Analysis 3-Exercise Sheet 6

Exercise $6.1(20 \mathrm{pts}) \quad$ Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
F(x, y):=\left(\sin (x y)+x \cos y, e^{x+y}-\frac{1}{1+x^{2}+y^{2}} \cdot\right)
$$

(a) Show that F is locally invertible in $(0,0)$.
(b) Denote by $G=\left(G^{1}, G^{2}\right)$ the local inverse of F around $(0,0)$. Compute the first order Taylor approximation of G^{i} around $(0,0)$, that is,

$$
G^{i}(x, y)=G^{i}(0,0)+G_{x}^{i}(0,0) x+G_{y}^{i}(0,0) y+o\left(\sqrt{x^{2}+y^{2}}\right)
$$

for $i=1,2$.

In the following we assume familiarity with the concepts of topology, induced topology, continuity for maps between topological spaces, and homeomorphism of topological spaces.

Definition. A topological space X is called connected if the only subsets that are both open and closed are \emptyset and X. A non-connected topological space is called disconnected.

Exercise $6.2(20 \mathrm{pts})$ Let X be a topological space. Prove that the following statements are equivalent:
(a) X is disconnected.
(b) $X=A_{1} \cup A_{2}$ with A_{1}, A_{2} open, disjoint and proper, i.e., $A_{i} \neq \emptyset, A_{i} \neq X$.
(c) $X=C_{1} \cup C_{2}$ with C_{1}, C_{2} closed, disjoint and proper, i.e., $C_{i} \neq \emptyset, C_{i} \neq X$.

Definition. The euclidean topology on \mathbb{R}^{n} is defined as the collection of sets

$$
\tau:=\left\{A \subset \mathbb{R}^{n}: \forall x \in A, \exists \varepsilon>0 \text { such that } B_{\varepsilon}(x) \subset A\right\}
$$

where $B_{\varepsilon}(x):=\left\{y \in \mathbb{R}^{n}:\|y-x\|<\varepsilon\right\}$ and $\|\cdot\|$ is the euclidean norm.
Note. In the following \mathbb{R}^{n} is always equipped with the euclidean topology. Any subset $A \subset \mathbb{R}^{n}$ is itself a topological space with the topology induced by the euclidean one.
Definition. A topological space X is called path-connected if for every pair $x, y \in X$ there exists a continuous map $\alpha:[0,1] \rightarrow X$ such that $\alpha(0)=x$ and $\alpha(1)=y$. The map α is a path between x and y.

Note. In the following you can assume this fact: $I \subset \mathbb{R}$ is connected if and only if it is an interval.

Exercise 6.3 (20 pts) Let X and Y be topological spaces.
(a) Assume that $f: X \rightarrow Y$ is continuous. Show that if X is connected then $f(X)$ is connected.
(b) Show that if X is path-connected then it is connected.
(c) Suppose that $A, B \subset X$ are path-connected and such that $A \cap B \neq \emptyset$. Show that $A \cup B$ is path-connected.
(d) Assume that $f: X \rightarrow Y$ is continuous. Show that if X is path-connected then $f(X)$ is path-connected.

Exercise 6.4 (20 pts)

(a) Define $X:=\{x \in \mathbb{R}: x \neq 0\}$. Prove that X is disconnected.
(b) Let $a, b \in \mathbb{R}^{n}$ and define the line segment

$$
[a, b]:=\{t a+(1-t) b, t \in[0,1]\} .
$$

Prove that $[a, b]$ is path-connected.
(c) Let $C \subset \mathbb{R}^{n}$ be convex. Show that C is path-connected.

Exercise 6.5 (20 pts)

(a) Let $\mathbb{S}^{n}:=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$. Show that \mathbb{S}^{n} is path-connected.
(b) Show that \mathbb{S}^{1} is not homeomorphic to $(0,1)$.
(c) Prove that the intervals $(0,1)$ and $(0,1]$ are not homeomorphic.

