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Plan of the Talk

@ Analytical framework for OT regularization of dynamic inverse problems
(with K. Bredies)

» An optimal transport approach for solving dynamic inverse problems in spaces
of measures. (Preprint 2019)

® Numerical results for sparse reconstruction in spaces of measures
(with K. Bredies, M. Carioni, F. Romero)
» On the extremal points of the ball of the Benamou-Benier energy
(Preprint 2019)

> A generalized conditional gradient method for dynamic inverse problems with
optimal transport regularization (In preparation)

» A superposition principle for the non-homogeneous continuity equation
(In preparation)
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Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales ~» artefacts in reconstructed images

> Imaging of lung or heart (motion cannot be suppressed)
» High-resolution imaging (sub-millimeter motion poses problems)
Workarounds: use of anaesthetics, breath-holding strategies, gating

Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image No regularizer
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» High-resolution imaging (sub-millimeter motion poses problems)
Workarounds: use of anaesthetics, breath-holding strategies, gating

Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image No regularizer

Proposed model: optimal transport regularization for dynamic reconstruction
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Optimal Transport - Static Formulation

Q C R? bounded domain, po, p1 € P(Q), T: Q — Q measurable displacement

Goal: move pg to p; in the cheapest way, with cost of moving mass from x to y
c(x,y) = |x —y|?

Optimal Transport: a transport plan T solving

min {/ |T(x) = x[?dpo(x): T:Q— Q, Tupo = pl}
Q
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Optimal Transport - Dynamic Formulation

Idea: introduce a time variable t € [0, 1] and consider evolution of p,
» time dependent probability measures
t— pr € P(Q) for te]0,1]
» velocity field advecting p;
ve(x): [0,1] x Q — R?

» (p¢, v¢) solves the continuity equation with initial conditions

{8tpt +div(peve) = 0

. . (CE-IC)
Initial data po, final data p;

Vi/2
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Connection and Advantages

Theorem (Benamou-Brenier '00)

(min) / /|vt x)|? pe(x)dx dt = mln /|T ) — x| po(x) dx
solvin/;h(thEl T#Po =p1

Advantages of Dynamic Formulation:

@ By introducing the momentum m; := p;v; we have

/01‘/Q|vt(x)zpt(x)dxdl“—/o1 an;tt(())(())Fdxdt

which is convex in (p;, m;). The continuity equation becomes linear

5t,0t + div my = 0

® we know the full trajectory p; and can recover the velocity field v; from m;
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Dynamic inverse problem

Q c RY bounded open domain, d > 1
For t € [0,1] assume given

» H; Hilbert spaces (measurement spaces - non isomorphic)

> Kj: M(Q) — H, linear continuous operators (forward-operators)

(Time dependence allows for spatial undersampling - e.g. line or point sampling)

Problem

Given some data {f;}+c[0,1] with f; € Hy, find a curve of measures
t e p € M(Q)

such that they solve the dynamic inverse problem

K pe = f; fora.e. te[0,1]. (P)
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Unbalanced optimal transport regularization

Consider a triple (p¢, vi, g¢) with

> t i+ p, € M(Q) mass density (not probability measures)
> v;: (0,1) x Q — RY velocity field, g;: (0,1) x Q — R growth rate

We propose to regularize K/ p; = f; via minimization in (pt, v¢, g¢) of

[ e ot [ [ G + a0 dputoad 45 [ el ot

Fidelity Term Optimal Transport Regularizer TV Regularizer

sit. Oyp+div(pv:) = pg:  (Continuity Equation - No IC)

» v; keeps track of motion, g; keeps track of contrast agent
» continuity equation enforces time “regularity”

Chizat, Peyré, Schmitzer, Vialard (Found. of Comp. Math. '18, JFA '18)
Liero, Mielke, Savaré (Inv. Math. '18)
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Formal definition of the Unbalanced OT Energy

Set X :=(0,1) x Q and consider triples (p, m, 1) € M(X) x M(X)9 x M(X)

Define the convex, 1-homogeneous functional

dp dm du
B(p.m.p):= | w(2p am oK
(e, m, 1) /X (d)\’ ax’ d)\) A

where A € M*(X) is such that p, m, u < X and

|X|2 2

Vit xy) = ——,

if t>0, V=400 else

Proposition

B is weak* lower-semicontinuous. If B(p, m, 1) < 400 and 0;p + divm = u then
> p=dt® p; for a weak*-continuous curve t — p, € M*(Q)
> m = pv; for some velocity field v;: (0,1) x Q — R?
» 1 = pg; for some growth rate g;: (0,1) x Q — R

Bl ) //| I + L ()12 dpe(x) dt
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Sampling spaces 1/3
(H): the spaces H; vary in a “measurable” way as t € [0, 1]

» 3 Banach space D and i;: D — H; linear continuous
» (D) C H; dense, sup, ||ir|]| < C
> for each o, € D the map t — (irp, ir1)),, is Lebesgue measurable

Step Functions: a map ¢: [0,1] — D is a step function if

N
Pr = Z Xg (t) ¢;
j=1

for pj € D, Ej C [0, 1] measurable, N € N.

Strong Measurability: a map f: [0,1] — UH; with f, € H; is str. meas. if
3 ¢": [0,1] — D step functions s.t.

lim [livpf — filly, =0 forae. te(0,1)
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Sampling spaces 2/3

Integrability: a str. meas. map f: [0,1] — U:H; with f; € H; is integrable if
3 ¢": [0,1] — D step functions s.t.

1
Iim/ lirg? — i, dt =0
n 0 &

Theorem (SF, Bredies '19)

Let f: [0,1] — U.H; be strongly measurable. Then f is integrable jff

1
[ 16l de <00
0

Note: it is possible to show the Theorem after introducing suitable notions of
weakly measurable and of separably valued maps f: [0,1] — U¢H;, in a way that a
version of Pettis Theorem holds.
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Sampling spaces 3/3

Definition (Data space)

1
I = {f: [0,1] = U¢H; @ f; € Hy, f strongly meas , / ||ft||i,t dt < oo}
0

Theorem (SF, Bredies '19)

The space Lf_, is Hilbert with the scalar product

1
<f7g>L$_{ ::/ <ft‘7gt>Ht dt
0

Note: No notion of integral for f € L%,. However i} f;: [0,1] — D*

> i*f; is always Gelfand integrable: for E C [0,1] measurable 3 [g(f) € D* s.t.

1
(). 00 o= [ (ifibbon e forall peD
0

> j¥f; is not Bochner integrable, as it is not strongly measurable in general
(counterexamples for D non reflexive)

Silvio Fanzon - University of Graz Dynamic inverse problems Paris, 20-21 Nov 2019 11/35



Forward operators and Regularized Problem

(K): the operators K; : M(Q) — H; satisfy

> K linear continuous and weak*-to-weak continuous

> sup, ||K7 || < C
> for p € M(Q) the map t — K; p is strongly measurable

Proposition (SF, Bredies '19)
If t = p, € M(Q) is weak* continuous then t — K; p, belongs to L%,

Definition (Regularization)
Let f € L2, be some data. For (p, m, ) € M(X) x M(X)?4 x M(X) set

1t
Ta8(p, m, p) == 5/0 IK: pr — £l dt + o B(p, m, 1) + Bllpl e

if Orp+divm = p, and T, 5(p, m, u) = +o0 else.
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Existence & Stability

Theorem (SF, Bredies '19)

Assume (H)-(K) and let f € L3,. Then

min T .m, -
(p,m, ) EM(X)d+2 O‘vﬁ(p ,u) ( )

admits a solution. If K is injective for a.e. t, then the solution is unique.

Theorem (SF, Bredies '19)

Assume (H)-(K). Let f" be noisy data such that f" — f1 strongly in L2,.
Let (p", m", u") be solution to (MIN) with par. a,, B, — 0 and data f". Then

(p",m", ") = (o, m, ) in M(X)*2, Kipl = £l forall te0,1]

(o, mt, ut) € argmin a* B(p, m, 1) + 8 lpll ey » 075" > 1

V.
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Variational reconstruction for undersampled MRI 1/2

> Q =[0,1]? image frame, t > p; € M(Q) proton density
> H,:= L2 (R? C") with 0, € M*(R?) sampling measures

Ut:Hll_Lt
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Variational reconstruction for undersampled MRI 1/2

> Q =[0,1]? image frame, t > p; € M(Q) proton density
> H,:= L2 (R? C") with 0, € M*(R?) sampling measures

Ut:Hll_Lt Ut:HOI_Pt
> K;: M(Q) — H; masked Fourier transform

Kip = (§(cp), ..., S(cnp))

with ¢; € Co(R?; C) coil sensitivities (accounting for phase inhomogeneities)
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Variational reconstruction for undersampled MRI 2/2

(M): Assume that the family o, € M*(R?) satisfies:

> sup, [|o¢[ < C
> for each ¢ € Co(R?; C) the map t — [5, ¢(x) dot(x) is measurable

Theorem (SF, Bredies '19)
Assume (M). Let a, 3,6 > 0, f € L% and ¢ € Co(R?;CN). Then

min 4_2/ I15(cipe) — ft||L2 dt + aBs(p, m, 1) + B||p
(p;m,p)EM(X
Orp+divm=p

admits a solution (p, m, ) with
> p=dtQ p; with t — p; weak* continuous
» m = pv for some velocity v: (0,1) x Q — R?
» 1 = pg for some growth rate g: (0,1) x Q — R?
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Numerical Results for Benamou-Brenier regularizer

Let Q C R be open bounded, X := (0,1) x Q. Consider the Benamou-Brenier

energy o
p dm

B(p,m ::/\U(,) d\
(p, m) % d\’ dA

where A € M*(X) is such that p, m < X and

2
Y(t,x) ::|)2(—|t if t>0, V=+o0else

Recall: if p=dt ® p; and m= vp
(0% 1 2
B(p, m) ;:5/0 Iv(t, )2 dpe(x) dt

Bibliography:
» SF, Bredies, Carioni, Romero - On the extremal points of the ball of the
Benamou-Benier energy (Preprint 2019)
» SF, Bredies, Carioni, Romero - A generalized conditional gradient method for
dynamic inverse problems with optimal transport regularization (In preparation)

Silvio Fanzon - University of Graz Dynamic inverse problems Paris, 20-21 Nov 2019 16 /35



Main Question

Definition (Regularizer)

Let o, B > 0. For (p, m) € M(X) x M(X)9 we set

Jos(p, m) = aB(p, m)"‘ﬂHp”M(X) if Oip+divm=20
G +00 otherwise

For t € [0, 1] assume given:
> H, family of Hilbert spaces satisfying (H)

> Kr: M(Q) — H, linear continuous operators satisfying (K)

Problem
Given f € L%([0,1]; H) compute a minimizer (p, m) € M(X)4*1 for

Lo,
Tolom) =5 [ 1K2pe = 13, + ool m)
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Extremal points of J, 3

Consider the convex unit ball of J, 3

C :={(p,m) € M(X) x M(X)*: Jus(p,m) <1}

Definition

For v € AC?([0,1]; Q) define the measures p, € M(X), m, € M(X)9 as

1
. _ « .
Py i=aydt @0y, My =7 py, a’yl = 5/0 |7(t)|2 dt+

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The extremal points of C are characterized by

Extr(C) = {(0,0)}ucC

where
C:={(py,my) 1 v € AC*([0,1; Q)}
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|dea of the proof - {0} UC C Extr(C)

The case (p, m) = (0,0) is trivial. Then let v € AC?([0, 1]; Q) and define

1
. _ o .
py =y dt @ byry, My = py, a71:=§/ 5(t)? dt + 8
0

We first show that (p,, m,) € C
» (p, my) solves continuity equation: let ¢ € C}((0,1) x Q)

| [ owodo,+Vo-dm, = a, [ duele.r(0) + Volea(e) -i(e) e
— 2, [ Selen(©)de =0

> Jos(py, my) =1: Take X := p, and recall that W(t,x) = |x|?/2t,

! dpy, dmy
Jo,5(py, My) = a/o /Qw (d/\’ d)\) dr+ 8 ||P||M(x)

1
= a, <O¢/O /Q\U(l,ﬁ/(t)) C/(S,y(t) dt-l-ﬁ) = a, 3;1 =l
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|dea of the proof - {0} UC C Extr(C)
Assume we can decompose
(3> my) = Ap',m") + (1= X) (%, m?)

with (p/,m) € C and X € (0,1).

» Since Jn5(py, my) =1, by convexity and (D) we have J, g(p/, ) =1

> Since Jop(p/, M) =1 then p/ = ddt@pl, m = vipl for some @ > 0,
(t — p.) € P(Q) narrowly continuous, v/: (0,1) x Q — R? measurable

» From (D) and uniqueness of disintegration
¥>0 j
ay 0y = A alpt+(1-N)ap = pi= 05(t)

> 0.0 +divmd =0 and p/ = ajdt®67(t), m = vip/. This forces

vi(t,7() = 4(1)

> Since p) = dt ® 6,y and ¥ =4(t) p) = Jap(p/, M) =a//a,
» Since J, 5(p/, ) = 1 then @ = a,. Hence (p/, ) = (p,, m,)
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|dea of the proof - Extr(C) C {0} UC

Let Q C RY be open and bounded. Consider
M:={y:[0,1] = R?: 4 continuous }

with the supremum norm

Theorem (SF, Bredies, Carioni, Romero '19)

Let t — p; € P(Q) be narrowly continuous and v: (0,1) x Q — RY. Assume

1
Bhgon A i) = 0, / / Iv(t, x)P dpe(x) dt < +o0
0 Q
There exists o € P(I') such that

Lot = [e(@)dotr) forall o€ C@, telo]
Q r
Moreover o is concentrated on curves v € AC?([0,1]; Q) such that

() = v(t,7(1))

L. Ambrosio (Inv. Math. '04) for Q = R4
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|dea of the proof - Extr(C) C {0} UC

» Smooth p; and v so that 0;p; + div(p;v) = 0 holds and the ODE
d
EXt(X) =v(t, X;(x)), Xo(x)=x
admits a global solution X;(x): [0,1] x RY — RY. Freezing time, we have

Pt = (Xt)#PO (A)

> Interpret X as a map X: RY — T via x > (t = X;(x)) and define
o = (X)ypo € P(T) (B)
The representation formula holds for fixed t € [0, 1]:

[ det) @ [ oot dmt0 @ [ etadet ()

r
Then one can pass to the limit to get thesis (hard part is the concentration)

> Assume (p, m) is an extremal point: Since Jy g(p, m) < 1 we can apply the
Theorem and represent p via (F). Extremality forces

o =6, forsome ~* € AC?([0,1]; Q) L Thesis

Silvio Fanzon - University of Graz Dynamic inverse problems Paris, 20-21 Nov 2019 22/35



Discrete time sampling and finite-dimensional data

Fix N>1timesO0<t; <th<---<ty<1andlet
» H; finite dimensional Hilbert space, H := ><,{V:1 H;
> K*: M(Q) — H; linear and weak*-continuous
Inverse problem: for (f1,...,fy) € H find a curve t — p, € M(Q) such that

Kipy, =f for i=1,...,N

Regularization: we regularize via

N
1
Tas(p,m) i= 5 3 1Kipy, = il +aBlp,m) + 8 1ol pae
i=1
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Sparse minimizers

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The minimization problem

N

. 1 )
e 3 20 K601 = Tl + B(oum) + 8l

admits a sparse minimizer of the form
P
(", m*) = ci(py,m,)
i=1

where ¢; > 0, v; € AC*([0,1]; Q) and p < dimH.

K. Bredies, M. Carioni (Calc. Var. PDEs '19)
C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss (SIAM Opt. '19)

Silvio Fanzon - University of Graz Dynamic inverse problems Paris, 20-21 Nov 2019 24 /35



Sparse reconstruction (time continuous case)

Definition (Regularizer)

Let o, B > 0. For (p, m) € M(X) x M(X)9 we set

Jos(p, m) = aB(p, m)"‘ﬂHp”M(X) if Oip+divm=20
G +00 otherwise

For t € [0, 1] assume given:
> H, family of Hilbert spaces satisfying (H)

> Kr: M(Q) — H, linear continuous operators satisfying (K)

Problem

Given f € L2([0,1]; H) compute a minimizer (p, m) € M(X)9T! x M(X)? for

Lo,
Tolom) =5 [ 1K2pe = 13, + ool m)
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Generalized conditional gradient method 1/2

First one can replace

. I
min Tog(psm) i= 5 [ 1KEpe = £l + Josplp. m)
(p,m) 2 0

by the equivalent problem

. I
min Toplp.m) 1= 5 | 1K e =l + (oo, m) (P)

(p,m

where ¢: R — [0, 0] is for example

1 1
P =t Xm0, Moi= 5 [ IAIR, o
0

Then one approximates (P) by linearizing the quadratic term around (3, M)

1
min = [ (ot )y e+ lUn sl ). i = KK = £)

Silvio Fanzon - University of Graz Dynamic inverse problems Paris, 20-21 Nov 2019 26/35



Generalized conditional gradient method 2/2

Consider the convex unit ball of J, 3

C = {(p,m) € M(X)**: Jy5(p,m) < 1}
and denote by Extr(C) its extremal points

Theorem (SF, Bredies, Carioni, Romero '19)

Assume (H)-(K). Let f € L2, and fix t — p; € M(Q) narrowly continuous. Set

Wy 1= _Kt(Kt*ﬁt - ft)

Then there exists a solution (p*, m*) € Extr(C) to the problem

1
in — , 5y (o dt
(p,fgl)'éc /O (pr Wt>M(Q),C(Q)

Moreover there exists M > 0 such that (Mp*, Mm*) is a solution to

1
min = [ (oes ) v, € + o 0 )
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Algorithm

Let f € L2, be given. Initialize (p°, m®) := (0,0) in M(X) x M(X)¢

@ (Insertion) Assume given v; € AC?([0,1]; Q) pairwise distinct, ¢; > 0 and set

(pn’ mn) = Z Gj (p’Yj ’ mw)
j

Compute the dual variable w; := — K, (K] p? — f;) and solve

1 -1
~v* € argmin —(Z/ |"y(t)2dt+ﬂ)
0

YEAC([0,1]:9)

1
/ we(1(t)) dt
0

Set (p"/2,m™12) = (p", m") + (pye, M) = 22 G (P myy)
® (Optimization) Solve the quadratic problem
C =(g); € argmin T,z (p”H/Z, m”*l/z)
CJ'ZO

Define
(P, ™) = Z G (pry M)

J
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Convergence
Define the functional distance

r(p,m) := Tu.g(p,m) —min Ty g

Theorem (SF, Bredies, Carioni, Romero '19)

Let f € L2, a, B >0 and (p", m") € M(X)9*! be the sequence in the Algorithm

> (p", m") is minimizing with

r(p",m") <

Sl g

(B)
where C > 0 depends only on f,«a, 8

» Each weak* accumulation point of (p”, m") is a minimum for T, g

Improving convergence: In the simulations we obtain linear convergence.

Therefore one could expect that (B) can be improved (current proof does not take
advantage of coefficients optimization step)
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Simulations 1/4

> Q=1[0,1]% o = H'L s where s =spiral in Q

» H,:= L2(R?;C) (time independent)
> K;: M(Q) — H, masked Fourier transform (time independent)
» Data is f; = K/ p: where p; are the curves in picture (no noise)

1.0
t=1—1
0.8 ,
: t=0.75 |
\4’
t=05 /
0.6 1 N
y
> \ A
N \
0.2 — £
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

Silvio Fanzon - University of Graz
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Simulations 2/4

t=0.25

2.00

212

-6.25

-10.37

-14.50
0.8 1.0

Dual variable first iteration w; := —K:f;

(Recall that w; € C(Q) for each t € [0,1])
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Simulations 3/4

1.0

0.8 1

0.6

0.4 A

0.2 1

0.0

—— Reconstruction
— Ground truth

0.0

0.2

Reconstructed trajectories
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Simulations 4/4

102 4 @ After insertion + optimization
X After gradient flow
101 B
100 B
[
2107 4
w
10—2 B
1073 B
1074 4 I I - T T T
0 2 4 6 8 10 12
Iterations

Convergence plot: exhibits linear rate

Error = T, 5(p", m") — T 5(p"+t, m"t1)
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Further directions: unbalanced OT case

Consider the regularizer

o dp dm du . o
Ju (1 1) -a/x“’<cumm> At Bl I eptdivm=p

where A € M*(X) is such that p, m,u < X and V(t,x,y) == ‘XE%}’Q if t>0

Further direction: carry out same analysis for the regularizer J, g above
Key ingredients:

» Characterization of the extremal points of J, g, which are of the form

. h
p=h(t)dt®d,y, m=4p, p= 7P

where h: [0,1] — [0, 00), 7: [0,1] — Q satisfy certain regularity properties
» Characterization is based on a superposition principle for 9;p + divm = p

SF, Bredies, Carioni, Romero - A superposition principle for the non-homogeneous continuity
equation (In preparation)
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Conclusions and Perspectives

Conclusions:

» Introduced rigorous framework for optimal transport regularization of time
dependent inverse problems

» Application to variational reconstruction for undersampled MRI
» Characterization of the extremal points of the Benamou-Brenier regularizer

» Numerical algorithm for dynamic spike reconstruction

Perspectives:

> Linear convergence for the conditional gradient method (in progress...)
> Extremal points for the unbalanced transport regularizer (almost done!)

» Numerical analysis for the unbalanced transport regularizer (in progress...)
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Thank Youl
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