Calculus of Variations

Problem Sheet 5
Due date: 28.05.2021

Problem 5.1 (20 pts).

(a) Let $-\infty<a<b<+\infty$ and $u \in C^{1}([a, b])$. Prove that $u \in W^{1, p}(a, b)$ for all $1 \leq p \leq+\infty$.
(b) Define $u(x):=|x|+1$. Prove that $u \in W^{1, p}(-1,1)$ for all $1 \leq p \leq+\infty$.
(c) Define

$$
u(x):= \begin{cases}1 & \text { if } x>0 \\ -1 & \text { if } x<0\end{cases}
$$

Prove that $u \notin W^{1, p}(-1,1)$ for any $1 \leq p \leq+\infty$.
Hint: (c) Argue by contradiction and consider a sequence of Cut-off functions around the origin with supports converging to $\{0\}$.

Problem 5.2 (30 pts) - Characterization of Sobolev functions.

(a) Let $I \subset \mathbb{R}$ be open and $1<p \leq+\infty$. Assume that $u \in L^{p}(I)$. Prove that they are equivalent:
(i) $u \in W^{1, p}(I)$,
(ii) There exists a constant $C>0$ such that

$$
\left|\int_{I} u \varphi^{\prime} d x\right| \leq C\|\varphi\|_{L^{p^{\prime}}} \quad \text { for all } \quad \varphi \in C_{c}^{1}(I)
$$

where $p^{\prime}=p /(p-1)$.
(b) Let $I \subset \mathbb{R}$ be open and $p=1$. Does the equivalence between (i) and (ii) in point (a) hold?

Hint: (a) For the implication (ii) \Longrightarrow (i), consider the functional $T: C_{c}^{1}(I) \rightarrow \mathbb{R}$ defined by $T(\varphi):=\int_{I} u \varphi^{\prime} d x$. Can it be extended to $L^{p^{\prime}}(I) ?$

Problem 5.3 (30 pts) - Another characterization of Sobolev functions.
Let $1<p<+\infty$ and $u \in L^{p}(\mathbb{R})$. Prove that they are equivalent:
(I) $u \in W^{1, p}(\mathbb{R})$,
(II) There exists a constant $C>0$ such that

$$
\left\|\tau_{h} u-u\right\|_{L^{p}} \leq C|h| \quad \text { for all } \quad h \in \mathbb{R}
$$

where $\left(\tau_{h} u\right)(x):=u(x+h)$.
Hint: For $(\mathrm{I}) \Longrightarrow$ (II) use that if $u \in W^{1, p}(\mathbb{R})$ then $u(y)-u(x)=\int_{x}^{y} u^{\prime}(t) d t$ for a.e. $x, y \in \mathbb{R}$. For (II) \Longrightarrow (I), show that (II) implies (ii) in Exercise 5.2. The following identity may be useful: for all $\varphi \in C_{c}^{1}(\mathbb{R}), u \in L^{p}(\mathbb{R})$ one has $\int_{\mathbb{R}} u(x)[\varphi(x+h)-\varphi(x)] d x=\int_{\mathbb{R}}[u(x-h)-u(x)] \varphi(x) d x$.

Problem 5.4 (20 pts) - Generalized Poincaré Inequality. Let $I=(a, b)$ be bounded and $1 \leq p<+\infty$. Let $V \subset W^{1, p}(I)$ be a subspace such that
(i) V is closed in $W^{1, p}(I)$,
(ii) If $u \in V$ is constant, then $u \equiv 0$.

Prove that there exists a constant $C>0$ such that

$$
\|u\|_{W^{1, p}} \leq C\left\|u^{\prime}\right\|_{L^{p}} \quad \text { for all } \quad u \in V
$$

Hint: Follow the lines of the Proof by Contradiction of Theorem 7.35 in the Lecture Notes.

