Analysis 3 - Exercise Sheet 3

Exercise 3.1 (25 pts)

(a) Suppose that $z=0$ is a local minimizer for a given function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Let $v \in \mathbb{R}^{n} \backslash\{0\}$ and consider the restriction of F along the line of direction v, that is, the function $g_{v}(t):=F(t v)$ for $t \in \mathbb{R}$. Prove that $t=0$ is a local minimizer for g_{v}.
(b) We now show that the converse of point (a) does not hold, even if F is smooth. To this end, consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
F(x, y):=\left(y-x^{2}\right)\left(y-2 x^{2}\right) .
$$

Prove the following statements:
(i) $(0,0)$ is the only critical point of F.
(ii) The Hessian of F vanishes in $(0,0)$.
(iii) Consider the restriction of F along the lines through the origin:

$$
g_{m}(x):= \begin{cases}F(x, m x) & \text { if } m \in \mathbb{R} \\ F(0, x) & \text { if } m=\infty\end{cases}
$$

Show that for all $m \in \mathbb{R} \cup\{\infty\}$ the point $x=0$ is a local minimizer for g_{m}.
(iv) Show that $(0,0)$ is a saddle point for F.

Hint: To understand what is happening, it might be helpful to draw the sets in \mathbb{R}^{2} where F is positive, negative and zero.

Implicit Function: Let $A \subset \mathbb{R}^{2}$ be open, and $F: A \rightarrow \mathbb{R}$. Define the set

$$
Z:=\{(x, y) \in A: F(x, y)=0\}
$$

Assume $\left(x_{0}, y_{0}\right) \in Z$, i.e., $F\left(x_{0}, y_{0}\right)=0$. We say that the equation $F=0$ defines an implicit function $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ if the set Z coincides with the graph of f around $\left(x_{0}, y_{0}\right)$, that is, if there exist $\varepsilon, \delta>0$ and $f: I_{\varepsilon}\left(x_{0}\right) \rightarrow I_{\delta}\left(y_{0}\right)$, with $I_{\varepsilon}\left(x_{0}\right):=\left[x_{0}-\varepsilon, x_{0}+\varepsilon\right], I_{\delta}\left(y_{0}\right):=\left[y_{0}-\delta, y_{0}+\delta\right]$ such that

$$
\left\{(x, y) \in I_{\varepsilon}\left(x_{0}\right) \times I_{\delta}\left(y_{0}\right): F(x, y)=0\right\}=\left\{(x, f(x)): x \in I_{\varepsilon}\left(x_{0}\right)\right\}
$$

Clearly, we say that $F=0$ defines an implicit function $x=f(y)$ at the point $\left(x_{0}, y_{0}\right)$ if the set Z coincides with the graph of f around $\left(x_{0}, y_{0}\right)$

Implicit Function Theorem: Let $A \subset \mathbb{R}^{2}$ be open, and $F: A \rightarrow \mathbb{R}$ with $F \in C^{1}(A)$. Assume there exists a point $\left(x_{0}, y_{0}\right) \in A$ such that

$$
F\left(x_{0}, y_{0}\right)=0, \quad F_{y}\left(x_{0}, y_{0}\right) \neq 0
$$

Then there exist $\varepsilon, \delta>0$ and a unique implicit function $f: I_{\varepsilon}\left(x_{0}\right) \rightarrow I_{\delta}\left(y_{0}\right)$, i.e., f satisfies $f\left(x_{0}\right)=y_{0}$ and

$$
F(x, f(x))=0, \quad \text { for all } x \in I_{\varepsilon}\left(x_{0}\right)
$$

Moreover $f \in C^{1}\left(I_{\varepsilon}\left(x_{0}\right), I_{\delta}\left(y_{0}\right)\right)$ and

$$
f^{\prime}(x)=-\frac{F_{x}(x, f(x))}{F_{y}(x, f(x))} .
$$

Clearly, the analogous statement holds if

$$
F\left(x_{0}, y_{0}\right)=0, \quad F_{x}\left(x_{0}, y_{0}\right) \neq 0
$$

and in this case $F=0$ defines an implicit function $x=f(y)$.

Tangent line to a set: Let $A \subset \mathbb{R}^{2}$ be open, and $F: A \rightarrow \mathbb{R}$ with $F \in C^{1}(A)$. Define the set

$$
Z:=\{(x, y) \in A: F(x, y)=0\}
$$

Suppose that the point $\left(x_{0}, y_{0}\right) \in Z$ is such that either $F_{x}\left(x_{0}, y_{0}\right) \neq 0$ or $F_{y}\left(x_{0}, y_{0}\right) \neq 0$. Then the equation of the tangent line to Z at $\left(x_{0}, y_{0}\right)$ is given by

$$
F_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0
$$

Exercise 3.2 (25 pts) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
F(x, y)=x^{3}+y^{3}-3 x y
$$

Find the points $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that $F=0$ defines implicitly a map $y=f(x)$.

Exercise 3.3 (25 pts) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
F(x, y)=2 y^{3}+4 x^{2} y-3 x^{4}+x+6 y
$$

Prove that the equation $F=0$ defines an implicit function $y=f(x)$ for all $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$.

Exercise 3.4 (25 pts) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
F(x, y)=x^{3}+y^{3}-4 x^{2} y+2
$$

(a) Show that the equation $F=0$ defines an implicit function $y=f(x)$ around the point $(1,1)$.
(b) Compute $f^{\prime}(1)$.
(c) Compute the equation of the line tangent to the set

$$
Z=\left\{(x, y) \in \mathbb{R}^{2}: F(x, y)=0\right\}
$$

at the point $(1,1)$.

