

Analysis 3 - Exercise Sheet 4

Publication date: October 23, 2022

Due date: November 9, 2022

Consider the following statement you saw in class.

Theorem 1. Let $A \subset \mathbb{R}^n$ be open and $F: A \to \mathbb{R}$. Suppose that there exist $z_0 \in A$ and a neighbourhood $U \subset A$ of z_0 such that ∇F exists and is continuous in U. Then F is differentiable in z_0 .

The converse of Theorem 1 does not hold, as shown in the next exercise.

Exercise 4.1 (25 pts) Define $F \colon \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} 0 & \text{if } y = 0, \\ y^2 \cos\left(\frac{1}{y}\right) & \text{if } y \neq 0. \end{cases}$$

- (a) Compute F_x and F_y . Prove that F_y is not continuous in (x, 0) for all $x \in \mathbb{R}$.
- (b) Prove that F is differentiable in (x, 0) for all $x \in \mathbb{R}$.

In class you saw the following theorem.

Theorem 2. Let $A \subset \mathbb{R}^n$ be open and $F: A \to \mathbb{R}$. Suppose that there exist $z_0 \in A$ and a neighbourhood $U \subset A$ of z_0 such that $\nabla^2 F$ exists and is continuous in U. Then $F_{x_i x_j}(z_0) = F_{x_j x_i}(z_0)$ for all i, j in $\{1, \ldots, n\}$.

The aim of the next exercise is to prove that the assumption of $\nabla^2 F$ being continuous cannot be removed.

Exercise 4.2 (25 pts) Define $F : \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} 0 & \text{if } (x,y) = (0,0) \,, \\ \frac{x^3 y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \,. \end{cases}$$

- (a) Prove that F is continuous in \mathbb{R}^2 .
- (b) Compute $\nabla F = (F_x, F_y)$ and prove that F is differentiable in \mathbb{R}^2 .
- (c) Prove that F_{xy} and F_{yx} exist in \mathbb{R}^2 and that

$$F_{xy}(0,0) \neq F_{yx}(0,0)$$
.

(d) Check that F_{xy} and F_{yx} are not continuous in (0,0).

For the next exercise it will be useful to recall the following Taylor formula in one dimension.

Theorem 3. Let $a, b \in \mathbb{R}$ and $g \in C^2(I)$ with $I = [a, b] \subset \mathbb{R}$. Let $t \in I$ and s > 0 be such that $t + s \in I$. Then there exists $\xi \in (0, 1)$ such that

$$g(t+s) = g(t) + g'(t)s + \frac{1}{2}g''(t+\xi s)s^2.$$

Exercise 4.3 (25 pts) Let $A \subset \mathbb{R}^2$ be open and $F \in C^2(A)$.

(a) Let $(x, y), (h, k) \in \mathbb{R}^2$ be such that $P_t := (x + th, y + tk) \in A$ for all $t \in [0, 1]$. Using Theorem 3, show that there exists $\xi \in (0, 1)$ such that

$$F(x+h,y+k) = F(x,y) + F_x(x,y)h + F_y(x,y)k + \frac{1}{2} \left\{ F_{xx}(P_\xi)h^2 + 2F_{xy}(P_\xi)hk + F_{yy}(P_\xi)k^2 \right\}.$$

(b) The second order Taylor polynomial of F in (0,0) is defined by

$$P_2(x,y) := F(0,0) + F_x(0,0)x + F_y(0,0)y + \frac{1}{2} \left\{ F_{xx}(0,0)x^2 + 2F_{xy}(0,0)xy + F_{yy}(0,0)y^2 \right\} .$$

Compute P_2 for $F \colon \mathbb{R}^2 \to \mathbb{R}$ defined by $F(x,y) := (2x+y)e^{x^2-y}$

Definiton. Define $\mathbb{S}^n := \{v \in \mathbb{R}^{n+1} : \|v\| = 1\}$. Let $A \subset \mathbb{R}^{n+1}$ be open, $F : A \to \mathbb{R}$, and $v \in \mathbb{S}^n$. The directional derivative of F at $z_0 \in A$ in direction v is defined by

$$F_v(z_0) := \lim_{t \to 0} \frac{F(z_0 + tv) - F(z_0)}{t} \,,$$

whenever the limit exists.

Theorem 4. Let $A \subset \mathbb{R}^{n+1}$ be open, $F: A \to \mathbb{R}$. If F is differentiable in $z_0 \in A$, then F admits all the directional derivatives in z_0 and

$$F_v(z_0) = \nabla F(z_0) \cdot v = \sum_{i=1}^{n+1} F_{x_i}(z_0) v_i$$
, for all $v \in \mathbb{S}^n$.

The next exercise shows that the converse of Theorem 4 does not hold, i.e., there exists F which admits all the directional derivatives at some point z_0 , but is not differentiable at z_0 .

Exercise 4.4 (25 pts) Define $F \colon \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} 0 & \text{if } (x,y) = (0,0) \,, \\ \frac{x^3 y}{x^4 + y^2} + y & \text{if } (x,y) \neq (0,0) \,. \end{cases}$$

- (a) Prove that $F_v(0,0)$ exists for all $v \in \mathbb{S}^1$ and compute it.
- (b) Prove that F is not differentiable in (0, 0).
- (c) Prove that for all $v \in \mathbb{S}^1$ it holds

$$F_v(0,0) = \nabla F(0,0) \cdot v \,.$$