Analysis 3 - Exercise Sheet 3

Publication date: October 12, 2022

Due date: October 19, 2022

Remark: The following exercise addresses a question that a few of you asked in the previous class. Enjoy!

Exercise 3.1 (25 pts)

- (a) Suppose that z = 0 is a local minimizer for a given function $F : \mathbb{R}^n \to \mathbb{R}$. Let $v \in \mathbb{R}^n \setminus \{0\}$ and consider the restriction of F along the line of direction v, that is, the function $g_v(t) := F(tv)$ for $t \in \mathbb{R}$. Prove that t = 0 is a local minimizer for g_v .
- (b) We now show that the converse of point (a) does not hold, even if F is smooth. To this end, consider the function $F \colon \mathbb{R}^2 \to \mathbb{R}$ defined by

$$F(x,y) := (y - x^2)(y - 2x^2).$$

Prove the following statements:

- (i) (0,0) is the only critical point of F.
- (ii) The Hessian of F vanishes in (0,0).
- (iii) Consider the restriction of F along the lines through the origin:

$$g_m(x) := \begin{cases} F(x, mx) & \text{ if } m \in \mathbb{R} \,, \\ F(0, x) & \text{ if } m = \infty \,. \end{cases}$$

Show that for all $m \in \mathbb{R} \cup \{\infty\}$ the point x = 0 is a local minimizer for g_m .

(iv) Show that (0,0) is a saddle point for F.

Hint: To understand what is happening, it might be helpful to draw the sets in \mathbb{R}^2 where F is positive, negative and zero.

Implicit Function: Let $A \subset \mathbb{R}^2$ be open, and $F: A \to \mathbb{R}$. Define the set

$$Z := \{ (x, y) \in A : F(x, y) = 0 \}.$$

Assume $(x_0, y_0) \in Z$, i.e., $F(x_0, y_0) = 0$. We say that the equation F = 0 defines an implicit function y = f(x) at the point (x_0, y_0) if the set Z coincides with the graph of f around (x_0, y_0) , that is, if there exist $\varepsilon, \delta > 0$ and $f: I_{\varepsilon}(x_0) \to I_{\delta}(y_0)$, with $I_{\varepsilon}(x_0) := [x_0 - \varepsilon, x_0 + \varepsilon], I_{\delta}(y_0) := [y_0 - \delta, y_0 + \delta]$ such that

$$\{(x,y) \in I_{\varepsilon}(x_0) \times I_{\delta}(y_0) : F(x,y) = 0\} = \{(x,f(x)) : x \in I_{\varepsilon}(x_0)\}.$$

Clearly, we say that F = 0 defines an implicit function x = f(y) at the point (x_0, y_0) if the set Z coincides with the graph of f around (x_0, y_0)

Implicit Function Theorem: Let $A \subset \mathbb{R}^2$ be open, and $F: A \to \mathbb{R}$ with $F \in C^1(A)$. Assume there exists a point $(x_0, y_0) \in A$ such that

$$F(x_0, y_0) = 0$$
, $F_y(x_0, y_0) \neq 0$.

Then there exist $\varepsilon, \delta > 0$ and a unique implicit function $f: I_{\varepsilon}(x_0) \to I_{\delta}(y_0)$, i.e., f satisfies $f(x_0) = y_0$ and

$$F(x, f(x)) = 0$$
, for all $x \in I_{\varepsilon}(x_0)$.

Moreover $f \in C^1(I_{\varepsilon}(x_0), I_{\delta}(y_0))$ and

$$f'(x) = -\frac{F_x(x, f(x))}{F_y(x, f(x))}.$$

Clearly, the analogous statement holds if

$$F(x_0, y_0) = 0$$
, $F_x(x_0, y_0) \neq 0$,

and in this case F = 0 defines an implicit function x = f(y).

Tangent line to a set: Let $A \subset \mathbb{R}^2$ be open, and $F: A \to \mathbb{R}$ with $F \in C^1(A)$. Define the set

$$Z := \{ (x, y) \in A : F(x, y) = 0 \}$$

Suppose that the point $(x_0, y_0) \in Z$ is such that either $F_x(x_0, y_0) \neq 0$ or $F_y(x_0, y_0) \neq 0$. Then the equation of the tangent line to Z at (x_0, y_0) is given by

$$F_x(x_0, y_0) (x - x_0) + F_y(x_0, y_0) (y - y_0) = 0.$$

Exercise 3.2 (25 pts) Let $F \colon \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$F(x, y) = x^3 + y^3 - 3xy.$$

Find the points $(x_0, y_0) \in \mathbb{R}^2$ such that F = 0 defines implicitly a map y = f(x).

Exercise 3.3 (25 pts) Let $F \colon \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$F(x,y) = 2y^3 + 4x^2y - 3x^4 + x + 6y$$

Prove that the equation F = 0 defines an implicit function y = f(x) for all $(x_0, y_0) \in \mathbb{R}^2$.

2

Exercise 3.4 (25 pts) Let $F \colon \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$F(x, y) = x^3 + y^3 - 4x^2y + 2.$$

- (a) Show that the equation F = 0 defines an implicit function y = f(x) around the point (1, 1).
- (b) Compute f'(1).
- (c) Compute the equation of the line tangent to the set

$$Z = \{ (x, y) \in \mathbb{R}^2 : F(x, y) = 0 \}$$

at the point (1, 1).