Calculus of Variations

Problem Sheet 4 Due date: 07.05.2021

We start with a few definitions which are useful for the following exercises.

L^p spaces: Let $I \subset \mathbb{R}$ be open, and $1 \leq p < +\infty$. We define

$$L^p(I) := \left\{ u \colon \Omega \to \mathbb{R} : \ u \ \text{Lebesgue measurable}, \int_I |u|^p \, dx < +\infty \right\} \,,$$

where dx denotes the one-dimensional Lebesgue measure on \mathbb{R} . Recall that $L^p(I)$ is a Banach space with the norm

$$\left\|u\right\|_p := \left(\int_I |u|^p \, dx\right)^{1/p}$$

Similarly, we define the space of locally integrable functions

$$L^p_{\text{loc}}(I) := \{ u \colon \Omega \to \mathbb{R} : \ u \, \chi_K \in L^p(I) \ \text{ for all compact sets } \ K \subset I \} \ ,$$

where χ_K is the characteristic function of K, i.e., $\chi_K(x) = 1$ if $x \in K$ and $\chi_K(x) = 0$ if $x \notin K$.

Convolutions: Given two measurable functions $u, v \colon \mathbb{R} \to \mathbb{R}$, their convolutions is defined as

$$(u \star v)(x) := \int_{\mathbb{R}} u(x - y)v(y) \, dy \,,$$

for all $x \in \mathbb{R}$ such that the right-hand side is well-defined. Note that, as soon as the right-hand side is finite, we have $u \star v = v \star u$. The following result gives sufficient conditions for the convolution to be well-defined.

Young's Theorem. Let $1 \le p \le +\infty$ and $u \in L^1(\mathbb{R})$, $v \in L^p(\mathbb{R})$. The for a.e. $x \in \mathbb{R}$ the map $y \mapsto u(x-y)v(y)$ belongs to $L^1(\mathbb{R})$, so that $(u \star v)(x)$ is finite. Moreover $u \star v \in L^p(\mathbb{R})$ and

$$||u \star v||_p \le ||u||_1 ||v||_p$$
.

Mollifiers: A family of mollifiers $\{\rho_{\varepsilon}\}_{\varepsilon>0}$ is any family of functions $u_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ such that

$$\rho_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R}), \quad \operatorname{supp} \rho_{\varepsilon} \subset [-\varepsilon, \varepsilon], \quad \rho_{\varepsilon} \ge 0 \quad \text{on} \quad \mathbb{R}, \quad \int_{\mathbb{R}} \rho_{\varepsilon}(x) \, dx = 1, \quad (1)$$

for all $\varepsilon > 0$. Sometimes it is more convenient to deal with a sequence, rather than a family indicized by ε : In this case the mollifiers are denoted by $\{\rho_n\}_{n\in\mathbb{N}}$, with ρ_n satisfying (1) with $\varepsilon = 1/n$.

Standard Mollifiers: Let $\rho \colon \mathbb{R} \to \mathbb{R}$ be given by

$$\rho(x) := \begin{cases} C \exp\left(\frac{1}{|x|^2 - 1}\right) & \text{ if } |x| < 1, \\ 0 & \text{ if } |x| \ge 1, \end{cases}$$

where $C > 0 := 1 / \int_{\mathbb{R}} \rho$. Notice that ρ satisfies

$$\rho \in C_c^{\infty}(\mathbb{R}), \quad \rho \ge 0, \quad \operatorname{supp} \rho \subset [-1,1], \quad \int_{\mathbb{R}} \rho(x) \, dx = 1.$$

With ρ we can define the standard family of mollifiers

$$\rho_{\varepsilon}(x) := \frac{1}{\varepsilon} \rho\left(\frac{x}{\varepsilon}\right).$$

Notice that $\{\rho_{\varepsilon}\}_{\varepsilon>0}$ satisfies (1). If we want instead a sequence of standard mollifiers, just set

$$\rho_n(x) := n \,\rho(nx) \,.$$

Notation: Let a < b. Recall that the space $C^1([a,b])$ is normed by $||u|| := ||u||_{\infty} + ||u'||_{\infty}$. Moreover we introduce the space of piecewise C^1 functions

$$C^{1}_{pw}([a,b]) := \left\{ u \in C([a,b]) : \exists N \in \mathbb{N}, \ a = p_{1} < p_{2} < \dots < p_{N} = b \text{ s.t.} \\ u \in C^{1}[p_{i}, p_{i+1}], \ \forall \ i = 1, \dots, N-1 \right\}$$

Notice that the above partition can change depending on u. The map

$$\|u\|_{pw} := \|u\|_{\infty} + \max_{i=1,\dots,N-1} \max_{x \in [p_1,p_{i+1}]} |u'(x)|$$

defines a norm over $C^1_{pw}([a, b])$.

Problem 4.1 (20 pts) - Smoothing by convolution.

- a) Let $u \in L^1_{loc}(\mathbb{R})$ and $v \in C_c(\mathbb{R})$. Prove that $u \star v$ is well defined and $u \star v \in C(\mathbb{R})$.
- b) Let $k \ge 1$, $u \in L^1_{\text{loc}}(\mathbb{R})$ and $v \in C^k_c(\mathbb{R})$. Prove that $u \star v \in C^k(\mathbb{R})$ with

$$\frac{d^k}{dx^k}(u \star v) = u \star v^{(k)}$$

Hint: (a) Let $x_n \to x_0$. Since v is compactly supported, there exists some compact set $K \subset \mathbb{R}$ such that $(x_n - \operatorname{supp} v) \subset K$ for all $n \in \mathbb{N}$. (b) You can just show this for k = 1. The case k > 1 follows trivially by induction. Also notice that v' is uniformly continuous in \mathbb{R} , since $\operatorname{supp} v' \subset \operatorname{supp} v$, and $\operatorname{supp} v$ is compact. Moreover it may be useful to recall the Fundamental Theorem of Calculus, namely, $v(x+t) - v(x) = \int_0^1 v'(x+ts) t \, ds$.

Problem 4.2 (30 pts) - Cut-off. The goal of this exercise is to construct a cut-off function like the one introduced in Remark 3.3 in the lecture Notes. This is requested in point (b).

(a) Let $u \in L^1(\mathbb{R}), g \in L^p(\mathbb{R})$ for some $1 \le p \le +\infty$. Show that

$$\operatorname{supp}(u \star v) \subset \overline{\operatorname{supp} u + \operatorname{supp} v}$$
.

- (b) Let $K \subset \mathbb{R}$ be compact and $\varepsilon > 0$ fixed. Construct a function $\eta_{\varepsilon} \in C_c^{\infty}(\mathbb{R})$ such that:
 - i) $0 \leq \eta_{\varepsilon} \leq 1$ on \mathbb{R} ,
 - ii) $\eta_{\varepsilon}(x) = 1$ for all $x \in K$,
 - iii) $\eta_{\varepsilon}(x) = 0$ for all $x \in \mathbb{R} \setminus K_{\varepsilon}$, with $K_{\varepsilon} := K + (-\varepsilon, \varepsilon)$,
 - iv) $|\eta_{\varepsilon}^{(k)}(x)| \leq C_k \varepsilon^{-k}$, for all $x \in \mathbb{R}$, $k \in \mathbb{N}$, with $C_k > 0$ constant depending only on k.

Hint: (a) $u \star v$ is well-defined by Young's Theorem stated above. (b) Take $\eta_{\varepsilon} := \chi_{K_{\varepsilon/2}} \star \rho_{\varepsilon/2}$, with ρ_{ε} the standard mollifier. Of course you can invoke Exercise 4.1 to prove smoothness and compute derivatives.

Problem 4.3 (25 pts) - Rounding corners. The goal of this exercise is to make rigorous the procedure of "rounding the corner" which has been used several times during the course. Consider the functional $F: X \to \mathbb{R}$

$$F(u) := \int_0^1 \sqrt{|\dot{u}(x)|} \, dx \,, \qquad X := \left\{ u \in C^1([0,1]) : \ u(0) = 2, \ u(1) = 0 \right\}.$$

a) Let $a < x_0 < b$, $u \in C([a, b])$ such that $u \in C^1([a, x_0])$, $u \in C^1([x_0, b])$. Thus $u \in C^1_{pw}([a, b])$. Let $\delta > 0$ be such that $I_{\delta} := (x_0 - \delta, x_0 + \delta) \subset (a, b)$. Using Exercise 4.2 point (b), construct $\tilde{u} \in C^1([a, b])$ such that

$$\tilde{u} = u$$
 in $[a, b] \smallsetminus I_{\delta}$, $\|\tilde{u}\| \le \left(c_1 + c_2 \frac{1}{\delta}\right) \|u\|_{pw}$,

where $c_1, c_2 > 0$ are constants not depending on δ and u.

b) Let $0 < \varepsilon < \sqrt{2} - 1$. Define $u_{\varepsilon} \colon [0, 1] \to \mathbb{R}$ by

$$u_{\varepsilon}(x) := \begin{cases} 2 - \frac{x}{\varepsilon} & \text{if } 0 \le x \le 2\varepsilon \,, \\ 0 & \text{if } 2\varepsilon \le x \le 1 \,. \end{cases}$$

Note that $u_{\varepsilon} \in C([0,1])$, $u_{\varepsilon} \in C^{1}([0,2\varepsilon])$ and $u_{\varepsilon} \in C^{1}([2\varepsilon,1])$. Let \tilde{u}_{ε} be constructed by applying point (a) to u_{ε} with a = 0, b = 1, $x_{0} := 2\varepsilon$ and $\delta := \varepsilon^{2}$. Prove that

- i) $\tilde{u}_{\varepsilon} \in X$,
- ii) m = 0, where $m := \inf\{F(u) : u \in X\}$,
- iii) F admits no minimizer over X.

Problem 4.4 (15 pts) - Approximation Result. The goal of this exercise is to prove Remark 3.5 from the Lecture Notes (in the case $(a, b) = \mathbb{R}$).

a) Let ρ_n be a sequence of standard mollifiers and $u \in C(\mathbb{R})$. Prove that $\rho_n \star u \to u$ uniformly on compact sets, i.e., for all $K \subset \mathbb{R}$ compact it holds

$$\lim_{n \to +\infty} \max_{x \in K} |(\rho_n \star u)(x) - u(x)| = 0.$$

- b) Let $u \in C_c(\mathbb{R})$. Use point (a) to construct a sequence $u_n \in C_c^{\infty}(\mathbb{R})$ such that
 - i) $u_n \to u$ uniformly on compact sets of \mathbb{R} ,
 - ii) u_n is uniformly bounded, i.e.,

$$\sup_{n\in\mathbb{N}}\|u_n\|_{\infty}<+\infty\,.$$

Hint: You can use Exercise 4.1 and Exercise 4.2 point (b).

Problem 4.5 (10 pts). Consider the functional $F: X \to \mathbb{R}$

$$F(u) := \int_0^1 \exp(-\dot{u}^2) \, dx \,, \qquad X := \{ u \in C^1([0,1]) : u(0) = u(1) = 0 \} \,.$$

- a) Prove that $u_0 \equiv 0$ is stationary for F.
- b) Prove that $u_0 \equiv 0$ is a maximum point of F in X.
- c) Let $m := \inf\{F(u) : u \in X\}$. Prove that m = 0 and that F admits no minimizer over X.

Hints: (a) Use Theorem 4.5 from the Lecture Notes to compute the first variation. (c) Consider $u_n(x) := n (x - 1/2)^2 - n/4$.