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Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales ; artefacts in reconstructed images

I Imaging of lung or heart (motion cannot be suppressed)
I High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating

Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image No regularizer

Proposed model: optimal transport regularization for dynamic reconstruction

K. Bredies, S. Fanzon - An optimal transport approach for solving dynamic inverse
problems in spaces of measures. Preprint 2019
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Optimal Transport - Static Formulation

⌦ ⇢ Rd bounded domain, ⇢0, ⇢1 2 P(⌦), T : ⌦! ⌦ measurable displacement

⌦

⇢0
⇢1 = T#⇢0

T

Goal: move ⇢0 to ⇢1 in the cheapest way, with cost of moving mass from x to y

c(x , y) := |x � y |
2

Optimal Transport: a transport plan T solving

min

⇢Z

⌦

|T (x)� x |
2
d⇢0(x) : T : ⌦! ⌦, T#⇢0 = ⇢1

�
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Optimal Transport - Dynamic Formulation

Idea: introduce a time variable t 2 [0, 1] and consider evolution of ⇢t

I time dependent probability measures

t 7! ⇢t 2 P(⌦) for t 2 [0, 1]

I velocity field advecting ⇢t

vt(x) : [0, 1]⇥ ⌦! Rd

I (⇢t , vt) solves the continuity equation with initial conditions
(
@t⇢t + div(⇢tvt) = 0

Initial data ⇢0, final data ⇢1
(CE-IC)

⇢0 ⇢1⇢1/2

⌦

v0 v1/2
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Connection and Advantages

Theorem (Benamou-Brenier ’00)

min
(⇢t ,vt)

solving (CE-IC)

Z 1

0

Z

⌦

|vt(x)|
2 ⇢t(x)dx dt = min

T : ⌦!⌦
T#⇢0=⇢1

Z

⌦

|T (x)� x |
2 ⇢0(x) dx

Advantages of Dynamic Formulation:

1 By introducing the momentum mt := ⇢tvt we have

Z 1

0

Z

⌦

|vt(x)|
2 ⇢t(x) dx dt =

Z 1

0

Z

⌦

|mt(x)|2

⇢t(x)
dx dt

which is convex in (⇢t ,mt). The continuity equation becomes linear

@t⇢t + divmt = 0

2 we know the full trajectory ⇢t and can recover the velocity field vt from mt
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Dynamic inverse problem

⌦ ⇢ Rd bounded open domain, d � 1

For t 2 [0, 1] assume given

I Ht Hilbert spaces (measurement spaces - non isomorphic)

I K
⇤
t
: M(⌦) ! Ht linear continuous operators (forward-operators)

Time dependence allows for spatial undersampling - e.g. line or point sampling

Problem

Given some data {ft}t2[0,1] with ft 2 Ht , find a curve of measures

t 7! ⇢t 2 M(⌦)

such that they solve the dynamic inverse problem

K
⇤
t
⇢t = ft for a.e. t 2 [0, 1] . (P)
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Optimal transport regularization

Consider a triple (⇢t , vt , gt) with

I vt : (0, 1)⇥ ⌦! Rd velocity field

I gt : (0, 1)⇥ ⌦! R growth rate

We propose to regularize (P) via minimization in (⇢t , vt , gt) of

1

2

Z 1

0

kK
⇤
t
⇢t � ftk

2

Ht
dt

| {z }
Fidelity Term

+
↵

2

Z 1

0

Z

⌦

|vt(x)|
2 + |gt(x)|

2
d⇢t(x)dt

| {z }
Optimal Transport Regularizer

+�

Z 1

0

k⇢tk dt

| {z }
TV Regularizer

s.t. @t⇢+ div(⇢vt) = ⇢gt (Continuity Equation)

I vt keeps track of motion

I gt allows the presence of a contrast agent

I continuity equation enforces “regular” motion
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Formal definition of the OT Energy

Set X := (0, 1)⇥ ⌦ and consider triples (⇢,m, µ) 2 M(X )d+2

Define the convex, 1-homogeneous functional

B(⇢,m, µ) :=

Z

X

 

✓
d⇢

d�
,
dm

d�
,
dµ

d�

◆
d�

where � 2 M
+(X ) is such that ⇢,m, µ ⌧ � and

 (t, x , y) :=
x
2 + |y |

2

2t
if t > 0,  = +1 else

Proposition (Fanzon, Bredies ’19)

B is weak* lower-semicontinuous. If B(⇢,m, µ) < +1 and @t⇢+ divm = µ then

I ⇢ = dt ⌦ ⇢t for a weak*-continuous curve t 7! ⇢t 2 M
+(⌦)

I m = ⇢vt for some velocity field vt : (0, 1)⇥ ⌦! Rd

I µ = ⇢gt for some growth rate gt : (0, 1)⇥ ⌦! R

B(⇢,m, µ) =

Z 1

0

Z

⌦

|vt(x)|
2 + |gt(x)|

2
d⇢t(x) dt
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Formal definition of the regularizer

Assumptions on Ht and K
⇤
t
:

(H) the spaces Ht vary in a “measurable” way ; possible to define Hilbert space

L
2

H
:=

⇢
f : [0, 1] ! [tHt : ft 2 Ht “strongly measurable”,

Z 1

0

kftk
2

Ht
dt < 1

�

(K) the operators K⇤
t
: M(⌦) ! Ht are weak*-to-weak continuous and

I sup
t
kK⇤

t k  C

I for ⇢ 2 M(⌦) the map t 7! K⇤
t ⇢ is strongly measurable

Proposition: if t 7! ⇢t 2 M(⌦) is weak*-continuous then (t 7! K
⇤
t
⇢t) 2 L

2

H

Definition (Regularization)

Let f 2 L
2

H
. For (⇢,m, µ) 2 M(X )d+2 such that @t⇢+ divm = µ define

J↵,�(⇢,m, µ) :=
1

2

Z 1

0

kK
⇤
t
⇢t � ftk

2

Ht
dt + ↵B(⇢,m, µ) + � k⇢kM(X )

.
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Existence & Regularity

Theorem (Existence)

Assume (H)-(K) and let f 2 L
2

H
. Then

min
(⇢,m,µ)2M

J↵,�(⇢,m, µ) (MIN)

admits a solution. If K
⇤
t
is injective for a.e. t, then the solution is unique.

Theorem (Regularity)

Assume (H)-(K). Let f
n
be noisy data such that f

n
! f

†
in L

2

H
.

If (⇢n,mn, µn) is a minimizer of (MIN) with par. ↵n,�n ! 0 and data f
n
, then

(⇢n,mn, µn)
⇤
* (⇢†,m†, µ†) , K

⇤
t
⇢†t = f

†
t for all t 2 [0, 1]

(⇢†,m†, µ†) 2 argmin ↵⇤
B(⇢,m, µ) + �⇤

k⇢kM(X )
, 9↵⇤,�⇤

� 1
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Variational reconstruction for undersampled MRI

I ⌦ = [0, 1]2 image frame, t 7! ⇢t 2 M(⌦) proton density

I Ht := L
2
�t
(R2;CN) with �t 2 M

+(R2) sampling measures

�t = H
1

Lt

I K
⇤
t
: M(⌦) ! Ht masked Fourier transform

K
⇤
t
⇢ := (F(c1⇢), . . . ,F(cN⇢))

with cj 2 C0(R2;C) coil sensitivities (accounting for phase inhomogeneities)
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Variational reconstruction for undersampled MRI

Assumptions on �t :

I (M1): sup
t
k�tk  C

I (M2): for each ' 2 C0(R2;C) the map t 7!
R
R2 '(x) d�t(x) is measurable

Theorem (Fanzon, Bredies ’19)

Assume (M1)-(M2). Let ↵,�, � > 0, f 2 L
2([0, 1];H) and c 2 C0(R2;CN). Then

min
(⇢,m,µ)

@t⇢+divm=µ

1

2

NX

j=1

Z 1

0

kF(cj⇢t)� ftk
2

L2
�t

dt + ↵B�(⇢,m, µ) + � k⇢k

admits a solution (⇢,m, µ) with

I ⇢ = dt ⌦ ⇢t with t 7! ⇢t weak* continuous

I m = ⇢v for some velocity v : (0, 1)⇥ ⌦! R2

I µ = ⇢g for some growth rate g : (0, 1)⇥ ⌦! R2
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Extremal Points

Consider the regularizer for the homogenous case (no source): (⇢,m) 2 M(X )d+1

R↵,�(⇢,m) := ↵B(⇢,m) + � k⇢kM(X )
s.t. @t⇢+ divm = 0

Recall: if m = v⇢ and ⇢ = dt ⌦ ⇢t

R↵,�(⇢,m) :=
↵

2

Z 1

0

|v(t, x)|2 d⇢t(x) dt + �

Z 1

0

k⇢tkM(⌦)
dt

Theorem (Fanzon, Bredies, Carioni, Romero ’19)

Let C := {(⇢,m) : R↵,�(⇢,m)  1}. Then

Ext(C ) = {(0, 0)} [ C

where

C :=
�
(⇢� ,m�) : � 2 AC2([0, 1];⌦)

 

⇢� := a� dt ⌦ ��(t) , m� := �̇ ⇢� , a
�1

� :=
↵

2

Z 1

0

|�̇(t)|2 dt + �

L. Ambrosio. Inventiones mathematicae, 158(2) ’04
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Discrete time sampling and finite-dimensional data

Fix N � 1 times 0 < t1 < t2 < · · · < tN < 1 and let

I Hi finite dimensional Hilbert space, H :=⇥
N

i=1
Hi

I K
⇤
i
: M(⌦) ! Hi linear and weak*-continuous

Inverse problem: for (f1, . . . , fN) 2 H find a curve t 7! ⇢t 2 M(⌦) such that

K
⇤
i
⇢ti = fi for i = 1, . . . ,N

Regularization: we regularize with

J↵,�(⇢,m) :=
1

2

NX

i=1

kKi⇢ti � fik
2

Hi
+ ↵B(⇢,m) + � k⇢kM(X )
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Sparse minimizers

Theorem (Fanzon, Bredies, Carioni, Romero ’19)

The minimization problem

min
(⇢,m)2M

1

2

NX

i=1

kKi⇢ti � fik
2

Hi
+ ↵B(⇢,m) + � k⇢kM(X )

admits a sparse minimizer of the form

(⇢⇤,m⇤) =
pX

i=1

ci (⇢�i
,m�)

where ci > 0, �i 2 AC2([0, 1];⌦) and p  dimH.

K. Bredies, M. Carioni ’18

C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss ’18
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Conclusions and Perspectives

Conclusions:

I Introduced rigorous framework for optimal transport regularization of time
dependent inverse problems

I Application to variational reconstruction for undersampled MRI

I Characterization of the extremal points of the regularizer

I Existence of sparse minimizers for discrete time sampling and finite
dimensional data spaces

Perspectives:

I Numerical algorithms for dynamic spike reconstruction (in progress...)

(based on knowledge of extremal points and conditional gradient methods)

I Extremal points for the non-homogeneous case and numerics (in progress...)
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Thank You!
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