

Dipl.-Ing. Andreas Habring andreas.habring@uni-graz.at

Analysis 3 - Exercise Sheet 13

Publication date: January 25, 2023

Due date: February 1, 2023

Theoretical preliminaries: Let $G \subset \mathbb{R}^d$ a bounded, open set and $F : \tilde{G} \to \mathbb{R}^d$, $f : \tilde{G} \to \mathbb{R}$ continuously differentiable with \tilde{G} open and $\overline{G} \subset \tilde{G}$. We denote

$$\operatorname{div} F = \sum_{i=1}^{d} \partial_{x_i} F_i,$$
$$\Delta f = \sum_{i=1}^{d} \partial_{x_i}^2 f.$$

Further $\nu(x)$ denotes the unit normal vector on ∂G in $x \in \partial G$ which points outside of G. We denote the surface measure for integration on the boundary of G as σ .

Gauss' theorem It holds true that

$$\int_{G} \operatorname{div}(F) \, d(x, y) = \int_{\partial G} \langle F, \nu \rangle \, d\sigma$$

Exercise 12.1 (20 pts) Show that

$$\int_{\mathbb{R}} e^{-z^2} dz = \sqrt{\pi}$$
$$\int_{\mathbb{R}^2} e^{-(x^2 + y^2)} d(x, y)$$

by computing

Hint: Polar coordinates.

Exercise 12.2 (20 pts) Compute the surface volume of a general torus with 0 < r < R by integrating the function $f \equiv 1$ over the surface.

Exercise 12.3 (20 pts) Let $G \subset \mathbb{R}^d$ a bounded, open set and $F : \tilde{G} \to \mathbb{R}^d$, $f, g : \tilde{G} \to \mathbb{R}$, f twice and F, g once continuously differentiable with \tilde{G} open and $\overline{G} \subset \tilde{G}$. Use Gauss' theorem to prove that

$$\int_{G} \langle \nabla f, F \rangle \ dx = \int_{\partial G} \langle fF, \nu \rangle \ d\sigma - \int_{G} f \text{div} F \ dx$$

b)

$$\int_{G} -\Delta fg = \int_{G} \langle \nabla f, \nabla g \rangle - \int_{\partial G} g \langle \nabla f, \nu \rangle \ \sigma.$$

We prove a version of Gauss' theorem Obviously, do not use Gauss' theorem in the following. Let a < 0, b > 1 and $f : (a,b) \to (0,\infty)$ be a strictly increasing diffeomorphism. Denote the set $G = \{(x,y) \mid x \in (0,1), 0 < y < f(x)\}$. Let $F = (F_1, F_2)$ be a continuously differentiable vector field defined in a neighborhood of \overline{G} . We will show together that

$$\int_{G} \operatorname{div}(F) \, d(x, y) = \int_{\partial G} \langle F, n \rangle \, ds.$$

Exercise 12.4 (20 pts) Denoting $\alpha = f(0), \beta = f(1)$, use the fundamental theorem of calculus to show that

$$\int_{G} \operatorname{div} F \, d(x, y) = \int_{G} \operatorname{div} F \, d(x, y) = \int_{0}^{1} -F_{2}(x, 0) \, dx + \int_{0}^{1} F_{2}(x, f(x)) \, dx + \int_{0}^{\beta} F_{1}(1, y) \, dy + \int_{0}^{\alpha} -F_{1}(0, y) \, dy + \int_{0}^{1} -F_{1}(x, f(x)) f'(x) \, dx$$
(1)

Exercise 12.5 (20 pts) Compute the line integral $\int_{\partial G} \langle \nabla F, n \rangle ds$ by dividing it into 4 segments $\{(x, y) \in \delta G \mid x = 0, y \in (0, \alpha)\}$, $\{(x, y) \in \delta G \mid x = 1, y \in (0, \beta)\}$, $\{(x, y) \in \delta G \mid x \in (0, 1), y = 0\}$, $\{(x, y) \in \delta G \mid x \in (0, 1), y = f(x)\}$ to show that it agrees with the above from 12.4. Why can we neglect the corners (x, y) = (0, 0), (x, y) = (1, 0), etc.