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Throughout the exercise paper whenever we say differentiable, we mean Fréchet differentiable.

Problem 3.1 (15 pts). In this exercise we show that the Fréchet derivative is linear and that
the chain rule and product rule hold.

a) (Linearity) Let X,Y be normed spaces, U ⊂ X open, α ∈ R, and F,G : U → Y be differen-
tiable at u0 ∈ U . Prove that αF + G is differentiable at u0 with (αF + G)′(u0) ∈ L(X,Y )
given by

(αF +G)′(u0) = αF ′(u0) +G′(u0) .

b) (Chain Rule) Let X,Y, Z be normed spaces, U ⊂ X, V ⊂ Y open sets. Let F : U → V ,
G : V → Z. Assume that F and G are differentiable at u0 ∈ U and at F (u0), respectively.
Then G ◦ F : U → Z is differentiable at u0, with (G ◦ F )′(u0) ∈ L(X,Z) given by the
composition of linear continuous operators

(G ◦ F )′(u0) = G′(F (u0)) ◦ F ′(u0) .

c) (Product Rule) Let X be a normed space, U ⊂ X open and F,G : U → R be differentiable
at u0 ∈ U . Show that the product function FG is differentiable at u0 with (FG)′(u0) ∈ X∗

given by
(FG)′(u0) = G(u0)F

′(u0) + F (u0)G
′(u0) .

Problem 3.2 (15 pts). Let H be a Hilbert space with induced norm ∥·∥. Define F,G : H → R
by F (x) := ∥x∥2, G(x) := ∥x∥.

a) Show that F is differentiable in H and that F ∈ C1(H).

b) Show that G is differentiable for all x ∈ H ∖ {0} but not differentiable at x = 0.

Hint: Chain rule for the first part of the statement. By contradiction for the second.

c) Find an example of a normed space X such that G(x) := ∥x∥ is not differentiable in X∖{0}.

Problem 3.3 (15 pts). Let H be a Hilbert space and a : H ×H → R be bilinear, symmetric
and continuous, that is, there exists M > 0 such that |a(x, y)| ≤ M ∥x∥ ∥y∥ for all x, y ∈ H. Let
b ∈ H and define the map F : H → R by

F (u) := Q(u) + L(u), Q(u) :=
1

2
a(u, u), L(u) := ⟨b, u⟩ .

a) Prove that F ∈ C1(H), with derivative

F ′(u)(v) = a(u, v) + L(v) .
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b) Prove that F ∈ C2(H), with
F ′′(u)(v1, v2) = a(v1, v2) .

c) Suppose that a is only bilinear and continuous (not symmetric). Compute F ′, F ′′ in this
case.
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Problem 3.4 (15 pts). Let X be a normed space, U ⊂ X be open. Let F : U → R. We say
that û ∈ U is a local minumum for F if there exists a neighbourhood V of û such that

F (û) ≤ F (u) for all u ∈ V .

a) Suppose that F is differentiable at û. Show that

F ′(û) = 0 .

b) Suppose that F is differentiable in U and twice differentiable at û. Prove that

F ′′(û)(v, v) ≥ 0 for all v ∈ X .

Problem 3.5 (40 pts). Consider the functionals in C1([0, 3])

F (u) =

∫ 3

0

u̇2 dx, G(u) =

∫ 3

0

(u̇2 + u2) dx, H(u) =

∫ 3

0

(u̇2 − 6u) dx .

(A) For the above functionals:

(A1) Compute the first variation of F , G, H at u ∈ C1([0, 3]) in direction v ∈ C1([0, 1]).

(A2) Define
X = {u ∈ C1([0, 3]) : u(0) = 2, u(3) = 6} .

For u ∈ C2([0, 3]) ∩ X, integrate by parts the first variation of F , G, H. After that,
characterize all the stationary points of F , G, H in C2([0, 3]) ∩X.

(A3) Verify that the found stationary points are the unique minimizers for F , G, H.

(B) Study the minimum problem for F , G and H in the following sets

• X1 = {u ∈ C1([0, 3]) : u(0) = 2},
• X2 = {u ∈ C1([0, 3])},

• X3 = {u ∈ C1([0, 3]) : u(0) = 2, u(3) = 6,
∫ 3

0
u dx = 1}.

Determine if the problem has a solution or not. If the minimum exists, characterize all
minimizers (for G in the case of X3, it is ok not to compute the exact coefficients).
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