Calculus of Variations

Problem Sheet 7 Due date: 25.06.2021

Problem 7.1 (20 pts). Let (X, d) be a metric space, $f: X \to \overline{\mathbb{R}}$. Recall that $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ and that the LSC Envelope of f is defined by

$$\bar{f}(x) := \inf \left\{ \liminf_{n \to +\infty} f(x_n) : \{x_n\} \subset X, \ x_n \to x \right\}.$$

(a) Prove that f is LSC at x_0 if and only if

$$f(x_0) = \bar{f}(x_0) \,.$$

- (b) Let $g: X \to \overline{\mathbb{R}}$. Prove that
- $\overline{f+g} \ge \bar{f} + \bar{g} \,.$
- (c) Let $g: X \to \mathbb{R}$ be continuous. Prove that

$$\overline{f+g} = \overline{f} + g \,.$$

(d) Find one example of metric space (X, d) and functions $f, g: X \to \overline{\mathbb{R}}$ such that

 $\overline{f+g} > \bar{f} + \bar{g}$

for at least one $x \in X$.

Hint: (c) Use Propositions 10.15 and 10.8 in the Lecture Notes.

Problem 7.2 (20 pts). Let $X := L^2(a, b)$ equipped with the metric d induced by the L^2 norm. Define $F, G: X \to \overline{\mathbb{R}}$ by

$$F(u) := \begin{cases} \int_a^b \dot{u}^2 \, dx & \text{if } u \in C^1[a, b] \\ +\infty & \text{if } u \in X \smallsetminus C^1[a, b] \end{cases} \qquad G(u) := \begin{cases} \int_a^b \dot{u}^2 \, dx & \text{if } u \in H^1(a, b) \\ +\infty & \text{if } u \in X \smallsetminus H^1(a, b) \end{cases}$$

Prove that $\overline{F} = G$ by using Proposition 10.18 in the Lecture Notes applied with X, d, f = F, g = G and $D = C^{1}[a, b]$.

Hint: You may find the following results in the Lecture Notes useful: Theorem 7.27, Theorem 7.24, Corollary 7.10.

Problem 7.3 (20 pts). Let (X, d) be a metric space, $f_n, f: X \to \overline{\mathbb{R}}$. Suppose that

- (i) $f_n \to f$ uniformly on compact sets of X,
- (ii) f is LSC.

Prove that $f_n \to f$ in the sense of Γ -convergence.

Hint: If $x_n \to x_0$ then the set $K := \{x_n, n \in \mathbb{N}\} \cup \{x_0\}$ is compact in (X, d).

Problem 7.4 (20 pts).

- (a) (X, d) metric space. Suppose that $f_n, f: X \to \overline{\mathbb{R}}$ are such that $f_n \to f$ in the sense of Γ -convergence. Moreover assume that $g_n, g: X \to \mathbb{R}$ are such that
 - (i) $g_n \to g$ uniformly on compact sets of X,
 - (ii) g is continuous.

Prove that

$$f_n + g_n \to f + g$$

in the sense of Γ -convergence.

(b) Let $X = \mathbb{R}$. Define

$$f_n(x) := \arctan(nx) + \frac{x^2}{n}$$
 for $x \in \mathbb{R}$.

Compute the Γ -limit of f_n in \mathbb{R} as $n \to +\infty$.

Problem 7.5 (20 pts). Let a < b and $A_n: [a, b] \to \mathbb{R}$ be a sequence of functions such that

- (i) $A_n \ge 0$ a.e. in (a, b), for all $n \in \mathbb{N}$,
- (ii) $A_n \leq M$ a.e. in (a, b), for all $n \in \mathbb{N}$, for some M > 0,
- (iii) $A_n \rightharpoonup A$ weakly in $L^2(a, b)$.

Define the functionals $F_n, F: L^2(a, b) \to \overline{\mathbb{R}}$ by

$$F_n(u) := \begin{cases} \int_a^b \dot{u}^2 + A_n u^2 \, dx & \text{if } u \in C^1[a, b] \\ +\infty & \text{otherwise} \end{cases} \qquad F(u) := \begin{cases} \int_a^b \dot{u}^2 + A u^2 \, dx & \text{if } u \in H^1(a, b) \\ +\infty & \text{otherwise} \end{cases}$$

Prove that $F_n \to F$ in the sense of Γ -convergence with respect to the $L^2(a, b)$ metric.

Hint: You may find the following results in the Lecture Notes useful: Theorem 7.27, Theorem 7.24.