Analysis 3 - Exercise Sheet 7

Note. We assume the definitions given in Exercise Sheet 6. Also, all the statements in Exercise Sheet 6 can be used to solve the problems below.

Exercise 7.1 (20 pts)

(a) Suppose that $f:[0,1] \rightarrow[0, \infty)$ is continuous and such that $f(1)=0$. Show that there exists $\hat{x} \in[0,1]$ such that $f(\hat{x})=\hat{x}$.

Hint: $A \subset \mathbb{R}$ is connected if and only if A is an interval.
(b) Let $n \geq 1$. Suppose that $f: \mathbb{S}^{n} \rightarrow \mathbb{R}$ is continuous. Show that there exists $\hat{x} \in \mathbb{S}^{n}$ such that $f(\hat{x})=$ $f(-\hat{x})$.

Hint: Recall that \mathbb{S}^{n} is connected for all $n \geq 1$. Also it might be useful to consider $g(x):=f(x)-f(-x)$.

Definition. Consider the points $\left(z_{1}, \ldots, z_{m}\right)$ with $z_{i} \in \mathbb{R}^{n}$. Denote by S_{k} the line segment connecting z_{k} to z_{k+1}, that is, $S_{k}:=\left[z_{k}, z_{k+1}\right]$. The set $P=\cup_{i=1}^{m-1} S_{i}$ is called polygonal path through $\left(z_{1}, \ldots, z_{m}\right)$. We also say that P connects z_{1} to z_{m}.

Definition. A subset $A \subset \mathbb{R}^{n}$ is called polygonally path-connected if for every $x, y \in A$ there exists a polygonal path $P \subset A$ connecting x to y.

Exercise 7.2 (20 pts) Fix some integer $n \geq 2$ and let $A \subset \mathbb{R}^{n}$ be countable. Prove that $\mathbb{R}^{n} \backslash A$ is polygonally path-connected.

Exercise 7.3 (20 pts) Fix some integer $n \geq 2$ and Let $A \subset \mathbb{R}^{n}$ be convex and bounded. Prove that $\mathbb{R}^{n} \backslash A$ is path-connected.

Exercise $7.4(20 \mathrm{pts})$ Let $A \subset \mathbb{R}^{n}$ be open. Prove that A is connected if and only if it is polygonally path-connected.

Let $\gamma:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}^{n}$ with $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ be a curve.
Definition. We say that γ is regular if $\gamma_{i} \in C^{1}([a, b])$ for all $i=1, \ldots, n$ and

$$
\left\|\gamma^{\prime}(t)\right\|=\sqrt{\left(\gamma_{1}^{\prime}(t)\right)^{2}+\cdots+\left(\gamma_{n}^{\prime}(t)\right)^{2}}>0
$$

for all $t \in(a, b)$. We say that γ is piecewise regular if there exist $a_{1}=a<a_{2}<\ldots<a_{k}=b$ such that γ is regular in each $\left[a_{i}, a_{i+1}\right]$.
Theorem. Let $\gamma:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}^{n}$ be piecewise regular. Then the length of γ is given by

$$
\ell(\gamma)=\sum_{i=1}^{k-1} \int_{a_{i}}^{a_{i+1}} \sqrt{\left(\gamma_{1}^{\prime}\right)^{2}+\cdots+\left(\gamma_{n}^{\prime}\right)^{2}} d t
$$

Definition. Let $\gamma:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}^{n}$ be piecewise regular and $F: \gamma([a, b]) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ continuous. The integral of F along γ is defined by

$$
\int_{\gamma} F d s:=\sum_{i=1}^{k-1} \int_{a_{i}}^{a_{i+1}} F(\gamma(t)) \sqrt{\left(\gamma_{1}^{\prime}\right)^{2}+\cdots+\left(\gamma_{n}^{\prime}\right)^{2}} d t
$$

Exercise $7.5(20 \mathrm{pts})$ Let $\gamma:[0, \pi] \rightarrow \mathbb{R}^{2}$ defined by

$$
\gamma(t):=\left(\cos ^{3} t, \sin ^{3} t\right)
$$

(a) Prove that γ is piecewise regular.
(b) Compute $\ell(\gamma)$.
(c) Compute $\int_{\gamma} F d s$ where $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $F(x, y):=\sqrt[3]{|x y|}$.

