse problem? Why there seem to be many zero singular values?

Exercise 5.2 (50 pts) - Singular values of the Radon transform and the limited angle problem.

a) Write a code that returns the matrix associated to the Radon transform of a function with support in the unitary ball. For it use the provided template RadonMatrix.py (in Python, feel free to do an equivalent Matlab version). Take into consideration the following points

- The Radon transform goes from images in two dimensions to a function with two variables. Since it is written as a matrix, it will take vectors into vectors. Take care to be consistent in these transformations.
- The obtained matrix will be a $|S||\Theta| \times N^{2}$ sized matrix. It is recommended that you use a sparse format for it.
- The Radon transform is such that it acts only on objects that are supported in the unitary ball, so no weight should be given to pixels outside that area.
- Feel free to consider reasonable approximations. One suggested example could be to approximate the line integral by an uniform Riemann sum.
- Save the output results in the following sections, as computations could be a bit length (order of minutes).
b) In the template RadonMatrix.py there is a script to test the Matrix with an image composed of a non-centered disk, use it to check your implementation.
c) In the following points, fix $N=40, S=40, T=60$. Use template InvertData.py to invert the operator for the cases $\theta \in[0, \pi], \theta \in[0, \pi / 4]$, and noiseless and 8% of noise level. What do you observe when plotting the reconstructed images?
d) Write a script in which you plot the singular values (in a non-increasing fashion) of the matrix for the cases $\theta \in[0,2 \pi],[0, \pi],[0, \pi / 2],[0, \pi / 4]$. What do you see and what would it explain?
e) Write a script, in which for the case of $\theta \in[0, \pi / 4]$ and 10% of noise, an approximate inversion is obtained by using all the singular values above: $0.001,0.01$, and 0.05 . Comment on the results.

