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I will refer to the book H.Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions, 2011, Springer-Verlag New York, which you can download from the university library website.

Notation: If 2 C RY is an open set, we define the spaces of locally integral functions

LP

loc

Q) :={f: Q= R: fXg € LP(Q) for all compact sets K C Q}
and of compactly supported continuous functions
C.():={feC(Q): Facompact set K CQ suchthat f=0 in QN K}.

For k£ > 1, we define the set of k-times continuously differentiable functions with compact support
by C*(Q) := C’k( )NC.(Q). For f € CY(Q) we denote the gradient of f by Vf := (9x, f,---,0u, f)
where 0, f := f is the i-th partial derivative of f. For f € C* and a multi-index o = (avy, ..., an)
with |a| := a3 —|— .+ ay < k we denote

o 9on
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0x{ ox{
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Finally the set of arbitrarily differentiable functions with compact support is denoted by C°(£2) :=
C>= () N C.() where C=(Q) := N, C*(Q).

Convolutions: Let N > 1. Assume that f € L1(RY) and g € LP(RY) for 1 < p < co. We define
the convolution between f and g as

(f*g)(z /fx— (y)dy for ae. € RV.

It should be well-known (otherwise see Theorem 4.15 Brezis) that f x g € LP(R™). Moreover
(Proposition 4.18 Brezis)

supp(f  g) C supp f +suppg. (1)

Mollifiers: let N > 1 and denote by B, the N-dimensional ball of radius r > 0 centered at the
origin, that is B, := {x € RY : |z| < r}. A sequence of mollifiers is any sequence of functions
prn: RY — R such that, for all n € N,

pu € C(BY), subppo € By pa20 on B, [ po(a)de=1, 2)
Assume given some function p € C2°(RY) such that

suppp C By, p>0 on RV, / plx)dx=1.
RN

N

It is immediate to see that the sequence p,(z) := n" p(nx) defines a sequence of mollifiers. One

standard choice for p is given by the map

c 1 if 1,
oy { O () i e <
0 if |z|>1,



where the constant C' > 0 is chosen so that [y p(z)dz = 1.

Sobolev spaces: let N > 1 and 2 C RY be an open set. If f € L'(Q2), we say that g € L*(Q) is
the i-th weak partial derivative of f, with i € {1,... N}, if

/ f(@) Oy, p(x) dx = —/ g(@)p(z)de forall ¢e C;(Q)
Q Q

If the i-th partial weak derivative of f exists, then it is unique (up to sets of zero Lebesgue measure).
We denote such weak derivative by g := ,, f. For 1 < p < oo we define the Sobolev space W1 ()
as

WhYP(Q) :={f € LP(Q): O,,f € LP(Q) foralli=1,..., N} .

Problem 2.1 (20 pts).
a) Let f € C.(RY) and g € L (RY). Show that f % g is well defined and f x g € C(RY).

loc
Hint: let x, — x. Since f is compactly supported, there exists some compact set K such
that (x, —supp f) C K for all n € N.

b) Let k> 1, f € C*(RY) and g € L{ (RY). Show that f x g € C¥(RY) with

loc

D(fxg) = (Df)*g
for each multi-index o with |a| < k. In particular if f € C°(R”Y) then fx g € C®°(RN).

Hint: by induction it is sufficient to check the statement for £ = 1. You can directly check,
using the definition of differentiability, that V(f*g) = (Vf)xg. Notice that V f is uniformly
continuous in R, since supp V.f C supp f, and supp f is compact. Moreover it may be useful
to recall the fundamental theorem of calculus, namely, f(z+h)— f(z) = fol Vf(z+hs)-hds.

Problem 2.2 (40 pts). Let p,: R® — R be a sequence of mollifiers, so that (2) holds. Let
1 <p<oo.
a) Let f € C(RY). Show that, as n — oo, (p,, x f) — f uniformly on each compact K C RV,
Hint: fix K compact. Then f is uniformly continuous on K (why?). Hence for € > 0, there
exists some d > 0 (depending on € and K) such that |f(x —y) — f(z)| < e for z € K, y € Bs.

b) Let f € LP(RY). Show that, as n — oo, (p, x f) — f strongly in LP(RY), by following the
strategy below:
i) Show that, if f € C.(RY) then (p, * f) — f in LP(RY) as n — oo.
Hint: use point (a) and (1).
ii) Show that, for f € LP(RY), it holds that |p, x f|;» < || fll» for all n € N.
Hint: note that p, = pﬁp}fl/
iii) Using that C.(RY) is dense in LP(RY) (Thm 4.12 Brezis), and (i)-(ii), conclude (b).

P and use Holder’s inequality.

¢) (Fundamental Lemma of Calculus of Variations) Let 2 C R be an open set. Assume that
f € LY(Q) is such that

/Qf(x) p(r)de =0 forall ¢eC.(Q).

Show that f =0 a.e. on (.

Hint: first show that if g € L>(RY) is such that supp g is compact and contained in €2, then
fQ fg = 0. This can be done by considering g,, := p, * g and by using point (b), Problem
2.1 (with  instead of R"V) and dominated convergence. Then apply what you just proved to
some particular L>(RY) function in order to conclude.



The goal of the next exercise it to prove the following characterization theorem for one dimensional
Sobolev functions, in the case when Q = (a,b) is a bounded interval.

Theorem 1. Let 1 < p < oo and I C R interval (bounded or unbounded). Let f € W"P(I). Then
there exists f € C(I) such that f = f a.e. in I and

- . Y _
fly) = flz) = / fi)ydt forall =z,yel.
The function f is called the continuous representative of f.

Problem 2.3 (40 pts). Let I = (a,b) C R be a bounded interval.
a) Let f € L'(I) be such that

/f(a:)go’(w)dmzo for all € CHI).
I

Show that f is constant, i.e., f = ¢ a.e. on I for some ¢ € R.

Hint: Fix ¥ € C,(I) such that [, ¥ = 1. Then for all w € C,(I) the map h:=w — ([ w) ¥
admits a unique continuous primitive (why?). Apply point (c¢) from Problem 2.2.

b) Let g € L'(I) and define the function

f(x)::/a;g(t)dt for zel.

Show that f € C(I) with f’ = g in the weak sense, that is,

/f(x) ' (z)dr = —/g(a:)(p(x) de forall e CHI).
I

I

Hint: for the continuity use dominated convergence. The remaining part of the statement
can be checked by employing Fubini (Theorem 4.5 Brezis).

¢) Prove the statement of Theorem 1 for I bounded, with the help of (a)-(b).
Hint: study the behavior of f(z):= [ f'(t)dt.



