Analysis 3-Exercise Sheet 13

Theoretical preliminaries: Let $G \subset \mathbb{R}^{d}$ a bounded, open set and $F: \tilde{G} \rightarrow \mathbb{R}^{d}, f: \tilde{G} \rightarrow \mathbb{R}$ continuously differentiable with \tilde{G} open and $\bar{G} \subset \tilde{G}$. We denote

$$
\begin{gathered}
\operatorname{div} F=\sum_{i=1}^{d} \partial_{x_{i}} F_{i}, \\
\Delta f=\sum_{i=1}^{d} \partial_{x_{i}}^{2} f .
\end{gathered}
$$

Further $\nu(x)$ denotes the unit normal vector on ∂G in $x \in \partial G$ which points outside of G. We denote the surface measure for integration on the boundary of G as σ.
Gauss' theorem It holds true that

$$
\int_{G} \operatorname{div}(F) d(x, y)=\int_{\partial G}\langle F, \nu\rangle d \sigma .
$$

Exercise 12.1 (20 pts) Show that

$$
\int_{\mathbb{R}} e^{-z^{2}} d z=\sqrt{\pi}
$$

by computing

$$
\int_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d(x, y)
$$

Hint: Polar coordinates.

Exercise 12.2 (20 pts) Compute the surface volume of a general torus with $0<r<R$ by integrating the function $f \equiv 1$ over the surface.

Exercise 12.3 (20 pts) Let $G \subset \mathbb{R}^{d}$ a bounded, open set and $F: \tilde{G} \rightarrow \mathbb{R}^{d}, f, g: \tilde{G} \rightarrow \mathbb{R}, f$ twice and F, g once continuously differentiable with \tilde{G} open and $\bar{G} \subset \tilde{G}$. Use Gauss' theorem to prove that
a)

$$
\int_{G}\langle\nabla f, F\rangle d x=\int_{\partial G}\langle f F, \nu\rangle d \sigma-\int_{G} f \operatorname{div} F d x
$$

b)

$$
\int_{G}-\Delta f g=\int_{G}\langle\nabla f, \nabla g\rangle-\int_{\partial G} g\langle\nabla f, \nu\rangle \sigma
$$

We prove a version of Gauss' theorem Obviously, do not use Gauss' theorem in the following.
Let $a<0, b>1$ and $f:(a, b) \rightarrow(0, \infty)$ be a strictly increasing diffeomorphism. Denote the set $G=$ $\{(x, y) \mid x \in(0,1), 0<y<f(x)\}$. Let $F=\left(F_{1}, F_{2}\right)$ be a continuously differentiable vector field defined in a neighborhood of \bar{G}. We will show together that

$$
\int_{G} \operatorname{div}(F) d(x, y)=\int_{\partial G}\langle F, n\rangle d s
$$

Exercise 12.4 (20 pts) Denoting $\alpha=f(0), \beta=f(1)$, use the fundamental theorem of calculus to show that

$$
\begin{array}{r}
\int_{G} \operatorname{div} F d(x, y)= \\
\int_{0}^{1}-F_{2}(x, 0) d x+\int_{0}^{1} F_{2}(x, f(x)) d x+\int_{0}^{\beta} F_{1}(1, y) d y+\int_{0}^{\alpha}-F_{1}(0, y) d y+\int_{0}^{1}-F_{1}(x, f(x)) f^{\prime}(x) d x \tag{1}
\end{array}
$$

Exercise 12.5 (20 pts) Compute the line integral $\int_{\partial G}\langle\nabla F, n\rangle d s$ by dividing it into 4 segments $\{(x, y) \in$ $\delta G \mid x=0, y \in(0, \alpha)\},\{(x, y) \in \delta G \mid x=1, y \in(0, \beta)\},\{(x, y) \in \delta G \mid x \in(0,1), y=0\},\{(x, y) \in$ $\delta G \mid x \in(0,1), y=f(x)\}$ to show that it agrees with the above from 12.4. Why can we neglect the corners $(x, y)=(0,0),(x, y)=(1,0)$, etc.

