Analysis 3 - Exercise Sheet 5

Publication date: November 9, 2022

Due date: November 16, 2022

Exercise 5.1 (25 pts) Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable in t = 0. Moreover suppose g is bounded, that is, there exists $M \ge 0$ such that $|g(t)| \le M$ for all $t \in \mathbb{R}$. Define $F: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} x^2 g\left(\frac{y}{x}\right) & \text{ if } x \neq 0 \,, \\ 0 & \text{ if } x = 0 \,. \end{cases}$$

Prove that $F_{xy}(0,0) = F_{yx}(0,0)$ if and only if g'(0) = 0.

Define $\mathbb{S}^{n-1} := \{ v \in \mathbb{R}^n : \|v\| = 1 \}.$

Theorem 1. Let $A \subset \mathbb{R}^n$ be open, $F: A \to \mathbb{R}$. If F is differentiable in $z_0 \in A$, then F admits all the directional derivatives in z_0 and

$$F_{v}(z_{0}) = \nabla F(z_{0}) \cdot v = \sum_{i=1}^{n} F_{x_{i}}(z_{0})v_{i}, \quad \text{for all } v \in \mathbb{S}^{n-1}.$$
 (1)

The next exercise shows that, in general, formula (1) does not hold if F is not differentiable.

Exercise 5.2 (25 pts) Define $F : \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{if } (x,y) \neq (0,0) \,, \\ 0 & \text{if } (x,y) = (0,0) \,. \end{cases}$$

- (a) Prove that $F_v(0,0)$ exists for all $v \in \mathbb{S}^1$ and compute it.
- (b) Prove that (1) does not hold, i.e., that there exists some $v \in \mathbb{S}^1$ such that

$$F_v(0,0) \neq \nabla F(0,0) \cdot v \,.$$

(c) Can F be differentiable in (0,0)?

Definition. Consider a vector valued function $F = (F^1, \ldots, F^n)$: $A \subset \mathbb{R}^n \to \mathbb{R}^n$. The Jacobian of F at $z \in A$ is defined as the $n \times n$ matrix of partial derivatives

$$J_F(z) := \left(F^i_{x_j}(z)\right)_{ij}$$

Inverse Function Theorem. Let $A \subset \mathbb{R}^n$ be open. Let $F: A \to \mathbb{R}^n$ be a C^1 function and suppose that

 $\det J_F(z_0) \neq 0$

for some $z_0 \in A$. Then F is *locally invertible* around z_0 , that is, there exist $U \subset A$ neighbourhood of z_0 , V neighbourhood of $F(z_0)$ and a C^1 function $G: V \to U$ such that $(F \circ G)(w) = w$ for all $w \in V$ and $(G \circ F)(z) = z$ for all $z \in U$. We denote $F^{-1} := G$. In particular for all $w \in V$ it holds

$$J_{F^{-1}}(w) = \left[J_F(F^{-1}(w))\right]^{-1}$$

Analysis 3 - Exercise Sheet 5

Exercise 5.3 (25 pts)

(a) Consider the map $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$F(x, y, z) = (xz, 2xy, 3yz).$$

For which points of \mathbb{R}^3 is the map *F* locally invertible?

(b) Consider the map $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$F(x,y) = (e^x \cos y, e^x \sin y).$$

Show that F is locally invertible for every point in \mathbb{R}^2 . Is F globally invertible?

Exercise 5.4 (25 pts) Suppose $F \in C^2(\mathbb{R}^2)$ and that there exists $(x_0, y_0) \in \mathbb{R}^2$ such that

$$F(x_0, y_0) = F_x(x_0, y_0) = F_y(x_0, y_0) = 0.$$

Moreover assume that

$$F_{xx}(x_0, y_0)F_{yy}(x_0, y_0) > F_{xy}^2(x_0, y_0).$$

Use the Inverse Function Theorem and the Minimality/Maximality Criterion from Exercise Sheet 2 to prove the existence of a neighbourhood U of (x_0, y_0) such that

 $F(x,y) \neq 0$ for all $(x,y) \in U \setminus \{(x_0,y_0)\}$.