Calculus of Variations

Problem Sheet 5 Due date: 28.05.2021

Problem 5.1 (20 pts).

- (a) Let $-\infty < a < b < +\infty$ and $u \in C^1([a, b])$. Prove that $u \in W^{1,p}(a, b)$ for all $1 \le p \le +\infty$.
- (b) Define u(x) := |x| + 1. Prove that $u \in W^{1,p}(-1,1)$ for all $1 \le p \le +\infty$.
- (c) Define

$$u(x) := \begin{cases} 1 & \text{if } x > 0, \\ -1 & \text{if } x < 0. \end{cases}$$

Prove that $u \notin W^{1,p}(-1,1)$ for any $1 \le p \le +\infty$.

Hint: (c) Argue by contradiction and consider a sequence of Cut-off functions around the origin with supports converging to $\{0\}$.

Problem 5.2 (30 pts) - Characterization of Sobolev functions.

- (a) Let $I \subset \mathbb{R}$ be open and $1 . Assume that <math>u \in L^p(I)$. Prove that they are equivalent:
 - (i) $u \in W^{1,p}(I)$,
 - (ii) There exists a constant C > 0 such that

$$\left| \int_{I} u\varphi' \, dx \right| \le C \, \|\varphi\|_{L^{p'}} \qquad \text{for all} \quad \varphi \in C^{1}_{c}(I) \,,$$

where p' = p/(p - 1).

(b) Let $I \subset \mathbb{R}$ be open and p = 1. Does the equivalence between (i) and (ii) in point (a) hold?

Hint: (a) For the implication (ii) \implies (i), consider the functional $T: C_c^1(I) \rightarrow \mathbb{R}$ defined by $T(\varphi) := \int_I u\varphi' dx$. Can it be extended to $L^{p'}(I)$?

Problem 5.3 (30 pts) - Another characterization of Sobolev functions.

Let $1 and <math>u \in L^p(\mathbb{R})$. Prove that they are equivalent:

- (I) $u \in W^{1,p}(\mathbb{R}),$
- (II) There exists a constant C > 0 such that

$$\|\tau_h u - u\|_{L^p} \le C|h| \qquad \text{for all} \quad h \in \mathbb{R}\,,$$

where $(\tau_h u)(x) := u(x+h)$.

 $\begin{array}{ll} \textit{Hint:} \ \text{For} \ (\mathrm{I}) \implies (\mathrm{II}) \ \text{use that if} \ u \in W^{1,p}(\mathbb{R}) \ \text{then} \ u(y) - u(x) = \int_x^y u'(t) \, dt \ \text{for a.e.} \ x, y \in \mathbb{R}. \\ \text{For} \ (\mathrm{II}) \implies (\mathrm{I}), \ \text{show that} \ (\mathrm{II}) \ \text{implies} \ (\mathrm{ii}) \ \text{in Exercise} \ 5.2. \ \text{The following identity may be use-ful:} \\ \text{for all} \ \varphi \in C_c^1(\mathbb{R}), u \in L^p(\mathbb{R}) \ \text{one has} \ \int_{\mathbb{R}} u(x) [\varphi(x+h) - \varphi(x)] \, dx = \int_{\mathbb{R}} [u(x-h) - u(x)] \varphi(x) \, dx. \end{array}$

Problem 5.4 (20 pts) - Generalized Poincaré Inequality. Let I = (a, b) be bounded and $1 \le p < +\infty$. Let $V \subset W^{1,p}(I)$ be a subspace such that

- (i) V is closed in $W^{1,p}(I)$,
- (ii) If $u \in V$ is constant, then $u \equiv 0$.

Prove that there exists a constant C > 0 such that

 $\|u\|_{W^{1,p}} \leq C \, \|u'\|_{L^p} \qquad \text{for all} \quad u \in V \, .$

 $\mathit{Hint:}$ Follow the lines of the Proof by Contradiction of Theorem 7.35 in the Lecture Notes.