Optimal transport regularization of dynamic inverse problems

> Silvio Fanzon University of Graz

(joint work with Kristian Bredies)

1st Austrian Calculus of Variations Day Vienna, October 2019

Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales ~> artefacts in reconstructed images

- Imaging of lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating

Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image

No regularizer

Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales \rightsquigarrow artefacts in reconstructed images

- Imaging of lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating

Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image

No regularizer

Proposed model: optimal transport regularization for dynamic reconstruction K. Bredies, S. Fanzon - An optimal transport approach for solving dynamic inverse problems in spaces of measures. Preprint 2019

Silvio Fanzon - University of Graz

Dynamic inverse problems

Optimal Transport - Static Formulation

 $\Omega \subset \mathbb{R}^d$ bounded domain, $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$, $\mathcal{T} \colon \Omega \to \Omega$ measurable displacement

Goal: move ρ_0 to ρ_1 in the cheapest way, with cost of moving mass from x to y

$$c(x,y) := |x-y|^2$$

Optimal Transport: a transport plan T solving

$$\min\left\{\int_{\Omega}|T(x)-x|^2\,d\rho_0(x):\ T:\Omega\to\Omega,\ T_{\#}\rho_0=\rho_1\right\}$$

Silvio Fanzon - University of Graz

Optimal Transport - Dynamic Formulation

Idea: introduce a time variable $t \in [0, 1]$ and consider evolution of ρ_t

time dependent probability measures

 $t \mapsto \rho_t \in \mathcal{P}(\Omega)$ for $t \in [0,1]$

• velocity field advecting ρ_t

$$v_t(x) \colon [0,1] \times \Omega \to \mathbb{R}^d$$

• (ρ_t, v_t) solves the continuity equation with initial conditions

$$\begin{cases} \partial_t \rho_t + \operatorname{div}(\rho_t v_t) = 0\\ \text{Initial data } \rho_0, \text{ final data } \rho_1 \end{cases}$$
(CE-IC)

Connection and Advantages

Theorem (Benamou-Brenier '00)

$$\min_{\substack{(\rho_t, v_t)\\ \text{solving (CE-IC)}}} \int_0^1 \int_\Omega |v_t(x)|^2 \rho_t(x) dx \, dt = \min_{\substack{T \colon \Omega \to \Omega\\ T_{\#}\rho_0 = \rho_1}} \int_\Omega |T(x) - x|^2 \rho_0(x) \, dx$$

Advantages of Dynamic Formulation:

() By introducing the momentum $m_t := \rho_t v_t$ we have

$$\int_0^1 \int_\Omega |v_t(x)|^2 \rho_t(x) \, dx \, dt = \int_0^1 \int_\Omega \frac{|m_t(x)|^2}{\rho_t(x)} \, dx \, dt$$

which is **convex** in (ρ_t, m_t) . The continuity equation becomes **linear**

$$\partial_t \rho_t + \operatorname{div} m_t = 0$$

2) we know the full trajectory ρ_t and can recover the velocity field v_t from m_t

Dynamic inverse problem

 $\Omega \subset \mathbb{R}^d$ bounded open domain, $d \geq 1$

For $t \in [0,1]$ assume given

- H_t Hilbert spaces (measurement spaces non isomorphic)
- $K_t^*: \mathcal{M}(\overline{\Omega}) \to H_t$ linear continuous operators (forward-operators)

Time dependence allows for spatial undersampling - e.g. line or point sampling

Problem

Given some data $\{f_t\}_{t \in [0,1]}$ with $f_t \in H_t$, find a curve of measures

$$t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$$

such that they solve the dynamic inverse problem

 $K_t^* \rho_t = f_t$ for a.e. $t \in [0, 1]$.

Optimal transport regularization

Consider a triple (ρ_t, v_t, g_t) with

- ► v_t : $(0,1) \times \overline{\Omega} \to \mathbb{R}^d$ velocity field
- ► $g_t : (0,1) \times \overline{\Omega} \to \mathbb{R}$ growth rate

We propose to regularize (P) via minimization in (ρ_t, v_t, g_t) of

$$\underbrace{\frac{1}{2}\int_{0}^{1} \|K_{t}^{*}\rho_{t} - f_{t}\|_{H_{t}}^{2} dt}_{\text{Fidelity Term}} + \underbrace{\frac{\alpha}{2}}_{\text{Optimal Transport Regularizer}} \underbrace{\int_{0}^{1} \int_{\overline{\Omega}} |v_{t}(x)|^{2} + |g_{t}(x)|^{2} d\rho_{t}(x)dt}_{\text{Optimal Transport Regularizer}} + \beta \underbrace{\int_{0}^{1} \|\rho_{t}\| dt}_{\text{TV Regularizer}}$$

s.t. $\partial_{t}\rho + \operatorname{div}(\rho v_{t}) = \rho g_{t}$ (Continuity Equation)

- v_t keeps track of motion
- g_t allows the presence of a contrast agent
- continuity equation enforces "regular" motion

Silvio Fanzon - University of Graz

Formal definition of the OT Energy

Set $X := (0,1) \times \overline{\Omega}$ and consider triples $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$ Define the convex, 1-homogeneous functional

$$B(\rho, m, \mu) := \int_{X} \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}, \frac{d\mu}{d\lambda}\right) d\lambda$$

where $\lambda \in \mathcal{M}^+(X)$ is such that $ho, m, \mu \ll \lambda$ and

$$\Psi(t,x,y):=rac{x^2+|y|^2}{2t}$$
 if $t>0, \ \Psi=+\infty$ else

Proposition (Fanzon, Bredies '19)

B is weak* lower-semicontinuous. If $B(\rho, m, \mu) < +\infty$ and $\partial_t \rho + \text{div } m = \mu$ then

- $\rho = dt \otimes \rho_t$ for a weak*-continuous curve $t \mapsto \rho_t \in \mathcal{M}^+(\overline{\Omega})$
- $m = \rho v_t$ for some velocity field $v_t : (0,1) \times \overline{\Omega} \to \mathbb{R}^d$
- $\mu = \rho g_t$ for some growth rate $g_t : (0,1) \times \overline{\Omega} \to \mathbb{R}$

$$B(\rho, m, \mu) = \int_0^1 \int_{\overline{\Omega}} |v_t(x)|^2 + |g_t(x)|^2 d\rho_t(x) dt$$

Formal definition of the regularizer

Assumptions on H_t and K_t^* :

(H) the spaces H_t vary in a "measurable" way \sim possible to define Hilbert space

$$L^2_{H} := \left\{ f : [0,1] \to \cup_t H_t : \ f_t \in H_t \ \text{``strongly measurable''}, \ \int_0^1 \left\| f_t \right\|_{H_t}^2 \ dt < \infty \right\}$$

(K) the operators $K^*_t \colon \mathcal{M}(\overline{\Omega}) \to H_t$ are weak*-to-weak continuous and

sup_t ||K^{*}_t|| ≤ C
 for ρ ∈ M(Ω) the map t ↦ K^{*}_tρ is strongly measurable

Proposition: if $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ is weak*-continuous then $(t \mapsto K_t^* \rho_t) \in L^2_H$

Definition (Regularization)

Let
$$f \in L^2_H$$
. For $(
ho, m, \mu) \in \mathcal{M}(X)^{d+2}$ such that $\partial_t
ho + {
m div} \ m = \mu$ define

$$J_{\alpha,\beta}(\rho,m,\mu) := \frac{1}{2} \int_0^1 \|K_t^*\rho_t - f_t\|_{H_t}^2 dt + \alpha B(\rho,m,\mu) + \beta \|\rho\|_{\mathcal{M}(X)}.$$

Existence & Regularity

Theorem (Existence)

Assume (H)-(K) and let $f \in L^2_H$. Then

$$\min_{(\rho,m,\mu)\in\mathcal{M}} J_{\alpha,\beta}(\rho,m,\mu) \tag{MIN}$$

admits a solution. If K_t^* is injective for a.e. t, then the solution is unique.

Theorem (Regularity)

Assume (H)-(K). Let f^n be noisy data such that $f^n \to f^{\dagger}$ in L^2_H . If (ρ^n, m^n, μ^n) is a minimizer of (MIN) with par. $\alpha_n, \beta_n \to 0$ and data f^n , then $(\rho^n, m^n, \mu^n) \stackrel{*}{\to} (\rho^{\dagger}, m^{\dagger}, \mu^{\dagger}), \quad K^*_t \rho^{\dagger}_t = f^{\dagger}_t \quad \text{for all } t \in [0, 1]$ $(\rho^{\dagger}, m^{\dagger}, \mu^{\dagger}) \in \arg \min \alpha^* B(\rho, m, \mu) + \beta^* \|\rho\|_{\mathcal{M}(X)}, \; \exists \alpha^*, \beta^* \ge 1$

- $\Omega = [0,1]^2$ image frame, $t \mapsto
 ho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

$$\sigma_t = \mathcal{H}^1 \, {\sqsubseteq} \, L_t$$

- ▶ $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- ▶ $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- ▶ $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- ▶ $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

• $K_t^* : \mathcal{M}(\overline{\Omega}) \to H_t$ masked Fourier transform

$$K_t^* \rho := (\mathfrak{F}(c_1 \rho), \ldots, \mathfrak{F}(c_N \rho))$$

with $c_j \in C_0(\mathbb{R}^2;\mathbb{C})$ coil sensitivities (accounting for phase inhomogeneities)

Assumptions on σ_t :

- (M1): $\sup_t \|\sigma_t\| \leq C$
- ▶ (M2): for each $\varphi \in C_0(\mathbb{R}^2; \mathbb{C})$ the map $t \mapsto \int_{\mathbb{R}^2} \varphi(x) \, d\sigma_t(x)$ is measurable

Theorem (Fanzon, Bredies '19)

Assume (M1)-(M2). Let $\alpha, \beta, \delta > 0$, $f \in L^2([0, 1]; H)$ and $c \in C_0(\mathbb{R}^2; \mathbb{C}^N)$. Then

$$\min_{\substack{(\rho,m,\mu)\\\partial_t\rho+\operatorname{div} m=\mu}}\frac{1}{2}\sum_{j=1}^N\int_0^1\left\|\mathfrak{F}(c_j\rho_t)-f_t\right\|_{L^2_{\sigma_t}}^2\,dt+\alpha B_{\delta}(\rho,m,\mu)+\beta\left\|\rho\right\|$$

admits a solution (ρ, m, μ) with

•
$$\rho = dt \otimes \rho_t$$
 with $t \mapsto \rho_t$ weak* continuous

- $m = \rho v$ for some velocity $v: (0,1) \times \overline{\Omega} \to \mathbb{R}^2$
- $\mu = \rho g$ for some growth rate $g: (0,1) \times \overline{\Omega} \to \mathbb{R}^2$

Extremal Points

Consider the regularizer for the homogenous case (no source): $(\rho, m) \in \mathcal{M}(X)^{d+1}$

$$R_{\alpha,\beta}(\rho,m) := \alpha B(\rho,m) + \beta \left\|\rho\right\|_{\mathcal{M}(X)} \text{ s.t. } \partial_t \rho + \operatorname{div} m = 0$$

Recall: if $m = v\rho$ and $\rho = dt \otimes \rho_t$

$$R_{\alpha,\beta}(\rho,m) := \frac{\alpha}{2} \int_0^1 |v(t,x)|^2 \, d\rho_t(x) \, dt + \beta \int_0^1 \|\rho_t\|_{\mathcal{M}(\overline{\Omega})} \, dt$$

Theorem (Fanzon, Bredies, Carioni, Romero '19)

Let $C := \{(\rho, m) : R_{\alpha, \beta}(\rho, m) \le 1\}$. Then $Ext(C) = \{(0, 0)\} \cup C$

where

$$\mathcal{C} := \left\{ (
ho_{\gamma}, m_{\gamma}) : \ \gamma \in \mathrm{AC}^{2}([0, 1]; \overline{\Omega})
ight\}$$

 $ho_{\gamma} := a_{\gamma} dt \otimes \delta_{\gamma(t)}, \ m_{\gamma} := \dot{\gamma} \,
ho_{\gamma}, \ a_{\gamma}^{-1} := rac{lpha}{2} \int_{0}^{1} |\dot{\gamma}(t)|^{2} dt + eta$

L. Ambrosio. Inventiones mathematicae, 158(2) '04

Dynamic inverse problems

Discrete time sampling and finite-dimensional data

Fix $N \ge 1$ times $0 < t_1 < t_2 < \cdots < t_N < 1$ and let

- H_i finite dimensional Hilbert space, $\mathcal{H} := \bigotimes_{i=1}^N H_i$
- $K_i^* \colon \mathcal{M}(\overline{\Omega}) \to H_i$ linear and weak*-continuous

Inverse problem: for $(f_1, \ldots, f_N) \in \mathcal{H}$ find a curve $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ such that

$$K_i^* \rho_{t_i} = f_i$$
 for $i = 1, \ldots, N$

Regularization: we regularize with

$$J_{\alpha,\beta}(\rho,\boldsymbol{m}) := \frac{1}{2} \sum_{i=1}^{N} \| K_i \rho_{t_i} - f_i \|_{H_i}^2 + \alpha B(\rho,\boldsymbol{m}) + \beta \| \rho \|_{\mathcal{M}(X)}$$

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The minimization problem

$$\min_{(\rho,m)\in\mathcal{M}}\frac{1}{2}\sum_{i=1}^{N}\|K_{i}\rho_{t_{i}}-f_{i}\|_{H_{i}}^{2}+\alpha B(\rho,m)+\beta \|\rho\|_{\mathcal{M}(X)}$$

admits a sparse minimizer of the form

$$(\rho^*, m^*) = \sum_{i=1}^{p} c_i (\rho_{\gamma_i}, m_{\gamma})$$

where $c_i > 0$, $\gamma_i \in AC^2([0,1];\overline{\Omega})$ and $p \leq \dim \mathcal{H}$.

K. Bredies, M. Carioni '18

C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss '18

Conclusions and Perspectives

Conclusions:

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Application to variational reconstruction for undersampled MRI
- Characterization of the extremal points of the regularizer
- Existence of sparse minimizers for discrete time sampling and finite dimensional data spaces

Perspectives:

- Numerical algorithms for dynamic spike reconstruction (in progress...) (based on knowledge of extremal points and conditional gradient methods)
- Extremal points for the non-homogeneous case and numerics (in progress...)

Thank You!