Analysis 3-Exercise Sheet 4

Consider the following statement you saw in class.

Theorem 1. Let $A \subset \mathbb{R}^{n}$ be open and $F: A \rightarrow \mathbb{R}$. Suppose that there exist $z_{0} \in A$ and a neighbourhood $U \subset A$ of z_{0} such that ∇F exists and is continuous in U. Then F is differentiable in z_{0}.

The converse of Theorem 1 does not hold, as shown in the next exercise.

Exercise 4.1 (25 pts) \quad Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
F(x, y):= \begin{cases}0 & \text { if } y=0 \\ y^{2} \cos \left(\frac{1}{y}\right) & \text { if } y \neq 0\end{cases}
$$

(a) Compute F_{x} and F_{y}. Prove that F_{y} is not continuous in $(x, 0)$ for all $x \in \mathbb{R}$.
(b) Prove that F is differentiable in $(x, 0)$ for all $x \in \mathbb{R}$.

In class you saw the following theorem.
Theorem 2. Let $A \subset \mathbb{R}^{n}$ be open and $F: A \rightarrow \mathbb{R}$. Suppose that there exist $z_{0} \in A$ and a neighbourhood $U \subset A$ of z_{0} such that $\nabla^{2} F$ exists and is continuous in U. Then $F_{x_{i} x_{j}}\left(z_{0}\right)=F_{x_{j} x_{i}}\left(z_{0}\right)$ for all i, j in $\{1, \ldots, n\}$.

The aim of the next exercise is to prove that the assumption of $\nabla^{2} F$ being continuous cannot be removed.

Exercise 4.2 (25 pts) Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
F(x, y):= \begin{cases}0 & \text { if }(x, y)=(0,0) \\ \frac{x^{3} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0)\end{cases}
$$

(a) Prove that F is continuous in \mathbb{R}^{2}.
(b) Compute $\nabla F=\left(F_{x}, F_{y}\right)$ and prove that F is differentiable in \mathbb{R}^{2}.
(c) Prove that $F_{x y}$ and $F_{y x}$ exist in \mathbb{R}^{2} and that

$$
F_{x y}(0,0) \neq F_{y x}(0,0)
$$

(d) Check that $F_{x y}$ and $F_{y x}$ are not continuous in $(0,0)$.

For the next exercise it will be useful to recall the following Taylor formula in one dimension.

Theorem 3. Let $a, b \in \mathbb{R}$ and $g \in C^{2}(I)$ with $I=[a, b] \subset \mathbb{R}$. Let $t \in I$ and $s>0$ be such that $t+s \in I$. Then there exists $\xi \in(0,1)$ such that

$$
g(t+s)=g(t)+g^{\prime}(t) s+\frac{1}{2} g^{\prime \prime}(t+\xi s) s^{2}
$$

Exercise 4.3 (25 pts) Let $A \subset \mathbb{R}^{2}$ be open and $F \in C^{2}(A)$.
(a) Let $(x, y),(h, k) \in \mathbb{R}^{2}$ be such that $P_{t}:=(x+t h, y+t k) \in A$ for all $t \in[0,1]$. Using Theorem 3 , show that there exists $\xi \in(0,1)$ such that

$$
F(x+h, y+k)=F(x, y)+F_{x}(x, y) h+F_{y}(x, y) k+\frac{1}{2}\left\{F_{x x}\left(P_{\xi}\right) h^{2}+2 F_{x y}\left(P_{\xi}\right) h k+F_{y y}\left(P_{\xi}\right) k^{2}\right\}
$$

(b) The second order Taylor polynomial of F in $(0,0)$ is defined by

$$
P_{2}(x, y):=F(0,0)+F_{x}(0,0) x+F_{y}(0,0) y+\frac{1}{2}\left\{F_{x x}(0,0) x^{2}+2 F_{x y}(0,0) x y+F_{y y}(0,0) y^{2}\right\}
$$

Compute P_{2} for $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $F(x, y):=(2 x+y) e^{x^{2}-y^{2}}$.

Defintion. Define $\mathbb{S}^{n}:=\left\{v \in \mathbb{R}^{n+1}:\|v\|=1\right\}$. Let $A \subset \mathbb{R}^{n+1}$ be open, $F: A \rightarrow \mathbb{R}$, and $v \in \mathbb{S}^{n}$. The directional derivative of F at $z_{0} \in A$ in direction v is defined by

$$
F_{v}\left(z_{0}\right):=\lim _{t \rightarrow 0} \frac{F\left(z_{0}+t v\right)-F\left(z_{0}\right)}{t}
$$

whenever the limit exists.
Theorem 4. Let $A \subset \mathbb{R}^{n+1}$ be open, $F: A \rightarrow \mathbb{R}$. If F is differentiable in $z_{0} \in A$, then F admits all the directional derivatives in z_{0} and

$$
F_{v}\left(z_{0}\right)=\nabla F\left(z_{0}\right) \cdot v=\sum_{i=1}^{n+1} F_{x_{i}}\left(z_{0}\right) v_{i}, \quad \text { for all } v \in \mathbb{S}^{n}
$$

The next exercise shows that the converse of Theorem 4 does not hold, i.e., there exists F which admits all the directional derivatives at some point z_{0}, but is not differentiable at z_{0}.

Exercise 4.4 (25 pts) \quad Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
F(x, y):= \begin{cases}0 & \text { if }(x, y)=(0,0) \\ \frac{x^{3} y}{x^{4}+y^{2}}+y & \text { if }(x, y) \neq(0,0)\end{cases}
$$

(a) Prove that $F_{v}(0,0)$ exists for all $v \in \mathbb{S}^{1}$ and compute it.
(b) Prove that F is not differentiable in $(0,0)$.
(c) Prove that for all $v \in \mathbb{S}^{1}$ it holds

$$
F_{v}(0,0)=\nabla F(0,0) \cdot v
$$

