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Instructions

The exam contains 6 problems. You should choose 4 problems to solve, each graded from 0 to
25 points. You should state which problems you are going to solve. If more than 4 problems are
solved, your final grade will be computed by summing the worst 4 scores. For grading, problems
and sub-questions within the problems are considered independent. For example, if you only solve
point (c) in Problem 1 and you have not solved (a) and (b), you will be awarded 5 points for
Problem 1. The hints are there to help you, but of course you may solve the exercises in whichever
way you prefer.

You may use your solutions to the problems in the Exercise Course, as well as the notes from Prof.
Bredies Lectures. You have 2 hours and 30 minutes, good luck!

Problem 1. Let N ∈ N, N ≥ 1 and fix 1 ≤ p < ∞. For y ∈ RN , r > 0 denote the open ball of
radius r and center at y by Br(y) := {x ∈ RN : |x− y| < r}. Set Ω := B1(0). For α > 0 define

f(x) :=
1

|x|α
for all x ∈ Ω r {0} ,

where |x| := (
∑N
j=1 x

2
j )

1/2.

a) (10 pts) Compute, in the classic sense, ∇f(x) := (∂x1f(x), . . . , ∂xN
f(x)) for x 6= 0. Show

that f ∈ Lp(Ω) and ∇f ∈ Lp(Ω;RN ) if and only if

α <
N − p
p

. (1)

b) (10 pts) Assume (1). Prove that ∇f is the weak gradient of f in Ω, in the sense that∫
Ω

f ∂xi
φdx = −

∫
Ω

∂xi
f φ dx for all φ ∈ C∞c (Ω), i = 1, . . . , N .

In particular you showed that f ∈W 1,p(Ω) if and only if (1) holds.

c) (5 pts) Assume that {yk}k∈N is a countable dense subset of Ω and that (1) holds. For a.e. x ∈ Ω
define the sequence

gn(x) :=

n∑
k=1

1

2k |x− yk|α
.

Show that gn converges in W 1,p(Ω) as n→ +∞ (you can assume that gn ∈W 1,p(Ω)).

Hints: (a) If f : RN → R is measurable, then
∫
RN f(x) dx =

∫ +∞
0

∫
∂B1(0)

f(rw)rN−1 dσ(w) dr,

where σ is the (N − 1)-dimensional Hausdorff measure. Recall that σ(∂Br(y)) = rN−1σN , where
σN := σ(∂B1(0)) is a constant depending only on N .

(b) Let U ⊂ RN be open, with ∂U ∈ C1. Let ν be the outer normal to ∂U . If f, g ∈ C1(U) then∫
U
f (∂xi

g) dx = −
∫
U

(∂xi
f) g dx +

∫
∂U

fg νi dσ(x) for all i = 1, . . . , N . Now notice that the map

given in the exercise belongs to C1(Ωε) for each ε > 0 fixed, where Ωε := Ω rBε(0).

(c) Show that gn is a Cauchy sequence. In order to do that, try to find a uniform bound in W 1,p(Ω)
for |x− yk|−α.
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Problem 2.

a) (10 pts) Let X be a real, reflexive Banach space. Let J : X → R be a functional such that
J 6≡ +∞ and satisfying the following properties:

i) J is weakly lower semicontinuous: if {xn} is a sequence in X such that xn ⇀ x weakly
in X as n→ +∞, then

J(x) ≤ lim inf
n→+∞

J(xn) .

ii) J is coercive: if {xn} is a sequence in X such that ‖xn‖ → +∞ as n→ +∞, then

lim
n→+∞

J(xn) = +∞ .

Show that J admits a minimum in X, that is, show that there exists a point x̂ ∈ X such that

J(x̂) = inf
x∈X

J(x) .

b) (15 pts) Let d ∈ N, d ≥ 1 and Ω ⊂ Rd be open and bounded. Consider the Hilbert space
H1

0 (Ω) equipped with the norm ‖u‖H1
0 (Ω) := ‖u‖L2(Ω) + ‖∇u‖L2(Ω;Rd). Fix f ∈ L2(Ω) and

define the functional J : H1
0 (Ω)→ R by

J(u) :=

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx .

By verifying the assumptions in point (a), prove that J has a minimizer û in H1
0 (Ω).

Hints: (a) Take a minimizing sequence, i.e., {xn} ⊂ X such that limn J(xn) = infx∈X J(x). What
can you say about its accumulation points?

(b) Remember that un ⇀ u weakly in H1
0 (Ω) if and only if un → u strongly in L2(Ω) and

∇un ⇀ ∇u weakly in L2(Ω;Rd). Also recall Poincaré inequality: there exists a constant C > 0
(depending only on Ω) such that ‖u‖L2(Ω) ≤ C ‖∇u‖L2(Ω;Rd) for all u ∈ H1

0 (Ω).

Problem 3. Let X := C[0, 1]. On X we consider two topologies τd and τp. The topology τd is
induced by the metric d : X ×X → [0,∞) defined by

d(f, g) :=

∫ 1

0

|f(x)− g(x)|
1 + |f(x)− g(x)|

dx for f, g ∈ X .

The topology τp is induced by the family of seminorms {px : x ∈ [0, 1]} where px(f) := |f(x)| for
f ∈ X,x ∈ [0, 1], making X into a LCS. Consider the identity map

I : (X, τp)→ (X, τd) where I(f) := f for f ∈ X .

The goal of this exercise is to show that (X, τp) is not metrizable, by proving that I is sequentially
continuous but not continuous.

a) (10 pts) Show that I is sequentially continuous.

b) (15 pts) Prove that I is not continuous.

Hints: (a) Notice that τp is the topology of pointwise convergence, in the sense that if fn
τp→ f ,

then fn → f pointwise in [0, 1].

(b) Show that I is not continuous at f = 0, arguing by contradiction. Start by recalling the definiti-
on of open sets in a locally convex space. If V is open in (X, τd), then I−1(V ) = V is open in (X, τp).
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Problem 4. Consider C[0, 1] equipped with the supremum norm ‖f‖∞ := supx |f(x)|. We denote
constant functions by f ≡ c. The goal of this exercise is to show that (C[0, 1], ‖·‖∞) is not the dual
of any Banach space X.

a) (20 pts) Consider the convex unit ball of C[0, 1]

K := {f ∈ C[0, 1] : ‖f‖∞ ≤ 1} .

Show that
ext(K) = {f ∈ C[0, 1] : f ≡ 1 or f ≡ −1} ,

that is, the only extremal points of K are given by the constant functions with values ±1.

b) (5 pts) By using point (a) and Krein-Milman’s Theorem, show that C[0, 1] is not the dual of
any Banach space X.

Hints: (a) Assume that f ≡ ±1. In order to see that f ∈ ext(K), it is useful to notice that if
a, b ∈ R and a < b, then co{a, b} = [a, b].
Conversely, let f ∈ ext(K). Assume by contradiction that |f | is not constantly equal to 1. Notice
that for all g ∈ C[0, 1] you always have the decomposition f = (f + g)/2 + (f − g)/2. Try to
construct a function g such that the previous decomposition is non-trivial.

(b) You can use that co(ext(K)) = {f ∈ C[0, 1] : f ≡ c for some |c| ≤ 1} and that this set is
isometric to the unit ball of R. Therefore all topologies are equivalent on co(ext(K)).

Problem 5. Consider the problem of finding Λ ∈ D(R)∗ such that the equation

xΛ′ + Λ = 0 (2)

is satisfied in the sense of D(R)∗. The goal of this exercise is to show that all the distributional
solutions to (2) are of the form

Λ = a PV
1

x
+ b δ , (3)

for some a, b ∈ R. Recall that for φ ∈ D(R) we define

δφ := φ(0) ,

(
PV

1

x

)
(φ) := lim

ε→0

∫
{|x|≥ε}

φ(x)

x
dx .

a) (10 pts) Let Λ ∈ D(R)∗. Prove the constancy theorem, that is, show that they are equivalent:

i) Λ′ = 0 in D(R)∗,

ii) There exists c ∈ R such that Λ = c, that is, Λφ = c
∫
R φ(x) dx for all φ ∈ D(R).

b) (8 pts) Let Λ ∈ D(R)∗ be of the form (3) for some a, b ∈ R. Show that Λ solves (2).

c) (7 pts) Assume that Λ ∈ D(R)∗ is a solution to (2). Show that Λ is of the form (3) for some
a, b ∈ R.

Hints: (a) You can use the following fact: If φ ∈ D(R), then
∫
R φdx = 0 if and only if there

exists ψ ∈ D(R) such that ψ′ = φ. Also notice that, if Λ = c, then necessarily c = Λφ0 for every
φ0 ∈ D(R) such that

∫
R φ0 dx = 1.

(b) Notice that (xΛ)′ = xΛ′ + Λ by the Leibniz rule.

(c) You can use the following: If Λ ∈ D(R)∗ is such that xΛ = 0, then Λ = cδ for some c ∈ R.
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Problem 6. Set X := C[0, 1] equipped with the supremum norm. Fix ϕ ∈ X and define the
linear operator M : X → X such that

(Mf)(x) := ϕ(x)f(x) for all x ∈ [0, 1], f ∈ X .

a) (5 pts) Show that M ∈ L(X) and compute ‖M‖.

b) (10 pts) Show that M is compact if and only if ϕ ≡ 0.

c) (10 pts) Let R(ϕ) := {ϕ(x) , x ∈ [0, 1]} be the range of ϕ. For λ ∈ R, denote the λ-level set
of ϕ by ϕ−1(λ) := {x ∈ [0, 1] : ϕ(x) = λ}. Prove that the resolvent of M is characterized by

ρ(M) = RrR(ϕ) .

Moreover show that the eigenvalues of M are given by

σp(M) = {λ ∈ R : ∃ 0 ≤ a < b ≤ 1 such that (a, b) ⊂ Sλ} .

Hints: (b) You can try to prove this directly, by using Ascoli-Arzelà: If M is compact, then the
set {ϕf : f ∈ C[0, 1], ‖f‖ ≤ 1} is relatively compact and hence equicontinuous. From this fact, by
constructing a suitable sequence fn ∈ C[0, 1] with ‖fn‖ ≤ 1, you can conclude that ϕ ≡ 0.
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