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Summary

» Review: Frank-Wolfe algorithms and generalized conditional gradient
methods (GCG) in the space of measures

» GCG for arbitrary convex regularizers: sparsity and convergence rates
» Application: Dynamic inverse problems with Optimal Transport regularization

» Numerical simulations
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Frank-Wolfe and Generalized Conditional Gradient methods

Classical Frank-Wolfe-type algorithms aim at solving

min F(x)

where C is a convex set in RV and F is a convex function (regular enough)
Given an iterate x” one computes the next one x"™! in two steps:
> Insertion step: Solve the linearized problem in x" as
X" € argmin - (VF(x"), x)
» Coefficient optimization step: Obtain x™*1 by interpolating
XML = x4 s* (%7 — x")

for a suitably chosen s*
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» The convergence rate is typically sublinear and it can be improved to linear
under strong convexity assumptions on F and other interpolation steps ! 2.

» The algorithm has been generalized to infinite dimensional spaces
(Generalized Conditional Gradient methods) 3

» (lassical algorithms in infinite dimensional optimization have been shown to
be particular instances of GCG 4 >

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Jaggi, M. (2013)

20n the Global Linear Convergence of Frank-Wolfe Optimization Variants Lacoste-Julien, S.
and Jaggi, M. (2015)

Approximate methods in optimization problems Demyanov, V. F. and Rubinov A. M. (1970)

4An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
Daubechies, I., Defrise, M. and De Mol, C. (2004)

5Iterated hard shrinkage for minimization problems with sparsity constraints Bredies, K.
Lorenz, D. (2006)
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GCG in the space of measures
GCG are adapted to solve

uen/:/Itr(]Q) () uenxz/llr(]ﬂ) (Au) + llelmcay

with Q domain of RY, A: M(Q) — Y linear and weak*-to-strong continuous,
Y Hilbert space, F : Y — [0, 00) strictly convex and smooth

Given an iterate u” one computes the next one u"*! in two steps:
> Insertion step: Solve the partially linearized problem in u" as

u" € argminHuHM(mSC (AVF(AU"), u) + [|ul| me)
» Coefficient optimization step: u"*! is obtained interpolating
un+1 —y" + S*(E” o un)

for a suitably chosen s*

Inverse problems in the space of measures K. Bredies, H.K. Pikkarainen. ESAIM:COCV (2013)
The Alternating Descent Conditional Gradient Method for Sparse Inverse Problems N. Boyd,
G. Schiebinger, B. Recht. SIAM Journal on Optimization (2017)
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Key observation: iterate u” can be constructed as a combination of Dirac deltas

K
u" = E Ci5x,."
i=1

for suitable ¢; € R and x/ € Q

This is a consequence of the next lemma. Define the dual variable at n-th
iteration as

P := —A,VF(Au") € C(Q)

A solution to

min  —{(u, P") + ||u|| m¢a
i =P+ e

is given by cdx for some ¢ € R and X € arg max,q |P"(x)|
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The next iterate 4™ is obtained by adding to u” a new Dirac delta d; with

X € arg max |P"(x)|
xEN

and adjusting coefficients

Theorem (Bredies, Pikkarainen (2013))

u" converges weakly* (up to subsequences) to a minimizer of G. Moreover the
rate of convergence is sublinear, i.e.
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Remarks

» The GCG method for total variation regularization of measures takes
advantage of the sparsity of the problem (iterates are Dirac deltas)

» It allows to design a grid-free algorithm that does not need an a priori
discretization of the domain - we only need to find the max of P"

» The coefficient optimization step can be improved by optimizing the
coefficients (cy, ..., cky1) of the full linear combination

k

E Cidxr + Cht10xp,
i=1

with respect the energy G:

K
* * .
(cfy.- . Chy1) € argmin g G E Cibxp + C410x7
i=1

(This improved coefficient optimization step is needed for proving linear
convergence. From now on we always consider this variant)
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Linear convergence in the space of measures

Is it possible to improve the sublinear convergence rate to linear? )

Define the dual variable of a minimizer 7 of G

P=—A.VF(A) € C(Q)

We make the following set of assumptions © 7:

» Strong convexity of F, uniqueness and sparsity of the minimizer
i) F is strongly convex
i) There exists {x;}; C Q such that argmax,|P(x)| = {x};
(iii) The set {Adx }; C Y is linearly independent in Y
(i) + (ii) + (iii) imply that the minimizer & € M(Q) is unique and sparse, i.e.

0= cdy (0.1)

6Linear convergence of generalized conditional gradient methods in the space of measures
K. Pieper, D. Walter. ESAIM: COCV (2021)

7On the linear convergence rates of exchange and continuous methods for total variation
minimization A. Flinth, F. De Gournay, P. Welss Math. Prog (2021)
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> Second order condition on the dual certificate: P is C? and there exists
6 > 0 such that

—sign(P(x;))(&, V2P(x,)€) > 0¢|> forall i
» Higher regularity of A: There exists C > 0 such that around x;

IA(6x — 6x)lly < Clx — x;] for all i

Strong convexity of fidelity + Uniqueness and sparsity of the minimizer +
Second order condition on the dual variable

Theorem (Pieper, Walter (2020))

Under the previous assumptions the rate of convergence of u" is linear, i.e. there
exists C >0, ( € [1/2,1) s.t.

G(u") — muin G(u) < C¢"
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Generalized conditional gradient methods for convex
regularizers

Goal: generalize the previous algorithm and convergence results to Banach spaces |

meln G(u) = mln F(Au) + R(u)

X separable Banach space with predual X,, F: Y — R with Y Hilbert space
R : X — [0, 00] convex, 1-homogeneous and coercive

The structure of the algorithm is unchanged
> Insertion step: Solve the partially linearized problem in u" as
u" € argming <y — (P",u) + R(v)

with P" := —A,VF(Au") € X, dual variable
» Coefficient optimization step: suitable, we see it later

Asymptotic linear convergence of Fully-Corrective Generalized Conditional Gradient methods
K. Bredies, M. Carioni, S. Fanzon, D. Walter. Preprint (2021)
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Question: How does sparsity enter the algorithm design?

Define the unit ball of the regularizer B := {u € X : R(u) < 1}. A solution of

in —(u,P") + R
i, (u, P") + R(u)

is given by cv for some ¢ € R and v € Ext(B)

Ext(A) is the set of extremal points of A: u € A such that

u=An+(1=XNuw for A€(0,1) = uv=u=uw

P2 p
qg=13p1+ 3ps
p3 Pe
Pa Ps
In the insertion step we add an extremal point of B ~» Sparse iterates )
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The algorithm
Define
B={ueX:R(u)<1}

The iterates are then of the form
u" = Z cuf
i

where ¢; € R and u?” € Ext(B). We compute u"*1 by solving

» Insertion step: Find a solution to
u" e argmin,cg,(5) — (P", u)

» Coefficients optimization step: solve the problem

K
* * H n o5n
(¢ Chy1) € argmin, g G (E Gul' + 1l )
i=1

. . p -
Next iterate is u™ := "7 | cful + ¢, 0"
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Worst-case convergence rate

Theorem (Bredies, Carioni, Fanzon, Walter (2021))

The iterate u” weakly* converges (up to subsequences) to a minimizer of G at a
sublinear rate, i.e.

Remarks

» We recover the GCG for the minimization of the total variation noticing that

Ext({u: |lullm < 1}) = {£dx: x € Q}
» We cover further coercive regularizers: dynamic optimal transport energies,
group sparsity regularizers, PDE constrained inverse problems

» Representer theorems show that extremal points of the regularizer are the
natural atoms constituting sparse solutions &

8Sparsity of solutions for variational inverse problems with finite dimensional data
K. Bredies, M. Carioni. Calc var (2020)
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Linear convergence

Goal: Find suitable assumptions to prove linear convergence

Let & be a minimizer of G. Define the associated dual variable

P := —-A,VF(AQ) € X,
Assumptions:

> Strong convexity of F, uniqueness and sparsity of the minimizer

(i) F is strongly convex
(ii) There exists {u;}; C Ext(B) s.t. argmaxvem*<F_’, v) ={u}i
(iii) The set {Au;}; C Y is linearly independent in Y
(i) + (ii) + (iii) imply that the minimizer & € X is unique and sparse, with

u= ZC,‘U,‘ (0.2)
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There exists a function g : Ext(B) x Ext(B) — [0, 00) such that

» Second order condition on the dual variable: there exists a constant
n > 0 such that around u;

1—(P,u) >ng(u,u;)®> for every i
» Higher regularity of A: there exists C > 0 such that around u;

lA(u — ui)|ly < Cg(u,u;) for every i

Theorem (Bredies, Carioni, Fanzon, Walter (2021))

Under the previous assumptions the rate of convergence of u" is linear, i.e. there
exists C >0, ( € [1/2,1) s.t.

G(u") — min G(u) < C¢"
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Lifting to the space of measures

Strategy to prove linear convergence: lift the problem (and algorithm) to the
space of measures on extremal points and prove convergence in the lifted space J

——%
Denote W := Ext(B) endowed with the metric that metrizes the weak*
convergence. We consider positive measures on W, i.e.

ME(W)

Definition

We say that a measure p € M (W) represents u € X if

(pyu) = /W<p, V) du(v) Vpe X,

Alternatively, u is said to be the weak barycenter of u

Example: the measure J, represents u for all u € W
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As a consequence of Choquet’s theorem we have:

Proposition (Bredies, Carioni, Fanzon, Walter)
> For every i € MT(W) we have

R(u) < [lullper(wy

where u € dom(R) is the weak barycenter of u

> For every u € dom(R) there exists u € M™(W) concentrated on Ext(B)
that represents u and such that

R(u) = [l ame(wy

This proposition suggests to define the lifted variational problem

1l S0 = ey P F o

where A : Mt (W) — Y is the lift of A: X — Y defined by the relation

~

(A, y)y = /W(Av,y) du(v) Vyey
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It turns out that the original problem

. — i p
min G(u) = min F(Au) + R(u) (P)

and the lifted one
mi G w)= mi F AA,u + || LP
HEMlJrn(W) ( ueMLn(W) (Au) + | ||M+(W) &=

are equivalent

Theorem (Bredies, Carioni, Fanzon, Walter)

> Ifu € X is a solution of (P), then there exists i € M™ (W) that represents
T and minimizes (LP)

> Ifu e M*(W) is a solution of (LP), then the weak barycenter of i
minimizes (P)

Idea: We can construct a GCG algorithm for (LP) and obtain a GCG algorithm
for (P) by taking the weak barycenters:

M:ZCI'(SU,'EM+(W) — UZZC,'U,'EX

= it is enough to prove linear convergence for the lifted problem
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Dynamic variational inverse problems

Data: time dependent curve t — f; € H; with {H;}; family of Hilbert spaces
Unknown: curve of measures t — p, € M(), with Q C R? bounded

Forward operators: linear continuous operators K;": M(Q) — H;

Inverse Problem: Given t — f, € Hy, find a curve t — p; € M(Q) s.t.

Kip: =1, forae. te(0,1) (P)

Assumptions: very weak time-regularity for {H;}; and K}

Goal: Regularize (P) with an Optimal Transport energy acting on the measure p;
This will enforce time regularity of the reconstructions J

An optimal transport approach for solving dynamic inverse problems in spaces of measures.
K. Bredies, S. Fanzon. ESAIM: M2AN (2020)
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Optimal Transport - Static Formulation

Q C R? bounded domain, po, p1 € P(Q), T: Q — Q measurable displacement

Goal: move pg to p; in the cheapest way, with cost of moving mass from x to y
c(x,y) = |x —y|?

Optimal Transport: a transport plan T solving

T € argmin {/ | T(x) = x[?dpo(x): T:Q—Q, Tupo :pl}
Q
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Optimal Transport - Dynamic Formulation

Idea: introduce a time variable t € [0, 1] and consider the evolution of p;
» time dependent probability measures
t— pr € P(Q) for te]0,1]
» velocity field advecting p;
ve(x): [0,1] x Q — R?

» (p¢, v¢) solves the continuity equation with initial conditions

{8tpt +div(peve) = 0

. . (CE-IC)
Initial data po, final data p;

Vi/2
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Connection and Advantages

Theorem (Benamou-Brenier '00)

(min) / /|vt x)|? pe(x)dx dt = mln /|T ) — x| po(x) dx
solvin/;h(thEl T#Po =p1

Advantages of Dynamic Formulation:

@ By introducing the momentum m; := p;v; we have

/01‘/Q|vt(x)zpt(x)dxdl“—/o1 an;tt(())(())Fdxdt

which is convex in (p;, m;). The continuity equation becomes linear

5t,0t + div my = 0

® we know the full trajectory p; and can recover the velocity field v; from m;
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Optimal transport regularization

Define time-space domain X = (0,1) x Q and measures M = M(X) x M(X;R9)

We propose to regularize (P) via minimization in (p, m) € M of
1t >
Ga,p(p, m) := 2/, IKepe — fell, dt + Ja5(p, m)

where the regularizer is

Jop(p; m) =

JWAT;

Optimal Transport Regularizer

dP (t,x) +8 HP”M(X
———

N

TV Regularizer

sit. Oipr+divm; =0  (Continuity Equation - No 1C)

Theorem (Bredies, Fanzon '20)

(With assumptions on fy, K, H;) The functional G, s admits a solution
p=dt® ps, m=vp with v: X — R? measurable velocity field and
t — pr € MT(Q) narrowly continuous. Moreover we have stability
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Towards a numerical algorithm: Sparsity

Definition: An atom in M is a pair (p,, m,) with v € H*([0, 1]; Q),

-1
. B (.
Py = ay dt ® 0y(y), My :=Y(t)py, ay:= (E/o |Y(t)]? dt + a

Theorem (Bredies, Carioni, Fanzon, Romero '20)

Consider the sublevel set C, g := {Jo,3 < 1}. The extremal points of C, g are

Ext(Cq 5) = { atoms } U (0,0)
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Generalized Conditional Gradient Method

Goal: Find numerical solutions to the minimization problem for G, g by GCG

Key Step: Find a descent direction around (, i) by solving

1
min — [ (powde, wim—K(Kip - )€ C@  (©0)
(p,m)€Ca.p 0

Theorem (SF, Bredies, Carioni, Romero '20)

Problem (D) admits a solution which is either an atom or (0,0).
Therefore (D) can be casted in H'([0,1]; ), and is hence numerically feasible
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Numerical Algorithm

Let t — f, be given data. Initialize p° := 0

O Insertion: Given p" = Z,N=1 Ci pry;r set Wy = —K(K{ p? — f;) and find

1
~* € arg min —ay/ we(y(t)) dt, P2 = o™ 4 ey oo
~yEH! 0

® Coefficients Optimization: Solve the quadratic problem

N+1

(Cf)i € arg>n(1)in Ga,B(Pn+l/2a mn+1/2)’ ptt = Z ¢’ py;
= i=1

Theorem (Bredies, Carioni, Fanzon, Romero '20)

The sequence (p”, m") in Algorithm converges weak* to a minimizer of G, g

The convergence rate is of order O(1/n)
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Application: Undersampled Fourier Measurements

> Q:=[0,1]? image frame, t — o, € MT(R?) frequencies sampling measure

» Fourier transform §: M(Q) — C>(R?%; C)
> H,:= L2 (R?C) and K;: M(Q2) — H, defined by K;p := Fp

Note. K} corresponds to the Fourier transform undersampled according to o

Time-discrete sampling: Fix T + 1 times samples, t; :=i/T for i =0, ...

> At each time t; sample n; € N frequencies {S;1,..., S} C R?
> Define t — oy so that oy, = ;" ; ds,,. In this case H, = C" and

nj

Kip= (/ exp(—2mix - Sj k) dp(x)) eCnm
R2

k=1
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Experiment: Dynamic Spikes Tracking

» T =50, nj = 15 freq. sampled on lines L; through the origin with angle "T’T

» Ground Truth: fe = d5,(¢) + 0r,(¢) + 05(¢) as depicted (color=position in time)

» Synthetic Data: f; := K} ps, +60% Gaussian Noise

> Data Visualization: By plotting the initial dual variable wg := K., € C(Q)

1.0 1.0
[ ]
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[ ]
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[ ]
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Ground Truth
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Reconstructions

1.0

a=p=0.1
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» Low reg. «, 8 = 0.1 ~ many low-energy artefacts around main trajectories

» High reg. o, = 0.3 ~ improved reconstruction

Note! At each t; the inverse problem K¢ p = £, is heavily ill-posed: Indeed
K:dz = Kiidz,ss1 for A€ R, S L L; ~ Static methods cannot resolve location of %
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Convergence Plot
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Note! Proven sublinear rate of convergence but empirical linear rate

As expected, higher regularization results in faster convergence

Silvio Fanzon Gi i Conditi Gradient Method: 18 February 2022 30/31




References

@ Linear convergence of conditional gradient methods

» Asymptotic linear convergence of Fully-Corrective Generalized Conditional
Gradient methods
Preprint (2021), with K. Bredies, M. Carioni, D. Walter

® OT Regularization of Dynamic Inverse Problems
» An optimal transport approach for solving dynamic inverse problems in spaces

of measures
ESAIM: M2AN (2020), with K. Bredies

» A generalized conditional gradient method for dynamic inverse problems with
optimal transport regularization
Found. of Comp. Math. (2021), with K. Bredies, M. Carioni, F. Romero

© Extremal Points of Transport Energies

» On the extremal points of the ball of the Benamou-Brenier energy
Bull. London Math. Soc. (2021), with K. Bredies, M. Carioni, F. Romero

» A superposition principle for the inhomogeneous continuity equation with
Hellinger-Kantorovich-regular coefficients
Comm. in PDE (2022), with K. Bredies, M. Carioni

Silvio Fanzon G i Conditi Gradi hod 18 February 2022 31/31




