Advanced Functional Analysis

Problem Sheet 6

Due date: January 20, 2020
You are required to present Problems 6.2, 6.4, 6.5, 6.6, 6.7, 6.9. The rest of the problems will not be marked, but I recommend doing them as a preparation for the final exam.
I will refer to the following books:

- Haim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Springer-Verlag New York.
- John B. Conway, A Course in Functional Analysis (Second Edition), 1990, Springer.
- Walter Rudin, Functional Analysis (Second Edition), 1991, McGraw-Hill.

Locally convex spaces

Let $\left(X,\|\cdot\|_{X}\right)$ be a real normed space and let X^{*} be its dual, taken with respect to the norm of X. Then X^{*} is a normed space with $\|\Lambda\|_{X^{*}}:=\sup \{|\Lambda x|:\|x\| \leq 1\}$ for $\Lambda \in X^{*}$. Recall that, since the field \mathbb{R} is complete, X^{*} is a Banach space (Conway III.5.4). Let $X^{* *}$ be the dual of X^{*}, taken with respect to the operator norm of X^{*}. We equip $X^{* *}$ with the operator norm $\|T\|_{X^{* *}}:=\sup \left\{|T \Lambda|:\|T\|_{X^{*}} \leq 1\right\}$ for $T \in X^{* *}$. Recall that the canonical embedding $J: X \rightarrow X^{* *}$ is defined by $J(x) \Lambda:=\Lambda x$ for $\Lambda \in \Lambda^{*}$. We have that J is an isometry, that is, $\|J(x)\|_{X^{* *}}=\|x\|_{X}$ for all $x \in X$ (Conway III.6.7).

Convergences on normed spaces: Let $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ be a sequence and $x \in X$. We say that $x_{n} \rightarrow x$ strongly if $\left\|x_{n}-x\right\|_{X} \rightarrow 0$ as $n \rightarrow \infty$. We say that $x_{n} \rightharpoonup x$ weakly if $\Lambda x_{n} \rightarrow \Lambda x$ as $n \rightarrow \infty$ for each $\Lambda \in X^{*}$. Let $\left\{\Lambda_{n}\right\}_{n \in \mathbb{N}} \subset X^{*}$ be a sequence and $\Lambda \in X^{*}$. We that $\Lambda_{n} \stackrel{*}{\rightharpoonup} \Lambda$ weakly* if $\Lambda_{n} x \rightarrow \Lambda x$ as $n \rightarrow \infty$ for all $x \in X$. Notice that, since X^{*} is a normed space, we can also consider the strong convergence with respect to $\|\cdot\|_{X^{*}}$ and the weak convergence induced by $X^{* *}$.
Extremal points: Let X be a real vector space and let $K \subset X$ be a convex subset. We say that $a \in K$ is an extremal point of K if the following condition holds:

$$
\text { if } \quad a=\lambda x_{1}+(1-\lambda) x_{2} \quad \text { for } \quad \lambda \in(0,1), x_{1}, x_{2} \in K \quad \text { then } \quad x_{1}=x_{2} .
$$

In other words, $a \in K$ is an extremal point if it does not lie in the interior of any open segment contained in K. We denote by $\operatorname{ext}(\mathrm{K})$ the set of extremal points of K. For an arbitrary set $E \subset X$ we define its convex hull by

$$
\operatorname{co}(E):=\left\{\sum_{j=1}^{\mathrm{n}} \lambda_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}: \mathrm{n} \in \mathbb{N}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{E}, \sum_{\mathrm{j}=1}^{\mathrm{n}} \lambda_{\mathrm{j}}=1\right\}
$$

that is, the set of all convex combinations of points of E.
Theorem (Krein-Milman): Let (X, τ) be a LCS. Assume that $K \subset X$ is non-empty, convex and compact with respect to τ. Then

$$
\operatorname{ext}(\mathrm{K}) \neq \emptyset \quad \text { and } \quad \mathrm{K}=\overline{\operatorname{co}(\operatorname{ext}(\mathrm{K}))}
$$

where the closure is taken with respect to τ.

Problem 6.1. Let X be a real normed space and let $\Lambda_{n}, \Lambda \in X^{*}$ and $x_{n}, x \in X$ for $n \in \mathbb{N}$.
a) Show the following implications between convergences in X^{*} :
i) if $\Lambda_{n} \rightarrow \Lambda$ strongly then $\Lambda_{n} \rightharpoonup \Lambda$ weakly,
ii) if $\Lambda_{n} \rightharpoonup \Lambda$ weakly then $\Lambda_{n} \stackrel{*}{\rightharpoonup} \Lambda$ weakly*.

Hint: Use the canonical embedding J.
b) Assume in addition that X is reflexive. Prove that in X^{*} we have that $\Lambda_{n} \rightharpoonup \Lambda$ weakly if and only if $\Lambda_{n} \xrightarrow{*} \Lambda$ weakly*.
Hint: In this case, by definition, the canonical embedding J is surjective.
c) Prove that weak* limits in X^{*} and weak limits in X are unique.

Hint: Use one of the corollaries of the Hahn-Banach Theorem (Conway III.6.8, Pag 79).
d) Assume that $x_{n} \rightharpoonup x$ weakly in X. Show that x_{n} is norm bounded, that is, $\sup _{n}\left\|x_{n}\right\|_{X}<\infty$. Hint: Use J and the Principle of Uniform Boundedness (Conway III.14.1, Pag 95).
e) Assume in addition that X is a Banach space. Show that if $\Lambda_{n} \stackrel{*}{\rightharpoonup} \Lambda$ then $\sup _{n}\left\|\Lambda_{n}\right\|_{X^{*}}<\infty$. Hint: Use the Principle of Uniform Boundedness.

Problem 6.2 (15 pts).

a) Let X be a real normed space and $K:=\{x \in X:\|x\| \leq 1\}$ its (convex) unit ball. Show that

$$
\operatorname{ext}(\mathrm{K}) \subset\{\mathrm{x} \in \mathrm{X}:\|\mathrm{x}\|=1\}
$$

b) Let $X=L^{1}(0,1), K:=\left\{f \in L^{1}(0,1):\|f\|_{1} \leq 1\right\}$, where $\|f\|_{1}:=\int_{0}^{1}|f(x)| d x$. Prove that $\operatorname{ext}(K)=\emptyset$.
Hint: If $f \in L^{1}(0,1)$ the function $\Psi:[0,1] \rightarrow \mathbb{R}$ defined by $\Psi(x):=\int_{0}^{x}|f(t)| d t$ is continuous and non-decreasing.
c) By using point (b) and Krein-Milman, prove that $L^{1}(0,1)$ is not the dual of a Banach space. Hint: Banach-Alaoglu (Conway V.3.1, Pag 130).

Distributions

Let $d \in \mathbb{N}, d \geq 1$ and $\Omega \subset \mathbb{R}^{d}$ be open and non-empty. We denote by $\mathcal{D}(\Omega)$ the set of $C^{\infty}(\Omega)$ functions with compact support. The space $\mathcal{D}(\Omega)$ is endowed with a topology τ which makes it into a complete LCS (Rudin 6.2). If $\phi_{n}, \varphi \in \mathcal{D}(\Omega)$, we have that $\phi_{n} \rightarrow \phi$ with respect to τ if and only if there exists a compact set $K \subset \Omega$ such that $\operatorname{supp} \phi_{n} \subset K$ for all n and

$$
D^{\alpha} \phi_{n} \rightarrow D^{\alpha} \phi \quad \text { uniformly on } K \text { for all } \alpha \in \mathbb{N}_{0}^{d}
$$

where $D^{\alpha}:=\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{d}}^{\alpha_{d}}$ (Rudin 6.5). We recall that the order of ∂^{α} is $|\alpha|:=\sum_{i=1}^{d} \alpha_{i}$. The linear differential operator $D^{\alpha}: \mathcal{D}(\Omega) \rightarrow \mathcal{D}(\Omega)$ is continuous (Rudin 6.6). The space of distributions over Ω is denoted by $\mathcal{D}(\Omega)^{*}$ and it is defined as the set of linear operators $\Lambda: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ which are τ-continuous. For a linear operator $\Lambda: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ the following conditions are equivalent:
i) $\Lambda \in \mathcal{D}(\Omega)^{*}$,
ii) $\Lambda \phi_{n} \rightarrow 0$ whenever $\phi_{n} \rightarrow 0$ in $\mathcal{D}(\Omega)$,
iii) For each compact set $K \subset \Omega$ there exist constants $N \in \mathbb{N}_{0}, C>0$ such that

$$
\begin{equation*}
|\Lambda \phi| \leq C\|\phi\|_{K, N} \quad \text { for all } \quad \phi \in \mathcal{D}_{K} \tag{1}
\end{equation*}
$$

where $D_{K}:=\left\{\phi \in C^{\infty}(\Omega): \operatorname{supp} \phi \subset K\right\}$ and

$$
\|\phi\|_{K, N}:=\max \left\{\left|\partial^{\alpha} \phi(x)\right|: x \in K, \alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq N\right\}
$$

(Rudin 6.6 and 6.8). If the constant N in (1) is independent on K, we call the smallest N with such property the order of Λ.

For $f \in L_{\mathrm{loc}}^{1}(\Omega)$ we define the distribution Λ_{f} via

$$
\Lambda_{f}(\phi):=\int_{\Omega} f(x) \phi(x) d x \quad \text { for all } \quad \phi \in \mathcal{D}(\Omega)
$$

Also, for $p \in \Omega$ define the delta distribution at p by $\delta_{p}(\phi):=\phi(p)$ for each $\phi \in \mathcal{D}(\Omega)$.
Derivatives: If $\Lambda \in \mathcal{D}(\Omega)^{*}, \alpha \in \mathbb{N}_{0}^{d}$ the α-derivative of Λ is the linear operator $\partial^{\alpha} \Lambda: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\left(\partial^{\alpha} \Lambda\right)(\phi):=(-1)^{|\alpha|} \Lambda\left(\partial^{\alpha} \phi\right) \quad \text { for all } \quad \phi \in \mathcal{D}(\Omega)
$$

We have that $\partial^{\alpha} \Lambda \in \mathcal{D}(\Omega)^{*}$ (Rudin 6.12). Notice that $\partial^{\alpha} \Lambda_{f}=\Lambda_{\partial^{\alpha} f}$ whenever f is regular and $f, \partial^{\alpha} f \in L_{\mathrm{loc}}^{1}(\Omega)$.
Supports: Let $\Lambda \in \mathcal{D}(\Omega)^{*}$. If $\omega \subset \Omega$ is an open set, we say that $\Lambda=0$ in ω if $\Lambda \phi=0$ for all $\phi \in \mathcal{D}(\omega)$. We define W as the union of all the open sets $\omega \subset \Omega$ such that $\Lambda=0$ in ω. The support of Λ is then defined by

$$
\operatorname{supp} \Lambda:=\Omega \backslash W
$$

If $\operatorname{supp} \Lambda$ is compact, then Λ has finite order and it extends in a unique way to a linear continuous functional on $C^{\infty}(\Omega)$ (Rudin 6.24). Also recall the following structure theorem (Rudin 6.25):
Theorem 1. Let $\Lambda \in \mathcal{D}(\Omega)^{*}$ be such that $\operatorname{supp} \Lambda \subset\{p\}$ for some $p \in \Omega$. Then there exist $N \in \mathbb{N}$ and coefficients $c_{\alpha} \in \mathbb{R}$ for each $\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq N$ such that

$$
\Lambda=\sum_{|\alpha| \leq N} c_{\alpha} \partial^{\alpha} \delta_{p} \quad \text { in } \quad \mathcal{D}(\Omega)^{*}
$$

Multiplication: Let $f \in C^{\infty}(\Omega)$ and $\Lambda \in \mathcal{D}(\Omega)^{*}$. Their multiplication is the distribution $f \Lambda$ defined by

$$
(f \Lambda)(\phi):=\Lambda(f \phi) \quad \text { for all } \quad \phi \in \mathcal{D}(\Omega) .
$$

Limits: For $\Lambda_{n} \in \mathcal{D}(\Omega)^{*}$ we say that $\Lambda_{n} \rightarrow \Lambda$ in the sense of distributions if for each $\phi \in \mathcal{D}(\Omega)$ the limit

$$
\begin{equation*}
\lim _{n} \Lambda_{n} \phi=\Lambda \phi \tag{2}
\end{equation*}
$$

exists and is finite. Whenever (2) is satisfied for some linear functional Λ, then automatically $\Lambda \in \mathcal{D}(\Omega)^{*}$ (Rudin 6.17). If $f_{n} \in L_{\mathrm{loc}}^{1}(\Omega), \Lambda \in \mathcal{D}(\Omega)^{*}$, we write $f_{n} \rightarrow \Lambda$ in place of $\Lambda_{f_{n}} \rightarrow \Lambda$.

Convolutions 1: Let $\Lambda \in \mathcal{D}\left(\mathbb{R}^{d}\right)^{*}, \phi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$. Introduce the translation and reflection operators

$$
\left(\tau_{x} \phi\right)(y):=f(y-x), \quad \check{\phi}(y):=\phi(-y) \quad \text { for } y \in \mathbb{R}^{d}
$$

where $x \in \mathbb{R}^{d}$ is fixed. The convolution between Λ and ϕ is the map $\Lambda \star \phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
(\Lambda \star \phi)(x):=\Lambda\left(\tau_{x} \check{\phi}\right) \quad \text { for all } x \in \mathbb{R}^{d} \tag{3}
\end{equation*}
$$

It is important that ϕ is compactly supported for the definition to make sense. Notice that, if $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ and $\Lambda=\Lambda_{f}$, then (5) coincides with the classical definition, since

$$
\left(\Lambda_{f} \star \phi\right)(x)=\int_{\mathbb{R}^{d}} f(y)\left(\tau_{x} \check{\phi}\right)(y) d y=\int_{\mathbb{R}^{d}} f(y) \phi(x-y) d y=(f \star \phi)(x)
$$

Motivated by the equality

$$
\int_{R^{d}}\left(\tau_{x} f\right)(y) \phi(y) d y=\int_{R^{d}} f(y)\left(\tau_{-x} \phi\right)(y) d y
$$

we also define the translation of Λ by $x \in \mathbb{R}^{d}$ as the linear functional $\tau_{x} \Lambda: \mathcal{D}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left(\tau_{x} \Lambda\right)(\phi):=\Lambda\left(\tau_{-x} \phi\right) \quad \text { for all } \phi \in \mathcal{D}\left(\mathbb{R}^{d}\right) . \tag{4}
\end{equation*}
$$

Convolutions 2: Assume that $\Lambda \in \mathcal{D}\left(\mathbb{R}^{d}\right)^{*}$ has compact support and that $\phi \in C^{\infty}(\Omega)$. Since Λ extends to a linear continuous functional on $C^{\infty}(\Omega)$, it makes sense to define $\Lambda \star \phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
(\Lambda \star \phi)(x):=\Lambda\left(\tau_{x} \check{\phi}\right) \quad \text { for all } x \in \mathbb{R}^{d} \tag{5}
\end{equation*}
$$

in the same way we did in (5).

Problem 6.3. Let $\Lambda \in \mathcal{D}\left(\mathbb{R}^{d}\right)^{*}$ and $\phi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$.
a) Show that $\tau_{x} \Lambda$ belongs to $\mathcal{D}\left(\mathbb{R}^{d}\right)^{*}$ for all $x \in \mathbb{R}^{d}$, where τ_{x} is defined at (4).
b) Prove that

$$
\tau_{x}(\Lambda \star \phi)=\left(\tau_{x} \Lambda\right) \star \phi=\Lambda \star\left(\tau_{x} \phi\right)
$$

for all $x \in \mathbb{R}^{d}$.
c) Show that $\Lambda \star \phi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ and that for each $\alpha \in \mathbb{N}_{0}^{d}$

$$
D^{\alpha}(\Lambda \star \phi)=\left(D^{\alpha} \Lambda\right) \star \phi=\Lambda \star\left(D^{\alpha} \phi\right) .
$$

d) Let $\rho_{n} \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ be a sequence of mollifiers, that is, $\rho_{n} \geq 0, \operatorname{supp} \rho_{n} \subset B_{1 / n}(0), \int_{\mathbb{R}^{d}} \rho_{n} d x=1$. Prove that

$$
\lim _{n} \Lambda \star \rho_{n}=\Lambda \quad \text { in } \quad \mathcal{D}\left(\mathbb{R}^{d}\right)^{*}
$$

Hint: Use that $\Lambda \star(\phi \star \psi)=(\Lambda \star \phi) \star \psi$ for all $\Lambda \in \mathcal{D}\left(\mathbb{R}^{d}\right)^{*}, \phi, \psi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$.
e) Assume in addition that Λ is compactly supported and let $\psi \in C^{\infty}\left(\mathbb{R}^{d}\right)$. Prove that the claims in points (b) and (c) hold for $\Lambda \star \psi$.
f) Assume in addition that Λ is compactly supported. Prove that $\Lambda \star \phi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$.

Problem 6.4 (15 pts).

a) Let $\delta \in \mathcal{D}(\mathbb{R})^{*}$ be the Dirac distribution at 0 , that is, $\delta(\phi):=\phi(0)$ for all $\phi \in \mathcal{D}(\mathbb{R})$. For each $m \in \mathbb{N}, m \geq 0$, characterize the set

$$
A_{m}=\left\{f \in C^{\infty}(\mathbb{R}): f \delta^{(m)}=0 \text { in } \mathcal{D}(\mathbb{R})^{*}\right\}
$$

b) Give an example of $f \in C^{\infty}(\mathbb{R})$ and $\Lambda \in \mathcal{D}(\mathbb{R})^{*}$ such that $f=0$ on $\operatorname{supp} \Lambda$ but $f \Lambda \neq 0$.
c) Fix $m \in \mathbb{N}, m \geq 1$. Show that they are equivalent:
i) $x^{m} \Lambda=0$ in $\mathcal{D}(\mathbb{R})^{*}$,
ii) There exist $c_{0}, c_{1}, \ldots, c_{m-1} \in \mathbb{R}$ such that $\Lambda=\sum_{k=0}^{m-1} c_{k} \delta^{(k)}$.

Hint: If $x^{m} \Lambda=0$, first prove that $\operatorname{supp} \Lambda \subset\{0\}$. Then you can use Theorem 1. It is useful to notice that, since Λ is compactly supported, you can test against functions in $C^{\infty}(\mathbb{R})$.

Problem 6.5 (20 pts). Suppose that $f \in L^{1}((-\infty,-\varepsilon) \cup(\varepsilon, \infty))$ for all $\varepsilon>0$. The principal value integral of f is defined by

$$
\mathrm{PV} \int_{\mathbb{R}} f(x) d x:=\lim _{\varepsilon \rightarrow 0} \int_{\{|x| \geq \varepsilon\}} f(x) d x
$$

whenever the limits exists (finite). Here $\{|x| \geq \varepsilon\}$ is a shorthand for $\{x \in \mathbb{R}: x \geq \varepsilon$ or $x \leq-\varepsilon\}$. For $\phi \in \mathcal{D}(\mathbb{R})$ define

$$
\left(\operatorname{PV} \frac{1}{x}\right)(\phi):=\mathrm{PV} \int_{\mathbb{R}} \frac{\phi(x)}{x} d x
$$

a) Prove that PV $\frac{1}{x}$ is well defined, that it belongs to $\mathcal{D}(\mathbb{R})^{*}$ and that its order is at most 1 .

Hint: Notice that $1 / x$ is anti-symmetric, therefore $\int_{\{|x| \geq \varepsilon\}} x^{-1} d x=0$.
b) Prove that PV $\frac{1}{x}$ is a distribution of order 1.

Hint: We already know that the order is at most 1 . Assume by contradiction that the order is 0 , so that for any $K \subset \mathbb{R}$ compact there exists $C>0$ such that $\left|\left(\operatorname{PV} \frac{1}{x}\right)(\phi)\right| \leq C\|\phi\|_{K, 0}$ for all $\phi \in \mathcal{D}_{K}$. Take $K=[0,1]$ and produce a sequence $\phi_{n} \in \mathcal{D}_{K}$ such such that $0 \leq \phi_{n} \leq 1$, which makes the previous estimate fail.
c) Show that, in the sense of distributions,

$$
(\log |x|)^{\prime}=\mathrm{PV} \frac{1}{x}
$$

d) Show that for all $\phi \in \mathcal{D}(\mathbb{R})$

$$
\left(\operatorname{PV} \frac{1}{x}\right)^{\prime}(\phi)=-\lim _{\varepsilon \rightarrow 0} \int_{\{|x| \geq \varepsilon\}} \frac{\phi(x)-\phi(0)}{x^{2}} d x
$$

Compact operators and spectral theory

For a Banach space X we denote by B_{X} its unit ball, that is, $B_{X}:=\left\{x \in X:\|x\|_{X} \leq 1\right\}$. If Y is another Banach space, we denote by $\mathcal{L}(X, Y)$ the space of linear continuous operators $T: X \rightarrow Y$. Recall that $\mathcal{L}(X, Y)$ is a Banach space with the operator norm. We also denote $\mathcal{L}(X):=\mathcal{L}(X, X)$.
Compact operators: Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$. We say that T is a compact operator if the closure of $T\left(B_{X}\right)$ is compact in Y. We denote the space of compact operators from X to Y by $\mathcal{K}(X, Y)$. Also we denote $\mathcal{K}(X):=\mathcal{K}(X, X)$.
Finite rank: Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$. We say that T has finite rank if $T(X)$ is finite dimensional.
Adjoint: Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$. The adjoint of T is the linear operator $T^{*}: Y^{*} \rightarrow X^{*}$ defined by

$$
\left\langle T^{*} y^{*}, x\right\rangle_{X^{*}, X}=\left\langle y^{*}, T x\right\rangle_{Y^{*}, Y} \quad \text { for all } \quad x \in X, y^{*} \in Y^{*} .
$$

It is well-known that $T^{*} \in \mathcal{L}\left(Y^{*}, X^{*}\right)$, with $\|T\|=\left\|T^{*}\right\|$.
Theorem 2 (Brezis 6.1, 6.4): Let X, Y, Z be Banach spaces, $T \in \mathcal{L}(X, Y), S \in \mathcal{L}(Y, Z)$. Then:
i) $T \in \mathcal{K}(X, Y)$ if and only if $T^{*} \in \mathcal{K}\left(Y^{*}, X^{*}\right)$,
ii) If T has finite rank, then $T \in \mathcal{K}(X, Y)$,
iii) $\mathcal{K}(X, Y)$ is a closed subspace of $\mathcal{L}(X, Y)$: if $T_{n} \in \mathcal{K}(X, Y),\left\|T_{n}-T\right\| \rightarrow 0$ then $T \in \mathcal{K}(X, Y)$,
iv) If $T \in \mathcal{K}(X, Y)$ or $S \in \mathcal{K}(X, Y)$, then $S T \in \mathcal{K}(X, Z)$.

Theorem 3 (Riesz's Lemma, Brezis 6.1): Let X be a normed space, and $M \subset X$ a closed subspace with $M \neq X$. Then for each $\varepsilon>0$ there exists $x \in X$ such that $\|x\|=1$ and $\operatorname{dist}(x, M) \geq 1-\varepsilon$.
Spectral theory: Let X be a Banach space, $T \in \mathcal{L}(X)$. The resolvent set of T is defined by

$$
\rho(T):=\{\lambda \in \mathbb{R}: T-\lambda I \text { is bijective from } X \text { onto } X\}
$$

where I denotes the identity operator from X into itself. The spectrum of T is

$$
\sigma(T):=\mathbb{R} \backslash \sigma(T)
$$

We say that $\lambda \in \mathbb{R}$ is an eigenvalue of T if $\operatorname{ker}(T-\lambda I) \neq\{0\}$. We denote by $\operatorname{EV}(T)$ the set of eigenvalues of T. For $\lambda \in \operatorname{EV}(T)$, the corresponding eigenspace is $\operatorname{ker}(T-\lambda I)$. Notice that $\operatorname{EV}(T) \subset \sigma(T)$, but they are not equal in general.

Theorem 4 (Brezis 6.7, 6.8): Let X be a Banach space and $T \in \mathcal{L}(X)$. Then $\sigma(T)$ is a compact set, $\sigma(T)=\sigma\left(T^{*}\right)$ and

$$
\sigma(T) \subset[-\|T\|,\|T\|]
$$

Assume in addition that X is infinite dimensional and $T \in \mathcal{K}(X)$. Then
i) $0 \in \sigma(T)$,
ii) $\sigma(T) \backslash\{0\}=\operatorname{EV}(T) \backslash\{0\}$,
iii) Either $\sigma(T)=\{0\}$, or $\sigma(T) \backslash\{0\}$ is a finite set, or $\sigma(T) \backslash\{0\}=\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ with $\lambda_{n} \rightarrow 0$.

Relative compactness in $C(X)$: Assume that (X, d) is a compact metric space. We denote by $C(X)$ the space of continuous functions $f: X \rightarrow \mathbb{R}$. Then $C(X)$ is a Banach space with the supremum norm $\|f\|_{\infty}:=\sup _{x \in X}|f(x)|$. For a family $\mathcal{A} \subset C(X)$ we say that \mathcal{A} is uniformly bounded if there exists a constant $M>0$ such that

$$
\sup _{x \in X}|f(x)| \leq M \quad \text { for all } \quad f \in \mathcal{A}
$$

We say that \mathcal{A} is equicontinuous if for every $\varepsilon>0$ there exists $\delta>0$ (depending only on ε) with the following property:
for all $x, y \in X$ such that $d(x, y)<\delta$, it follows that $|f(x)-f(y)|<\varepsilon$ for all $f \in \mathcal{A}$.
A characterization of relative compactness in $C(X)$ is given by the following:
Theorem 5 (Ascoli-Arzelà): Let (X, d) be a compact metric space. Let $\mathcal{A} \subset C(X)$. They are equivalent:
i) The closure of \mathcal{A} is compact in $C(X)$ (with respect to the supremum norm);
ii) \mathcal{A} is uniformly bounded and equicontinuous;
iii) each sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of elements of \mathcal{A} admits a subsequence converging uniformly.

Relative compactness in L^{p} : Let $d \in \mathbb{N}, d \geq 1$. For a map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we define its translation by $h \in \mathbb{R}^{d}$ as the new map $\tau_{h} f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined by $\left(\tau_{h} f\right)(x):=(x-h)$. The following theorem is a version of Ascoli-Arzelà for L^{p} spaces.
Theorem 6 (Fréchet-Kolmogorov): Let $1 \leq p<\infty$ and consider a family $\mathcal{A} \subset L^{p}\left(\mathbb{R}^{d}\right)$. Suppose that \mathcal{A} is bounded, that is,

$$
\sup _{f \in \mathcal{A}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}<+\infty
$$

Moreover assume that

$$
\lim _{|h| \rightarrow 0}\left\|\tau_{h} f-f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}=0 \quad \text { uniformly in } \quad f \in \mathcal{A}
$$

that is, for each $\varepsilon>0$ there exists $\delta>0$ such that $\left\|\tau_{h} f-f\right\|_{L^{p}}<\varepsilon$ for all $f \in \mathcal{A}, h \in \mathbb{R}^{d}$ with $|h|<\delta$. Then the closure of $\left.\mathcal{A}\right|_{\Omega}$ in $L^{p}(\Omega)$ is compact for any Lebesugue measurable set $\Omega \subset \mathbb{R}^{d}$ with $|\Omega|<\infty$.
In the above theorem we denote by $\left.\mathcal{A}\right|_{\Omega}$ the restriction to Ω of functions in \mathcal{A}.

Problem 6.6 (10 pts).

a) Let X be a normed space. Show that the identity map $I: X \rightarrow X$ is compact if and only if $\operatorname{dim} X<+\infty$.
Hint: Riesz Lemma (Theorem 3).
b) Consider $C^{1}[0,1]$ equipped with the norm $\|f\|_{C^{1}}:=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$ and $C[0,1]$ equipped with the supremum norm. Prove that the identity $I: C^{1}[0,1] \rightarrow C[0,1]$ is continuous and compact. Hint: Use Theorem 5.

Problem 6.7 (10 pts). Let H be a real Hilbert space and $T \in \mathcal{L}(H)$. Let $x_{n}, x \in H$ for $n \in \mathbb{N}$.
a) Show that $x_{n} \rightarrow x$ strongly in H if and only if

$$
x_{n} \rightharpoonup x \text { weakly in } H \text { and }\left\|x_{n}\right\|_{H} \rightarrow\|x\|_{H} .
$$

b) Show that $T \in \mathcal{K}(H)$ if and only if the following condition holds:

If $x_{n} \rightharpoonup x$ weakly in H, then $T x_{n} \rightarrow T x$ strongly in H.
Hint: Since H is reflexive, $T\left(B_{H}\right)$ is closed (see Problem 6.8 Point (c)).

Problem 6.8.

a) Let X, Y be normed spaces, $T \in \mathcal{L}(X, Y)$. Assume there exists a constant $c>0$ such that

$$
\|T x\|_{Y} \geq c\|x\|_{X} \quad \text { for all } \quad x \in X .
$$

Show that T is compact if and only if $\operatorname{dim} X<+\infty$.
b) Let X be a Banach space with $\operatorname{dim} X=+\infty$ and let $T \in \mathcal{K}(X)$. Show that T cannot be surjective, that is, there exists $y \in X$ such that the equation

$$
T x=y
$$

has no solution in X.
c) Let X, Y be Banach spaces and assume that X is reflexive. Let $T \in \mathcal{L}(X, Y)$ and $M \subset X$ be closed, convex and bounded.
i) Show that $T(M)$ is closed in Y.
ii) In addition, assume that $T \in \mathcal{K}(X, Y)$. Show that $T(M)$ is compact.
d) Let H be a Hilbert space and $T \in \mathcal{K}(H)$. Show that T attains its norm, that is, there exists $\hat{x} \in H$ such that $\|\hat{x}\| \leq 1$ and $\|T\|=\|T \hat{x}\|$.

Problem 6.9 (30 pts). Consider the space $C[0,1]$ equipped with the supremum norm and let $1 \leq p \leq \infty$. Define the linear operator $T: L^{p}(0,1) \rightarrow L^{p}(0,1)$ by

$$
(T f)(x):=\int_{0}^{x} f(t) d t \quad \text { for } \quad x \in[0,1]
$$

Also consider the linear operator $S: C[0,1] \rightarrow C[0,1]$ defined by $S f:=T f$ for $f \in C[0,1]$.
a) Prove that S is bounded and compute $\|S\|$.
b) Let $B:=\left\{f \in C[0,1]:\|f\|_{\infty} \leq 1\right\}$. Prove that $S(B)$ is not closed.

Hint: Notice that $S f \in C^{1}[0,1]$ for all $f \in C[0,1]$. Therefore construct a sequence $f_{n} \in B$ such that $S f_{n} \rightarrow g$ uniformly but $g \notin C^{1}[0,1]$.
c) Prove that S is compact.
d) Prove that T is bounded for all $p \in[1, \infty]$ and compute its adjoint T^{*}.
e) Prove that T is compact for each $p \in[1, \infty]$.

Hint: For $1<p \leq \infty$ use the fact that $T f \in C[0,1]$. Therefore if you show compactness in $C[0,1]$ (by employing Theorem 5), you also have it in $L^{p}(0,1)$. For $p=1$ you do not have compactness in $C[0,1]$ (see point (g)), but you can still prove compactness in $L^{1}(0,1)$ by means of Theorem 6 .
f) Compute $\sigma(T), \operatorname{EV}(T)$ and $\rho(T)$.

Hint: Try to compute $\operatorname{EV}(T)$ first. Remember that if $f \in L^{p}(0,1)$, then its primitive is Sobolev (see Problem 2.3). By a bootstrap argument you can infer regularity of the eigenvectors.
g) Show that $T: L^{1}(0,1) \rightarrow C[0,1]$ is not compact.

Hint: Consider $f_{n}(x):=n \chi_{(0,1 / n)}(x)$.

