Analysis 3 - Exercise Sheet 5

Exercise 5.1 (25 pts) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable in $t=0$. Moreover suppose g is bounded, that is, there exists $M \geq 0$ such that $|g(t)| \leq M$ for all $t \in \mathbb{R}$. Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
F(x, y):= \begin{cases}x^{2} g\left(\frac{y}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove that $F_{x y}(0,0)=F_{y x}(0,0)$ if and only if $g^{\prime}(0)=0$.
Define $\mathbb{S}^{n-1}:=\left\{v \in \mathbb{R}^{n}:\|v\|=1\right\}$.
Theorem 1. Let $A \subset \mathbb{R}^{n}$ be open, $F: A \rightarrow \mathbb{R}$. If F is differentiable in $z_{0} \in A$, then F admits all the directional derivatives in z_{0} and

$$
\begin{equation*}
F_{v}\left(z_{0}\right)=\nabla F\left(z_{0}\right) \cdot v=\sum_{i=1}^{n} F_{x_{i}}\left(z_{0}\right) v_{i}, \quad \text { for all } v \in \mathbb{S}^{n-1} \tag{1}
\end{equation*}
$$

The next exercise shows that, in general, formula (1) does not hold if F is not differentiable.

Exercise 5.2 (25 pts) Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
F(x, y):= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Prove that $F_{v}(0,0)$ exists for all $v \in \mathbb{S}^{1}$ and compute it.
(b) Prove that (1) does not hold, i.e., that there exists some $v \in \mathbb{S}^{1}$ such that

$$
F_{v}(0,0) \neq \nabla F(0,0) \cdot v
$$

(c) Can F be differentiable in $(0,0)$?

Definition. Consider a vector valued function $F=\left(F^{1}, \ldots, F^{n}\right): A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. The Jacobian of F at $z \in A$ is defined as the $n \times n$ matrix of partial derivatives

$$
J_{F}(z):=\left(F_{x_{j}}^{i}(z)\right)_{i j}
$$

Inverse Function Theorem. Let $A \subset \mathbb{R}^{n}$ be open. Let $F: A \rightarrow \mathbb{R}^{n}$ be a C^{1} function and suppose that

$$
\operatorname{det} J_{F}\left(z_{0}\right) \neq 0
$$

for some $z_{0} \in A$. Then F is locally invertible around z_{0}, that is, there exist $U \subset A$ neighbourhood of z_{0}, V neighbourhood of $F\left(z_{0}\right)$ and a C^{1} function $G: V \rightarrow U$ such that $(F \circ G)(w)=w$ for all $w \in V$ and $(G \circ F)(z)=z$ for all $z \in U$. We denote $F^{-1}:=G$. In particular for all $w \in V$ it holds

$$
J_{F^{-1}}(w)=\left[J_{F}\left(F^{-1}(w)\right)\right]^{-1}
$$

Exercise 5.3 (25 pts)

(a) Consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
F(x, y, z)=(x z, 2 x y, 3 y z)
$$

For which points of \mathbb{R}^{3} is the map F locally invertible?
(b) Consider the map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
F(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right) .
$$

Show that F is locally invertible for every point in \mathbb{R}^{2}. Is F globally invertible?

Exercise $5.4(25 \mathrm{pts}) \quad$ Suppose $F \in C^{2}\left(\mathbb{R}^{2}\right)$ and that there exists $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that

$$
F\left(x_{0}, y_{0}\right)=F_{x}\left(x_{0}, y_{0}\right)=F_{y}\left(x_{0}, y_{0}\right)=0 .
$$

Moreover assume that

$$
F_{x x}\left(x_{0}, y_{0}\right) F_{y y}\left(x_{0}, y_{0}\right)>F_{x y}^{2}\left(x_{0}, y_{0}\right)
$$

Use the Inverse Function Theorem and the Minimality/Maximality Criterion from Exercise Sheet 2 to prove the existence of a neighbourhood U of $\left(x_{0}, y_{0}\right)$ such that

$$
F(x, y) \neq 0 \quad \text { for all }(x, y) \in U \backslash\left\{\left(x_{0}, y_{0}\right)\right\}
$$

