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Calculus of Variations

Summary of Course Contents

Lesson 1 (3 March 2021)

Introduction to the course. Definition of minimization problem. Mentioned classes of methods
to solve them: Indirect Methods, Direct Methods, Relaxation, Γ-convergence. Given elementary
examples to illustrate each class.

Definition of Integral Functional with two examples (not analyzed in detail). Examples of varia-
tional problems which will not be treated in this course.

Started Functional Analysis Revision (no proofs): Metric Spaces, Normed Spaces, Banach Spaces.
Space of Linear Continuous operators. Dual of a normed spaces. Weak and weak* topologies.
Reflexivity. Compactness in infinite dimensions and Banach-Alaoglu Theorem. Weak and weak*
convergence of sequences implies boundedness of the sequence. Definition of lower semicontinuity.

Lesson 2 (10 March 2021)

Continued Functional Analysis Revision (no proofs): Definition of Inner Product Space and Hil-
bert Space. Cauchy-Schwarz inequality. Basis of a Hilbert Space. Every separable Hilbert space
admits a basis. Coordinates with respect to a basis. A separable Hilbert space is isometric to the
space of square summable real sequences l2. Riesz’s Representation Theorem. Properties of weak
convergence in Hilbert spaces.

Started Calculus in Normed Spaces: Fréchet derivative in normed space. C1 functions. Examples
in Rd and Hilbert. Fréchet differentiable implies continuous (with proof). Chain rule for Fréchet
differentiable maps (no proof). Gâteaux derivative. Fréchet differentiable implies Gâteaux diffe-
rentiable (with proof). Counterexample to show that the converse is not true. Example of Fréchet
derivative for integral functional F : C1([0, 1]) → R. Mean Value Theorem (with proof). Gâteaux
differentiable implies Fréchet differentiable under suitable assumptions (with proof).

Lesson 3 (17 March 2021)

Continued Calculus in Normed Spaces: Higher Order derivatives. The space of n-linear bounded
operators. Generalization of Schwarz Theorem for twice Fréchet differentiable maps (no proof).
Taylor’s Formula for Fréchet differentiable maps (no proof).

Indirect Method: Definition of First Variation in a general set. Examples for the cases of X = Rd

and X normed space. The first variation vanishes at global minimizers (with proof). Definition
of Affine Space. First Variation in Affine Spaces. Abstract Euler-Lagrange Equation. Detailed
Example: Minimization of three integral functionals over the space C1([a, b]) having strictly convex,
convex, and non-convex Lagrangians.
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Lesson 4 (24 March 2021)

Fundamental Lemmas: Support of a functions, Compactly supported functions. Bump functions
to construct smooth functions with arbitrary support. Existence of Cut Off function (no proof).
Fundamental Lemma of Calculus of Variations (FLCV) for continuous functions with two proofs:
one by contradiction, one by density. Generalization of FLCV to sets V such that the closure of
their span (in a suitable sense) yields C(0, 1) (proof just sketched). Du Bois Reymond Lemma
(DBR) for continuous functions with proof (based on FLCV). Alternative proof by density just
sketched. Alternative formulation of DBR Lemma (with proof). Generalization of DBR Lemma to
smaller classes of test functions (no proof).

Introduction to Boundary Conditions by Examples: considered the functional F (u) =
∫ 1

0
u2+ u̇2 dx

over different subsets of X = C1(0, 1) and derived boundary conditions of Dirichlet type, Neumann
type, mixed Dirichlet and Neumann, Periodic, and finally a last example where the minimizer does
not exist due to enforcing too many boundary conditions. The derivation was done by means of
the Euler-Lagrange Equation and by the FLCV.

Lesson 5 (14 April 2021)

Euler-Lagrange Equation (ELE): First variation for general integral functionals defined over C1([a, b])
(with proof). Dirichlet boundary conditions for general integral functionals: first integral form of
the ELE, second integral form of the ELE, ELE in differential form (all with proof). Neumann
boundary conditions for general integral functionals (with proof). ELE in Erdmann form (with
proof). ELE for higher order integral functionals (no proof), ELE for integral functionals depen-
ding on more unknowns (no proof).

Lp Spaces Revision: Uploaded self-contained notes with essential information needed about measure
theory and Lp spaces (this will not be an examination topic)

Lesson 6 (21 April 2021)

Sufficient Conditions for Minimality: Convexity. Definition of convex sets, convex functions and
strictly convex functions. Characterization of convexity for C1 and C2 functions (no proof). Convex
functions have non-empty subdifferential (no proof). Continuously differentiable solutions to the
Integral ELE are minimizers if the Lagrangian is C2 and convex in s, p (with proof). Uniqueness of
minimizers for strictly convex Lagrangians (with proof). Example for Lagrangians depending only
on p: the straight line always solve ELE.

Sufficient Conditions for Minimality: “Trivial Lemma”. Stated and proved the Trivial Lemma.
Application of the Trivial Lemma to the double-well potential in one-dimension: proved that if
|β − α| > 1 the solution is the straight line, while if |β − α| ≤ 1 no minimizer exists. Summary of
Indirect Method.

Convolutions in Lp: definition of convolution. Convolution is commutative and associative (no
proof). Young’s Inequality for convolutions (with proof).

Lesson 7 (28 April 2021)

Convolutions in Lp: Definition of support for arbitrary functions. Comparison with classical defi-
nition of support. Support of a convolution (no proof). Definition of locally integrable function.
Theorem on smoothing by convolution (no proof). Definition of mollifiers and example of standard
mollifiers. Proposition: if u ∈ Cc(R) and ρn are mollifiers then ρn ⋆ u → u uniformly on compact
sets (no proof). Theorem: if u ∈ Lp(R), ρn mollifiers, then ρn ⋆ u→ u strongly in Lp (with proof).
Corollary: C∞

c (I) is dense in Lp(I) (no proof).

FLCV and DBR Lemma: FLCV for L1
loc functions (with proof). Du Bois-Reymond Lemma for L1

loc

functions (with proof). Alternative formulation of DBR Lemma for L1
loc functions (with proof).
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Sobolev Spaces: Motivation of weak derivative for functions in C1
pw. Definition of the Sobolev Space

W 1,p. Proposition: the weak derivative, if it exists, is unique (with proof). Examples: C1 functions
and C1

pw functions belong to W 1,p; functions with jumps do not belong to W 1,p. Definition of
norms on W 1,p and inner product on H1 := W 1,2. Proposition: W 1,p is Banach for 1 ≤ p ≤ +∞;
W 1,p is reflexive for 1 < p < +∞; W 1,p is separable for 1 ≤ p < +∞; H1 is Hilbert separable (all
with proof). Remark: if {un} ⊂ W 1,p is such that un → u and u̇n → g strongly in Lp then u̇ = g
weakly and un → u strongly in W 1,p (with proof). Remark: if {un} ⊂ H1 is such that un ⇀ u and
u̇n ⇀ g weakly in L2 then u̇ = g weakly and un ⇀ u weakly in H1 (with proof).

Lesson 8 (5 May 2021)

Sobolev Spaces, regularity results: Theorem: Sobolev functions admit a continuous representative
(with proof). Lemma: primitives of Lp functions are continuous and weakly differentiable (with
proof). Proposition: Sobolev functions having continuous weak derivative are C1 (with proof).
Theorem: W 1,p embeds in C0,1−1/p for p > 1 (with proof).

Sobolev Spaces, density results: Lemma: Extension result for Sobolev functions (with proof). Lem-
ma: if ρ ∈ L1(R) and u ∈W 1,p(R) then ρ ⋆ u ∈W 1,p(R) (with proof).

Lesson 9 (12 May 2021)

Sobolev Spaces, density results: Theorem: if 1 ≤ p < +∞ and u ∈W 1,p(a, b), there exists {un} in
C∞

c (R) such that un → u strongly in Lp(a, b) (with proof).

Sobolev embedding: Definition of embedding and compact embeddings. Proposition: compact ope-
rators transform weakly converging sequences into strong converging sequences (with proof). Theo-
rem: Ascoli-Arzelà in metric space (no proof). Theorem: characterization of Sobolev function by
continuity of translations (no proof). Theorem (Sobolev Embedding): W 1,p(I) ↪→ L∞(I) for all
1 ≤ p ≤ +∞, I ⊂ R open; for I bounded, the following are compact embedding: W 1,p(I) ↪→ C(I)
for all 1 < p ≤ +∞, W 1,1(I) ↪→ Lq(I) for all 1 ≤ q < +∞, W 1,p(I) ↪→ Lp(I) for all 1 ≤ p ≤ +∞
(all with proof). Remark: considerations about embeddings not covered by the Theorem we saw.
Corollary: if un ⇀ u in W 1,p(I) with I bounded, then un → u in Lp(I) (with proof).

Lesson 10 (19 May 2021)

Further Sobolev Spaces Topics: Definition of higher order Sobolev Spaces W k,p by induction.
Remark: u ∈W k,p iff u admits weak partial derivatives up to order k (no proof). Remark: W k,p ⊂
Ck−1 (no proof).

Definition of W 1,p
0 by density. Proposition: u ∈ W 1,p

0 (I) if and only if u = 0 on ∂I (proof of
the “only if” implication). Theorem: Poincaré inequality (with two proofs). Theorem: Generalized
Poincaré inequality (no proof). Example of spaces in which the generalized Poincaré inequality
holds.

Euler Lagrange Equation in Sobolev spaces: Recap on Theorems 4.5 and 5.4 on necessary and
sufficient conditions for minimality for integral functionals defined on C1. Definition: Carathéodory
function. Proposition: composition between a Carathéodory function and a measurable function
is measurable (no proof). Definition: variational problem for integral functionals on W 1,p with
Dirichlet boundary conditions. Theorem 8.4: minimizers solve the weak (or weaker) ELE, while
they solve differential ELE if the Lagrangian and the minimizer are regular (with proof).

Lesson 11 (26 May 2021)

General boundary conditions: Definition: variational problem for integral functionals on W 1,p with
general boundary conditions. Theorem 8.5: Generalization of Theorem 8.4 to arbitrary boundary
conditions (no proof).
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Sufficient conditions for minimality: Theorem: solutions to weak ELE or differential ELE are mi-
nimizers if the Lagrangian is convex in (s, ξ) (no proof).

Direct Method: definition of Space with Notion of Convergence (SNC). Definition: compact sets
in SNC. Definition: continuity and LSC in SNC. Theorem: Existence of minimizers in SNC under
assumption of compactness of X and LSC of f (with proof). Theorem: Existence of minimizers in
SNC under assumption of coercivity and LSC of f (with proof). Theorem: Existence of minimizers
in SNC under assumption of compactness of sublevels and LSC of f (with proof).

Direct Method, Action Plan: strategy to solve minimization problems in 4 steps, which are Weak
Formulation, Compactness, LSC and Regularity.

Lesson 12 (2 June 2021)

Direct Method, Action Plan: Example of minimization of F (u) :=
∫ 1

0
u̇2 + sin(u5) dx among func-

tions u ∈ C1([0, 1]) such that u(0) = 0, u(1) = 1. Proved that a minimum exists for the extended
problem in Sobolev (by the Direct Method), and that minimizers are C∞([0, 1]).

Existence Result: General existence result via Direct Method for integral functionals in Sobolev
spaces (see Theorem 9.9, with proof).

Lesson 13 (9 June 2021)

Lower Semicontinuous Envelope: Definition of LSC function on metric space. Proposition: Proper-
ties of LSC functions (no proof). Proposition: supremum of LSC functions is LSC (with proof).
Remark: supremum of continuous functions is continuous in general, but only LSC (with counter-
example). Definition: LSC Envelope.

Relaxation: Definition of Relaxation. Lemma 10.6: values of a function can be chosen close to
the value of its Relaxation (with proof). Definition: Recovery Sequence for Relaxation. Lemma
10.8: existence of recovery sequence (with proof). Proposition: Relaxation and LSC Envelope are
equivalent (with proof).

Properties: Proposition: infX f = infX f̄ (with proof). Warning: If A ⊂ X then in general infA f >
infA f̄ (given a counterexample). Proposition: if A ⊂ X is open then infA f = infA f̄ (with
proof). Proposition: if f is coercive then f̄ admits minimum and infX f = minX f̄ (with proof).
Proposition 10.13 and Corollary 10.14 on behavior of infimizing sequences.

Computing the Relaxation: Proposition: Strategy 1 for computing relaxation (with proof). Defini-
tion: Energy Dense Subsets. Lemma 10.17: Inequalities on energy dense subsets can be extended
to the whole space, under some assumptions (with proof). Proposition: Strategy 2 for computing
relaxation (with proof).

Lesson 14 (16 June 2021)

Relaxation of integral functionals: Considered functional F : C1([a, b]) → R, F (u) :=
∫ b

a
ψ(u̇) dx

with ψ : R → R. Theorem 10.19: Extension of F by relaxation to Lp(a, b) when ψ is convex and
satisfies growth from below (with proof). Example of extension with convex Lagrangian. Definition:
convex envelope. Proposition: properties of convex envelope (no proof). Theorem 10.22: Extension
of F by relaxation to Lp(a, b) when ψ only satisfies growth from below (no proof). Example of
extension with non-convex Lagrangian.

Γ-convergence: Definition of Γ-convergence in metric space. Relationship with pointwise conver-
gence: Proposition: if fn = f for all n ∈ N then Γ− lim fn = f̄ (with proof). Proposition: if fn → f
uniformly on compact sets and f is LSC then Γ − lim fn = f (with proof). Stability properties
of Γ-convergence under sum (no proof). Definition of Γ − lim inf and Γ − lim sup. Proposition:
Γ− lim inf fn ≤ Γ− lim sup fn and Γ− lim inf fn = Γ− lim sup fn if and only if Γ− lim fn = f for
some f : X → R (with proof).
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Lesson 15 (23 June 2021)

Γ-convergence: Lemma: The Γ-limit is always LSC (with proof). Proposition 11.9: On the limit
of infimums on open and compact sets (with proof). Definition: Equicoercivity in metric space.
Theorem 11.12: Γ-convergence and equicoercivity imply convergence of minimization problems and
compactness of almost-minimizers (with proof).

Example: Studied Γ-convergence in L2(0, 1) for the sequence of functionals Fn : C
1([0, 1]) → R

defined by Fn(u) :=
∫ 1

0
nu̇2 + (u− arctanx)2 dx.

Application: Homogenization problems. Considered the sequence of functionals Fn : C
1([a, b]) → R

defined by Fn(u) :=
∫ b

a
Anu̇

2 dx, where An(x) := A(nx), A(x) := α in [0, λ), A(x) := β in [λ, 1).

Proved that Fn → F in the sense of Γ-convergence in L2(a, b), with F (u) := c
∫ b

a
u̇2 dx and

c := αβ/(λβ + (1− λ)α).
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[7] S. Kesavan. Nonlinear Functional Analysis, a First Course. Hindustan Book Agency, 2004

Convex Analysis:

[8] B. Dacorogna. Introduction to the Calculus of Variations. Imperial College Press, 2004

[9] R.T. Rockafellar. Convex Analysis, Princeton University Press, 1970

Lp Spaces:

[10] W. Rudin. Real and Complex Analysis. McGraw-Hill, 2001

Sobolev Spaces:

[11] H. Brezis. Functional Analysis, Sobolev Spaces and PDE. Springer, 2011

[12] G. Leoni. A first course in Sobolev Spaces. American Mathematical Society, 2017

Γ-convergence:

[13] A. Braides. Gamma-Convergence for Beginners. Oxford University Press, 2002

5

http://users.dma.unipi.it/~gobbino/Home_Page/AD_CdV_18.html

