Advanced Functional Analysis

Problem Sheet 2

Due date: October 28, 2019
I will refer to the book H.Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Springer-Verlag New York, which you can download from the university library website.

Notation: If $\Omega \subset \mathbb{R}^{N}$ is an open set, we define the spaces of locally integral functions

$$
L_{\mathrm{loc}}^{p}(\Omega):=\left\{f: \Omega \rightarrow \mathbb{R}: f \chi_{K} \in L^{p}(\Omega) \text { for all compact sets } K \subset \Omega\right\}
$$

and of compactly supported continuous functions

$$
C_{c}(\Omega):=\{f \in C(\Omega): \exists \text { a compact set } K \subset \Omega \text { such that } f \equiv 0 \text { in } \Omega \backslash K\} .
$$

For $k \geq 1$, we define the set of k-times continuously differentiable functions with compact support by $C_{c}^{k}(\Omega):=C^{k}(\Omega) \cap C_{c}(\Omega)$. For $f \in C^{1}(\Omega)$ we denote the gradient of f by $\nabla f:=\left(\partial_{x_{1}} f, \ldots, \partial_{x_{n}} f\right)$ where $\partial_{x_{i}} f:=\frac{\partial f}{\partial x_{1}}$ is the i-th partial derivative of f. For $f \in C^{k}$ and a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ with $|\alpha|:=\alpha_{1}+\ldots+\alpha_{N} \leq k$ we denote

$$
D^{\alpha} f:=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{N}}}{\partial x_{1}^{\alpha_{N}}} f .
$$

Finally the set of arbitrarily differentiable functions with compact support is denoted by $C_{c}^{\infty}(\Omega):=$ $C^{\infty}(\Omega) \cap C_{c}(\Omega)$ where $C^{\infty}(\Omega):=\cap_{k=1}^{\infty} C^{k}(\Omega)$.

Convolutions: Let $N \geq 1$. Assume that $f \in L^{1}\left(\mathbb{R}^{N}\right)$ and $g \in L^{p}\left(\mathbb{R}^{N}\right)$ for $1 \leq p \leq \infty$. We define the convolution between f and g as

$$
(f \star g)(x):=\int_{\mathbb{R}^{N}} f(x-y) g(y) d y \quad \text { for a.e. } x \in \mathbb{R}^{N}
$$

It should be well-known (otherwise see Theorem 4.15 Brezis) that $f \star g \in L^{p}\left(\mathbb{R}^{N}\right)$. Moreover (Proposition 4.18 Brezis)

$$
\begin{equation*}
\operatorname{supp}(f \star g) \subset \overline{\operatorname{supp} f+\operatorname{supp} g} \tag{1}
\end{equation*}
$$

Mollifiers: let $N \geq 1$ and denote by B_{r} the N-dimensional ball of radius $r>0$ centered at the origin, that is $B_{r}:=\left\{x \in \mathbb{R}^{N}:|x|<r\right\}$. A sequence of mollifiers is any sequence of functions $\rho_{n}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that, for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\rho_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right), \quad \operatorname{supp} \rho_{n} \subset \overline{B_{1 / n}}, \quad \rho_{n} \geq 0 \text { on } \mathbb{R}^{N}, \int_{\mathbb{R}^{n}} \rho_{n}(x) d x=1 \tag{2}
\end{equation*}
$$

Assume given some function $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\operatorname{supp} \rho \subset \overline{B_{1}}, \quad \rho \geq 0 \text { on } \mathbb{R}^{N}, \quad \int_{\mathbb{R}^{N}} \rho(x) d x=1
$$

It is immediate to see that the sequence $\rho_{n}(x):=n^{N} \rho(n x)$ defines a sequence of mollifiers. One standard choice for ρ is given by the map

$$
\rho(x):= \begin{cases}C \exp \left(\frac{1}{|x|^{2}-1}\right) & \text { if }|x|<1, \\ 0 & \text { if }|x| \geq 1,\end{cases}
$$

where the constant $C>0$ is chosen so that $\int_{\mathbb{R}^{N}} \rho(x) d x=1$.
Sobolev spaces: let $N \geq 1$ and $\Omega \subset \mathbb{R}^{N}$ be an open set. If $f \in L^{1}(\Omega)$, we say that $g \in L^{1}(\Omega)$ is the i-th weak partial derivative of f, with $i \in\{1, \ldots, N\}$, if

$$
\int_{\Omega} f(x) \partial_{x_{i}} \varphi(x) d x=-\int_{\Omega} g(x) \varphi(x) d x \quad \text { for all } \quad \varphi \in C_{c}^{1}(\Omega)
$$

If the i-th partial weak derivative of f exists, then it is unique (up to sets of zero Lebesgue measure). We denote such weak derivative by $g:=\partial_{x_{i}} f$. For $1 \leq p \leq \infty$ we define the Sobolev space $W^{1, p}(\Omega)$ as

$$
W^{1, p}(\Omega):=\left\{f \in L^{p}(\Omega): \partial_{x_{i}} f \in L^{p}(\Omega) \text { for all } i=1, \ldots, N\right\} .
$$

Problem 2.1 (20 pts).

a) Let $f \in C_{c}\left(\mathbb{R}^{N}\right)$ and $g \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$. Show that $f \star g$ is well defined and $f \star g \in C\left(\mathbb{R}^{N}\right)$.

Hint: let $x_{n} \rightarrow x$. Since f is compactly supported, there exists some compact set K such that $\left(x_{n}-\operatorname{supp} f\right) \subset K$ for all $n \in \mathbb{N}$.
b) Let $k \geq 1, f \in C_{c}^{k}\left(\mathbb{R}^{N}\right)$ and $g \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$. Show that $f \star g \in C^{k}\left(\mathbb{R}^{N}\right)$ with

$$
D^{\alpha}(f \star g)=\left(D^{\alpha} f\right) \star g
$$

for each multi-index α with $|\alpha| \leq k$. In particular if $f \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ then $f \star g \in C^{\infty}\left(\mathbb{R}^{N}\right)$.
Hint: by induction it is sufficient to check the statement for $k=1$. You can directly check, using the definition of differentiability, that $\nabla(f \star g)=(\nabla f) \star g$. Notice that ∇f is uniformly continuous in \mathbb{R}^{N}, since $\operatorname{supp} \nabla f \subset \operatorname{supp} f$, and $\operatorname{supp} f$ is compact. Moreover it may be useful to recall the fundamental theorem of calculus, namely, $f(x+h)-f(x)=\int_{0}^{1} \nabla f(x+h s) \cdot h d s$.

Problem 2.2 (40 pts). Let $\rho_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a sequence of mollifiers, so that (2) holds. Let $1 \leq p<\infty$.
a) Let $f \in C\left(\mathbb{R}^{N}\right)$. Show that, as $n \rightarrow \infty,\left(\rho_{n} \star f\right) \rightarrow f$ uniformly on each compact $K \subset \mathbb{R}^{N}$.

Hint: fix K compact. Then f is uniformly continuous on K (why?). Hence for $\varepsilon>0$, there exists some $\delta>0$ (depending on ε and K) such that $|f(x-y)-f(x)|<\varepsilon$ for $x \in K, y \in B_{\delta}$.
b) Let $f \in L^{p}\left(\mathbb{R}^{N}\right)$. Show that, as $n \rightarrow \infty,\left(\rho_{n} \star f\right) \rightarrow f$ strongly in $L^{p}\left(\mathbb{R}^{N}\right)$, by following the strategy below:
i) Show that, if $f \in C_{c}\left(\mathbb{R}^{N}\right)$ then $\left(\rho_{n} \star f\right) \rightarrow f$ in $L^{p}\left(\mathbb{R}^{N}\right)$ as $n \rightarrow \infty$.

Hint: use point (a) and (1).
ii) Show that, for $f \in L^{p}\left(\mathbb{R}^{N}\right)$, it holds that $\left\|\rho_{n} \star f\right\|_{L^{p}} \leq\|f\|_{L^{p}}$ for all $n \in \mathbb{N}$.

Hint: note that $\rho_{n}=\rho_{n}^{p} \rho_{n}^{1-1 / p}$ and use Hölder's inequality.
iii) Using that $C_{c}\left(\mathbb{R}^{N}\right)$ is dense in $L^{p}\left(\mathbb{R}^{N}\right)$ (Thm 4.12 Brezis), and (i)-(ii), conclude (b).
c) (Fundamental Lemma of Calculus of Variations) Let $\Omega \subset \mathbb{R}^{N}$ be an open set. Assume that $f \in L^{1}(\Omega)$ is such that

$$
\int_{\Omega} f(x) \varphi(x) d x=0 \quad \text { for all } \quad \varphi \in C_{c}(\Omega)
$$

Show that $f=0$ a.e. on Ω.
Hint: first show that if $g \in L^{\infty}\left(\mathbb{R}^{N}\right)$ is such that supp g is compact and contained in Ω, then $\int_{\Omega} f g=0$. This can be done by considering $g_{n}:=\rho_{n} \star g$ and by using point (b), Problem 2.1 (with Ω instead of \mathbb{R}^{N}) and dominated convergence. Then apply what you just proved to some particular $L^{\infty}\left(\mathbb{R}^{N}\right)$ function in order to conclude.

The goal of the next exercise it to prove the following characterization theorem for one dimensional Sobolev functions, in the case when $\Omega=(a, b)$ is a bounded interval.
Theorem 1. Let $1 \leq p<\infty$ and $I \subset \mathbb{R}$ interval (bounded or unbounded). Let $f \in W^{1, p}(I)$. Then there exists $\tilde{f} \in C(\bar{I})$ such that $f=\tilde{f}$ a.e. in I and

$$
\tilde{f}(y)-\tilde{f}(x)=\int_{x}^{y} f^{\prime}(t) d t \quad \text { for all } \quad x, y \in \bar{I}
$$

The function \tilde{f} is called the continuous representative of f.
Problem 2.3 (40 pts). Let $I=(a, b) \subset \mathbb{R}$ be a bounded interval.
a) Let $f \in L^{1}(I)$ be such that

$$
\int_{I} f(x) \varphi^{\prime}(x) d x=0 \quad \text { for all } \quad \varphi \in C_{c}^{1}(I)
$$

Show that f is constant, i.e., $f=c$ a.e. on I for some $c \in \mathbb{R}$.
Hint: Fix $\Psi \in C_{c}(I)$ such that $\int_{I} \Psi=1$. Then for all $w \in C_{c}(I)$ the map $h:=w-\left(\int_{I} w\right) \Psi$ admits a unique continuous primitive (why?). Apply point (c) from Problem 2.2.
b) Let $g \in L^{1}(I)$ and define the function

$$
f(x):=\int_{a}^{x} g(t) d t \quad \text { for } \quad x \in I .
$$

Show that $f \in C(I)$ with $f^{\prime}=g$ in the weak sense, that is,

$$
\int_{I} f(x) \varphi^{\prime}(x) d x=-\int_{I} g(x) \varphi(x) d x \quad \text { for all } \quad \varphi \in C_{c}^{1}(I)
$$

Hint: for the continuity use dominated convergence. The remaining part of the statement can be checked by employing Fubini (Theorem 4.5 Brezis).
c) Prove the statement of Theorem 1 for I bounded, with the help of $(a)-(b)$.

Hint: study the behavior of $\bar{f}(x):=\int_{a}^{x} f^{\prime}(t) d t$.

