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Summary

I Review: Frank-Wolfe algorithms and generalized conditional gradient
methods (GCG) in the space of measures

I GCG for arbitrary convex regularizers: sparsity and convergence rates

I Application: Dynamic inverse problems with Optimal Transport regularization

I Numerical simulations
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Frank-Wolfe and Generalized Conditional Gradient methods

Classical Frank-Wolfe-type algorithms aim at solving

min
x2C

F (x)

where C is a convex set in RN and F is a convex function (regular enough)

Given an iterate xn one computes the next one xn+1 in two steps:

I Insertion step: Solve the linearized problem in xn as

exn 2 argminx2C hrF (xn), xi

I Coe�cient optimization step: Obtain xn+1 by interpolating

xn+1 = xn + s⇤(exn � xn)

for a suitably chosen s⇤
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I The convergence rate is typically sublinear and it can be improved to linear
under strong convexity assumptions on F and other interpolation steps 1 2.

I The algorithm has been generalized to infinite dimensional spaces
(Generalized Conditional Gradient methods) 3

I Classical algorithms in infinite dimensional optimization have been shown to
be particular instances of GCG 4 5

1Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Jaggi, M. (2013)
2On the Global Linear Convergence of Frank-Wolfe Optimization Variants Lacoste-Julien, S.

and Jaggi, M. (2015)
3Approximate methods in optimization problems Demyanov, V. F. and Rubinov A. M. (1970)
4An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

Daubechies, I., Defrise, M. and De Mol, C. (2004)
5Iterated hard shrinkage for minimization problems with sparsity constraints Bredies, K.

Lorenz, D. (2006)
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GCG in the space of measures

GCG are adapted to solve

min
u2M(⌦)

G (u) = min
u2M(⌦)

F (Au) + kukM(⌦)

with ⌦ domain of Rd , A : M(⌦) ! Y linear and weak*-to-strong continuous,
Y Hilbert space, F : Y ! [0,1) strictly convex and smooth

Given an iterate un one computes the next one un+1 in two steps:
I Insertion step: Solve the partially linearized problem in un as

eun 2 argminkukM(⌦)C hA⇤rF (Aun), ui+ kukM(⌦)

I Coe�cient optimization step: un+1 is obtained interpolating

un+1 = un + s⇤(eun � un)

for a suitably chosen s⇤

Inverse problems in the space of measures K. Bredies, H.K. Pikkarainen. ESAIM:COCV (2013)
The Alternating Descent Conditional Gradient Method for Sparse Inverse Problems N. Boyd,
G. Schiebinger, B. Recht. SIAM Journal on Optimization (2017)
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Key observation: iterate un can be constructed as a combination of Dirac deltas

un =
kX

i=1

ci�xn
i

for suitable ci 2 R and xni 2 ⌦

This is a consequence of the next lemma. Define the dual variable at n-th
iteration as

Pn := �A⇤rF (Aun) 2 C (⌦)

Key Lemma

A solution to
min

kukM(⌦)C
�hu,Pni+ kukM(⌦)

is given by c�x̂ for some c 2 R and x̂ 2 argmaxx2⌦ |Pn(x)|
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The next iterate un+1 is obtained by adding to un a new Dirac delta �x̂ with

x̂ 2 argmax
x2⌦

|Pn(x)|

and adjusting coe�cients

Theorem (Bredies, Pikkarainen (2013))

un converges weakly* (up to subsequences) to a minimizer of G . Moreover the
rate of convergence is sublinear, i.e.

G (un)�min
u

G (u)  C

n
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Remarks

I The GCG method for total variation regularization of measures takes
advantage of the sparsity of the problem (iterates are Dirac deltas)

I It allows to design a grid-free algorithm that does not need an a priori
discretization of the domain - we only need to find the max of Pn

I The coe�cient optimization step can be improved by optimizing the
coe�cients (c1, . . . , ck+1) of the full linear combination

kX

i=1

ci�xn
i
+ ck+1�xn

k+1

with respect the energy G :

(c⇤1 , . . . , c
⇤
k+1) 2 argminci2R G

 
kX

i=1

ci�xn
i
+ ck+1�xn

k+1

!

(This improved coe�cient optimization step is needed for proving linear
convergence. From now on we always consider this variant)
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Linear convergence in the space of measures

Is it possible to improve the sublinear convergence rate to linear?

Define the dual variable of a minimizer ū of G

P̄ = �A⇤rF (Aū) 2 C (⌦)

We make the following set of assumptions 6 7:

I Strong convexity of F , uniqueness and sparsity of the minimizer

(i) F is strongly convex

(ii) There exists {xi}i ⇢ ⌦ such that argmaxx |P̄(x)| = {xi}i
(iii) The set {A�xi}i ⇢ Y is linearly independent in Y

(i) + (ii) + (iii) imply that the minimizer ū 2 M(⌦) is unique and sparse, i.e.

ū =
X

i

ci�xi (0.1)

6Linear convergence of generalized conditional gradient methods in the space of measures
K. Pieper, D. Walter. ESAIM: COCV (2021)

7On the linear convergence rates of exchange and continuous methods for total variation
minimization A. Flinth, F. De Gournay, P. Weiss. Math. Prog. (2021)
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I Second order condition on the dual certificate: P̄ is C 2 and there exists
✓ > 0 such that

�sign(P̄(xi ))h⇠,r2P̄(xi )⇠i � ✓|⇠|2 for all i

I Higher regularity of A: There exists C > 0 such that around xi

kA(�x � �xi )kY  C |x � xi | for all i

Strong convexity of fidelity + Uniqueness and sparsity of the minimizer +
Second order condition on the dual variable

Theorem (Pieper, Walter (2020))

Under the previous assumptions the rate of convergence of un is linear, i.e. there
exists C > 0, ⇣ 2 [1/2, 1) s.t.

G (un)�min
u

G (u)  C⇣n
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Generalized conditional gradient methods for convex

regularizers

Goal: generalize the previous algorithm and convergence results to Banach spaces

min
u2X

G (u) = min
u2X

F (Au) + R(u)

X separable Banach space with predual X⇤, F : Y ! R with Y Hilbert space
R : X ! [0,1] convex, 1-homogeneous and coercive

The structure of the algorithm is unchanged

I Insertion step: Solve the partially linearized problem in un as

eun 2 argminR(u)M � hPn, ui+ R(u)

with Pn := �A⇤rF (Aun) 2 X⇤ dual variable

I Coe�cient optimization step: suitable, we see it later

Asymptotic linear convergence of Fully-Corrective Generalized Conditional Gradient methods
K. Bredies, M. Carioni, S. Fanzon, D. Walter. Preprint (2021)
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Question: How does sparsity enter the algorithm design?

Key Lemma

Define the unit ball of the regularizer B := {u 2 X : R(u)  1}. A solution of

min
R(u)M

�hu,Pni+ R(u)

is given by cv for some c 2 R and v 2 Ext(B)

Ext(A) is the set of extremal points of A: u 2 A such that

u = �u1 + (1� �)u2 for � 2 (0, 1) ) u = u1 = u2

p1p2

p3

p4 p5

p6A
q = 1

2p1 +
1
2p6

In the insertion step we add an extremal point of B ; Sparse iterates
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The algorithm

Define

B = {u 2 X : R(u)  1}

The iterates are then of the form

un =
X

i

ciu
n
i

where ci 2 R and uni 2 Ext(B). We compute un+1 by solving

I Insertion step: Find a solution to

eun 2 argminu2Ext(B) � hPn, ui

I Coe�cients optimization step: solve the problem

(c⇤1 , . . . , c
⇤
k+1) 2 argminci2R+

G

 
kX

i=1

ciu
n
i + ck+1eun

!

Next iterate is un+1 :=
Pk

i=1 c
⇤
i u

n
i + c⇤k+1eun
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Worst-case convergence rate

Theorem (Bredies, Carioni, Fanzon, Walter (2021))

The iterate un weakly* converges (up to subsequences) to a minimizer of G at a
sublinear rate, i.e.

G (un)�min
u

G (u)  C

n

Remarks

I We recover the GCG for the minimization of the total variation noticing that

Ext({u : kukM  1}) = {±�x : x 2 ⌦}

I We cover further coercive regularizers: dynamic optimal transport energies,
group sparsity regularizers, PDE constrained inverse problems

I Representer theorems show that extremal points of the regularizer are the
natural atoms constituting sparse solutions 8

8Sparsity of solutions for variational inverse problems with finite dimensional data
K. Bredies, M. Carioni. Calc var (2020)
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Linear convergence

Goal: Find suitable assumptions to prove linear convergence

Let ū be a minimizer of G . Define the associated dual variable

P̄ := �A⇤rF (Aū) 2 X⇤

Assumptions:

I Strong convexity of F , uniqueness and sparsity of the minimizer

(i) F is strongly convex

(ii) There exists {ui}i ⇢ Ext(B) s.t. argmaxv2Ext(B)
⇤hP̄ , vi = {ui}i

(iii) The set {Aui}i ⇢ Y is linearly independent in Y

(i) + (ii) + (iii) imply that the minimizer ū 2 X is unique and sparse, with

ū =
X

i

ciui (0.2)
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There exists a function g : Ext(B)⇥ Ext(B) ! [0,1) such that

I Second order condition on the dual variable: there exists a constant
⌘ > 0 such that around ui

1� hP̄ , ui � ⌘g(u, ui )
2 for every i

I Higher regularity of A: there exists C > 0 such that around ui

kA(u � ui )kY  Cg(u, ui ) for every i

Theorem (Bredies, Carioni, Fanzon, Walter (2021))

Under the previous assumptions the rate of convergence of un is linear, i.e. there
exists C > 0, ⇣ 2 [1/2, 1) s.t.

G (un)�min
u

G (u)  C⇣n
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Lifting to the space of measures

Strategy to prove linear convergence: lift the problem (and algorithm) to the
space of measures on extremal points and prove convergence in the lifted space

Denote W := Ext(B)
⇤
endowed with the metric that metrizes the weak*

convergence. We consider positive measures on W , i.e.

M+(W )

Definition

We say that a measure µ 2 M+(W ) represents u 2 X if

hp, ui =
Z

W
hp, vi dµ(v) 8p 2 X⇤

Alternatively, u is said to be the weak barycenter of µ

Example: the measure �u represents u for all u 2 W

Silvio Fanzon Generalized Conditional Gradient Methods 18 February 2022 16 / 31



As a consequence of Choquet’s theorem we have:

Proposition (Bredies, Carioni, Fanzon, Walter)

I For every µ 2 M+(W ) we have

R(u)  kµkM+(W )

where u 2 dom(R) is the weak barycenter of µ

I For every u 2 dom(R) there exists µ 2 M+(W ) concentrated on Ext(B)
that represents u and such that

R(u) = kµkM+(W )

This proposition suggests to define the lifted variational problem

min
µ2M+(W )

Ĝ (µ) = min
µ2M+(W )

F (Âµ) + kµkM+(W )

where Â : M+(W ) ! Y is the lift of A : X ! Y defined by the relation

(Âµ, y)Y =

Z

W
(Av , y) dµ(v) 8y 2 Y
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It turns out that the original problem

min
u2X

G (u) = min
u2X

F (Au) + R(u) (P)

and the lifted one

min
µ2M+(W )

Ĝ (µ) = min
µ2M+(W )

F (Âµ) + kµkM+(W ) (LP)

are equivalent

Theorem (Bredies, Carioni, Fanzon, Walter)

I If u 2 X is a solution of (P), then there exists µ 2 M+(W ) that represents
u and minimizes (LP)

I If µ 2 M+(W ) is a solution of (LP), then the weak barycenter of µ
minimizes (P)

Idea: We can construct a GCG algorithm for (LP) and obtain a GCG algorithm
for (P) by taking the weak barycenters:

µ =
X

i

ci�ui 2 M+(W ) =) u =
X

i

ciui 2 X

) it is enough to prove linear convergence for the lifted problem
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Dynamic variational inverse problems

Data: time dependent curve t 7! ft 2 Ht with {Ht}t family of Hilbert spaces

Unknown: curve of measures t 7! ⇢t 2 M(⌦), with ⌦ ⇢ Rd bounded

Forward operators: linear continuous operators K⇤
t : M(⌦) ! Ht

Inverse Problem: Given t 7! ft 2 Ht , find a curve t 7! ⇢t 2 M(⌦) s.t.

K⇤
t ⇢t = ft for a.e. t 2 (0, 1) (P)

Assumptions: very weak time-regularity for {Ht}t and K⇤
t

Goal: Regularize (P) with an Optimal Transport energy acting on the measure ⇢t
This will enforce time regularity of the reconstructions

An optimal transport approach for solving dynamic inverse problems in spaces of measures.
K. Bredies, S. Fanzon. ESAIM: M2AN (2020)
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Optimal Transport - Static Formulation

⌦ ⇢ Rd bounded domain, ⇢0, ⇢1 2 P(⌦), T : ⌦ ! ⌦ measurable displacement

⌦

⇢0
⇢1 = T#⇢0

T

Goal: move ⇢0 to ⇢1 in the cheapest way, with cost of moving mass from x to y

c(x , y) := |x � y |2

Optimal Transport: a transport plan T̂ solving

T̂ 2 argmin

⇢Z

⌦
|T (x)� x |2 d⇢0(x) : T : ⌦ ! ⌦, T#⇢0 = ⇢1

�
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Optimal Transport - Dynamic Formulation

Idea: introduce a time variable t 2 [0, 1] and consider the evolution of ⇢t

I time dependent probability measures

t 7! ⇢t 2 P(⌦) for t 2 [0, 1]

I velocity field advecting ⇢t

vt(x) : [0, 1]⇥ ⌦ ! Rd

I (⇢t , vt) solves the continuity equation with initial conditions
(
@t⇢t + div(⇢tvt) = 0

Initial data ⇢0, final data ⇢1
(CE-IC)

⇢0 ⇢1⇢1/2

⌦

v0 v1/2

Silvio Fanzon Generalized Conditional Gradient Methods 18 February 2022 21 / 31



Connection and Advantages

Theorem (Benamou-Brenier ’00)

min
(⇢t ,vt)

solving (CE-IC)

Z 1

0

Z

⌦
|vt(x)|2 ⇢t(x)dx dt = min

T : ⌦!⌦
T#⇢0=⇢1

Z

⌦
|T (x)� x |2 ⇢0(x) dx

Advantages of Dynamic Formulation:

1 By introducing the momentum mt := ⇢tvt we have

Z 1

0

Z

⌦
|vt(x)|2 ⇢t(x) dx dt =

Z 1

0

Z

⌦

|mt(x)|2

⇢t(x)
dx dt

which is convex in (⇢t ,mt). The continuity equation becomes linear

@t⇢t + divmt = 0

2 we know the full trajectory ⇢t and can recover the velocity field vt from mt
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Optimal transport regularization

Define time-space domain X = (0, 1)⇥⌦ and measures M = M(X )⇥M(X ;Rd)

We propose to regularize (P) via minimization in (⇢,m) 2 M of

G↵,�(⇢,m) :=
1

2

Z 1

0
kKt⇢t � ftk2Ht

dt + J↵,�(⇢,m)

where the regularizer is

J↵,�(⇢,m) :=
↵

2

Z 1

0

Z

⌦

����
dm

d⇢

����
2

d⇢(t, x)

| {z }
Optimal Transport Regularizer

+� k⇢kM(X )| {z }
TV Regularizer

s.t. @t⇢t + divmt = 0 (Continuity Equation - No IC)

Theorem (Bredies, Fanzon ’20)

(With assumptions on ft , K⇤
t , Ht) The functional G↵,� admits a solution

⇢ = dt ⌦ ⇢t , m = v⇢ with v : X ! Rd measurable velocity field and
t 7! ⇢t 2 M+(⌦) narrowly continuous. Moreover we have stability
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Towards a numerical algorithm: Sparsity

Definition: An atom in M is a pair (⇢� ,m�) with � 2 H1([0, 1];⌦),

⇢� := a� dt ⌦ ��(t) , m� := �̇(t) ⇢� , a� :=

✓
�

2

Z 1

0
|�̇(t)|2 dt + ↵

◆�1

Theorem (Bredies, Carioni, Fanzon, Romero ’20)

Consider the sublevel set C↵,� := {J↵,�  1}. The extremal points of C↵,� are

Ext(C↵,�) = { atoms } [ (0, 0)
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Generalized Conditional Gradient Method

Goal: Find numerical solutions to the minimization problem for G↵,� by GCG

Key Step: Find a descent direction around (⇢̃, m̃) by solving

min
(⇢,m)2C↵,�

�
Z 1

0
h⇢t ,wti dt , wt := �Kt(K

⇤
t ⇢̃t � ft) 2 C (⌦) (D)

Theorem (SF, Bredies, Carioni, Romero ’20)

Problem (D) admits a solution which is either an atom or (0, 0).

Therefore (D) can be casted in H1([0, 1];⌦), and is hence numerically feasible
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Numerical Algorithm

Let t 7! ft be given data. Initialize ⇢0 := 0

1 Insertion: Given ⇢n =
PN

i=1 ci ⇢�i , set w
n
t := �Kt(K⇤

t ⇢
n
t � ft) and find

�⇤ 2 argmin
�2H1

�a�

Z 1

0
wt(�(t)) dt , ⇢n+1/2 := ⇢n + cN+1 ⇢�⇤

2 Coe�cients Optimization: Solve the quadratic problem

(c⇤j )j 2 argmin
cj�0

G↵,�(⇢
n+1/2,mn+1/2) , ⇢n+1 :=

N+1X

i=1

c⇤i ⇢�i

Theorem (Bredies, Carioni, Fanzon, Romero ’20)

The sequence (⇢n,mn) in Algorithm converges weak* to a minimizer of G↵,�

The convergence rate is of order O(1/n)
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Application: Undersampled Fourier Measurements

I ⌦ := [0, 1]2 image frame, t 7! �t 2 M+(R2) frequencies sampling measure

I Fourier transform F : M(⌦) ! C1(R2;C)
I Ht := L2�t

(R2;C) and K⇤
t : M(⌦) ! Ht defined by K⇤

t ⇢ := F⇢

Note. K⇤
t corresponds to the Fourier transform undersampled according to �t

Time-discrete sampling: Fix T + 1 times samples, ti := i/T for i = 0, . . . ,T

I At each time ti sample ni 2 N frequencies {Si,1, . . . , Si,ni} ⇢ R2

I Define t 7! �t so that �ti =
Pni

k=1 �Si,k . In this case Hti = Cni and

K⇤
ti ⇢ =

✓Z

R2

exp(�2⇡ix · Si,k) d⇢(x)
◆ni

k=1

2 Cni
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Experiment: Dynamic Spikes Tracking

I T = 50, ni = 15 freq. sampled on lines Li through the origin with angle i⇡
4

I Ground Truth: ⇢̃t = ��1(t) + ��2(t) + ��3(t) as depicted (color=position in time)

I Synthetic Data: fti := K⇤
ti ⇢̃ti + 60% Gaussian Noise

I Data Visualization: By plotting the initial dual variable w0
ti := Kti fti 2 C (⌦)
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Reconstructions

↵ = � = 0.1 ↵ = � = 0.3

I Low reg. ↵,� = 0.1 ; many low-energy artefacts around main trajectories

I High reg. ↵,� = 0.3 ; improved reconstruction

Note! At each ti the inverse problem K⇤
ti ⇢ = fti is heavily ill-posed: Indeed

K⇤
ti �x̂ = K⇤

ti �x̂+�S?
i

for � 2 R, S?
i ? Li ; Static methods cannot resolve location of x̂
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Convergence Plot

Note! Proven sublinear rate of convergence but empirical linear rate

As expected, higher regularization results in faster convergence
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