Analysis 3 - Exercise Sheet 11

Publication date: January 11, 2023 Due date: January 18, 2023

Wie besprochen, die zwei letzten Beispiele vom 10. Übungszettel noch mal.

Exercise 11.1 (20 pts) Bestimmen Sie die Tangentialräume von $S^n \setminus \{N\}$ mithilfe der Parametrisierung aus 10.3. Zeigen Sie, dass der Tangentialraum $T_x S^n = \{x\}^{\perp}$, also dass orthogonale Komplement zum Vektor x ist. Zeigen sie gleiches auch über die implizite Darstellung der Sphäre als die Menge aller x für die gilt $\|x\|_2^2 = 1$.

Exercise 11.2 (20 pts) Sei die Hyperfläche $S \subset \mathbb{R}^3$ der Graph einer Funktion $g : \mathbb{R}^2 \to \mathbb{R}$. Erstellen Sie eine Gleichung für die Punkte (x, y, z) der Tangentialebene in $(x_0, y_0, z_0) \in S$ mittels der partiellen Ableitungen von g.

Exercise 11.3 (20 pts) In diesem Beispiel widmen wir uns Funktionen zwischen Flächen. Seien $M \subset \mathbb{R}^d$ und $N \subset \mathbb{R}^d$ zwei erklpf der Dimensionen m und n. Sei $F: M \to N$, $p \in M$ und $q = F(p) \in N$ und $f: U \to M$ eine lokale Parametrisierungen um p. Wir nennen F differenzierbar in p, falls $F \circ f$ differenzierbar in $x = f^{-1}(p)$ ist.

- a) Warmup: Wozu ist diese umständliche Definition der Differenzierbarkeit überhaupt nötig? Warum betrachten wir die Differenzierbarkeit von F nicht einfach "direkt"?
- b) Zeige, dass Differenzierbarkeit unabhängig von den konkreten Parametrisierung f ist. D.h., zeige, dass Differenzierbarkeit bezüglich der Parametrisierung f auch impliziert, dass F bezüglich einer beliebigen anderen Parametrisierung g differenzierbar ist.

Exercise 11.4 (20 pts) Sei $T \subset \mathbb{R}^3$ ein Torus mit beliebigen Radien r, R. Zeige, dass $F: T \to N$, $F(p) = \frac{1}{\|p\|}$ differenzierbar ist.

Exercise 11.5 (20 pts) Eine Abbildung $f: M \to N$ zwischen zei erklpf heißt Diffeomorphismus, wenn f bijektiv ist und f und f^{-1} stetig differenzierbar sind. Wir nennen M und N diffeomorph, falls ein Diffeomorphismus zwischen m und N existiert. Zeigen Sie, dass das Ellipsoid

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 1\}$$

für a, b, c > 0 diffeomorph zur Sphäre S^2 ist.