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N
Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales ~» artefacts in reconstructed images
> Imaging of lung or heart (motion cannot be suppressed)
» High-resolution imaging (sub-millimeter motion poses problems)
Workarounds: use of anaesthetics, breath-holding strategies, gating
Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image No regularizer
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Proposed model: optimal transport regularization for dynamic reconstruction

K. Bredies, S. Fanzon - An optimal transport approach for solving dynamic inverse
problems in spaces of measures. Preprint 2019
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Optimal Transport - Static Formulation

Q C R? bounded domain, po, p1 € P(Q), T: Q — Q measurable displacement

Goal: move pg to p; in the cheapest way, with cost of moving mass from x to y

c(xy) = x—yf?

Optimal Transport: a transport plan T solving

min {/ |T(x) = x|?dpo(x): T: Q= Q, Tupo = ,01}
Q
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N
Optimal Transport - Dynamic Formulation

Idea: introduce a time variable t € [0, 1] and consider evolution of p;
» time dependent probability measures
t— pe € P(Q) for te]0,1]
» velocity field advecting p;
ve(x): [0,1] x Q — R¢

> (p:, v¢) solves the continuity equation with initial conditions

{atpt +div(prve) =0

(CE-IC)

Initial data pg, final data p;

Vi/2
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N
Connection and Advantages

Theorem (Benamou-Brenier '00)

min / /|vt x)| pr(x)dx dt = m|n /|T —x| po(x) dx
solwswl;t ‘gI)EI T#po =p1

Advantages of Dynamic Formulation:

@ By introducing the momentum m; := p;v; we have

//|vt )2 pe(x) dx dt = //'mt dx dt

which is convex in (p;, m;). The continuity equation becomes linear
8tpt + le my = O
® we know the full trajectory p; and can recover the velocity field v; from m;

Silvio Fanzon - University of Graz Dynamic inverse problems Vienna, 17-18 October 2019 4/15



Dynamic inverse problem

Q ¢ R bounded open domain, d > 1
For t € [0,1] assume given

> H; Hilbert spaces (measurement spaces - non isomorphic)

> Kj: M(Q2) — H, linear continuous operators (forward-operators)

Time dependence allows for spatial undersampling - e.g. line or point sampling

Problem

Given some data {f;}.cjo,1) with f; € Hy, find a curve of measures

such that they solve the dynamic inverse problem

K p: = f; for a.e. te0,1]. (P)

v
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Optimal transport regularization

Consider a triple (p¢, vt, g¢) with
> v;: (0,1) x Q — R velocity field
> g::(0,1) x Q — R growth rate

We propose to regularize (P) via minimization in (p;, vi, g¢) of

1 1 . @ 1 1
5 | Ko £l e+ [ [ mGOP + e dpe(e-+5 [ ol
0 0 JQ 0

Fidelity Term Optimal Transport Regularizer TV Regularizer

st. Oip+div(pve) = pg:  (Continuity Equation)

» v; keeps track of motion
» g; allows the presence of a contrast agent

P continuity equation enforces “regular” motion
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Formal definition of the OT Energy

Set X := (0,1) x Q and consider triples (p, m, 1) € M(X)9+?

Define the convex, 1-homogeneous functional

dp dm du
B(p, m, i :-/W(,,) d\
( ) X d\" dX\ dA

where A € M*(X) is such that p, m,u < X and

x? + |yf?

V(t,x,y) = %

if t>0, V=400 else

Proposition (Fanzon, Bredies '19)

B is weak* lower-semicontinuous. If B(p, m, ) < +o0 and 0yp + divm = p then
> p = dt® p; for a weak*-continuous curve t — p, € MT(Q)
> m = pv; for some velocity field v;: (0,1) x Q — RY
» 1 = pg; for some growth rate g;: (0,1) x Q — R

B(p, m, ) = / L 1) + eGP dpr(x) e
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e —
Formal definition of the regularizer

Assumptions on H; and K;:

(H) the spaces H; vary in a “measurable” way ~» possible to define Hilbert space
1
12 = {f: [0,1] = UeH; : f; € H; “strongly measurable”, / ||ft||f_,t dt < oo}
0

(K) the operators K;: M(Q2) — H, are weak*-to-weak continuous and
> sup, [[K{| < C
> for p € M(Q) the map t > K; p is strongly measurable

Proposition: if t — p, € M(Q) is weak*-continuous then (t — Kp;) € L2,

Definition (Regularization)

Let f € L2,. For (p, m, 1) € M(X)?*2 such that 0,p + div m = i define

1t
Joz.ﬁ’(p7 mvlu’) = = ||Kt pt - ft”ilt dt + « B(p7 mmu’) + B ||p||,/\/l X) -
2 Jo (X)
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BN
Existence & Regularity

Theorem (Existence)
Assume (H)-(K) and let f € L2,. Then

(o mmJ?EM Ja,ﬁ(ﬂ: m, 1) (MIN)

admits a solution. If K is injective for a.e. t, then the solution is unique.

Theorem (Regularity)

Assume (H)-(K). Let f" be noisy data such that f" — f1 in L2,
If (p", m", ™) is a minimizer of (MIN) with par. ap, 8, — 0 and data f", then

(p",m", ") = (o, m', ut), Kipl = £ forall t€[0,1]

(o', m', ") € argmin a” B(p, m, 1) + B* [lpll paxy » T 8" > 1
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e —
Variational reconstruction for undersampled MRI

> Q= [0,1]? image frame, t > p; € M(Q) proton density
> H,:= L2 (R? C") with o, € M*(R?) sampling measures

O't:H]"_Lt
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e —
Variational reconstruction for undersampled MRI

> Q= [0,1]? image frame, t > p; € M(Q) proton density
> H,:= L2 (R? C") with o, € M*(R?) sampling measures

O't:H]"_Lt O't:HOLPt
> K;: M(Q) — H; masked Fourier transform

Kip = (S(cip), .., 8(enp))
with ¢; € Co(R?; C) coil sensitivities (accounting for phase inhomogeneities)
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Variational reconstruction for undersampled MRI

Assumptions on o;:

> (M1): sup, |lo¢ < C

> (M2): for each ¢ € Co(R?; C) the map t — [, ¢(x) dos(x) is measurable

Theorem (Fanzon, Bredies '19)

Assume (M1)-(M2). Let o, 3,5 > 0, f € L?([0,1]; H) and c € Co(R?;CN). Then

(p,m,p)

N 1
. 1 2
min > E / 15(cipe) — ftHLgt dt + aBs(p,m, p) + B ||l
dup'rdivm=n =170

admits a solution (p, m, p) with
> p=dt® p; with t — p, weak* continuous
> m = pv for some velocity v: (0,1) x Q — R?
» 1 = pg for some growth rate g: (0,1) x Q — R?
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Extremal Points

Consider the regularizer for the homogenous case (no source): (p, m) € M(X)9+!
Ra,p(p, m) := aB(p, m) + B lpll pq(x) st Oep+divm =0

Recall: if m=vp and p=dt ® p;

1 1
o
Roplpm)i= G [ 1 0P dp) 45 [ ol

Theorem (Fanzon, Bredies, Carioni, Romero '19)
Let C :={(p,m): Rapg(p,m) <1}. Then
Ext(C) = {(0,0)} UC

where
C = {(py,my) : v € AC*([0,1];Q)}

1
. _ « .
pri= 2 @by my =Ty =5 [ (O de+

L. Ambrosio. Inventiones mathematicae, 158(2) '04

Silvio Fanzon - University of Graz Dynamic inverse problems Vienna, 17-18 October 2019 12/15



Discrete time sampling and finite-dimensional data

Fix N>1times0<t; <th<---<ty<1landlet
> H; finite dimensional Hilbert space, # := X'  H
> K*: M(Q) — H; linear and weak*-continuous
Inverse problem: for (fi, ..., fy) € H find a curve t +— p, € M(Q) such that

Kipy, =f for i=1,...,N

Regularization: we regularize with

Jop(pym) - ZIIKpt, fillty, + aB(p, m) + Bllol vy
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Sparse minimizers

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The minimization problem

2
(pg])lgM 5 Z | Kipe, — fillh, + aB(p, m) + B ol paex)

admits a sparse minimizer of the form
P
(p*,m") = Z Ci (p’Yi7 mW)
i=1

where ¢; > 0, v; € AC*([0,1]; Q) and p < dimH.

K. Bredies, M. Carioni '18
C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss '18
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Conclusions and Perspectives

Conclusions:

» Introduced rigorous framework for optimal transport regularization of time
dependent inverse problems

» Application to variational reconstruction for undersampled MRI
» Characterization of the extremal points of the regularizer

» Existence of sparse minimizers for discrete time sampling and finite
dimensional data spaces

Perspectives:

» Numerical algorithms for dynamic spike reconstruction (in progress...)
(based on knowledge of extremal points and conditional gradient methods)

> Extremal points for the non-homogeneous case and numerics (in progress...)
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Thank Youl
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