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I will refer to the book H.Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions, 2011, Springer-Verlag New York, which you can download from the university library website.

Notation: If Ω ⊂ RN is an open set, we define the spaces of locally integral functions

Lp
loc(Ω) := {f : Ω → R : fχK ∈ Lp(Ω) for all compact sets K ⊂ Ω}

and of compactly supported continuous functions

Cc(Ω) := {f ∈ C(Ω) : ∃ a compact set K ⊂ Ω such that f ≡ 0 in Ω!K} .

For k ≥ 1, we define the set of k-times continuously differentiable functions with compact support
by Ck

c (Ω) := Ck(Ω)∩Cc(Ω). For f ∈ C1(Ω) we denote the gradient of f by ∇f := (∂x1
f, . . . , ∂xn

f)
where ∂xif := ∂f

∂x1
is the i-th partial derivative of f . For f ∈ Ck and a multi-index α = (α1, . . . ,αN )

with |α| := α1 + . . .+ αN ≤ k we denote

Dαf :=
∂α1

∂xα1
1

· · · ∂αN

∂xαN
1

f .

Finally the set of arbitrarily differentiable functions with compact support is denoted by C∞
c (Ω) :=

C∞(Ω) ∩ Cc(Ω) where C∞(Ω) := ∩∞
k=1C

k(Ω).

Convolutions: Let N ≥ 1. Assume that f ∈ L1(RN ) and g ∈ Lp(RN ) for 1 ≤ p ≤ ∞. We define
the convolution between f and g as

(f $ g)(x) :=

!

RN

f(x− y)g(y) dy for a.e. x ∈ RN .

It should be well-known (otherwise see Theorem 4.15 Brezis) that f $ g ∈ Lp(RN ). Moreover
(Proposition 4.18 Brezis)

supp(f $ g) ⊂ supp f + supp g . (1)

Mollifiers: let N ≥ 1 and denote by Br the N -dimensional ball of radius r > 0 centered at the
origin, that is Br := {x ∈ RN : |x| < r}. A sequence of mollifiers is any sequence of functions
ρn : RN → R such that, for all n ∈ N,

ρn ∈ C∞
c (RN ) , supp ρn ⊂ B1/n , ρn ≥ 0 on RN ,

!

Rn

ρn(x) dx = 1 . (2)

Assume given some function ρ ∈ C∞
c (RN ) such that

supp ρ ⊂ B1 , ρ ≥ 0 on RN ,

!

RN

ρ(x) dx = 1 .

It is immediate to see that the sequence ρn(x) := nN ρ(nx) defines a sequence of mollifiers. One
standard choice for ρ is given by the map

ρ(x) :=

"
C exp

#
1

|x|2−1

$
if |x| < 1 ,

0 if |x| ≥ 1 ,
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where the constant C > 0 is chosen so that
%
RN ρ(x) dx = 1.

Sobolev spaces: let N ≥ 1 and Ω ⊂ RN be an open set. If f ∈ L1(Ω), we say that g ∈ L1(Ω) is
the i-th weak partial derivative of f , with i ∈ {1, . . . , N}, if

!

Ω

f(x) ∂xiϕ(x) dx = −
!

Ω

g(x)ϕ(x) dx for all ϕ ∈ C1
c (Ω) .

If the i-th partial weak derivative of f exists, then it is unique (up to sets of zero Lebesgue measure).
We denote such weak derivative by g := ∂xif . For 1 ≤ p ≤ ∞ we define the Sobolev space W 1,p(Ω)
as

W 1,p(Ω) := {f ∈ Lp(Ω) : ∂xi
f ∈ Lp(Ω) for all i = 1, . . . , N} .

Problem 2.1 (20 pts).

a) Let f ∈ Cc(RN ) and g ∈ L1
loc(RN ). Show that f $ g is well defined and f $ g ∈ C(RN ).

Hint : let xn → x. Since f is compactly supported, there exists some compact set K such
that (xn − supp f) ⊂ K for all n ∈ N.

b) Let k ≥ 1, f ∈ Ck
c (RN ) and g ∈ L1

loc(RN ). Show that f $ g ∈ Ck(RN ) with

Dα(f $ g) = (Dαf) $ g

for each multi-index α with |α| ≤ k. In particular if f ∈ C∞
c (RN ) then f $ g ∈ C∞(RN ).

Hint : by induction it is sufficient to check the statement for k = 1. You can directly check,
using the definition of differentiability, that ∇(f $ g) = (∇f) $ g. Notice that ∇f is uniformly
continuous in RN , since supp∇f ⊂ supp f , and supp f is compact. Moreover it may be useful

to recall the fundamental theorem of calculus, namely, f(x+h)−f(x) =
% 1

0
∇f(x+hs) ·h ds.

Problem 2.2 (40 pts). Let ρn : Rn → R be a sequence of mollifiers, so that (2) holds. Let
1 ≤ p < ∞.

a) Let f ∈ C(RN ). Show that, as n → ∞, (ρn $ f) → f uniformly on each compact K ⊂ RN .

Hint : fix K compact. Then f is uniformly continuous on K (why?). Hence for ε > 0, there
exists some δ > 0 (depending on ε and K) such that |f(x− y)− f(x)| < ε for x ∈ K, y ∈ Bδ.

b) Let f ∈ Lp(RN ). Show that, as n → ∞, (ρn $ f) → f strongly in Lp(RN ), by following the
strategy below:

i) Show that, if f ∈ Cc(RN ) then (ρn $ f) → f in Lp(RN ) as n → ∞.

Hint : use point (a) and (1).

ii) Show that, for f ∈ Lp(RN ), it holds that ‖ρn $ f‖Lp ≤ ‖f‖Lp for all n ∈ N.
Hint : note that ρn = ρpnρ

1−1/p
n and use Hölder’s inequality.

iii) Using that Cc(RN ) is dense in Lp(RN ) (Thm 4.12 Brezis), and (i)-(ii), conclude (b).

c) (Fundamental Lemma of Calculus of Variations) Let Ω ⊂ RN be an open set. Assume that
f ∈ L1(Ω) is such that

!

Ω

f(x)ϕ(x) dx = 0 for all ϕ ∈ Cc(Ω) .

Show that f = 0 a.e. on Ω.

Hint : first show that if g ∈ L∞(RN ) is such that supp g is compact and contained in Ω, then%
Ω
f g = 0. This can be done by considering gn := ρn $ g and by using point (b), Problem

2.1 (with Ω instead of RN ) and dominated convergence. Then apply what you just proved to
some particular L∞(RN ) function in order to conclude.
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The goal of the next exercise it to prove the following characterization theorem for one dimensional
Sobolev functions, in the case when Ω = (a, b) is a bounded interval.

Theorem 1. Let 1 ≤ p < ∞ and I ⊂ R interval (bounded or unbounded). Let f ∈ W 1,p(I). Then
there exists f̃ ∈ C(I) such that f = f̃ a.e. in I and

f̃(y)− f̃(x) =

! y

x

f ′(t) dt for all x, y ∈ I .

The function f̃ is called the continuous representative of f .

Problem 2.3 (40 pts). Let I = (a, b) ⊂ R be a bounded interval.

a) Let f ∈ L1(I) be such that

!

I

f(x)ϕ′(x) dx = 0 for all ϕ ∈ C1
c (I) .

Show that f is constant, i.e., f = c a.e. on I for some c ∈ R.
Hint : Fix Ψ ∈ Cc(I) such that

%
I
Ψ = 1. Then for all w ∈ Cc(I) the map h := w −

&%
I
w
'
Ψ

admits a unique continuous primitive (why?). Apply point (c) from Problem 2.2.

b) Let g ∈ L1(I) and define the function

f(x) :=

! x

a

g(t) dt for x ∈ I .

Show that f ∈ C(I) with f ′ = g in the weak sense, that is,

!

I

f(x)ϕ′(x) dx = −
!

I

g(x)ϕ(x) dx for all ϕ ∈ C1
c (I) .

Hint : for the continuity use dominated convergence. The remaining part of the statement
can be checked by employing Fubini (Theorem 4.5 Brezis).

c) Prove the statement of Theorem 1 for I bounded, with the help of (a)-(b).

Hint : study the behavior of f̄(x) :=
% x

a
f ′(t) dt.
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