Analysis 3 - Exercise Sheet 2

Recall: Let $A \subset \mathbb{R}^{n}$ be an open set. Suppose $f: A \rightarrow \mathbb{R}$ is differentiable at $z^{*} \in \mathbb{R}^{n}$. We say that z^{*} is a critical point of f if $\nabla f\left(z^{*}\right)=0$. Recall that a local minimizer or maximinizer of f is always a critical point. Suppose now $n=2$ and that f is C^{2}. The Hessian of f is defined by

$$
H f(x, y):=\operatorname{det}\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

Suppose $\left(x^{*}, y^{*}\right)$ is a critical point of f. If

$$
H f\left(x^{*}, y^{*}\right)>0, \quad f_{x x}\left(x^{*}, y^{*}\right)>0
$$

then $\left(x^{*}, y^{*}\right)$ is a local mimizer for f. If

$$
H f\left(x^{*}, y^{*}\right)>0, \quad f_{x x}\left(x^{*}, y^{*}\right)<0
$$

then $\left(x^{*}, y^{*}\right)$ is a local maximizer for f. If

$$
H f\left(x^{*}, y^{*}\right)<0
$$

then $\left(x^{*}, y^{*}\right)$ is a saddle point for f.

Exercise 2.1 (25 pts) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
f(x, y):=\frac{x y}{1+x^{2}+y^{2}} .
$$

Find all the critical points of f and classify them into local maximizers, local minimizers and saddle points.

Exercise 2.2 (25 pts) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
f(x, y):=2\left(x^{4}+y^{4}+1\right)-(x+y)^{2} .
$$

Find all the critical points of f and classify them into local maximizers, local minimizers and saddle points.
Hint: if at some critical point $\left(x^{*}, y^{*}\right)$ one has $\operatorname{Hf}\left(x^{*}, y^{*}\right)=0$, then nothing can be concluded about the nature of $\left(x^{*}, y^{*}\right)$. In such case, one has to proceed manually, for example by considering the restriction of f to the line through the origin $\{y=m x\}$ for $m \in \mathbb{R}$, and analyze the resulting function of one variable.

Exercise 2.3 (25 pts) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=x y^{2}$ and consider the set

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0, y \leq 1+x, y \leq 1-x\right\}
$$

Find the global maximizers and minimizers of f restricted to the set A.
Hint: Draw A and consider the separate cases of internal points and boundary points.

Exercise 2.4 (25 pts)

(a) Suppose $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $x^{*} \in \AA$, with \AA denoting the interior of A. Show that if x^{*} is a local minimizer or maximizer for f, then $\nabla f\left(x^{*}\right)=0$.
(b) (Rolle's Theorem in \mathbb{R}^{n}) Suppose that $A \subset \mathbb{R}^{n}$ is compact with $\AA \neq \emptyset$. Let $f: A \rightarrow \mathbb{R}$ be continuous in A, differentiable in \AA, and constant on ∂A. Prove that there exists $x^{*} \in A$ such that $\nabla f\left(x^{*}\right)=0$. Hint: Use Weierstrass' Theorem.

