Sparse recovery in Inverse Problems

Silvio Fanzon

Department of Mathematics University of Hull, UK

> 18 December 2025 Sapienza, Roma

Sparse recovery in Inverse Problems

based on joint works with

Kristian Bredies, Marcello Carioni, Francisco Romero, Daniel Walter

Outline

- 1 Introduction: Inverse Problems & Sparsity
- 2 Algorithm for sparse solutions recovery
- 3 Dynamic Inverse Problems
- Application to Dynamic MRI

Supported by Austrian Science Fund (FWF) and Christian Doppler Research Society (CDG) Project PIR27 "Mathematical methods for motion-aware medical imaging"

Outline

- 1 Introduction to Inverse Problems & Sparsity
- Algorithm for sparse solution recovery
- 3 Dynamic Inverse Problems
- 4 Application to Dynamic MRI

What is an Inverse Problem?

Inverse Problems: Link between model parameters and data

Inverse Problem: Given data $f \in Y$, find parameters $u \in X$ such that

$$Ku = f$$

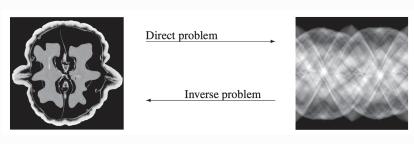
- ► f is data Y data space – Banach space or \mathbb{R}^n
- u are parameters X the parameters space – Same as above
- $ightharpoonup K \colon X \to Y$ is Forward Operator
- ► *K* models the process to obtain the data from the parameters

Bredies, Lorenz. Mathematical Image Processing. Springer (2018)

Mueller, Siltanen. Linear and Nonlinear Inverse Problems with Practical Appl. SIAM, 2012.

Example: X-ray Imaging

X-ray data (sinogram form)



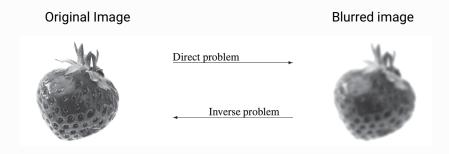
Direct Problem: X-rays pass through walnut, detectors measure attenuation

Inverse problem: Given many X-ray measurements from different angles,

reconstruct the walnut

Operator K = Radon transform

Example: Image Deblurring



Direct problem: Sharp image becomes blurred due to camera motion or

focus issues

Inverse problem: Given the blurred image, recover the original sharp image

Operator K = convolution

Famous example: Hubble Space Telescope

- ► Hubble Space Telescope launched in 1990
- However images were blurred due to flawed lenses (Left)
- ► This issue was corrected through image processing (Right)

Link to article on NASA's website

Ill-posed Inverse Problems

Consider the inverse problem

$$Ku = f$$
 (P)

Problem (P) is **well-posed** if all three conditions hold:

- **Existence**: There exists at least one solution
- 2 Uniqueness: There exists at most one solution
- 3 Stability: The solution depends continuously on the data, i.e., there exists a constant C>0 such that

$$\|u-u'\|_X \le C \|f-f'\|_Y$$
 where $Ku=f, Ku'=f'$

Problem (P) is ill-posed if it is not well-posed

Measurements are noisy

Consider the inverse problem

$$Ku = f$$
 (P)

- ▶ Ideal world: Measurement comes from operator $\leadsto f = Ku$
- ► Reality: We can only observe noisy measurements

$$f^{\varepsilon} = Ku + \varepsilon$$
, ε random (unknown) noise

Goal: To recover u from noisy measurement f^{ε}

Main difficulty: K^{-1} does not exist or is not continuous \sim **ill-posedness**

Variational Regularization

$$Ku = f$$
 (P)

(P) might not have solution. Find approximate solution by least-squares

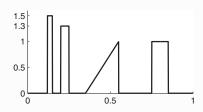
$$\min_{u \in X} \|Ku - f\|_Y^2 \tag{P'}$$

- Problem: Might still have non-existence, non-uniqueness and / or instability (K is determined by the problem - Cannot make general assumptions on K)
- **Solution:** Replace (P) with the **regularized** least-squares problem

$$\min_{u \in X} \|Ku - f\|_X^2 + \alpha R(u), \qquad R: X \to [0, +\infty], \ \alpha > 0$$

- 1 R makes the problem well-posed and stable if chosen properly
- R favors certain solutions the ones for which R(u) is small

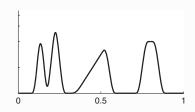
Example: 1D deconvolution



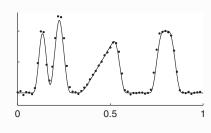
Original signal $\tilde{u} \colon [0,1] \to \mathbb{R}$

Goal: Recover \tilde{u} from noisy data f^{ε}

$$\psi \star u = f^\varepsilon$$



Blurred signal $f = \psi \star \tilde{u}$



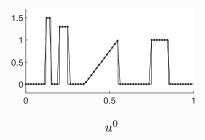
Blur + Noise $f^{\varepsilon} = f + \varepsilon$

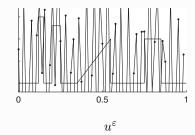
Naive deconvolution

Solve the discrete 1D-deconvolution problem by least-squares:

$$u^{\varepsilon} \in \underset{u \in L^{2}(0,1)}{\operatorname{arg\,min}} \|\psi \star u - f^{\varepsilon}\|_{L^{2}(0,1)}^{2}$$

- ▶ Solution behaves well when noise $\varepsilon = 0$ but is terrible when $\varepsilon \neq 0$
 - Instability amplifies noise in the reconstruction
- lacktriangle Below the solid line represents the ground truth \tilde{u}
- We need regularizer which penalizes oscillations





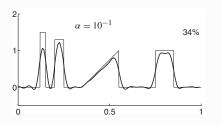
Two different regularizers

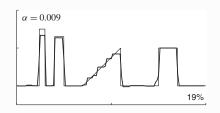
Regularize with L^2 norm

$$\min_{u \in L^{2}(0,1)} \|\psi \star u - f^{\varepsilon}\|_{L^{2}(0,1)}^{2} + \alpha \|u\|_{L^{2}(0,1)}^{2}$$

Reg. with Total Variation (BV semi-norm)

$$\min_{u \in L^{2}(0,1)} \ \left\| \psi \star u - f^{\varepsilon} \right\|_{L^{2}(0,1)}^{2} + \alpha \left\| u \right\|_{L^{2}(0,1)}^{2} \quad \ \min_{u \in L^{1}(0,1)} \ \left\| \psi \star u - f^{\varepsilon} \right\|_{L^{2}(0,1)}^{2} + \alpha \operatorname{TV}(u)$$





- Notice the smoothing effect of L^2 regularization
- Smoothness not always desirable (e.g. if u is image with sharp edges like here)
- Notice the sparsifying effect of TV (staircase effect)
- Extremal points of regularizer describe features of sparse solutions

Summary

Setting: X, Y Banach spaces, $K \colon X \to Y$ linear continuous operator

Inverse Problem: Given $f \in Y$, find $u \in X$ such that

$$Ku = f$$

Main difficulty: K^{-1} does not exist or is not continuous

Variational regularization: Given $f \in Y$, find $u \in X$ which solves

$$\min_{u \in X} \|Ku - f\|_Y^2 + \alpha R(u) \tag{P}$$

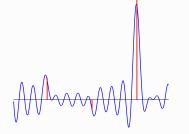
Goals of the Talk:

- Algorithm to recover sparse solutions to (P)
- ► Framework for regularizing dynamic inverse problems

Outline

- Introduction to Inverse Problems & Sparsity
- 2 Algorithm for sparse solution recovery
- 3 Dynamic Inverse Problems
- 4 Application to Dynamic MRI

Motivation: Sparse peak recovery



- $ightharpoonup \Omega \subset \mathbb{R}^d$ finite set, $\mathcal{M}(\Omega)$ Radon measures
- $\blacktriangleright \ \mathfrak{F} \colon \mathcal{M}(\Omega) \to \mathbb{C}^n$ undersampled Fourier transform
- **Sparsity assumption:** $\bar{u} = \sum_{i=1}^{N} \lambda_i \delta_{x_i}$
- ightharpoonup Data $f = \Im \bar{u}$

Well-studied problem: Superresolution

$$\mathfrak{F}u=f$$
 on Ω

Radon-norm regularization: \mathfrak{F} not injective \sim need to regularize

$$\min_{u \in \mathcal{M}(\Omega)} \|\mathfrak{F}u - f\|_{L^{2}(\Omega)}^{2} + \alpha \|u\|_{\mathcal{M}(\Omega)}$$

Goal: Recover sparse sol. $\bar{u} = \sum_{i=1}^N \lambda_i \delta_{x_i} \sim$ (Fast) algorithms for general setting

Candès, Fernandez-Granda. CPAM (2013) and many more

Minimization Problem in General Setting

$$\min_{u \in X} F(Ku) + R(u)$$

- **Parameters:** X separable Banach space with predual X_*
- **▶ Data:** *Y* Hilbert space
- **Forward operator:** $K: X \to Y$ linear and weak*-to-strong continuous
- ► F ~ Loss function: Smooth + Strictly Convex

$$F: Y \to [0, \infty)$$

$$\left(F(y) = \|y - f\|_Y^2\right)$$

► R ~ Regulariser: Convex + 1-homogeneous + Coercive

$$R \colon X \to [0, \infty]$$

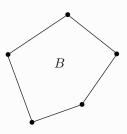
(Promotes Sparsity)

Theorem [1]: Direct method \implies Minimizer exists

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Unit Ball of regularizer ${\it R}$

$$B := \{u \in X : R(u) \le 1\}$$



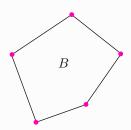
^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Unit Ball of regularizer R

$$B := \{ u \in X : R(u) \le 1 \}$$

$$\begin{cases} u = \alpha u_1 + (1 - \alpha)u_2 \\ \\ \alpha \in (0, 1), \ u_1, u_2 \in B \end{cases} \implies u = u_1 = u_2$$

$$\implies u = u_1 = u_2$$



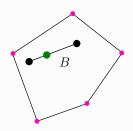
^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Unit Ball of regularizer R

$$B := \{u \in X : R(u) \le 1\}$$

$$\begin{cases} u = \alpha u_1 + (1 - \alpha)u_2 \\ \\ \alpha \in (0, 1), \ u_1, u_2 \in B \end{cases} \implies u = u_1 = u_2$$

$$\implies u = u_1 = u_2$$



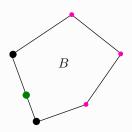
^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Unit Ball of regularizer R

$$B := \{u \in X : R(u) \le 1\}$$

$$\begin{cases} u = \alpha u_1 + (1 - \alpha)u_2 \\ \\ \alpha \in (0, 1), \ u_1, u_2 \in B \end{cases} \implies u = u_1 = u_2$$

$$\implies u = u_1 = u_2$$



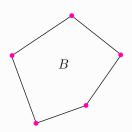
^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Unit Ball of regularizer R

$$B := \{u \in X : R(u) \le 1\}$$

$$\begin{cases} u = \alpha u_1 + (1 - \alpha)u_2 \\ \\ \alpha \in (0, 1), \ u_1, u_2 \in B \end{cases} \implies u = u_1 = u_2$$

$$\implies u = u_1 = u_2$$



^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

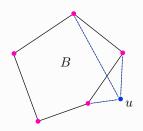
Unit Ball of regularizer R

$$B := \{u \in X : R(u) \le 1\}$$

Extremal Points: $u \in B$ s.t.

$$\begin{cases} u = \alpha u_1 + (1 - \alpha)u_2 \\ \alpha \in (0, 1), \ u_1, u_2 \in B \end{cases} \implies u = u_1 = u_2$$

$$\implies u = u_1 = u_2$$



Conic combination

Definition: $u \in X$ sparse

$$u = \sum_{i=1}^{N} \lambda_i u_i, \quad \lambda_i \ge 0, \quad u_i \in \text{Ext}(B)$$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Main Task

Numerical **Algorithm** to compute

$$\bar{u} \in \underset{u \in X}{\operatorname{arg\,min}} F(Ku) + R(u)$$

which is sparse

$$\bar{u} = \sum_{i=1}^{N} \lambda_i u_i, \quad \lambda_i \ge 0, \quad u_i \in \operatorname{Ext}(B)$$

Existence of sparse solutions: Proven for $K \colon X \to \mathbb{R}^n$ [1,2]

Very general setting → Important Examples:

- ▶ Training of Machine Learning models $\rightsquigarrow X = \mathbb{R}^d$

 - lacktriangledown Recovery of sparse sources $\ \ \, \sim \ \ \, X = \mathcal{M}(\mathbb{R}^d)$ Radon Measures

^[1] Bredies, Carioni. Calc. Var. PDE (2020)

^[2] Boyer, Chambolle, De Castro, Duval, De Gournay, Weiss. SIAM Optimization (2019)

Example: Training of Machine Learning models

Parameters: vector $\Theta = (\theta_1, \dots, \theta_d) \in \mathbb{R}^d$

ML Model: Fit model to given data

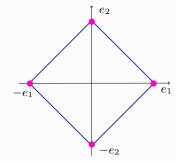
$$\min_{\Theta \in \mathbb{R}^d} F(\theta) + \|\Theta\|_1$$

- ► Fidelity term F promotes data fit
- ▶ 1-norm promotes sparsity e.g. solutions will have lots of zeros

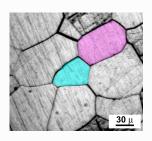
$$\hat{\Theta} = (0, 0, \frac{\theta_i}{0}, 0, 0, \dots, 0, 0, \frac{\theta_d}{0})$$

Banach space:
$$X = \mathbb{R}^d$$

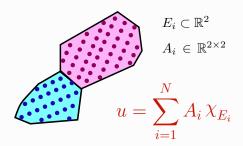
$$\operatorname{Ext}(B) = \{ \pm e_i \}_{i=1}^d$$



Example: Microstructures in Materials



Polycrystalline Metal

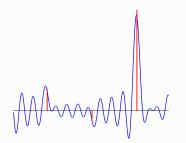


Banach space: $X = BV(\mathbb{R}^2)$ functions of bounded variation

Regularizer: $R(u) := \|Du\|_{\mathcal{M}}$, $\operatorname{Ext}(B) = \{\chi_E : E \subset \mathbb{R}^2 \text{ simply connected}\}$

[2] Fanzon, Palombaro, Ponsiglione. SIAM Journal on Mathematical Analysis (2019)

Example: Recovery of sparse sources



Well-studied problem: Superresolution

- $\blacktriangleright \ \mathfrak{F} \colon \mathcal{M}(\Omega) \to \mathbb{C}^n$ undersampled Fourier transform
- ► Sparsity assumption: $\bar{u} = \sum_{i=1}^{N} \lambda_i \delta_{x_i}$
- ightharpoonup Data $f = \Im \bar{u}$

$$\min_{u \in \mathcal{M}(\Omega)} \|\mathfrak{F}u - f\|_{L^{2}(\Omega)}^{2} + \alpha \|u\|_{\mathcal{M}(\Omega)}$$

Banach space: $X = \mathcal{M}(\Omega)$ Radon measures

Regularizer:
$$R(u) := ||u||_{\mathcal{M}}$$

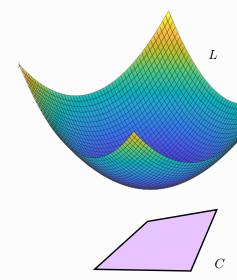
$$\operatorname{Ext}(B) = \{ \pm \delta_x : x \in \Omega \}$$

Starting Point: Classic Frank-Wolfe

Problem: Constrained minimization

$$\min_{x \in C} L(x)$$

- $ightharpoonup L\colon \mathbb{R}^N \to \mathbb{R}$ regular convex
- $ightharpoonup C\subset \mathbb{R}^N$ convex compact set



M. Jaggi. Proceedings of Machine Learning Research (2013)

Starting Point: Classic Frank-Wolfe

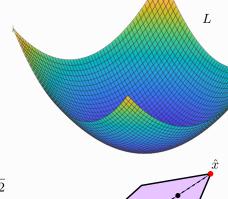
Frank-Wolfe Algorithm: Given $x^k \in C$

1 Insertion: Solve linearized problem

$$\min_{x \in C} \ \langle \nabla L(x^k), x \rangle \quad \mapsto \quad \widehat{x}$$

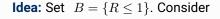
2 Convex update: Set

$$x^{k+1} := x^k + \alpha(\hat{x} - x^k), \ \alpha := \frac{2}{k+2}$$

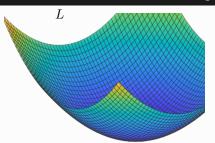


M. Jaggi. Proceedings of Machine Learning Research (2013)

$$\min_{u \in X} L(u) + R(u) , \quad L(u) = F(Ku)$$

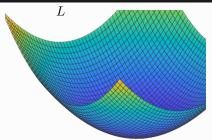


$$\min_{u \in X} \ L(u) + \chi_B(u) \ \iff \ \min_{u \in B} \ L(u)$$



^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

$$\min_{u \in X} L(u) + R(u), \quad L(u) = F(Ku)$$



Idea: Set $B = \{R \le 1\}$. Consider

$$\min_{u \in X} \ L(u) + \chi_B(u) \ \iff \ \min_{u \in B} \ L(u)$$

Descent Direction: Solve

$$\min_{v \in B} \langle \nabla L(u), v \rangle \quad \mapsto \quad \widehat{v}$$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

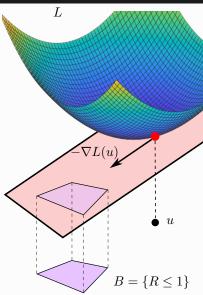
$$\min_{u \in X} L(u) + R(u), \quad L(u) = F(Ku)$$

Idea: Set $B = \{R \le 1\}$. Consider

$$\min_{u \in X} L(u) + \chi_B(u) \iff \min_{u \in B} L(u)$$

Descent Direction: Solve

$$\min_{v \in B} \ \langle \nabla L(u), v \rangle \quad \mapsto \quad \widehat{v}$$



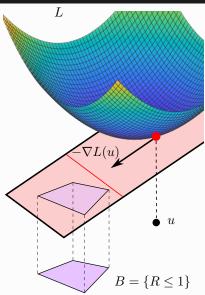
$$\min_{u \in X} L(u) + R(u), \quad L(u) = F(Ku)$$

Idea: Set $B = \{R \le 1\}$. Consider

$$\min_{u \in X} L(u) + \chi_B(u) \iff \min_{u \in B} L(u)$$

Descent Direction: Solve

$$\min_{v \in B} \ \langle \nabla L(u), v \rangle \quad \mapsto \quad \widehat{v}$$



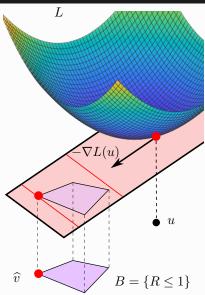
$$\min_{u \in X} L(u) + R(u), \quad L(u) = F(Ku)$$

Idea: Set $B = \{R \le 1\}$. Consider

$$\min_{u \in X} L(u) + \chi_B(u) \iff \min_{u \in B} L(u)$$

Descent Direction: Solve

$$\min_{v \in B} \ \langle \nabla L(u), v \rangle \quad \mapsto \quad \widehat{v}$$



$$\min_{u \in X} L(u) + R(u), \quad L(u) = F(Ku)$$

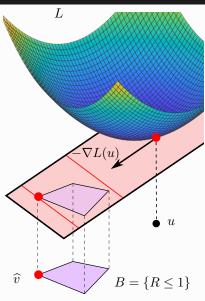
Idea: Set $B = \{R \le 1\}$. Consider

$$\min_{u \in X} L(u) + \chi_B(u) \iff \min_{u \in B} L(u)$$

Descent Direction: Solve

$$\min_{v \in B} \ \langle \nabla L(u), v \rangle \quad \mapsto \quad \widehat{v}$$

Lemma [1]. $\widehat{v} \in \operatorname{Ext}(B)$ (Krein-Milman)



Sparse *k*-th iterate

$$U^k = \sum_{i=1}^n \lambda_i \, u_i$$

$$\lambda_i \ge 0, \quad u_i \in \operatorname{Ext}(B)$$

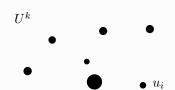
$$U^k$$
•
•
•
 u_i

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Sparse *k*-th iterate

$$U^k = \sum_{i=1}^n \lambda_i \, u_i$$

$$\lambda_i \ge 0, \quad u_i \in \operatorname{Ext}(B)$$



1 Insertion Step: Solve

$$\widehat{v} \in \underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \nabla L(U^k), v \rangle$$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Sparse k-th iterate

$$U^k = \sum_{i=1}^n \lambda_i \, u_i$$

$$\lambda_i \ge 0, \quad u_i \in \operatorname{Ext}(B)$$

1 Insertion Step: Solve

$$\widehat{v} \in \underset{v \in \text{Ext}(B)}{\operatorname{arg\,max}} \langle \nabla L(U^k), v \rangle$$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Sparse *k*-th iterate

$$U^k = \sum_{i=1}^n \lambda_i \, u_i$$

$$\lambda_i \ge 0, \quad u_i \in \operatorname{Ext}(B)$$

1 Insertion Step: Solve

$$\widehat{v} \in \underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \nabla L(U^k), v \rangle$$

2 Fully-Corrective Step: Set $u_{n+1} := \widehat{v}$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Sparse *k*-th iterate

$$U^{k} = \sum_{i=1}^{n} \lambda_{i} u_{i}$$
$$\lambda_{i} > 0, \quad u_{i} \in \text{Ext}(B)$$

1 Insertion Step: Solve

$$\widehat{v} \in \underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \nabla L(U^k), v \rangle$$

2 Fully-Corrective Step: Set $u_{n+1} := \widehat{v}$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Sparse *k*-th iterate

$$U^{k} = \sum_{i=1}^{n} \lambda_{i} u_{i}$$

$$\lambda_{i} \geq 0, \quad u_{i} \in \text{Ext}(B)$$

$$U^{k}$$

$$u_{n+1}$$

$$u_{n+2}$$

1 Insertion Step: Solve

$$\widehat{v} \in \underset{v \in \text{Ext}(B)}{\operatorname{arg\,max}} \langle \nabla L(U^k), v \rangle$$

2 Fully-Corrective Step: Set $u_{n+1} := \widehat{v}$. Optimize coefficients

$$(\lambda_1^*, \dots, \lambda_{n+1}^*) \in \underset{\lambda_i \ge 0}{\operatorname{arg\,min}} (L+R) \left(\sum_{i=1}^{n+1} \lambda_i u_i \right) \rightsquigarrow U^{k+1} := \sum_{i=1}^{n+1} \lambda_i^* u_i$$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Sparse k-th iterate

$$U^{k} = \sum_{i=1}^{n} \lambda_{i} u_{i}$$

$$\lambda_{i} \geq 0, \quad u_{i} \in \text{Ext}(B)$$

$$U^{k+1}$$

$$u_{n+1}$$

$$u_{n+1}$$

1 Insertion Step: Solve

$$\widehat{v} \in \underset{v \in \text{Ext}(B)}{\operatorname{arg\,max}} \langle \nabla L(U^k), v \rangle$$

2 Fully-Corrective Step: Set $u_{n+1} := \hat{v}$. Optimize coefficients

$$(\lambda_1^*, \dots, \lambda_{n+1}^*) \in \underset{\lambda_i \ge 0}{\operatorname{arg\,min}} (L+R) \left(\sum_{i=1}^{n+1} \lambda_i u_i \right) \rightsquigarrow U^{k+1} := \sum_{i=1}^{n+1} \lambda_i^* u_i$$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Sparse *k*-th iterate

$$U^k = \sum_{i=1}^n \lambda_i \, u_i$$

$$\lambda_i \ge 0, \quad u_i \in \operatorname{Ext}(B)$$

- Non-linear problem (usually)
 - ► Non-linearity due to Ext(B)
 - Expensive and / or hard to solve
- Quadratic program Easy to solve

1 Insertion Step: Solve

$$\widehat{v} \in \underset{v \in \text{Ext}(B)}{\operatorname{arg\,max}} \langle \nabla L(U^k), v \rangle$$

2 Fully-Corrective Step: Set $u_{n+1} := \hat{v}$. Optimize coefficients

$$(\lambda_1^*, \dots, \lambda_{n+1}^*) \in \underset{\lambda_i \ge 0}{\operatorname{arg \, min}} (L+R) \left(\sum_{i=1}^{n+1} \lambda_i \, u_i \right) \rightsquigarrow U^{k+1} := \sum_{i=1}^{n+1} \lambda_i^* \, u_i$$

^[1] Bredies, Carioni, Fanzon, Walter, Mathematical Programming (2024)

Convergence Analysis

Theorem [1]

 ${\cal U}^k$ sparse iterate from the Generalized Frank-Wolfe Algorithm. Then

$$U^k \stackrel{*}{\rightharpoonup} \bar{u}$$
, $\bar{u} \in \arg \min G$, $G := L + R$

General convergence rate is **sublinear**

(expected for gradient methods)

$$G(U^k) - \min G \lesssim \frac{1}{k}$$

^[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Convergence Analysis

Theorem [1]

 U^k sparse iterate from the Generalized Frank-Wolfe Algorithm. Then

$$U^k \stackrel{*}{\rightharpoonup} \bar{u}$$
, $\bar{u} \in \arg\min G$, $G := L + R$

General convergence rate is **sublinear**

(expected for gradient methods)

$$G(U^k) - \min G \lesssim \frac{1}{k}$$

Highlight: \bar{u} sparse + "Source Condition" + "Quadratic Growth"

$$\implies$$
 linear convergence: $G(U^k) - \min G \lesssim \frac{1}{2^k}$

[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Key ingredient: Novel lifting argument

Classical Theorem (Choquet)

- lacktriangleq X locally convex space, $K\subset X$ non-empty, convex, metrizable, compact
- ▶ For each $v \in K$, there is $\mu \in \mathcal{P}(X)$ concentrated on $\operatorname{Ext}(K)$ with

$$T(v) = \int_X T \, d\mu \qquad \forall T \in X^*$$

Theorem [1]. Let $\mathcal{B} = \overline{\operatorname{Ext}(R \leq 1)}^*$. There exists $\mathcal{K} \colon \mathcal{M}(\mathcal{B}) \to Y$ linear bounded s.t. the two problems are equivalent

$$\min_{u \in X} F(Ku) + R(u) \qquad \qquad \min_{\mu \in \mathcal{M}(\mathcal{B})} F(\mathcal{K}\mu) + \|\mu\|_{\mathcal{M}(\mathcal{B})}$$

Linear convergence can be obtained by carefully extending arguments in [2]

$$\min_{\mu \in \mathcal{M}(\mathbb{R}^d)} F(\tilde{K}\mu) + \|\mu\|_{\mathcal{M}(\mathbb{R}^d)}$$

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)

 \bar{u}_i

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

^[1] Bredies, Carioni, F., Walter. Math. Prog. ('24) [2] Candès, Fernandez-Granda. CPAM ('13)

 \bar{u}_i

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at $ar{u}_i$

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24) [2] Candès, Fernandez-Granda. CPAM ('13)

 \bar{u}_i

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24) [2] Candès, Fernandez-Granda. CPAM ('13)

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

 \bar{u}_i

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

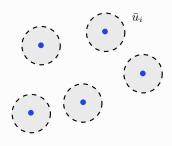
$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)



1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

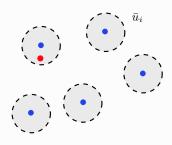
$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)



1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

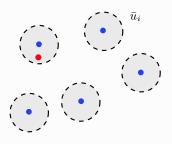
$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)



 II^{k+1}

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

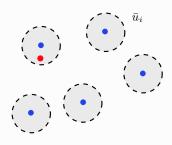
$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)



$$U^{k+1}$$

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

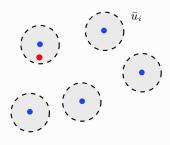
$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)



1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

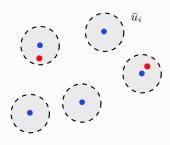
$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)



 U^{k+2}

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

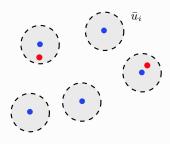
$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)



 U^{k+3}

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \; , \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

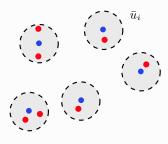
$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

$$\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$$
 "distance"

[1] Bredies, Carioni, F., Walter. Math. Prog. ('24)



 U^{k+m}

Comments on Linear Convergence Assumptions

1 (S) \exists sparse minimizer of G := L + R

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \, \bar{u}_i \;, \qquad \bar{u}_i \in \operatorname{Ext}(B)$$

2 (SC) Source condition: dual variable

$$\bar{p} := \nabla L(\bar{u}) = K_* \nabla F(K\bar{u})$$

is maximized exactly at \bar{u}_i

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\bar{u}_1, \dots, \bar{u}_M\}$$

$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = 1$$

3 (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

 $\exists g \colon \operatorname{Ext}(B)^2 \to [0, \infty)$ "distance"

- ► (S) + (SC) widely accepted
 - ▶ only proven in few cases [2]
 - ► can be verified numerically
- ► (QG) is novelty
- In applications we need to:
 - ▶ Characterize Ext(B)
 - Define suitable distance g
 - Show (QG) under reasonable assumptions
- Applications: [1] Prove fast convergence of Gen. Frank-Wolfe
 - ► Minimum effort prob.
 - Trace-norm regularized prob.
 - Sparse source identification (heat eqn)

$$\min_{u \in \mathcal{M}(\Omega)} \frac{1}{2} \left\| Ku - f^{\varepsilon} \right\|_{L^{2}(\Omega)}^{2} + \left\| u \right\|_{\mathcal{M}(\Omega)}$$

- ▶ Given: $\Omega \subset \mathbb{R}^d$ and $f^{\varepsilon} \in L^2(\Omega)$ noisy data
- ► Forw. operator: $K \colon \mathcal{M}(\Omega) \to L^2(\Omega)$

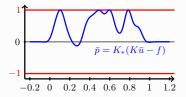
$$Ku=\psi\star u\,,\;\;\psi={
m Gauss.}\;{
m Kern.}$$

Extr. points: $B = \{ \|u\|_{\mathcal{M}(\Omega)} \leq 1 \}$

$$\operatorname{Ext}(B) = \{ \pm \delta_x : x \in \Omega \}$$

► (S) ∃ sparse solution:

$$\bar{u} = \sum_{i=1}^{M} \bar{\lambda}_i \delta_{\bar{x}_i} , \quad \bar{\lambda}_i > 0 , \ \bar{x}_i \in \Omega$$



▶ (SC)
$$\bar{p} = K_*(K\bar{u} - f^{\varepsilon}) \in C(\Omega)$$

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\delta_{\bar{x}_1}, \dots, \delta_{\bar{x}_M}\}$$

$$\max_{v \in \text{Ext}(B)} \langle \bar{p}, v \rangle = \max_{x \in \Omega} \bar{p}(x) = 1$$

^[1] Bredies, Carioni, F., Walter. Math. Prog. (2024)

$$\min_{u \in \mathcal{M}(\Omega)} \frac{1}{2} \left\| Ku - f^{\varepsilon} \right\|_{L^{2}(\Omega)}^{2} + \left\| u \right\|_{\mathcal{M}(\Omega)}$$

 \blacktriangleright (HP) \bar{p} strictly concave at x_i

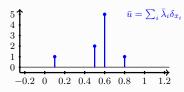
$$\operatorname{sign}(\bar{p}(x_i)) \langle \xi, \nabla^2 \bar{p}(x_i) \xi \rangle \gtrsim |\xi|^2$$

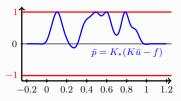
- ► Metric: $g: \text{Ext}(B) \times \text{Ext}(B) \to [0, \infty)$ $g(s_1 \delta_{x_1}, s_2 \delta_{x_2}) := |s_1 - s_2| + |x_1 - x_2|$
- lackbox (QG) Quadratic growth of \bar{p} around \bar{u}_i

$$1 - \langle \bar{p}, u \rangle \gtrsim g(u, u_i)^2, \quad u \sim u_i$$

Theorem [1,2]: (HP) \Longrightarrow (QG)

Gen. Frank-Wolfe converges linearly





$$\blacktriangleright$$
 (SC) $\bar{p} = K_*(K\bar{u} - f^{\varepsilon}) \in C(\Omega)$

$$\underset{v \in \text{Ext}(B)}{\text{arg max}} \langle \bar{p}, v \rangle = \{\delta_{\bar{x}_1}, \dots, \delta_{\bar{x}_M}\}$$

$$\max_{v \in \operatorname{Ext}(B)} \langle \bar{p}, v \rangle = \max_{x \in \Omega} \bar{p}(x) = 1$$

$$\min_{u \in \mathcal{M}(\Omega)} \; \frac{1}{2} \left\| Ku - f^{\varepsilon} \right\|_{L^{2}(\Omega)}^{2} + \left\| u \right\|_{\mathcal{M}(\Omega)}$$

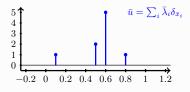
Gen. Frank-Wolfe: $\operatorname{Ext}(B) = \{ \pm \delta_x \colon x \in \Omega \}$

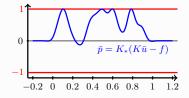
Initialize: $u^0 = 0$

Iterate: Given $u^k = \sum_{i=1}^n \lambda_i \delta_{x_i}$

1 Insertion Step: $p^k = K_*(Ku^k - f^{\varepsilon})$

$$\max_{v \in \operatorname{Ext}(B)} \langle p^k, v \rangle = \max_{x \in \Omega} p^k(x) \sim \hat{x}$$





2 Fully-corrective Step: Solve

$$(\lambda_1^*, \dots, \lambda_{n+1}^*) \in \underset{\lambda_i \ge 0}{\operatorname{arg\,min}} \ G\left(u^k + \lambda_{n+1}\delta_{\hat{x}}\right) \ \leadsto \ u^{k+1} := \left(\sum_{i=1}^n \lambda_i^* \delta_{x_i}\right) + \lambda_{n+1}^* \delta_{\hat{x}}$$

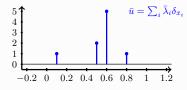
Stop: Based on Primal-Dual gap

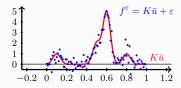
[1] Bredies, Carioni, F., Walter. Math. Prog. (2024)

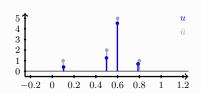
$$\min_{u \in \mathcal{M}(\Omega)} \frac{1}{2} \left\| Ku - f^{\varepsilon} \right\|_{L^{2}(\Omega)}^{2} + \left\| u \right\|_{\mathcal{M}(\Omega)}$$

Numerical experiment:

- ▶ Ground truth \bar{u} with 4 peaks
- ► Noiseless data $f = K\bar{u}$
- $\blacktriangleright \ \, \text{Noisy data} \ \, f^\varepsilon = K \bar{u} + \varepsilon$
- Run Gen. Frank-Wolfe $\rightsquigarrow u$
 - ightharpoonup u is minimizer (by Thm)
 - ► u correctly has 4 peaks
 - Weights of peaks are shrunk (effect of regularization)
 - ► Empirical linear convergence





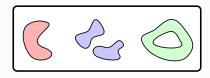


[1] Bredies, Carioni, F., Walter. Math. Prog. (2024)

An open problem

Total variation: $X = BV(\Omega)$, $\Omega \subset \mathbb{R}^d$

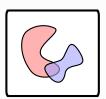
$$G(u) := F(Ku) + \left\| \nabla u \right\|_{\mathcal{M}} \,, \qquad \operatorname{Ext}(B) = \left\{ \frac{\chi_E}{\operatorname{Per}(E)} : E \subset \Omega \text{ simple} \right\}$$



Assume: sparse solution $\hat{u} = \sum_{i=1}^{M} \lambda_i \chi_{E_i}$

Fast convergence: Which "metric"???

$$g(E_i, E_j) := |E_i \triangle E_j|^{-1} ????$$



Connected problems: Exact recovery, Noise Robustness

Outline

- Introduction to Inverse Problems & Sparsity
- Algorithm for sparse solution recovery
- 3 Dynamic Inverse Problems
- 4 Application to Dynamic MRI

Motivation: Magnetic Resonance Imaging (MRI)

MRI Scanner

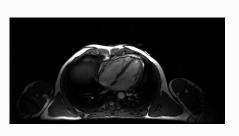
Human Heart

MRI: Medical imaging device, producing gray-scale images

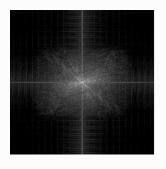
$$u: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$$

Mathematical model for MRI

Image $u \colon \Omega \to \mathbb{R}$



 $\mathfrak{F}u\colon\mathbb{R}^2\to\mathbb{C}$



$$(\mathfrak{F}u)\left[\xi\right] = \frac{1}{2\pi}\,\int_{\mathbb{R}^2} u(x)\,e^{i\xi\cdot x}\,dx\,,\qquad \xi\in\mathbb{R}^2$$

MRI machine measures Fourier coefficients

Inverse Problem:

- ► Given MRI data y
- ▶ Find image $u \colon \Omega \to \mathbb{R}$ s.t.

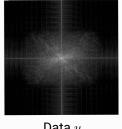
$$\mathfrak{F}u=y$$

Inverse Problem:

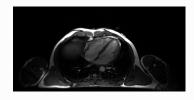
- ► Given MRI data y
- Find image $u \colon \Omega \to \mathbb{R}$ s.t.

$$\mathfrak{F}u=y$$

Ideal World: Fourier transform is invertible. Unique solution is $u = \mathfrak{F}^{-1}y$



Data y



Reconstruction u

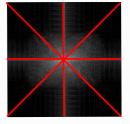
Reality: Things are not straightforward

- lacktriangle Machine is slow in acquiring data \implies can only sample limited data
- Measurement process is inherently noisy

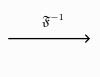
Reality: Things are not straightforward

- lacktriangle Machine is slow in acquiring data \implies can only sample limited data
- ► Measurement process is inherently noisy

Issue: Plain inversion → poor reconstructions



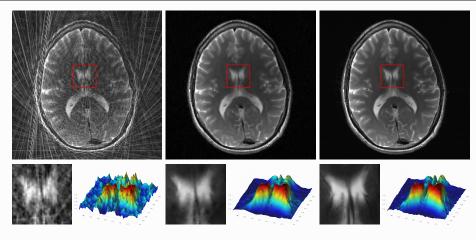
Undersampled noisy data y



Decempturation

Reconstruction u

Benchmark Regularizer: TGV



Unders. Noisy Data Least Squares

Unders. Noisy Data Regularized (TGV)

Full Data Least Squares

Bredies, Kunisch, Pock. Total Generalized Variation. SIAM Imaging (2010)

Motivation: Undersampled Dynamic MRI

Goal: Dynamic MRI → **Motion** is big challenge to accurate reconstructions

- High resolution imaging
- Imaging moving organs

Motivation: Undersampled Dynamic MRI

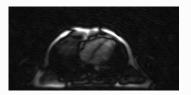
Goal: Dynamic MRI → **Motion** is big challenge to accurate reconstructions

- ► High resolution imaging
- ► Imaging moving organs

Dynamic IP: Reconstruct movie u_t from undersampled data series y_t

$$\mathfrak{F}(u_t) = y_t$$
 for all $t \in [0,1]$

Fully sampled data



Undersampled data

Solution: We need regularization for dynamic inverse problems

Motivation: Undersampled Dynamic MRI

Goal: Dynamic MRI → **Motion** is big challenge to accurate reconstructions

- ► High resolution imaging
- ► Imaging moving organs

Dynamic IP: Reconstruct movie u_t from undersampled data series y_t

$$\mathfrak{F}(u_t) = y_t \quad \text{ for all } \quad t \in [0, 1]$$

Fully sampled data

Undersampled data

Solution: We need regularization for dynamic inverse problems

Dynamic Inverse Problem

- $(\Omega \subset \mathbb{R}^N \text{ bounded closed domain})$ Images: Radon Measures $\mu \in \mathcal{M}(\Omega)$
- **Data spaces:** Hilbert spaces H_t for $t \in [0, 1]$
- **Measurement Operators:** linear continuous maps

$$K_t \colon \mathcal{M}(\Omega) \to H_t$$

Data points: Curve $t \mapsto y_t$ with $y_t \in H_t$

^[2] Bredies, Fanzon. ESAIM: Mathematical Modelling and Numerical Analysis (2020)

Dynamic Inverse Problem

Page 38

- Images: Radon Measures $\mu \in \mathcal{M}(\Omega)$ $(\Omega \subset \mathbb{R}^N \text{ bounded closed domain})$
- **Data spaces:** Hilbert spaces H_t for $t \in [0, 1]$
- **Measurement Operators:** linear continuous maps

$$K_t \colon \mathcal{M}(\Omega) \to H_t$$

▶ Data points: Curve $t \mapsto y_t$ with $y_t \in H_t$

Dynamic Inverse Problem: Find **curve** of measures $t \mapsto \mu_t \in \mathcal{M}(\Omega)$ s.t.

$$K_t \mu_t = y_t \quad \text{for all} \quad t \in [0, 1]$$
 (P)

Assumptions: weak time-regularity for $\{H_t\}_t$ and K_t^* (wk*-measurability)

[2] Bredies, Fanzon. ESAIM: Mathematical Modelling and Numerical Analysis (2020)

Dynamic Inverse Problem

- Images: Radon Measures $\mu \in \mathcal{M}(\Omega)$ $(\Omega \subset \mathbb{R}^N \text{ bounded closed domain})$
- **Data spaces:** Hilbert spaces H_t for $t \in [0, 1]$
- **Measurement Operators:** linear continuous maps

$$K_t \colon \mathcal{M}(\Omega) \to H_t$$

▶ Data points: Curve $t \mapsto y_t$ with $y_t \in H_t$

Dynamic Inverse Problem: Find **curve** of measures $t \mapsto \mu_t \in \mathcal{M}(\Omega)$ s.t.

$$K_t \mu_t = y_t \quad \text{for all} \quad t \in [0, 1]$$
 (P)

Assumptions: weak time-regularity for $\{H_t\}_t$ and K_t^*

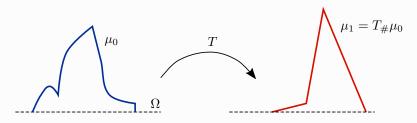
(wk*-measurability)

Proposal: Regularize (P) with an Optimal Transport Energy

[2] Bredies, Fanzon. ESAIM: Mathematical Modelling and Numerical Analysis (2020)

Optimal Transport - Static Formulation

 $\Omega \subset \mathbb{R}^d$ bounded domain, $\mu_0, \mu_1 \in \mathcal{P}(\Omega)$, $T \colon \Omega \to \Omega$ measurable displacement



Goal: move μ_0 to μ_1 in the cheapest way, with cost of moving mass from x to y

$$c(x,y) := |x - y|^2$$

Optimal Transport: a transport plan \hat{T} solving

$$\hat{T} \in \arg\min\left\{ \int_{\Omega} |T(x) - x|^2 d\mu_0(x) : T \colon \Omega \to \Omega, T_{\#}\mu_0 = \mu_1 \right\}$$

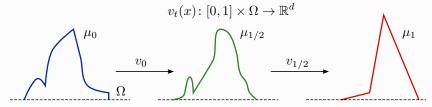
Optimal Transport - Dynamic Formulation

Idea: introduce a time variable $t \in [0,1]$ and consider the density evolution

time dependent probability measures

$$t \mapsto \mu_t \in \mathcal{P}(\Omega) \text{ for } t \in [0,1]$$

 $ightharpoonup \mu_t$ is advected by the velocity field



Dynamic model: (μ_t, v_t) solves the continuity equation with initial conditions

$$\begin{cases} \partial_t \mu_t + \operatorname{div}(\mu_t v_t) = 0 \\ \text{Initial data } \mu_0, \text{ final data } \mu_1 \end{cases}$$
 (CE-IC)

Benamou-Brenier Formula

Theorem: Benamou-Brenier [1]

$$\min_{\substack{(\mu_t,v_t) \text{ solving (CE-IC)}}} \int_0^1 \int_\Omega |v_t(x)|^2 \, \mu_t(x) dx \, dt = \min_{\substack{T \colon \Omega \to \Omega \\ T_\# \mu_0 = \mu_1}} \int_\Omega |T(x) - x|^2 \, \mu_0(x) \, dx$$

Advantages of Dynamic Formulation:

1 By introducing the momentum $m_t := \rho_t v_t$ we have

$$\int_0^1 \int_{\Omega} |v_t(x)|^2 \,\mu_t(x) \,dx \,dt = \int_0^1 \int_{\Omega} \frac{|m_t(x)|^2}{\mu_t(x)} \,dx \,dt$$

which is **convex** in (μ_t, m_t)

2 The continuity equation becomes linear

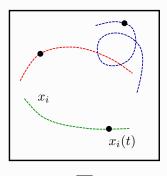
$$\partial_t \mu_t + \operatorname{div} m_t = 0$$

 $oldsymbol{3}$ We know the full trajectory μ_t and can recover the velocity field v_t from m_t

^[1] Benamou, Brenier. **Numerische Mathematik** (2000)

Trajectories: Curve of measures

$$t \mapsto \mu_t \in \mathcal{M}(\Omega), \qquad t \in [0,1]$$



$$\mu_t = \sum_i \delta_{x_i(t)}$$

[2] Bredies, Fanzon. ESAIM: Mathematical Modelling and Numerical Analysis (2020)

Trajectories: Curve of measures

$$t \mapsto \mu_t \in \mathcal{M}(\Omega), \qquad t \in [0,1]$$

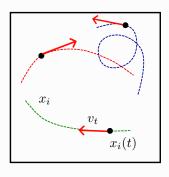
Assumptions:

 $\blacktriangleright \mu_t$ satisfies Continuity Equation

$$\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0$$

for some velocity field (to find)

$$v_t \colon \mathbb{R}^2 \to \mathbb{R}^2$$



$$\mu_t = \sum_i \delta_{x_i(t)}$$

^[2] Bredies, Fanzon. ESAIM: Mathematical Modelling and Numerical Analysis (2020)

Trajectories: Curve of measures

$$t \mapsto \mu_t \in \mathcal{M}(\Omega), \qquad t \in [0,1]$$

Assumptions:

 $\blacktriangleright \mu_t$ satisfies Continuity Equation

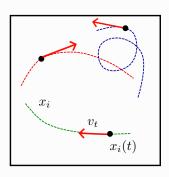
$$\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0$$

for some velocity field (to find)

$$v_t \colon \mathbb{R}^2 \to \mathbb{R}^2$$

Finite Kinetic Energy

$$\int_{0}^{1} \int_{\mathbb{R}^{2}} |v_{t}(x)|^{2} d\mu_{t}(x) dt < \infty$$



$$\mu_t = \sum_i \delta_{x_i(t)}$$

[2] Bredies, Fanzon. ESAIM: Mathematical Modelling and Numerical Analysis (2020)

Minimization Problem: Given data $t \mapsto y_t \in H_t$

$$K_t \mu_t = y_t \quad \rightsquigarrow \quad \min_{\mu, v} \ L(\mu) + R(\mu, v)$$

Minimization Problem: Given data $t \mapsto y_t \in H_t$

$$K_t \mu_t = y_t \quad \rightsquigarrow \quad \min_{\mu, v} \ L(\mu) + R(\mu, v)$$

▶ $L \sim \text{Loss Function}$: Fits $t \mapsto \mu_t$ to data $t \mapsto y_t$

(Generalized Bochner spaces [2])

$$L(\mu) := \int_0^1 \|K_t \mu_t - y_t\|_{H_t}^2 dt$$

[2] Bredies, Fanzon. ESAIM: Mathematical Modelling and Numerical Analysis (2020)

Minimization Problem: Given data $t \mapsto y_t \in H_t$

$$K_t \mu_t = y_t \quad \rightsquigarrow \quad \min_{\mu, v} \ L(\mu) + R(\mu, v)$$

▶ $L \sim \text{Loss Function}$: Fits $t \mapsto \mu_t$ to data $t \mapsto y_t$

(Generalized Bochner spaces [2])

$$L(\mu) := \int_0^1 \|K_t \mu_t - y_t\|_{H_t}^2 dt$$

 $ightharpoonup R \sim$ Regularizer: Connected to Optimal Transport (Benamou-Brenier formula)

$$R(\mu, v) := \underbrace{\int_0^1 \int_\Omega \left| v_t(x) \right|^2 \, d\mu_t(x) \, dt}_{\text{Kinetic Energy}} + \underbrace{\int_0^1 \left\| \mu_t \right\|_{\mathcal{M}(\Omega)} \, dt}_{\text{Radon Norm}}$$
 s.t.
$$\underbrace{\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0}_{}$$

Continuity Equation

Theorem [2]: R provides stable regularization for the dynamic inverse problem

[2] Bredies, Fanzon. ESAIM: Mathematical Modelling and Numerical Analysis (2020)

Extremal Points

$$R(\mu, v) := \int_0^1 \int_{\Omega} |v_t(x)|^2 \ d\mu_t(x) \ dt + \int_0^1 \|\mu_t\|_{\mathcal{M}(\Omega)} \ dt \quad \text{s.t.} \quad \partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0$$

Superposition Principle [1,2]. $\Gamma:=C([0,1];\Omega)$ with L^∞ norm. Equivalently:

- $\blacktriangleright \ \, \mu_t \text{ solves (CE) with } \int_0^1 \int_\Omega \left| v_t(x) \right|^2 d\mu_t(x) < \infty$
- lacktriangledown $\exists \ \sigma \in P(\Gamma)$ concentrated on curves $\mathrm{AC}^2([0,1];\Omega)$ solutions to

$$\dot{\gamma}(t) = v_t(\gamma(t)) \ \ \text{and s.t.} \ \ \int_{\Omega} \varphi \, d\mu_t = \int_{\Gamma} \varphi(\gamma(t)) \, d\sigma(\gamma) \, , \quad \forall \, \varphi \in C(\Omega)$$

Theorem [2]: $\operatorname{Ext}(\{R \leq 1\})$ are measures $t \mapsto \mu_t$ supported on AC^2 curves

$$t \mapsto \mu_t = \delta_{\gamma(t)}, \qquad \gamma \in AC^2([0, 1]; \Omega)$$

[1] Bredies, Carioni, Fanzon, Romero. Bull. LMS (2021) [2] Ambrosio. Inv. Math. (2004)

Non-homogeneous case

► Homogeneous continuity equation implies mass preservation

$$\mu_t(\Omega)$$
 is constant for all t

- ► Restrictive in applications e.g. contrast agent in MRI
- ► Modify the regularizer to allow change of mass
- ▶ Based on **Unbalanced OT** a.k.a. Hellinger-Kantorovich distance [2,3]

$$R(\mu, v) := \int_{0}^{1} \int_{\Omega} |v_{t}(x)|^{2} + |g_{t}(x)|^{2} d\mu_{t}(x) dt + \int_{0}^{1} \|\mu_{t}\|_{\mathcal{M}(\Omega)} dt$$

$$\text{s.t. } \partial_{t}\mu_{t} + \operatorname{div}(v_{t}\mu_{t}) = g_{t}\mu_{t} \qquad \text{(CE)}$$

Theorem [1]: R is stable regularizer for the dynamic inverse problem

$$K_t \mu_t = y_t$$

- [1] Bredies, Fanzon. ESAIM: M2AN (2020)
- [2] Chizat, Peyré, Schmitzer, Vialard. Found. of Comp. Math (2018)
- [3] Liero, Mielke, Savaré. Inv. Math. (2018)

Theorem: Superposition principle for (CE)

$$\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = g_t \mu_t$$
 (CE)

$$\mathcal{C}_{\Omega} = \{h\delta_{\gamma} \in \mathcal{M}(\Omega): \ h \geq 0\,, \gamma \in \Omega\} \tag{flat topology)}$$

$$\mathcal{S}_{\Omega} = \{t \to \mu_t : \text{ narrowly continuous}, \ \mu_t \in \mathcal{C}_{\Omega}\}$$
 (sup distance)

1 Assume μ_t solves (CE) with

$$\int_{0}^{1} \int_{\Omega} |v_{t}(x)|^{2} + |g_{t}(x)|^{2} d\mu_{t}(x) < \infty$$

 $\exists \ \sigma \in \mathcal{M}^+(\mathcal{S}_{\Omega}) \ \text{concentrated on} \ t \mapsto h(t)\delta_{\gamma(t)} \ \text{such that}$

$$\dot{\gamma}(t) = v_t(\gamma(t)) \, a.e. \, \text{ in } \{h > 0\} \,, \qquad \dot{h}(t) = g_t(\gamma(t)) h(t) \, a.e. \, \text{ in } (0,1)$$
 (ODE)

$$\int_{\Omega} \varphi(x) \, d\mu_t(x) = \int_{\mathcal{S}_{\Omega}} h(t) \varphi(\gamma(t)) \, d\sigma(\gamma, h) \ \forall \varphi \in C(\Omega) \,, \ t \in [0, 1]$$
 (R)

2 Conversely, assume $\sigma \in \mathcal{M}^+(\mathcal{S}_\Omega)$ concentrated on solutions to (ODE) and s.t.

$$\int_0^1 \int_{\mathcal{S}_{\Omega}} h(t) \left(1 + |v_t(\gamma(t))| + |g_t(\gamma(t))| \right) d\sigma(\gamma, h) dt < \infty.$$

Then (R) defines $t \to \mu_t$ solution of (CE)

^[1] Bredies, Carioni, Fanzon. Communications in PDEs (2022)

Extremal Points - Non-homogeneous case

$$R(\mu, v) := \int_0^1 \int_{\Omega} |v_t(x)|^2 + |g_t(x)|^2 d\mu_t(x) dt + \int_0^1 ||\mu_t||_{\mathcal{M}(\Omega)} dt$$

s.t.
$$\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = g_t \mu_t$$
 (CE)

Theorem [1]

Let $B = \{R \le 1\}$. Then $\operatorname{Ext}(B)$ are curves of measures of the form

$$t \mapsto \mu_t = h(t)\delta_{\gamma(t)}$$

- ▶ $h, \sqrt{h} \in AC^2(0,1), \ \gamma \in C(\{h > 0\}; \Omega), \ \sqrt{h}\gamma \in AC^2([0,1]; \mathbb{R}^d)$
- $ightharpoonup \{h>0\}$ is connected

Proof Idea: Novel Probabilistic Superposition Principle to (CE)

[1] Bredies, Carioni, Fanzon. Communications in PDEs (2022)

Numerical optimization

Dynamic IP: Given $t \mapsto y_t \in H_t$ find $t \mapsto \mu_t \in \mathcal{M}(\Omega)$ s.t.

$$K_t\mu_t=y_t\quad \text{ for all }\quad t\in[0,1]$$

Optimal Transport Regularization: $\min_{\mu,v} L(\mu) + R(\mu,v)$

$$L = \int_0^1 \|K_t \mu_t - y_t\|_{H_t}^2 , \qquad R = \int_0^1 \int_{\Omega} |v_t(x)|^2 dt + \int_0^1 \|\mu_t\|_{\mathcal{M}(\Omega)} dt$$
 s.t. $\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0$

- ▶ Given: $\Omega \subset \mathbb{R}^d$ and $t \mapsto y_t \in H_t$ data
- ▶ Forw. operator: $K : \mathcal{M}(\Omega) \to H_t$
- **Extr. points:** $B = \{R \le 1\}$

$$\operatorname{Ext}(B) = \left\{ t \mapsto \delta_{\gamma(t)} \colon \gamma \in H^1([0,1];\Omega) \right\}$$

Generalized Frank-Wolfe [1]

$$\begin{split} \min_{\mu,v} \; \int_0^1 \|K_t \mu_t - y_t\|_{H_t}^2 + \int_0^1 \int_{\Omega} |v_t(x)|^2 \, dt + \int_0^1 \|\mu_t\|_{\mathcal{M}(\Omega)} \, \, dt \\ \text{s.t.} \; \; \partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0 \end{split}$$

Algorithm: Initialize: $\mu^0=0$ Iterate: Given $\mu^k=\sum_{i=1}^n\lambda_i\delta_{\gamma_i}$

 $\textbf{ 1nsertion Step: } p^k_t = K_*(K\mu^k_t - y_t) \qquad p^k_t \in L^\infty([0,1];C(\Omega))$

$$\max_{w \in \operatorname{Ext}(B)} \langle p^k, w \rangle = \max_{\gamma \in H^1([0,1];\Omega)} \left(\int_0^1 |\dot{\gamma}(t)|^2 dt + 1 \right)^{-1} \int_0^1 p_t^k(\gamma(t)) dt \quad \rightsquigarrow \quad \hat{\gamma}$$

2 Fully-corrective Step: Solve

$$\lambda_i^* \in \operatorname*{arg\,min}_{\lambda_i \geq 0} \ G\left(\mu^k + \lambda_{n+1}\delta_{\hat{\gamma}}\right) \quad \rightsquigarrow \quad \mu^{k+1} := \left(\sum_{i=1}^n \lambda_i^* \delta_{\gamma_i}\right) + \lambda_{n+1}^* \delta_{\hat{\gamma}}$$

^[1] Bredies, Carioni, Fanzon, Romero. Found. of Computational Mathematics (2023)

Convergence Analysis

Theorem [1]

 μ^k sparse iterate from the Generalized Frank-Wolfe Algorithm. Then

$$\mu^k \stackrel{*}{\rightharpoonup} \bar{\mu} , \qquad \bar{\mu} \in \arg \min G, \quad G := L + R$$

General convergence rate is sublinear

(expected for gradient methods)

$$G(\mu^k) - \min G \lesssim \frac{1}{k}$$

Work in Progress: $\bar{\mu}$ sparse + "Source Condition" + "Quadratic Growth"

⇒ linear convergence:

$$G(\mu^k) - \min G \lesssim \frac{1}{2^k}$$

^[1] Bredies, Carioni, Fanzon, Romero. Found. of Computational Mathematics (2023)

Details and additional tweaks

► Solve the curve insertion problem

$$\hat{\gamma} \in \underset{\gamma \in H^1([0,1];\Omega)}{\operatorname{arg\,max}} \left(\int_0^1 |\dot{\gamma}(t)|^2 dt + 1 \right)^{-1} \int_0^1 p_t^k(\gamma(t)) dt$$

via gradient descent with suitable stepsize rule

Theorem [1]

Under suitable regularity assumptions, the gradient descent procedure converges subsequentially to stationary points and strongly in $AC^2([0,1];\Omega)$.

- Multiple starts with suitable initial guess (crossovers, random curves, etc.) to increase chance to obtain global minimizer
- ► Multiple insertion ~ insert all obtained stationary points

[1] Bredies, Carioni, Fanzon, Romero. Found. of Computational Mathematics (2023)

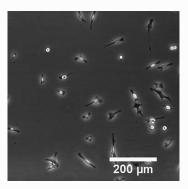
Outline

- Introduction to Inverse Problems & Sparsity
- Algorithm for sparse solution recovery
- 3 Dynamic Inverse Problems
- 4 Application to Dynamic MRI

Motivation: Particle Tracking

Imaging Method

- Stars from ground-based telescope
- ► Microbubbles in blood vessels
- Cell migration



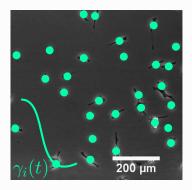
Microscopy image of cells

Image from: Yang, Venkataraman, Styles, et al. Journal of Biomechanics (2016)

Motivation: Particle Tracking

Imaging Method

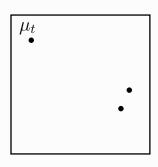
- Stars from ground-based telescope
- ► Microbubbles in blood vessels
- Cell migration



Microscopy image of cells

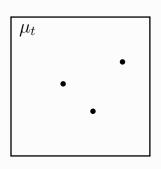
$$\mu_t = \sum_{i=1}^M \, \delta_{\gamma_i(t)}$$

Image from: Yang, Venkataraman, Styles, et al. Journal of Biomechanics (2016)



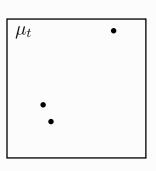
$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

Frame-by-Frame: MRI Data $y_t \rightsquigarrow \text{Image } \mu_t$



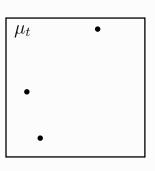
$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

Frame-by-Frame: MRI Data $y_t \rightsquigarrow \text{Image } \mu_t$



$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

Frame-by-Frame: MRI Data $y_t \rightsquigarrow \operatorname{Image} \ \mu_t$



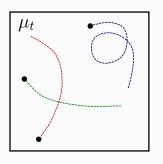
$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

Frame-by-Frame: MRI Data $y_t \sim$ Image μ_t

$$\mu_t$$

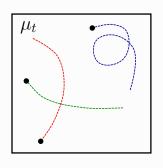
$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

Frame-by-Frame: MRI Data $y_t \rightsquigarrow \text{Image } \mu_t$



$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

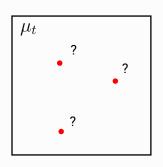
Frame-by-Frame: MRI Data $y_t \sim$ Image $\mu_t \Longrightarrow$ Interpolate Trajectories



$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

Frame-by-Frame: MRI Data $y_t \sim$ Image $\mu_t \Longrightarrow$ Interpolate Trajectories

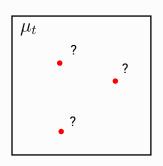
Issue: Motion \implies Low Scan Time \implies Low Data \mathbf{y}_t



$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

Frame-by-Frame: MRI Data $y_t \sim$ Image $\mu_t \Longrightarrow$ Interpolate Trajectories

Issue: Motion \implies Low Scan Time \implies Low Data $\mathbf{y}_t \rightsquigarrow$ Particles?



$$\mu_t = \sum_{i=1}^3 \delta_{\gamma_i(t)}$$

Frame-by-Frame: MRI Data $y_t \sim$ Image $\mu_t \Longrightarrow$ Interpolate Trajectories

Issue: Motion \implies Low Scan Time \implies Low Data $\mathbf{y}_t \rightsquigarrow$ Particles?

Global-in-Time: Full Time-Series $t \mapsto y_t \sim$ Trajectories $t \mapsto \mu_t$

The Dynamic Undersampled MRI problem

Dynamic IP MRI: Given $t \mapsto y_t \in \mathbb{C}^{M_t}$ find $t \mapsto \mu_t \in \mathcal{M}(\Omega)$ s.t.

$$K_t \mu_t = y_t \quad \text{ for all } \quad t \in [0,1]$$

Fourier Transform: For $\mu \in \mathcal{M}(\Omega)$

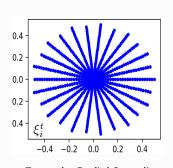
$$\hat{\mu} \colon \mathbb{C} \to \mathbb{C}, \quad \hat{\mu}\left[\xi\right] := \frac{1}{2\pi} \int_{\mathbb{R}^2} e^{i\xi \cdot x} d\mu(x)$$

Sampling Frequencies: M_t points

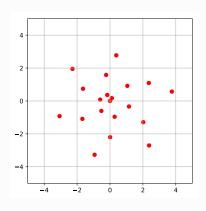
$$\xi_1^t, \dots, \xi_{M_t}^t \in \mathbb{C}$$

Forward operators: linear cont. $K_t : \mathcal{M}(\Omega) \to \mathbb{C}^{M_t}$

$$K_t \mu := \left(\hat{\mu}[\xi_1^t], \dots, \hat{\mu}[\xi_{M_t}^t]\right)$$



Example: Radial Sampling



Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

Sampling Freq: ξ_1, \ldots, ξ_{20}

$$y_t := K\bar{\mu}_t + 20\%$$
 Noise

Page 57

Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

Reconstruction: from data

$$y_t = K \bar{\mu}_t + 20\%$$
 Noise

(Thresholded at 0.05)

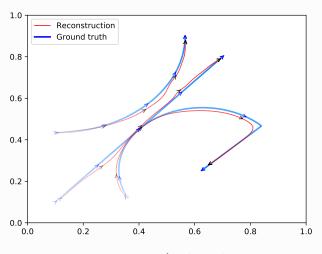
Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

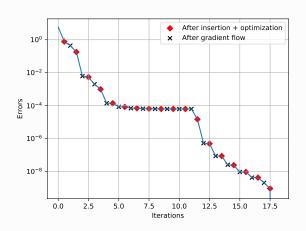
Reconstruction: from data

$$y_t = K\bar{\mu}_t + 20\%$$
 Noise

(No Thresholding)

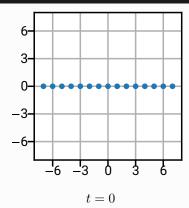


Reconstructed trajectories



Convergence plot: exhibits linear rate

$$\mathsf{Error} = G(\mu^k) - G(\mu^{k+1})$$

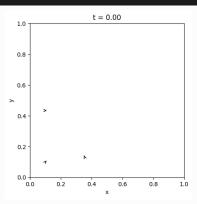


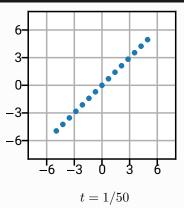
Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

Sampling Freq: $\xi_1^t, \dots, \xi_{15}^t$

$$y_t := K_t \bar{\mu}_t + 20\%$$
 Noise



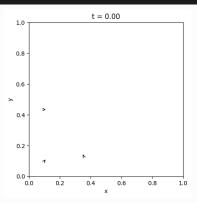


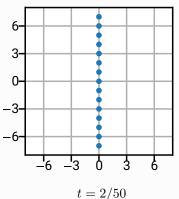
Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

Sampling Freq: $\xi_1^t, \dots, \xi_{15}^t$

$$y_t := K_t \bar{\mu}_t + 20\%$$
 Noise





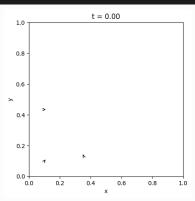
$$t = 2/30$$

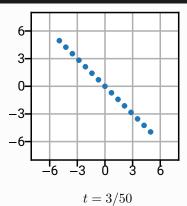
Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

Sampling Freq: $\xi_1^t, \dots, \xi_{15}^t$

$$y_t := K_t \bar{\mu}_t + 20\%$$
 Noise



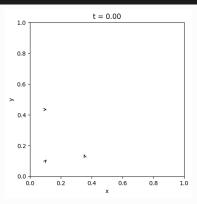


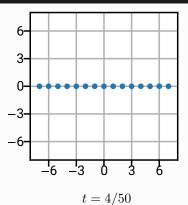
Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

Sampling Freq: $\xi_1^t, \dots, \xi_{15}^t$

$$y_t := K_t \bar{\mu}_t + 20\%$$
 Noise



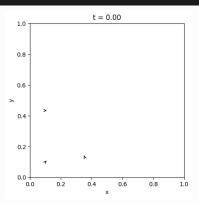


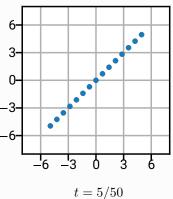
Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

Sampling Freq: $\xi_1^t, \dots, \xi_{15}^t$

$$y_t := K_t \bar{\mu}_t + 20\%$$
 Noise





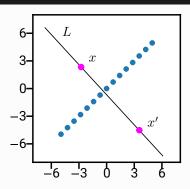
t = 0/0

Sampling Freq: $\xi_1^t, \dots, \xi_{15}^t$

Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

$$y_t := K_t \bar{\mu}_t + 20\%$$
 Noise



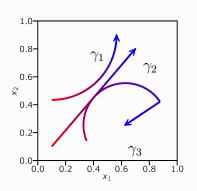
▶ L line orthogonal to the line of sampling frequences at time t

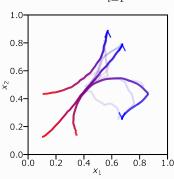
$$x, x' \in L \implies K_t \delta_x = K_t \delta_{x'}$$

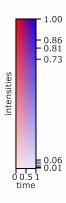
- ▶ Impossible to locate source along *L* at time *t*
- Only way to locate source is to enforce time regularity
- Example showcases need for time regularization

Algorithm: Generalized Frank-Wolfe $\ \ \sim \ \ t \mapsto \mu^k_t = \sum \lambda_i \ \delta_{\gamma_i(t)}$

$$\rightsquigarrow t \mapsto \mu_t^k = \sum_{i=1} \lambda_i \, \delta_{\gamma_i(t)}$$





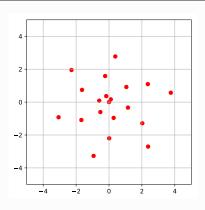


Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} + \delta_{\gamma_3(t)}$$

$$y_t = K_t \bar{\mu}_t + 20\%$$
 Noise

Remarkable reconstructions – considering unfavorable sampling pattern



Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)}$$

Sampling Freq: ξ_1, \ldots, ξ_{20}

$$y_t := K\bar{\mu}_t + 20\%$$
 Noise

 $\textbf{Algorithm: Generalized Frank-Wolfe} \quad \leadsto \quad t \mapsto \mu^k_t = \sum_{i=1}^m \lambda_i \; \delta_{\gamma_i(t)}$

Ground truth: Curve of measures

$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)}$$

Reconstruction: from data

$$y_t = K\bar{\mu}_t + 20\%$$
 Noise

(Thresholded at 0.01)

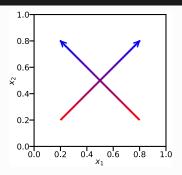
Ground truth: Curve of measures

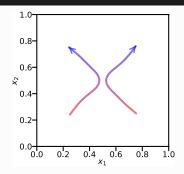
$$\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)}$$

Reconstruction: from data

$$y_t = K\bar{\mu}_t + 20\%$$
 Noise

(No Thresholding)





Ground truth: $\bar{\mu}_t := \delta_{\gamma_1(t)} + \delta_{\gamma_2(t)}$

Reconstruction: $\tilde{\mu}_t := \delta_{\tilde{\gamma}_1(t)} + \delta_{\tilde{\gamma}_2(t)}$

Question: Why do reconstructed trajectories differ from ground truth ones?

Answer: They don't! When regarded as measures they are basically the same

$$dt \otimes \bar{\mu}_t \approx dt \otimes \tilde{\mu}_t$$

Regularizer is Dynamic OT \implies Particles chose shortest path What to do? Maybe could include curvature penalization

Algorithm for computing sparse solutions to

$$\min_{u \in X} \ F(Ku) + R(u)$$

in **Banach** space

Algorithm for computing sparse solutions to

$$\min_{u \in X} F(Ku) + R(u)$$

in Banach space

2 Linear convergence if solution is Sparse + "Source Condition" + "Quadratic Growth"

Algorithm for computing sparse solutions to

$$\min_{u \in X} F(Ku) + R(u)$$

in Banach space

2 Linear convergence if solution is Sparse + "Source Condition" + "Quadratic Growth"

3 General framework for dynamic inverse problems

Algorithm for computing sparse solutions to

$$\min_{u \in X} F(Ku) + R(u)$$

in Banach space

2 Linear convergence if solution is Sparse + "Source Condition" + "Quadratic Growth"

3 General framework for dynamic inverse problems

Application to Dynamic MRI

Thank You!

References

Generalized Frank-Wolfe Algorithm

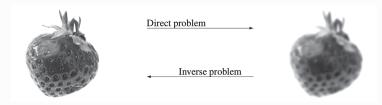
[1] Bredies, Carioni, Fanzon, Walter. Mathematical Programming (2024)

Particles Tracking + Dynamic Inverse Problems

- [2] Fanzon, Bredies. ESAIM: Mathematical Modelling and Numerical Analysis (2020)
- [3] Bredies, Carioni, Fanzon, Romero. Bulletin London Mathematical Society (2021)
- [4] Bredies, Carioni, Fanzon. Communications in PDEs (2022)
- [5] Bredies, Carioni, Fanzon, Romero. Found. of Computational Mathematics (2023)

Supported by Austrian Science Fund (FWF) and Christian Doppler Research Society (CDG) Project PIR27 "Mathematical methods for motion-aware medical imaging"

Infinite dimensional Example: Deblurring



Original Image $u \colon \Omega \to \mathbb{R}$

Blurred image $f \colon \Omega \to \mathbb{R}$

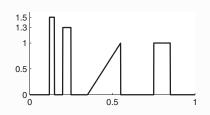
Deblurring can be achieved by deconvolution

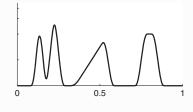
Solve
$$Ku=f$$
,
$$(Ku)(x)=\int_{\mathbb{R}^2}\psi(y)u(x-y)\,dy=(\psi\star u)(x)$$

with ψ suitable kernel (e.g. point-spread function)

 $\blacktriangleright \ K \colon L^2(\Omega) \to L^2(\Omega) \ \text{compact operator} \implies K^{-1} \ \text{unbounded} \ \ \text{(ill-posed)}$

Simpler case: 1D deconvolution





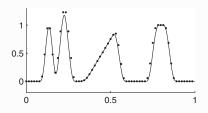
Original signal $\tilde{u} \colon [0,1] \to \mathbb{R}$

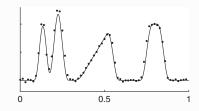
Blurred signal $f = \psi \star \tilde{u}$

- ▶ Goal: Recover \tilde{u} from noisy data $f^{\varepsilon} = f + \varepsilon$
- lacktriangle This means solving the 1D-deconvolution problem: Find u such that

$$\psi \star u = f^\varepsilon$$

Discretize interval [0,1] with n=64 points





Discrete f with n=64 grid points

Add 1% noise to obtain $f^{arepsilon} \in \mathbb{R}^{64}$

- lacktriangle The convolution $\psi \star u$ can be discretized using Riemann sums
- ▶ The discrete inverse problem is therefore: Find $u \in \mathbb{R}^{64}$ such that

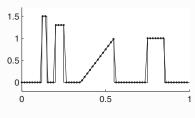
$$Ku = f^{\varepsilon}, \qquad K \in \mathbb{R}^{64 \times 64}$$

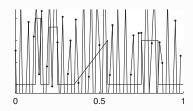
Naive deconvolution

Solve the discrete 1D-deconvolution problem: Find $u \in \mathbb{R}^{64}$ such that

$$Ku = f^{\varepsilon}, \qquad K \in \mathbb{R}^{64 \times 64}$$

- ▶ The naive solution is $u = K^{-1}f^{\varepsilon}$
- ▶ This behaves well when $\varepsilon = 0$ but is terrible when $\varepsilon \neq 0$
- lacktriangle Below the solid line represents the ground truth \tilde{u}
- ► We need regularizer which penalizes oscillations

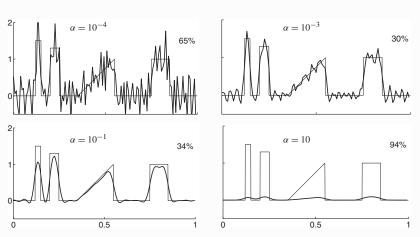




$$u = K^{-1} f^{\varepsilon}$$

Regularize the discrete inverse problem with the ℓ_2 norm:

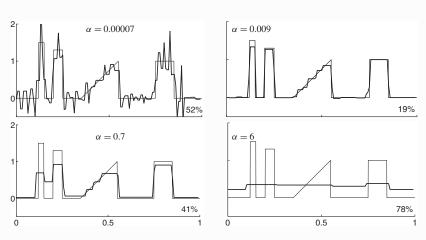
$$\min_{u \in L^{2}(0,1)} \|Ku - f^{\varepsilon}\|_{L^{2}(0,1)}^{2} + \alpha \|u'\|_{L^{2}(0,1)}^{2}$$



Best is $\alpha = 10^{-1}$. Notice the smoothing effect of ℓ_2 Smoothness is not always desirable (e.g. if u is image with sharp edges)

Regularize inverse problem with the Total Variation (BV) semi-norm:

$$\min_{u \in L^{1}(0,1)} \|Ku - f^{\varepsilon}\|_{L^{2}(0,1)}^{2} + \alpha \operatorname{TV}(u)$$



Best is $\alpha = 0.009$. Notice the sparsifying effect of TV (the jumps)

Elementary example: Matrix inversion

Given $f \in \mathbb{R}^m$ and a matrix $K \in \mathbb{R}^{m \times n}$ we want to find $u \in \mathbb{R}^n$ such that

$$Ku = f + \varepsilon$$
 (P)

What could go wrong:

- **1** m > n ⇒ Range $(K) \neq \mathbb{R}^m$ ⇒ No solution when $f + \varepsilon \notin \text{Range}(K)$
- **2** $m < n \implies \ker(K) \neq \{0\} \implies$ There are several solutions
- 3 m=n and K^{-1} exists: However condition number $\kappa=\lambda_1/\lambda_n$ could be large. Then K is almost singular and

$$\left\|K^{-1}\varepsilon\right\|\approx\frac{\|\varepsilon\|}{\lambda_n}\qquad\Longrightarrow\qquad \text{Naive reconstruction is dominated by noise}$$

$$\tilde{u}=u+K^{-1}\varepsilon\qquad\Longrightarrow\qquad \text{instability}$$

Therefore (P) is in general **ill-posed**

Least-squares solution

Given $f \in \mathbb{R}^m$ and a matrix $K \in \mathbb{R}^{m \times n}$ we want to find $u \in \mathbb{R}^n$ such that

$$Ku = f$$
 (P)

► (P) might not have solution. Find approximate solution by **least-squares**

$$\min_{u \in \mathbb{R}^n} \|Ku - f\|_2^2 \tag{P'}$$

with $\|\cdot\|_2$ the Euclidean norm

► (P') always has the explicit solution (seen by differentiation)

$$\tilde{u} = (K^T K)^{-1} K^T f$$

- ▶ **Problem 1:** Solution to (P') **not unique** (if *K* is not injective)
- ▶ **Problem 2:** Solution might be **instable** (depends on eigenvalues of K^TK)

Variational Regularization

Given $f \in \mathbb{R}^m$ and a matrix $K \in \mathbb{R}^{m \times n}$ we want to find $u \in \mathbb{R}^n$ such that

$$Ku = f$$
 (P)

- Question: Non uniqueness and / or instability. What to do?
- ► Answer: Replace (P) with the regularized least-squares problem

$$\min_{u \in \mathbb{R}^n} \|Ku - f\|_2^2 + \alpha R(u)$$

with $R \colon \mathbb{R}^n \to [0, +\infty]$ regularizer and $\alpha > 0$ to be chosen

- R promotes stability (if chosen properly)
- **2** R selects only some solutions (the ones for which R(u) is small)

First Example: ℓ_2 regularization

Regularize using the ℓ^2 norm:

$$\min_{u \in \mathbb{R}^n} \|Ku - f\|_2^2 + \alpha \|u\|_2^2$$
 (P)

- ► (P) is known as Ridge-regression in Statistics
- ► (P) always has the explicit solution (seen by differentiation)

$$\tilde{u} = (K^T K + \alpha I)^{-1} K^T f$$

- ▶ (P) more stable because eigenvalues of $K^TK + \alpha I$ are away from zero
- $ightharpoonup \ell_2$ norm **shrinks components** \implies mitigates effects of noise

Second Example: ℓ_1 regularization

Regularize using the ℓ^1 norm

$$\min_{u \in \mathbb{R}^n} \|Ku - f\|_2^2 + \alpha \|u\|_1 \tag{P}$$

- ► (P) is known as LASSO-regression is statistics
- ► (P) always admits a solution (no explicit formula available)
- \blacktriangleright ℓ_1 norm automatically sets some components to zero \rightsquigarrow sparsity

$$\tilde{u} = (0, 0, 0, *, 0, 0, \dots, 0, *, 0, 0, 0, 0)$$

Desirable when n is large (many parameters), as it simplifies the model

Models like GPT-5 have 10s of trillions of parameters

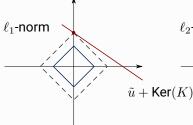
Why does ℓ_1 set components to zero?

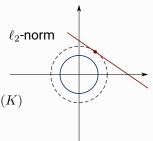
$$\min_{u \in \mathbb{R}^n} \|Ku - f\|_2^2 + \alpha \|u\|_1$$

$$\lim_{\|u\|_1 \le s} \|Ku - f\|_2^2$$

$$\min_{u \in \mathbb{R}^n} \|Ku - f\|_2^2 + \alpha \|u\|_2^2$$

$$\lim_{\|u\|_2 \le s} \|Ku - f\|_2^2$$





Extremal points are different

 ℓ_1 and ℓ_2 select different solutions

Extremal points of regularizer describe features of sparse solutions

Example: Portfolio Optimization

Portfolio: Vector

$$P = (w_1, \dots, w_d)$$

 $w_i =$ capital to invest in asset i

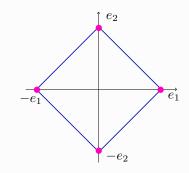
Sparsity: Invest in few assets

$$P = (0, 0, \mathbf{w_i}, 0, 0, \dots, 0, 0, \mathbf{w_d}) \implies \text{lower managing fees}$$

Banach space: $X = \mathbb{R}^d$

Regularizer:
$$||x||_1 := \sum_{i=1}^d |x_i|$$

$$\operatorname{Ext}(B) = \{ \pm e_i \}_{i=1}^d$$



Extremal Points

$$R(\mu, v) := \int_{0}^{1} \int_{\Omega} |v_{t}(x)|^{2} d\mu_{t}(x) dt + \int_{0}^{1} \|\mu_{t}\|_{\mathcal{M}(\Omega)} dt$$
s.t. $\partial_{t} \mu_{t} + \operatorname{div}(v_{t} \mu_{t}) = 0$ (CE)

[3] Bredies, Carioni, Fanzon, Romero. Bulletin London Mathematical Society (2021)

Extremal Points

$$R(\mu, v) := \int_0^1 \int_{\Omega} |v_t(x)|^2 d\mu_t(x) dt + \int_0^1 \|\mu_t\|_{\mathcal{M}(\Omega)} dt$$
s.t. $\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0$ (CE)

Theorem [3]

Let $B = \{R \le 1\}$. Then $\operatorname{Ext}(B)$ are measures $t \mapsto \mu_t$ supported on Sobolev Curves

$$t \mapsto \mu_t = \delta_{\gamma(t)}, \qquad \gamma \in H^1([0,1]; \mathbb{R}^2)$$

[3] Bredies, Carioni, Fanzon, Romero. Bulletin London Mathematical Society (2021)

Extremal Points

$$R(\mu, v) := \int_{0}^{1} \int_{\Omega} |v_{t}(x)|^{2} d\mu_{t}(x) dt + \int_{0}^{1} \|\mu_{t}\|_{\mathcal{M}(\Omega)} dt$$
s.t. $\partial_{t} \mu_{t} + \operatorname{div}(v_{t} \mu_{t}) = 0$ (CE)

Theorem [3]

Let $B = \{R \le 1\}$. Then $\operatorname{Ext}(B)$ are measures $t \mapsto \mu_t$ supported on Sobolev Curves

$$t \mapsto \mu_t = \delta_{\gamma(t)}, \qquad \gamma \in H^1([0,1]; \mathbb{R}^2)$$

Proof Idea: Probabilistic Superposition Principle for measure solutions to

$$\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0 \qquad (= g_t \mu_t)$$

[3] Bredies, Carioni, Fanzon, Romero. Bulletin London Mathematical Society (2021)