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You are required to present Problems 6.2, 6.4, 6.5, 6.6, 6.7, 6.9. The rest of the problems will not
be marked, but I recommend doing them as a preparation for the final exam.

I will refer to the following books:

• Haim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011,
Springer-Verlag New York.

• John B. Conway, A Course in Functional Analysis (Second Edition), 1990, Springer.

• Walter Rudin, Functional Analysis (Second Edition), 1991, McGraw-Hill.

Locally convex spaces

Let (X, ‖·‖X) be a real normed space and let X∗ be its dual, taken with respect to the norm
of X. Then X∗ is a normed space with ‖Λ‖X∗ := sup{|Λx| : ‖x‖ ≤ 1} for Λ ∈ X∗. Recall
that, since the field R is complete, X∗ is a Banach space (Conway III.5.4). Let X∗∗ be the dual
of X∗, taken with respect to the operator norm of X∗. We equip X∗∗ with the operator norm
‖T‖X∗∗ := sup{|TΛ| : ‖T‖X∗ ≤ 1} for T ∈ X∗∗. Recall that the canonical embedding J : X → X∗∗

is defined by J(x)Λ := Λx for Λ ∈ Λ∗. We have that J is an isometry, that is, ‖J(x)‖X∗∗ = ‖x‖X
for all x ∈ X (Conway III.6.7).

Convergences on normed spaces: Let {xn}n∈N ⊂ X be a sequence and x ∈ X. We say that
xn → x strongly if ‖xn − x‖X → 0 as n → ∞. We say that xn ⇀ x weakly if Λxn → Λx as n → ∞
for each Λ ∈ X∗. Let {Λn}n∈N ⊂ X∗ be a sequence and Λ ∈ X∗. We that Λn

∗
⇀ Λ weakly* if

Λnx → Λx as n → ∞ for all x ∈ X. Notice that, since X∗ is a normed space, we can also consider
the strong convergence with respect to ‖·‖X∗ and the weak convergence induced by X∗∗.

Extremal points: Let X be a real vector space and let K ⊂ X be a convex subset. We say that
a ∈ K is an extremal point of K if the following condition holds:

if a = λx1 + (1− λ)x2 for λ ∈ (0, 1) , x1, x2 ∈ K then x1 = x2 .

In other words, a ∈ K is an extremal point if it does not lie in the interior of any open segment
contained in K. We denote by ext(K) the set of extremal points of K. For an arbitrary set E ⊂ X
we define its convex hull by

co(E) :=

!
"

#

n$

j=1

λj xj : n ∈ N , x1, . . . , xn ∈ E ,

n$

j=1

λj = 1

%
&

' ,

that is, the set of all convex combinations of points of E.

Theorem (Krein-Milman): Let (X, τ) be a LCS. Assume that K ⊂ X is non-empty, convex
and compact with respect to τ . Then

ext(K) ∕= ∅ and K = co(ext(K))

where the closure is taken with respect to τ .
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Problem 6.1. Let X be a real normed space and let Λn,Λ ∈ X∗ and xn, x ∈ X for n ∈ N.
a) Show the following implications between convergences in X∗:

i) if Λn → Λ strongly then Λn ⇀ Λ weakly,

ii) if Λn ⇀ Λ weakly then Λn
∗
⇀ Λ weakly*.

Hint: Use the canonical embedding J .

b) Assume in addition that X is reflexive. Prove that in X∗ we have that Λn ⇀ Λ weakly if and

only if Λn
∗
⇀ Λ weakly*.

Hint: In this case, by definition, the canonical embedding J is surjective.

c) Prove that weak* limits in X∗ and weak limits in X are unique.

Hint: Use one of the corollaries of the Hahn-Banach Theorem (Conway III.6.8, Pag 79).

d) Assume that xn ⇀ x weakly in X. Show that xn is norm bounded, that is, supn ‖xn‖X < ∞.

Hint: Use J and the Principle of Uniform Boundedness (Conway III.14.1, Pag 95).

e) Assume in addition that X is a Banach space. Show that if Λn
∗
⇀ Λ then supn ‖Λn‖X∗ < ∞.

Hint: Use the Principle of Uniform Boundedness.

Problem 6.2 (15 pts).

a) Let X be a real normed space and K := {x ∈ X : ‖x‖ ≤ 1} its (convex) unit ball. Show that

ext(K) ⊂ {x ∈ X : ‖x‖ = 1} .

b) Let X = L1(0, 1), K := {f ∈ L1(0, 1) : ‖f‖1 ≤ 1}, where ‖f‖1 :=
( 1

0
|f(x)| dx. Prove that

ext(K) = ∅ .
Hint: If f ∈ L1(0, 1) the function Ψ : [0, 1] → R defined by Ψ(x) :=

( x

0
|f(t)| dt is continuous

and non-decreasing.

c) By using point (b) and Krein-Milman, prove that L1(0, 1) is not the dual of a Banach space.

Hint: Banach-Alaoglu (Conway V.3.1, Pag 130).

Distributions

Let d ∈ N, d ≥ 1 and Ω ⊂ Rd be open and non-empty. We denote by D(Ω) the set of C∞(Ω)
functions with compact support. The space D(Ω) is endowed with a topology τ which makes it
into a complete LCS (Rudin 6.2). If φn,ϕ ∈ D(Ω), we have that φn → φ with respect to τ if and
only if there exists a compact set K ⊂ Ω such that suppφn ⊂ K for all n and

Dαφn → Dαφ uniformly on K for all α ∈ Nd
0 ,

where Dα := ∂α1
x1

. . . ∂αd
xd

(Rudin 6.5). We recall that the order of ∂α is |α| :=
)d

i=1 αi. The linear
differential operator Dα : D(Ω) → D(Ω) is continuous (Rudin 6.6). The space of distributions over
Ω is denoted by D(Ω)∗ and it is defined as the set of linear operators Λ : D(Ω) → R which are
τ -continuous. For a linear operator Λ : D(Ω) → R the following conditions are equivalent:

i) Λ ∈ D(Ω)∗,

ii) Λφn → 0 whenever φn → 0 in D(Ω),

iii) For each compact set K ⊂ Ω there exist constants N ∈ N0, C > 0 such that

|Λφ| ≤ C ‖φ‖K,N for all φ ∈ DK , (1)

where DK := {φ ∈ C∞(Ω) : suppφ ⊂ K} and

‖φ‖K,N := max{|∂αφ(x)| : x ∈ K, α ∈ Nd
0, |α| ≤ N} ,

(Rudin 6.6 and 6.8). If the constant N in (1) is independent on K, we call the smallest N with
such property the order of Λ.
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For f ∈ L1
loc(Ω) we define the distribution Λf via

Λf (φ) :=

*

Ω

f(x)φ(x) dx for all φ ∈ D(Ω) .

Also, for p ∈ Ω define the delta distribution at p by δp(φ) := φ(p) for each φ ∈ D(Ω).

Derivatives: If Λ ∈ D(Ω)∗,α ∈ Nd
0 the α-derivative of Λ is the linear operator ∂αΛ : D(Ω) → R

defined by
(∂αΛ)(φ) := (−1)|α|Λ(∂αφ) for all φ ∈ D(Ω) .

We have that ∂αΛ ∈ D(Ω)∗ (Rudin 6.12). Notice that ∂αΛf = Λ∂αf whenever f is regular and
f, ∂αf ∈ L1

loc(Ω).

Supports: Let Λ ∈ D(Ω)∗. If ω ⊂ Ω is an open set, we say that Λ = 0 in ω if Λφ = 0 for all
φ ∈ D(ω). We define W as the union of all the open sets ω ⊂ Ω such that Λ = 0 in ω. The support
of Λ is then defined by

suppΛ := Ω!W .

If suppΛ is compact, then Λ has finite order and it extends in a unique way to a linear continuous
functional on C∞(Ω) (Rudin 6.24). Also recall the following structure theorem (Rudin 6.25):

Theorem 1. Let Λ ∈ D(Ω)∗ be such that suppΛ ⊂ {p} for some p ∈ Ω. Then there exist N ∈ N
and coefficients cα ∈ R for each α ∈ Nd

0, |α| ≤ N such that

Λ =
$

|α|≤N

cα ∂αδp in D(Ω)∗ .

Multiplication: Let f ∈ C∞(Ω) and Λ ∈ D(Ω)∗. Their multiplication is the distribution fΛ
defined by

(fΛ)(φ) := Λ(fφ) for all φ ∈ D(Ω) .

Limits: For Λn ∈ D(Ω)∗ we say that Λn → Λ in the sense of distributions if for each φ ∈ D(Ω)
the limit

lim
n

Λnφ = Λφ (2)

exists and is finite. Whenever (2) is satisfied for some linear functional Λ, then automatically
Λ ∈ D(Ω)∗ (Rudin 6.17). If fn ∈ L1

loc(Ω),Λ ∈ D(Ω)∗, we write fn → Λ in place of Λfn → Λ.

Convolutions 1: Let Λ ∈ D(Rd)∗, φ ∈ D(Rd). Introduce the translation and reflection operators

(τxφ)(y) := f(y − x) , φ̌(y) := φ(−y) for y ∈ Rd ,

where x ∈ Rd is fixed. The convolution between Λ and φ is the map Λ * φ : Rd → R defined by

(Λ * φ)(x) := Λ(τxφ̌) for all x ∈ Rd . (3)

It is important that φ is compactly supported for the definition to make sense. Notice that, if
f ∈ L1

loc(Rd) and Λ = Λf , then (5) coincides with the classical definition, since

(Λf * φ)(x) =

*

Rd

f(y)(τxφ̌)(y) dy =

*

Rd

f(y)φ(x− y) dy = (f * φ)(x)

Motivated by the equality
*

Rd

(τxf)(y)φ(y) dy =

*

Rd

f(y)(τ−xφ)(y) dy ,

we also define the translation of Λ by x ∈ Rd as the linear functional τxΛ : D(Rd) → R such that

(τxΛ)(φ) := Λ(τ−xφ) for all φ ∈ D(Rd) . (4)

Convolutions 2: Assume that Λ ∈ D(Rd)∗ has compact support and that φ ∈ C∞(Ω). Since Λ
extends to a linear continuous functional on C∞(Ω), it makes sense to define Λ * φ : Rd → R by

(Λ * φ)(x) := Λ(τxφ̌) for all x ∈ Rd , (5)

in the same way we did in (5).
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Problem 6.3. Let Λ ∈ D(Rd)∗ and φ ∈ D(Rd).

a) Show that τxΛ belongs to D(Rd)∗ for all x ∈ Rd, where τx is defined at (4).

b) Prove that
τx(Λ * φ) = (τxΛ) * φ = Λ * (τxφ)

for all x ∈ Rd.

c) Show that Λ * φ ∈ C∞(Rd) and that for each α ∈ Nd
0

Dα(Λ * φ) = (DαΛ) * φ = Λ * (Dαφ) .

d) Let ρn ∈ D(Rd) be a sequence of mollifiers, that is, ρn ≥ 0, supp ρn ⊂ B1/n(0),
(
Rd ρn dx = 1.

Prove that
lim
n

Λ * ρn = Λ in D(Rd)∗ .

Hint: Use that Λ * (φ * ψ) = (Λ * φ) * ψ for all Λ ∈ D(Rd)∗, φ,ψ ∈ D(Rd).

e) Assume in addition that Λ is compactly supported and let ψ ∈ C∞(Rd). Prove that the
claims in points (b) and (c) hold for Λ * ψ.

f) Assume in addition that Λ is compactly supported. Prove that Λ * φ ∈ D(Rd).

Problem 6.4 (15 pts).

a) Let δ ∈ D(R)∗ be the Dirac distribution at 0, that is, δ(φ) := φ(0) for all φ ∈ D(R). For each
m ∈ N, m ≥ 0, characterize the set

Am = {f ∈ C∞(R) : fδ(m) = 0 in D(R)∗} .

b) Give an example of f ∈ C∞(R) and Λ ∈ D(R)∗ such that f = 0 on suppΛ but fΛ ∕= 0.

c) Fix m ∈ N, m ≥ 1. Show that they are equivalent:

i) xmΛ = 0 in D(R)∗,

ii) There exist c0, c1, . . . , cm−1 ∈ R such that Λ =
)m−1

k=0 ckδ
(k).

Hint: If xmΛ = 0, first prove that suppΛ ⊂ {0}. Then you can use Theorem 1. It is useful
to notice that, since Λ is compactly supported, you can test against functions in C∞(R).

Problem 6.5 (20 pts). Suppose that f ∈ L1((−∞,−ε) ∪ (ε,∞)) for all ε > 0. The principal
value integral of f is defined by

PV

*

R
f(x) dx := lim

ε→0

*

{|x|≥ε}
f(x) dx

whenever the limits exists (finite). Here {|x| ≥ ε} is a shorthand for {x ∈ R : x ≥ ε or x ≤ −ε}.
For φ ∈ D(R) define +

PV
1

x

,
(φ) := PV

*

R

φ(x)

x
dx .

a) Prove that PV 1
x is well defined, that it belongs to D(R)∗ and that its order is at most 1.

Hint: Notice that 1/x is anti-symmetric, therefore
(
{|x|≥ε} x

−1 dx = 0.

b) Prove that PV 1
x is a distribution of order 1.

Hint: We already know that the order is at most 1. Assume by contradiction that the order
is 0, so that for any K ⊂ R compact there exists C > 0 such that |

-
PV 1

x

.
(φ)| ≤ C ‖φ‖K,0

for all φ ∈ DK . Take K = [0, 1] and produce a sequence φn ∈ DK such such that 0 ≤ φn ≤ 1,
which makes the previous estimate fail.
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c) Show that, in the sense of distributions,

(log |x|)′ = PV
1

x
.

d) Show that for all φ ∈ D(R)
+
PV

1

x

,′
(φ) = − lim

ε→0

*

{|x|≥ε}

φ(x)− φ(0)

x2
dx .

Compact operators and spectral theory

For a Banach space X we denote by BX its unit ball, that is, BX := {x ∈ X : ‖x‖X ≤ 1}. If Y is
another Banach space, we denote by L(X,Y ) the space of linear continuous operators T : X → Y .
Recall that L(X,Y ) is a Banach space with the operator norm. We also denote L(X) := L(X,X).

Compact operators: Let X,Y be Banach spaces and T ∈ L(X,Y ). We say that T is a compact
operator if the closure of T (BX) is compact in Y . We denote the space of compact operators from
X to Y by K(X,Y ). Also we denote K(X) := K(X,X).

Finite rank: Let X,Y be Banach spaces and T ∈ L(X,Y ). We say that T has finite rank if T (X)
is finite dimensional.

Adjoint: Let X,Y be Banach spaces and T ∈ L(X,Y ). The adjoint of T is the linear operator
T ∗ : Y ∗ → X∗ defined by

〈T ∗y∗, x〉X∗,X = 〈y∗, Tx〉Y ∗,Y for all x ∈ X, y∗ ∈ Y ∗ .

It is well-known that T ∗ ∈ L(Y ∗, X∗), with ‖T‖ = ‖T ∗‖.

Theorem 2 (Brezis 6.1, 6.4): Let X,Y, Z be Banach spaces, T ∈ L(X,Y ), S ∈ L(Y, Z). Then:

i) T ∈ K(X,Y ) if and only if T ∗ ∈ K(Y ∗, X∗),

ii) If T has finite rank, then T ∈ K(X,Y ),

iii) K(X,Y ) is a closed subspace of L(X,Y ): if Tn ∈ K(X,Y ), ‖Tn − T‖ → 0 then T ∈ K(X,Y ),

iv) If T ∈ K(X,Y ) or S ∈ K(X,Y ), then ST ∈ K(X,Z).

Theorem 3 (Riesz’s Lemma, Brezis 6.1): Let X be a normed space, and M ⊂ X a closed subspace
with M ∕= X. Then for each ε > 0 there exists x ∈ X such that ‖x‖ = 1 and dist(x,M) ≥ 1− ε.

Spectral theory: Let X be a Banach space, T ∈ L(X). The resolvent set of T is defined by

ρ(T ) := {λ ∈ R : T − λI is bijective from X onto X} ,

where I denotes the identity operator from X into itself. The spectrum of T is

σ(T ) := R! σ(T ) .

We say that λ ∈ R is an eigenvalue of T if ker(T − λI) ∕= {0}. We denote by EV(T ) the set
of eigenvalues of T . For λ ∈ EV(T ), the corresponding eigenspace is ker(T − λI). Notice that
EV(T ) ⊂ σ(T ), but they are not equal in general.

Theorem 4 (Brezis 6.7, 6.8): Let X be a Banach space and T ∈ L(X). Then σ(T ) is a compact
set, σ(T ) = σ(T ∗) and

σ(T ) ⊂ [−‖T‖ , ‖T‖] .

Assume in addition that X is infinite dimensional and T ∈ K(X). Then

i) 0 ∈ σ(T ),

ii) σ(T )! {0} = EV(T )! {0},

iii) Either σ(T ) = {0}, or σ(T )! {0} is a finite set, or σ(T )! {0} = {λn}n∈N with λn → 0.
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Relative compactness in C(X): Assume that (X, d) is a compact metric space. We denote
by C(X) the space of continuous functions f : X → R. Then C(X) is a Banach space with the
supremum norm ‖f‖∞ := supx∈X |f(x)|. For a family A ⊂ C(X) we say that A is uniformly
bounded if there exists a constant M > 0 such that

sup
x∈X

|f(x)| ≤ M for all f ∈ A .

We say that A is equicontinuous if for every ε > 0 there exists δ > 0 (depending only on ε) with
the following property:

for all x, y ∈ X such that d(x, y) < δ , it follows that |f(x)− f(y)| < ε for all f ∈ A .

A characterization of relative compactness in C(X) is given by the following:

Theorem 5 (Ascoli-Arzelà): Let (X, d) be a compact metric space. Let A ⊂ C(X). They are
equivalent:

i) The closure of A is compact in C(X) (with respect to the supremum norm);

ii) A is uniformly bounded and equicontinuous;

iii) each sequence {fn}n∈N of elements of A admits a subsequence converging uniformly.

Relative compactness in Lp: Let d ∈ N, d ≥ 1. For a map f : Rd → R we define its translation
by h ∈ Rd as the new map τhf : Rd → R defined by (τhf)(x) := (x− h). The following theorem is
a version of Ascoli-Arzelà for Lp spaces.

Theorem 6 (Fréchet-Kolmogorov): Let 1 ≤ p < ∞ and consider a family A ⊂ Lp(Rd). Suppose
that A is bounded, that is,

sup
f∈A

‖f‖Lp(Rd) < +∞ .

Moreover assume that

lim
|h|→0

‖τhf − f‖Lp(Rd) = 0 uniformly in f ∈ A

that is, for each ε > 0 there exists δ > 0 such that ‖τhf − f‖Lp < ε for all f ∈ A, h ∈ Rd with
|h| < δ. Then the closure of A|Ω in Lp(Ω) is compact for any Lebesugue measurable set Ω ⊂ Rd

with |Ω| < ∞.

In the above theorem we denote by A|Ω the restriction to Ω of functions in A.

Problem 6.6 (10 pts).

a) Let X be a normed space. Show that the identity map I : X → X is compact if and only if
dimX < +∞.

Hint : Riesz Lemma (Theorem 3).

b) Consider C1[0, 1] equipped with the norm ‖f‖C1 := ‖f‖∞+‖f ′‖∞ and C[0, 1] equipped with
the supremum norm. Prove that the identity I : C1[0, 1] → C[0, 1] is continuous and compact.

Hint : Use Theorem 5.

Problem 6.7 (10 pts). Let H be a real Hilbert space and T ∈ L(H). Let xn, x ∈ H for n ∈ N.

a) Show that xn → x strongly in H if and only if

xn ⇀ x weakly in H and ‖xn‖H → ‖x‖H .

b) Show that T ∈ K(H) if and only if the following condition holds:

If xn ⇀ x weakly in H , then Txn → Tx strongly in H .

Hint: Since H is reflexive, T (BH) is closed (see Problem 6.8 Point (c)).
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Problem 6.8.

a) Let X,Y be normed spaces, T ∈ L(X,Y ). Assume there exists a constant c > 0 such that

‖Tx‖Y ≥ c ‖x‖X for all x ∈ X .

Show that T is compact if and only if dimX < +∞.

b) Let X be a Banach space with dimX = +∞ and let T ∈ K(X). Show that T cannot be
surjective, that is, there exists y ∈ X such that the equation

Tx = y

has no solution in X.

c) Let X,Y be Banach spaces and assume that X is reflexive. Let T ∈ L(X,Y ) and M ⊂ X be
closed, convex and bounded.

i) Show that T (M) is closed in Y .

ii) In addition, assume that T ∈ K(X,Y ). Show that T (M) is compact.

d) Let H be a Hilbert space and T ∈ K(H). Show that T attains its norm, that is, there exists
x̂ ∈ H such that ‖x̂‖ ≤ 1 and ‖T‖ = ‖T x̂‖.

Problem 6.9 (30 pts). Consider the space C[0, 1] equipped with the supremum norm and let
1 ≤ p ≤ ∞. Define the linear operator T : Lp(0, 1) → Lp(0, 1) by

(Tf)(x) :=

* x

0

f(t) dt for x ∈ [0, 1] .

Also consider the linear operator S : C[0, 1] → C[0, 1] defined by Sf := Tf for f ∈ C[0, 1].

a) Prove that S is bounded and compute ‖S‖.

b) Let B := {f ∈ C[0, 1] : ‖f‖∞ ≤ 1}. Prove that S(B) is not closed.

Hint : Notice that Sf ∈ C1[0, 1] for all f ∈ C[0, 1]. Therefore construct a sequence fn ∈ B
such that Sfn → g uniformly but g /∈ C1[0, 1].

c) Prove that S is compact.

d) Prove that T is bounded for all p ∈ [1,∞] and compute its adjoint T ∗.

e) Prove that T is compact for each p ∈ [1,∞].

Hint: For 1 < p ≤ ∞ use the fact that Tf ∈ C[0, 1]. Therefore if you show compactness in
C[0, 1] (by employing Theorem 5), you also have it in Lp(0, 1). For p = 1 you do not have
compactness in C[0, 1] (see point (g)), but you can still prove compactness in L1(0, 1) by
means of Theorem 6.

f) Compute σ(T ), EV(T ) and ρ(T ).

Hint : Try to compute EV(T ) first. Remember that if f ∈ Lp(0, 1), then its primitive is Sobolev
(see Problem 2.3). By a bootstrap argument you can infer regularity of the eigenvectors.

g) Show that T : L1(0, 1) → C[0, 1] is not compact.

Hint: Consider fn(x) := nχ(0,1/n)(x).
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