Advanced Functional Analysis

Problem Sheet 1

Due date: October 14, 2019
I will refer to the book H.Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Springer-Verlag New York, which you can download from the university library website.

Problem 1.1 (30 pts). Assume that $\Omega \subset \mathbb{R}^{n}$ is an open set with $0<|\Omega|<\infty$ and fix some p with $1<p<\infty$. Recall that the dual of $L^{p}(\Omega)$ is given by $L^{q}(\Omega)$ with $1 / p+1 / q=1$ (Theorem 4.11 Brezis). Let $f_{n} \in L^{p}(\Omega)$ be a sequence such that
i) $f_{n}(x) \rightarrow f(x)$ for a.e. $x \in \Omega$ as $n \rightarrow \infty$,
ii) $\sup _{n}\left\|f_{n}\right\|_{L^{p}} \leq C$ for some constant $C>0$.

The aim is to show, by means of Real Analysis tools, that $f_{n} \rightharpoonup f$ weakly in $L^{p}(\Omega)$ as $n \rightarrow \infty$. Follow the strategy below:
a) Show that $f \in L^{p}(\Omega)$ by using Fatou's Lemma (Lemma 4.1 Brezis).
b) Prove absolute continuity of the Lebesgue integral: namely, assume that $f \in L^{1}(\Omega)$. Then show that for all $\varepsilon>0$ there exists $\delta>0$ such that $\int_{E}|f| d x<\varepsilon$ if $|E|<\delta$.
Hint: by definition of Lebesgue integrability, there exists a step function $s=\sum_{j=1}^{N} s_{j} \chi_{A_{j}}$, with $s_{j} \in \mathbb{R},\left\{A_{j}\right\}$ measurable partition of Ω, such that $0 \leq s \leq|f|$ and $\int_{\Omega}(|f|-s) d x<\varepsilon / 2$.
c) Show that $f_{n} \rightharpoonup f$ by directly estimating the quantity

$$
\int_{\Omega} f_{n} g d x-\int_{\Omega} f g d x
$$

for some fixed $g \in L^{q}(\Omega)$.
Hint: use point (b) in combination with Egoroff's Theorem (Theorem 4.29 Brezis) and Hölder's inequality (Theorem 4.6 Brezis).

Banach-Saks Property: a Banach space X is said to have the Banach-Saks property if for any sequence $\left\{x_{n}\right\} \subset X$ such that $x_{n} \rightharpoonup x$ weakly as $n \rightarrow \infty$, there exists a subsequence $x_{n_{k}}$ of x_{n} such that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} x_{n_{k}}=x
$$

strongly in X. The Banach-Saks property holds when X is uniformly convex: in particular reflexive spaces, such as $X=L^{p}$ for $1<p<\infty$, are uniformly convex.

Problem 1.2 (20 pts). Assume that $\Omega \subset \mathbb{R}^{n}$ is an open set with $0<|\Omega|<\infty$ and fix some p with $1<p<\infty$. Let $f_{n}, f \in L^{p}(\Omega)$ be such that (i)-(ii) from Problem 1.1. hold.
a) Show that $f_{n} \rightharpoonup f$ weakly in $L^{p}(\Omega)$ by employing the Banach-Saks property.

Hint: you can assume as given the following facts: Banach-Alaoglu's Theorem in $L^{p}(\Omega)$ (Theorem 3.16 Brezis for the general statement), uniqueness of the pointwise a.e. limit, Theorem 4.9 in Brezis, and the elementary fact that if a sequence of real numbers x_{n} is such that $\lim _{n} x_{n}=x$, then also $\lim _{N} \frac{1}{N} \sum_{n=1}^{N} x_{n}=x$.
b) Show that the above claim fails for $p=1$, for example considering the case of $L^{1}(0,1)$: namely, construct a sequence $f_{n} \in L^{1}(0,1)$ such that $(i)-(i i)$ from Problem 1.1 hold, but f_{n} does not have any weak accumulation point.

Recall: a Banach space X is said to be reflexive if $X^{* *}=j(X)$, where $j: X \rightarrow X^{* *}$ is the canonical immersion. Also recall that the dual of L^{1} is given by L^{∞}.

Problem 1.3 (20 pts). Show that $L^{1}(0,1)$ is not reflexive.
Hint: assume by contradiction that $L^{1}(0,1)$ is reflexive (hence Banach-Alaoglu holds) and examine the sequence $f_{n}(x)=n \chi_{\left(0, \frac{1}{n}\right)}(x)$ to derive a contradiction. It might be useful to employ dominated convergence (Theorem 4.2 Brezis).

Recall: let H be a real Hilbert space, with scalar product denoted by $\langle\cdot, \cdot\rangle$ and induced norm $\|x\|:=\sqrt{\langle x, x\rangle}$ and distance $d(x, y):=\|x-y\|$. A map $a: H \times H \rightarrow \mathbb{R}$ is said to be a bilinear form if

$$
a(\lambda x+\mu y, z)=\lambda a(x, z)+\mu a(y, z), \quad a(x, \lambda y+\mu z)=\lambda a(x, y)+\mu a(x, z)
$$

for all $x, y, z \in H, \lambda, \mu \in \mathbb{R}$. A bilinear form $a: H \times H \rightarrow \mathbb{R}$ is continuous if there exists $C \geq 0$ such that

$$
|a(x, y)| \leq C\|x\|\|y\| \quad \text { for all } \quad x, y \in H
$$

and coercive if there exists $\alpha>0$ such that

$$
a(x, x) \geq \alpha\|x\|^{2} \quad \text { for all } \quad x \in H
$$

Lax-Milgram's Theorem: Let H be a real Hilbert space, $a: H \times H \rightarrow \mathbb{R}$ a continuous and coercive bilinear form and $T: H \rightarrow \mathbb{R}$ a linear continuous operator. Then there exists a unique $\hat{x} \in H$ such that

$$
\begin{equation*}
a(\hat{x}, y)=T(y) \quad \text { for all } \quad y \in H . \tag{1}
\end{equation*}
$$

Problem 1.4 (30 pts). Prove Lax-Milgram's Theorem by following the strategy below:
a) Show that there exists a linear continuous operator $A: H \rightarrow H$ such that

$$
a(x, y)=\langle A(x), y\rangle \quad \text { for all } \quad x, y \in H .
$$

Hint: for $x \in H$ fixed, the map $y \in H \mapsto a(x, y) \in \mathbb{R}$ is linear and continuous. Use Riesz Theorem (Theorem 5.5 Brezis).
b) Fix $\lambda>0$. Show that solving (1) is equivalent to finding a fixed point $\hat{x} \in H$ for the map $S_{\lambda}: H \rightarrow H$ defined by

$$
S_{\lambda}(x):=x-\lambda A(x)+\lambda z
$$

where $z \in H$ is uniquely determined and only depends on T (we recall that a fixed point is such that $\left.S_{\lambda}(\hat{x})=\hat{x}\right)$.
c) Show that for some $\lambda>0$ the map S_{λ} is a contraction, that is, prove the existence of some $0 \leq \theta<1$ such that

$$
d\left(S_{\lambda}(x), S_{\lambda}(y)\right) \leq \theta d(x, y) \quad \text { for all } \quad x, y \in H
$$

Then conclude the proof by Theorem 5.7 Brezis.

