Analysis 3 - Exercise Sheet 7

Publication date: November 23, 2022

Due date: November 30, 2022

Note. We assume the definitions given in Exercise Sheet 6. Also, all the statements in Exercise Sheet 6 can be used to solve the problems below.

Exercise 7.1 (20 pts)

(a) Suppose that $f: [0,1] \to [0,\infty)$ is continuous and such that f(1) = 0. Show that there exists $\hat{x} \in [0,1]$ such that $f(\hat{x}) = \hat{x}$.

Hint: $A \subset \mathbb{R}$ is connected if and only if A is an interval.

(b) Let $n \ge 1$. Suppose that $f: \mathbb{S}^n \to \mathbb{R}$ is continuous. Show that there exists $\hat{x} \in \mathbb{S}^n$ such that $f(\hat{x}) = f(-\hat{x})$.

Hint: Recall that \mathbb{S}^n is connected for all $n \ge 1$. Also it might be useful to consider g(x) := f(x) - f(-x).

Definition. Consider the points (z_1, \ldots, z_m) with $z_i \in \mathbb{R}^n$. Denote by S_k the line segment connecting z_k to z_{k+1} , that is, $S_k := [z_k, z_{k+1}]$. The set $P = \bigcup_{i=1}^{m-1} S_i$ is called *polygonal path* through (z_1, \ldots, z_m) . We also say that P connects z_1 to z_m .

Definition. A subset $A \subset \mathbb{R}^n$ is called *polygonally path-connected* if for every $x, y \in A$ there exists a polygonal path $P \subset A$ connecting x to y.

Exercise 7.2 (20 pts) Fix some integer $n \ge 2$ and let $A \subset \mathbb{R}^n$ be countable. Prove that $\mathbb{R}^n \setminus A$ is polygonally path-connected.

Exercise 7.3 (20 pts) Fix some integer $n \ge 2$ and Let $A \subset \mathbb{R}^n$ be convex and bounded. Prove that $\mathbb{R}^n \setminus A$ is path-connected.

Exercise 7.4 (20 pts) Let $A \subset \mathbb{R}^n$ be open. Prove that A is connected if and only if it is polygonally path-connected.

Let $\gamma: [a, b] \subset \mathbb{R} \to \mathbb{R}^n$ with $\gamma = (\gamma_1, \dots, \gamma_n)$ be a curve. **Definition.** We say that γ is *regular* if $\gamma_i \in C^1([a, b])$ for all $i = 1, \dots, n$ and

$$\|\gamma'(t)\| = \sqrt{(\gamma'_1(t))^2 + \dots + (\gamma'_n(t))^2} > 0$$

for all $t \in (a, b)$. We say that γ is *piecewise regular* if there exist $a_1 = a < a_2 < \ldots < a_k = b$ such that γ is regular in each $[a_i, a_{i+1}]$.

Theorem. Let $\gamma: [a, b] \subset \mathbb{R} \to \mathbb{R}^n$ be piecewise regular. Then the length of γ is given by

$$\ell(\gamma) = \sum_{i=1}^{k-1} \int_{a_i}^{a_{i+1}} \sqrt{(\gamma_1')^2 + \dots + (\gamma_n')^2} \, dt \, .$$

Definition. Let $\gamma: [a,b] \subset \mathbb{R} \to \mathbb{R}^n$ be piecewise regular and $F: \gamma([a,b]) \subset \mathbb{R}^n \to \mathbb{R}$ continuous. The integral of F along γ is defined by

$$\int_{\gamma} F \, ds := \sum_{i=1}^{k-1} \int_{a_i}^{a_{i+1}} F(\gamma(t)) \sqrt{(\gamma_1')^2 + \dots + (\gamma_n')^2} \, dt$$

Exercise 7.5 (20 pts) Let $\gamma : [0, \pi] \to \mathbb{R}^2$ defined by

$$\gamma(t) := (\cos^3 t, \sin^3 t) \,.$$

- (a) Prove that γ is piecewise regular.
- (b) Compute $\ell(\gamma)$.
- (c) Compute $\int_{\gamma} F \, ds$ where $F \colon \mathbb{R}^2 \to \mathbb{R}$ is defined by $F(x, y) := \sqrt[3]{|xy|}$.