

## **Advanced Functional Analysis**

## Problem Sheet 3 Due date: November 11, 2019

I will refer to the book H.Brezis, *Functional Analysis, Sobolev Spaces and Partial Differential Equations*, 2011, Springer-Verlag New York, which you can download from the university library website.

## Problem 3.1 (30 pts).

- a) Let f(x) := |x| for  $x \in [-1, 1]$ . Show that  $f \in W^{1,p}(-1, 1)$  for all  $1 \le p \le \infty$ .
- b) Let  $f(x) := -\chi_{(-1,0)}(x) + \chi_{(0,1)}(x) = \operatorname{sign} x$ . Show that  $f \notin W^{1,p}(-1,1)$  for any  $1 \le p \le \infty$ , without using the characterization theorem for 1D Sobolev functions (Theorem 1 in Worksheet 2).

*Hint*: assume by contradiction that f has a weak derivative in  $L^1(-1,1)$ . Then derive a contradiction by means of a sequence of functions localized around the jump, i.e. a sequence  $\psi_n \in C_c^{\infty}(-1,1)$  such that  $0 \leq \psi_j \leq 1$ ,  $\psi_j(1) = 1$  and  $\lim_j \psi_j(x) = 0$  for all  $x \neq 0$ .

**Problem 3.2 (30 pts).** Let  $N \geq 3$ . Assume that  $\Omega \subset \mathbb{R}^N$  is an open connected set with regular boundary  $\partial\Omega$ . Assume that  $A: \Omega \to \mathbb{R}^{N \times N}$  is a Lebesgue measurable matrix field such that there exist constants  $C \geq 0, \alpha > 0$  satisfying

 $|A(x)| \le C$ ,  $A(x)\xi \cdot \xi \ge \alpha |\xi|^2$  for all  $\xi \in \mathbb{R}^N$ , for a.e.  $x \in \Omega$ .

Let K > 0 be the Poincaré constant of  $\Omega$ , that is, a constant such that

 $||u||_{L^{2}(\Omega)}^{2} \leq K ||\nabla u||_{L^{2}(\Omega)}^{2}$  for all  $u \in H_{0}^{1}(\Omega)$ ,

(see Corollary 9.19 Brezis). Fix  $\lambda \in \mathbb{R}$  such that  $\lambda + \alpha/K > 0$ . Let  $f \in L^{2_*}(\Omega)$ , where  $2_*$  is the Hölder conjugate of  $2^* := \frac{2N}{N-2}$  (that is,  $\frac{1}{2^*} + \frac{1}{2_*} = 1$ ). We say that  $u \in H_0^1(\Omega)$  is a *weak solution* to the boundary value problem

$$\begin{cases} -\operatorname{div}(A(x)\nabla u(x)) + \lambda u(x) = f(x) & \text{if } x \in \Omega, \\ u(x) = 0 & \text{if } x \in \partial \Omega \end{cases}$$

if u satisfies

$$\int_{\Omega} A(x)\nabla u(x) \cdot \nabla v(x) \, dx + \lambda \int_{\Omega} u(x)v(x) \, dx = \int_{\Omega} v(x)f(x) \, dx \quad \text{for all} \quad v \in H_0^1(\Omega) \,.$$
(1)

Show that there exists a unique solution  $u \in H_0^1(\Omega)$  to (1).

*Hint*: consider the Hilbert space  $H := H_0^1(\Omega)$  and apply Lax-Milgram (see Worksheet 1). It is also useful to recall Sobolev embeddings and Poincaré's inequality.

The goal of the next exercise is to prove the following theorem:

Theorem 1 (Partitions of unity): Let  $N, k \in \mathbb{N}$  with  $N, k \geq 1$ . Let  $\Omega \subset \mathbb{R}^N$  be a bounded set such that  $\Omega \subset \bigcup_{j=1}^k U_j$ , where  $U_j \subset \mathbb{R}^N$  is open for each  $j = 1, \ldots, k$ . Then there exist functions  $\eta_j \in C_c^{\infty}(U_j)$  such that  $0 \leq \eta_j \leq 1$ ,  $\sup \eta_j \subset U_j$  for all  $j = 1, \ldots, k$ , and

$$\sum_{j=1}^k \eta_j(x) = 1 \quad \text{ for all } \quad x \in \Omega \,.$$

We recall that a family  $\{\eta_j\}_{j=1}^k$  satisfying the properties of Theorem 1 is called a *partition of unity* subordinate to the open cover  $\{U_j\}_{j=1}^k$  of  $\Omega$ .

## **Problem 3.3 (40 pts).** Let $N, k \in \mathbb{N}, N, k \ge 1$ .

- a) Let  $K \subset \mathbb{R}^N$  be compact and  $U \subset \mathbb{R}^N$  be open, such that  $K \subset U$ . Show that there exists  $\psi \in C_c^{\infty}(\mathbb{R}^N)$  with the following properties:
  - $0 \leq \psi \leq 1$  in  $\mathbb{R}^N$ ,
  - $\psi(x) = 1$  for all  $x \in K$ ,
  - supp  $\psi \subset U$ .

*Hint*: For  $\varepsilon > 0$  consider  $K_{\varepsilon} := K + \overline{B_{\varepsilon}} = \{x \in \mathbb{R}^N : \operatorname{dist}(x, K) \leq \varepsilon\}$ . Take  $\varepsilon > 0$  small enough so that  $K_{3\varepsilon} \subset U$  (you can do it since  $K \subset U$ ). Then use the standard mollifiers  $\rho_{\varepsilon}$  to construct  $\psi$  (recall the basic properties of mollifiers:  $\rho_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^N)$ ,  $\rho_{\varepsilon} \geq 0$ , supp  $\rho_{\varepsilon} \subset \overline{B_{\varepsilon}}$ ,  $\int_{\mathbb{R}^N} \rho_{\varepsilon}(x) \, dx = 1$ ). Also recall the properties of convolutions from Worksheet 2.

b) (Refining the cover) Let  $K \subset \mathbb{R}^N$  be compact and  $U_j \subset \mathbb{R}^N$  be open for all  $j = 1, \ldots, k$ . Assume that  $K \subset \bigcup_{j=1}^k U_j$ . Show that exists a family  $\{K_j\}_{j=1}^k$  of compact sets of  $\mathbb{R}^N$  such that  $K_j \subset U_j$  for all  $j = 1, \ldots, k$  and  $K \subset \bigcup_{j=1}^k K_j$ .

*Hint*: since K is bounded, it is not restrictive to assume that  $U_j$  is bounded for all j = 1, ..., k. It might be useful to consider the sets  $U_{n,j} := \{x \in U_j : \text{dist}(x, \partial U_j) > 1/n\}$  for  $n \in \mathbb{N}$ . Also recall the topological definition of compactness: from an arbitrary open cover of a compact set you can extract a finite subcover.

- c) (Proof of Theorem 1) Let  $\Omega \subset \mathbb{R}^N$  be bounded and assume that  $\Omega \subset \bigcup_{j=1}^k U_j$ , with  $U_j \subset \mathbb{R}^N$  open for each  $j = 1, \ldots, k$ . Show that there exists a family  $\{\eta_j\}_{j=1}^k$  with  $\eta_j \in C_c^{\infty}(\mathbb{R}^N)$  satisfying the following properties:
  - $0 \le \eta_j \le 1$  in  $\mathbb{R}^N$ , for all  $j = 1, \ldots, k$ ,
  - supp  $\eta_j \subset U_j$  for all  $j = 1, \ldots, k$ ,
  - $\sum_{i=1}^{k} \eta_i(x) = 1$  for all  $x \in \Omega$ .

*Hint*: use points (a) and (b). Notice that it is not restrictive to assume that the sets  $U_j$  are bounded. Also: if  $\psi_1, \ldots, \psi_k$  are real numbers and you define  $\eta_l := \psi_l \prod_{j=1}^{l-1} (1 - \psi_j)$  for each  $l = 1, \ldots, k$  (with the understanding that the empty product is equal to 1), the following identity holds

$$1 - \sum_{j=1}^{k} \eta_j = \prod_{j=1}^{k} (1 - \psi_j).$$