Inverse Problems - Exercise Sheet 3

Exercise 3.1 (25 pts) - Compact operators are not coercive in infinite dimensions. Let X, Y be Banach spaces, $K \in \mathcal{L}(X, Y)$. Assume there exists a constant $c>0$ such that

$$
\begin{equation*}
\|K x\|_{Y} \geq c\|x\|_{X} \quad \text { for all } \quad x \in X \tag{1}
\end{equation*}
$$

Show that K is compact if and only if $\operatorname{dim} X<+\infty$.

Remark: An operator K satisfying (1) is called coercive. Notice that coercivity implies injectivity.

Exercise 3.2 (25 pts) - Non-injective compact operators form a dense set. Let X, Y be Banach spaces, with $\operatorname{dim} X=\infty$. Suppose that $K \in \mathcal{K}(X, Y)$
(a) Show that there exists a sequence $\left\{x_{n}\right\}_{n}$ in X such that $\left\|x_{n}\right\|_{X}=1$ for all $n \in \mathbb{N}$ and $K x_{n} \rightarrow 0$ strongly.
(b) Using (a), prove that the set

$$
\{K \in \mathcal{K}(X, Y): K \text { is not injective }\}
$$

is dense in $\mathcal{K}(X, Y)$ with respect to the operator norm.
Exercise 3.3 (25 pts) - Existence of minimal norm elements. Let X be a Banach space. Let $A \subset X$ be convex, closed and non-empty.
(a) Prove that the function

$$
x \in X \mapsto \operatorname{dist}(x, A)
$$

is lower semicontinuous with respect to the weak topology on X.
(b) Assume that X is reflexive. Prove that A has a minimal norm element, that is, show that there exists $\hat{x} \in A$ such that

$$
\|\hat{x}\|=\inf _{x \in A}\|x\|
$$

(c) Assume that X is reflexive. Let $M \subset X$ be a closed linear subspace. Prove that in Riesz's Lemma of Exercise 2.1 point (b) one can choose $\varepsilon=0$, that is, show that there exists $x \in X$ such that

$$
\|x\|_{X}=1, \quad \operatorname{dist}(x, M) \geq 1
$$

Exercise 3.4 (25 pts) - Computation of Moore-Penrose Inverse For the following operators T in $\mathcal{L}(X, Y)$ compute the Moore-Penrose inverse of T, and check whether $\operatorname{Dom}\left(T^{\dagger}\right)=Y$.
(a) For Hilbert spaces X, Y and fixed $u \in X$ with $u \neq 0$ and $v \in Y$ with $v \neq 0$ let $T: X \rightarrow Y$ be defined according to $T x=v\langle u, x\rangle$ (where $\langle\cdot, \cdot\rangle$ denote the scalar product on X).
(b) Let $T: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ according to

$$
[T x](t)=\int_{0}^{t} x(s) d s \quad \text { for almost every } t \in[0,1]
$$

