Advanced Functional Analysis

Problem Sheet 3

Due date: November 11, 2019
I will refer to the book H.Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Springer-Verlag New York, which you can download from the university library website.

Problem 3.1 (30 pts).
a) Let $f(x):=|x|$ for $x \in[-1,1]$. Show that $f \in W^{1, p}(-1,1)$ for all $1 \leq p \leq \infty$.
b) Let $f(x):=-\chi_{(-1,0)}(x)+\chi_{(0,1)}(x)=\operatorname{sign} x$. Show that $f \notin W^{1, p}(-1,1)$ for any $1 \leq p \leq$ ∞, without using the characterization theorem for 1D Sobolev functions (Theorem 1 in Worksheet 2).
Hint: assume by contradiction that f has a weak derivative in $L^{1}(-1,1)$. Then derive a contradiction by means of a sequence of functions localized around the jump, i.e. a sequence $\psi_{n} \in C_{c}^{\infty}(-1,1)$ such that $0 \leq \psi_{j} \leq 1, \psi_{j}(1)=1$ and $\lim _{j} \psi_{j}(x)=0$ for all $x \neq 0$.

Problem 3.2 ($\mathbf{3 0} \mathbf{p t s}$). Let $N \geq 3$. Assume that $\Omega \subset \mathbb{R}^{N}$ is an open connected set with regular boundary $\partial \Omega$. Assume that $A: \Omega \rightarrow \mathbb{R}^{N \times N}$ is a Lebesgue measurable matrix field such that there exist constants $C \geq 0, \alpha>0$ satisfying

$$
|A(x)| \leq C, \quad A(x) \xi \cdot \xi \geq \alpha|\xi|^{2} \text { for all } \xi \in \mathbb{R}^{N}, \quad \text { for a.e. } x \in \Omega
$$

Let $K>0$ be the Poincaré constant of Ω, that is, a constant such that

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq K\|\nabla u\|_{L^{2}(\Omega)}^{2} \quad \text { for all } \quad u \in H_{0}^{1}(\Omega)
$$

(see Corollary 9.19 Brezis). Fix $\lambda \in \mathbb{R}$ such that $\lambda+\alpha / K>0$. Let $f \in L^{2_{*}}(\Omega)$, where 2_{*} is the Hölder conjugate of $2^{*}:=\frac{2 N}{N-2}$ (that is, $\frac{1}{2^{*}}+\frac{1}{2_{*}}=1$). We say that $u \in H_{0}^{1}(\Omega)$ is a weak solution to the boundary value problem

$$
\begin{cases}-\operatorname{div}(A(x) \nabla u(x))+\lambda u(x)=f(x) & \text { if } x \in \Omega \\ u(x)=0 & \text { if } x \in \partial \Omega\end{cases}
$$

if u satisfies

$$
\begin{equation*}
\int_{\Omega} A(x) \nabla u(x) \cdot \nabla v(x) d x+\lambda \int_{\Omega} u(x) v(x) d x=\int_{\Omega} v(x) f(x) d x \quad \text { for all } \quad v \in H_{0}^{1}(\Omega) . \tag{1}
\end{equation*}
$$

Show that there exists a unique solution $u \in H_{0}^{1}(\Omega)$ to (1).
Hint: consider the Hilbert space $H:=H_{0}^{1}(\Omega)$ and apply Lax-Milgram (see Worksheet 1). It is also useful to recall Sobolev embeddings and Poincaré's inequality.

The goal of the next exercise is to prove the following theorem:
Theorem 1 (Partitions of unity): Let $N, k \in \mathbb{N}$ with $N, k \geq 1$. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded set such that $\Omega \subset \subset \cup_{j=1}^{k} U_{j}$, where $U_{j} \subset \mathbb{R}^{N}$ is open for each $j=1, \ldots, k$. Then there exist functions $\eta_{j} \in C_{c}^{\infty}\left(U_{j}\right)$ such that $0 \leq \eta_{j} \leq 1, \operatorname{supp} \eta_{j} \subset U_{j}$ for all $j=1, \ldots, k$, and

$$
\sum_{j=1}^{k} \eta_{j}(x)=1 \quad \text { for all } \quad x \in \Omega
$$

We recall that a family $\left\{\eta_{j}\right\}_{j=1}^{k}$ satisfying the properties of Theorem 1 is called a partition of unity subordinate to the open cover $\left\{U_{j}\right\}_{j=1}^{k}$ of Ω.

Problem 3.3 (40 pts). Let $N, k \in \mathbb{N}, N, k \geq 1$.
a) Let $K \subset \mathbb{R}^{N}$ be compact and $U \subset \mathbb{R}^{N}$ be open, such that $K \subset U$. Show that there exists $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ with the following properties:

- $0 \leq \psi \leq 1$ in \mathbb{R}^{N},
- $\psi(x)=1$ for all $x \in K$,
- $\operatorname{supp} \psi \subset U$.

Hint: For $\varepsilon>0$ consider $K_{\varepsilon}:=K+\overline{B_{\varepsilon}}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, K) \leq \varepsilon\right\}$. Take $\varepsilon>0$ small enough so that $K_{3 \varepsilon} \subset U$ (you can do it since $K \subset \subset U$). Then use the standard mollifiers ρ_{ε} to construct ψ (recall the basic properties of mollifiers: $\rho_{\varepsilon} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right), \rho_{\varepsilon} \geq 0, \operatorname{supp} \rho_{\varepsilon} \subset \overline{B_{\varepsilon}}$, $\left.\int_{\mathbb{R}^{N}} \rho_{\varepsilon}(x) d x=1\right)$. Also recall the properties of convolutions from Worksheet 2.
b) (Refining the cover) Let $K \subset \mathbb{R}^{N}$ be compact and $U_{j} \subset \mathbb{R}^{N}$ be open for all $j=1, \ldots, k$. Assume that $K \subset \cup_{j=1}^{k} U_{j}$. Show that exists a family $\left\{K_{j}\right\}_{j=1}^{k}$ of compact sets of \mathbb{R}^{N} such that $K_{j} \subset U_{j}$ for all $j=1, \ldots, k$ and $K \subset \cup_{j=1}^{k} K_{j}$.
Hint: since K is bounded, it is not restrictive to assume that U_{j} is bounded for all $j=1, \ldots, k$. It might be useful to consider the sets $U_{n, j}:=\left\{x \in U_{j}: \operatorname{dist}\left(x, \partial U_{j}\right)>1 / n\right\}$ for $n \in \mathbb{N}$. Also recall the topological definition of compactness: from an arbitrary open cover of a compact set you can extract a finite subcover.
c) (Proof of Theorem 1) Let $\Omega \subset \mathbb{R}^{N}$ be bounded and assume that $\Omega \subset \subset \cup_{j=1}^{k} U_{j}$, with $U_{j} \subset \mathbb{R}^{N}$ open for each $j=1, \ldots, k$. Show that there exists a family $\left\{\eta_{j}\right\}_{j=1}^{k}$ with $\eta_{j} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ satisfying the following properties:

- $0 \leq \eta_{j} \leq 1$ in \mathbb{R}^{N}, for all $j=1, \ldots, k$,
- $\operatorname{supp} \eta_{j} \subset U_{j}$ for all $j=1, \ldots, k$,
- $\sum_{j=1}^{k} \eta_{j}(x)=1$ for all $x \in \Omega$.

Hint: use points (a) and (b). Notice that it is not restrictive to assume that the sets U_{j} are bounded. Also: if $\psi_{1}, \ldots, \psi_{k}$ are real numbers and you define $\eta_{l}:=\psi_{l} \prod_{j=1}^{l-1}\left(1-\psi_{j}\right)$ for each $l=1, \ldots, k$ (with the understanding that the empty product is equal to 1), the following identity holds

$$
1-\sum_{j=1}^{k} \eta_{j}=\prod_{j=1}^{k}\left(1-\psi_{j}\right)
$$

