Inverse Problems - Exercise Sheet 4

Exercise 4.1 (50 pts) - Radon transform. For $f: B \rightarrow \mathbb{R}$ continuous, where $B:=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$, we define the Radon transform as

$$
\mathcal{R}[f](\theta, s)=\int_{-\infty}^{\infty} f\left(s \mathbf{w}(\theta)+t \mathbf{w}^{\perp}(\theta)\right) d t, \quad(\theta, s) \in[0,2 \pi] \times \mathbb{R}
$$

with f extended by 0 outside B and $\mathbf{w}(\theta)=(\cos (\theta), \sin (\theta))^{t}, \mathbf{w}^{\perp}(\theta)=(-\sin (\theta), \cos (\theta))^{t}$.
(a) Show that the Radon transform can be extended to a linear continuous operator from $L^{2}(B)$ into $L^{2}(Q)$ with $Q:=[0,2 \pi] \times[-1,1]$
(b) Prove that the adjoint of the Radon transform \mathcal{R}^{*}, also called backprojection operator, has the form

$$
\begin{equation*}
\mathcal{R}^{*}[g](x)=\int_{0}^{2 \pi} g(\theta, x \cdot \mathbf{w}(\theta)) d \theta \tag{1}
\end{equation*}
$$

Note: Adjoint means that $\langle\mathcal{R}[f], g\rangle_{L^{2}(Q)}=\left\langle f, \mathcal{R}^{*}[g]\right\rangle_{L^{2}(B)}, \quad \forall f \in L^{2}(B), g \in L^{2}(Q)$.

Instructions for next exercise: Please bring your code on a pendrive on the day of the class

Exercise 4.2 (50 pts) - Numerical implementation of the Radon transform. We will now work in the discrete case where functions defined on $[-1,1] \times[-1,1]$ will be represented by square matrices.
(a) Using the provided template in Matlab radontrans.m, implement the Radon transform.

Hint: Consider using the imrotate function. If the code is taking more than 10 lines, reconsider your approach.
(b) The output of a Radon transform is called a sinogram, denoted by

$$
g(\theta, s)=\mathcal{F}[f](\theta, s)
$$

From the sinogram at the left hand side of Figure 1, which could be the underlying source f that produces it?
(c) Using the provided template in Matlab backprojection.m, implement the adjoint of the Radon transform defined in (1).

Hint: Notice that for fixed θ, the function $G(x)=g(\theta, x \cdot \mathbf{w}(\theta)), x \in \mathbb{R}^{2}$, is constant along lines parallel to $\mathbf{w}^{\perp}(\theta)$.

Hint 2: Consider using the imrotate function. If the code is taking more than 10 lines, reconsider your approach.

Figure 1: Example sinograms of unknown sources
(d) The backprojection algorithm corresponds to simply applying the adjoint operator \mathcal{R}^{*} to the sinogram data. Write a script where you apply your implemented adjoint to the provided data sinogram1.mat and sinogram2.mat, that corresponds to the ones presented in Figure 1. What do you obtain?

Remark: It is required to use the same family of angles θ for the Radon transform and its adjoint. For the provided data $\theta=$ linspace $(0,360,256)$.
(e) Could you explain or interpret what is the backprojection algorithm $\mathcal{R}^{*}[\mathcal{R}[f]](x)$ doing?

