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Plan of the Talk

1 Analytical framework for OT regularization of dynamic inverse problems

(with K. Bredies)

I An optimal transport approach for solving dynamic inverse problems in spaces

of measures. (Preprint 2019)

2 Numerical results for sparse reconstruction in spaces of measures

(with K. Bredies, M. Carioni, F. Romero)

I On the extremal points of the ball of the Benamou-Benier energy

(Preprint 2019)

I A generalized conditional gradient method for dynamic inverse problems with

optimal transport regularization (In preparation)

I A superposition principle for the non-homogeneous continuity equation

(In preparation)
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Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales ; artefacts in reconstructed images

I Imaging of lung or heart (motion cannot be suppressed)

I High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating

Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image No regularizer

Proposed model: optimal transport regularization for dynamic reconstruction
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Optimal Transport - Static Formulation

⌦ ⇢ Rd bounded domain, ⇢0, ⇢1 2 P(⌦), T : ⌦! ⌦ measurable displacement

⌦

⇢0
⇢1 = T#⇢0

T

Goal: move ⇢0 to ⇢1 in the cheapest way, with cost of moving mass from x to y

c(x , y) := |x � y |
2

Optimal Transport: a transport plan T solving

min

⇢Z

⌦

|T (x)� x |
2
d⇢0(x) : T : ⌦! ⌦, T#⇢0 = ⇢1

�
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Optimal Transport - Dynamic Formulation

Idea: introduce a time variable t 2 [0, 1] and consider evolution of ⇢t

I time dependent probability measures

t 7! ⇢t 2 P(⌦) for t 2 [0, 1]

I velocity field advecting ⇢t

vt(x) : [0, 1]⇥ ⌦! Rd

I (⇢t , vt) solves the continuity equation with initial conditions
(
@t⇢t + div(⇢tvt) = 0

Initial data ⇢0, final data ⇢1
(CE-IC)

⇢0 ⇢1⇢1/2

⌦

v0 v1/2
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Connection and Advantages

Theorem (Benamou-Brenier ’00)

min
(⇢t ,vt)

solving (CE-IC)

Z 1

0

Z

⌦

|vt(x)|
2 ⇢t(x)dx dt = min

T : ⌦!⌦
T#⇢0=⇢1

Z

⌦

|T (x)� x |
2 ⇢0(x) dx

Advantages of Dynamic Formulation:

1 By introducing the momentum mt := ⇢tvt we have

Z 1

0

Z

⌦

|vt(x)|
2 ⇢t(x) dx dt =

Z 1

0

Z

⌦

|mt(x)|2

⇢t(x)
dx dt

which is convex in (⇢t ,mt). The continuity equation becomes linear

@t⇢t + divmt = 0

2 we know the full trajectory ⇢t and can recover the velocity field vt from mt
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Dynamic inverse problem

⌦ ⇢ Rd bounded open domain, d � 1

For t 2 [0, 1] assume given

I Ht Hilbert spaces (measurement spaces - non isomorphic)

I K
⇤
t
: M(⌦) ! Ht linear continuous operators (forward-operators)

(Time dependence allows for spatial undersampling - e.g. line or point sampling)

Problem

Given some data {ft}t2[0,1] with ft 2 Ht , find a curve of measures

t 7! ⇢t 2 M(⌦)

such that they solve the dynamic inverse problem

K
⇤
t
⇢t = ft for a.e. t 2 [0, 1] . (P)
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Unbalanced optimal transport regularization

Consider a triple (⇢t , vt , gt) with

I t 7! ⇢t 2 M(⌦) mass density (not probability measures)

I vt : (0, 1)⇥ ⌦! Rd velocity field, gt : (0, 1)⇥ ⌦! R growth rate

We propose to regularize K
⇤
t
⇢t = ft via minimization in (⇢t , vt , gt) of

1

2

Z 1

0

kK
⇤
t
⇢t � ftk

2

Ht
dt

| {z }
Fidelity Term

+
↵

2

Z 1

0

Z

⌦

|vt(x)|
2 + |gt(x)|

2
d⇢t(x)dt

| {z }
Optimal Transport Regularizer

+�

Z 1

0

k⇢tk dt

| {z }
TV Regularizer

s.t. @t⇢+ div(⇢vt) = ⇢gt (Continuity Equation - No IC)

I vt keeps track of motion, gt keeps track of contrast agent

I continuity equation enforces time “regularity”

Chizat, Peyré, Schmitzer, Vialard (Found. of Comp. Math. ’18, JFA ’18)

Liero, Mielke, Savaré (Inv. Math. ’18)
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Formal definition of the Unbalanced OT Energy

Set X := (0, 1)⇥ ⌦ and consider triples (⇢,m, µ) 2 M(X )⇥M(X )d ⇥M(X )

Define the convex, 1-homogeneous functional

B(⇢,m, µ) :=

Z

X

 

✓
d⇢

d�
,
dm

d�
,
dµ

d�

◆
d�

where � 2 M
+(X ) is such that ⇢,m, µ ⌧ � and

 (t, x , y) :=
|x |

2 + y
2

2t
if t > 0,  = +1 else

Proposition

B is weak* lower-semicontinuous. If B(⇢,m, µ) < +1 and @t⇢+ divm = µ then

I ⇢ = dt ⌦ ⇢t for a weak*-continuous curve t 7! ⇢t 2 M
+(⌦)

I m = ⇢vt for some velocity field vt : (0, 1)⇥ ⌦! Rd

I µ = ⇢gt for some growth rate gt : (0, 1)⇥ ⌦! R

B(⇢,m, µ) =

Z 1

0

Z

⌦

|vt(x)|
2 + |gt(x)|

2
d⇢t(x) dt
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Sampling spaces 1/3

(H): the spaces Ht vary in a “measurable” way as t 2 [0, 1]

I 9 Banach space D and it : D ! Ht linear continuous

I it(D) ⇢ Ht dense, supt kitk  C

I for each ', 2 D the map t 7! hit', it iHt
is Lebesgue measurable

Step Functions: a map ' : [0, 1] ! D is a step function if

't =
NX

j=1

�
Ej
(t)'j

for 'j 2 D, Ej ⇢ [0, 1] measurable, N 2 N.

Strong Measurability: a map f : [0, 1] ! [tHt with ft 2 Ht is str. meas. if

9 'n : [0, 1] ! D step functions s.t.

lim
n

kit'
n

t
� ftkHt

= 0 for a.e. t 2 (0, 1)
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Sampling spaces 2/3

Integrability: a str. meas. map f : [0, 1] ! [tHt with ft 2 Ht is integrable if
9 'n : [0, 1] ! D step functions s.t.

lim
n

Z 1

0

kit'
n

t
� ftkHt

dt = 0

Theorem (SF, Bredies ’19)

Let f : [0, 1] ! [tHt be strongly measurable. Then f is integrable i↵

Z 1

0

kftkHt
dt < 1

Note: it is possible to show the Theorem after introducing suitable notions of
weakly measurable and of separably valued maps f : [0, 1] ! [tHt , in a way that a
version of Pettis Theorem holds.
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Sampling spaces 3/3

Definition (Data space)

L
2

H
=

⇢
f : [0, 1] ! [tHt : ft 2 Ht , f strongly meas ,

Z 1

0

kftk
2

Ht
dt < 1

�

Theorem (SF, Bredies ’19)

The space L
2

H
is Hilbert with the scalar product

hf , gi
L2

H

:=

Z 1

0

hft , gtiHt
dt

Note: No notion of integral for f 2 L
2

H
. However i⇤

t
ft : [0, 1] ! D

⇤

I i
⇤
t
ft is always Gelfand integrable: for E ⇢ [0, 1] measurable 9 IE (f ) 2 D

⇤ s.t.

hI (f ),'i
D⇤,D =

Z 1

0

hi
⇤
t
ft ,'iD⇤,D dt for all ' 2 D

I i
⇤
t
ft is not Bochner integrable, as it is not strongly measurable in general

(counterexamples for D non reflexive)
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Forward operators and Regularized Problem

(K): the operators K⇤
t
: M(⌦) ! Ht satisfy

I K
⇤
t
linear continuous and weak*-to-weak continuous

I sup
t
kK

⇤
t
k  C

I for ⇢ 2 M(⌦) the map t 7! K
⇤
t
⇢ is strongly measurable

Proposition (SF, Bredies ’19)

If t 7! ⇢t 2 M(⌦) is weak* continuous then t 7! K
⇤
t
⇢t belongs to L

2

H

Definition (Regularization)

Let f 2 L
2

H
be some data. For (⇢,m, µ) 2 M(X )⇥M(X )d ⇥M(X ) set

T↵,�(⇢,m, µ) :=
1

2

Z 1

0

kK
⇤
t
⇢t � ftk

2

Ht
dt + ↵B(⇢,m, µ) + � k⇢kM(X )

if @t⇢+ divm = µ, and T↵,�(⇢,m, µ) = +1 else.
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Existence & Stability

Theorem (SF, Bredies ’19)

Assume (H)-(K) and let f 2 L
2

H
. Then

min
(⇢,m,µ)2M(X )d+2

T↵,�(⇢,m, µ) (MIN)

admits a solution. If K
⇤
t
is injective for a.e. t, then the solution is unique.

Theorem (SF, Bredies ’19)

Assume (H)-(K). Let f
n
be noisy data such that f

n
! f

†
strongly in L

2

H
.

Let (⇢n,mn, µn) be solution to (MIN) with par. ↵n,�n ! 0 and data f
n
. Then

(⇢n,mn, µn)
⇤
* (⇢†,m†, µ†) in M(X )d+2 , K

⇤
t
⇢†t = f

†
t for all t 2 [0, 1]

(⇢†,m†, µ†) 2 argmin ↵⇤
B(⇢,m, µ) + �⇤

k⇢kM(X )
, 9↵⇤,�⇤

� 1
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Variational reconstruction for undersampled MRI 1/2

I ⌦ = [0, 1]2 image frame, t 7! ⇢t 2 M(⌦) proton density

I Ht := L
2
�t
(R2;CN) with �t 2 M

+(R2) sampling measures

�t = H
1

Lt

I K
⇤
t
: M(⌦) ! Ht masked Fourier transform

K
⇤
t
⇢ := (F(c1⇢), . . . ,F(cN⇢))

with cj 2 C0(R2;C) coil sensitivities (accounting for phase inhomogeneities)
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Variational reconstruction for undersampled MRI 2/2

(M): Assume that the family �t 2 M
+(R2) satisfies:

I sup
t
k�tk  C

I for each ' 2 C0(R2;C) the map t 7!
R
R2 '(x) d�t(x) is measurable

Theorem (SF, Bredies ’19)

Assume (M). Let ↵,�, � > 0, f 2 L
2

H
and c 2 C0(R2;CN). Then

min
(⇢,m,µ)2M(X )

4

@t⇢+divm=µ

1

2

NX

j=1

Z 1

0

kF(cj⇢t)� ftk
2

L2
�t

dt + ↵B�(⇢,m, µ) + � k⇢k

admits a solution (⇢,m, µ) with

I ⇢ = dt ⌦ ⇢t with t 7! ⇢t weak* continuous

I m = ⇢v for some velocity v : (0, 1)⇥ ⌦! R2

I µ = ⇢g for some growth rate g : (0, 1)⇥ ⌦! R2
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Numerical Results for Benamou-Brenier regularizer

Let ⌦ ⇢ Rd be open bounded, X := (0, 1)⇥ ⌦. Consider the Benamou-Brenier
energy

B(⇢,m) :=

Z

X

 

✓
d⇢

d�
,
dm

d�

◆
d�

where � 2 M
+(X ) is such that ⇢,m ⌧ � and

 (t, x) :=
|x |

2

2t
if t > 0,  = +1 else

Recall: if ⇢ = dt ⌦ ⇢t and m = v⇢

B(⇢,m) :=
↵

2

Z 1

0

|v(t, x)|2 d⇢t(x) dt

Bibliography:

I SF, Bredies, Carioni, Romero - On the extremal points of the ball of the

Benamou-Benier energy (Preprint 2019)

I SF, Bredies, Carioni, Romero - A generalized conditional gradient method for

dynamic inverse problems with optimal transport regularization (In preparation)
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Main Question

Definition (Regularizer)

Let ↵,� > 0. For (⇢,m) 2 M(X )⇥M(X )d we set

J↵,�(⇢,m) :=

(
↵B(⇢,m) + � k⇢kM(X )

if @t⇢+ divm = 0

+1 otherwise

For t 2 [0, 1] assume given:

I Ht family of Hilbert spaces satisfying (H)

I K
⇤
t
: M(⌦) ! Ht linear continuous operators satisfying (K)

Problem

Given f 2 L
2([0, 1];H) compute a minimizer (⇢,m) 2 M(X )d+1

for

T↵,�(⇢,m) :=
1

2

Z 1

0

kK
⇤
t
⇢t � ftk

2

Ht
+ J↵,�(⇢,m)
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Extremal points of J↵,�

Consider the convex unit ball of J↵,�

C :=
�
(⇢,m) 2 M(X )⇥M(X )d : J↵,�(⇢,m)  1

 

Definition

For � 2 AC2([0, 1];⌦) define the measures ⇢� 2 M(X ), m� 2 M(X )d as

⇢� := a� dt ⌦ ��(t) , m� := �̇ ⇢� , a
�1

� :=
↵

2

Z 1

0

|�̇(t)|2 dt + �

Theorem (Fanzon, Bredies, Carioni, Romero ’19)

The extremal points of C are characterized by

Extr(C ) = {(0, 0)} [ C

where

C :=
�
(⇢� ,m�) : � 2 AC2([0, 1];⌦)
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Idea of the proof - {0} [ C ⇢ Extr(C )

The case (⇢,m) = (0, 0) is trivial. Then let � 2 AC2([0, 1];⌦) and define

⇢� := a� dt ⌦ ��(t) , m� := �̇ ⇢� , a
�1

� :=
↵

2

Z 1

0

|�̇(t)|2 dt + �

We first show that (⇢� ,m�) 2 C

I (⇢� ,m�) solves continuity equation: let ' 2 C
1
c
((0, 1)⇥ ⌦)

Z 1

0

Z

⌦

@t' d⇢� +r' · dm� = a�

Z 1

0

@t'(t, �(t)) +r'(t, �(t)) · �̇(t) dt

= a�

Z 1

0

d

dt
'(t, �(t)) dt = 0

I J↵,�(⇢� ,m�) = 1: Take � := ⇢� and recall that  (t, x) = |x |
2/2t,

J↵,�(⇢� ,m�) = ↵

Z 1

0

Z

⌦

 

✓
d⇢�
d�

,
dm�

d�

◆
d�+ � k⇢kM(X )

= a�

✓
↵

Z 1

0

Z

⌦

 (1, �̇(t)) d��(t) dt + �

◆
= a� a

�1

� = 1
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Idea of the proof - {0} [ C ⇢ Extr(C )

Assume we can decompose

(⇢� ,m�) = � (⇢1,m1) + (1� �) (⇢2,m2) (D)

with (⇢j ,mj) 2 C and � 2 (0, 1).

I Since J↵,�(⇢� ,m�) = 1, by convexity and (D) we have J↵,�(⇢j ,mj) = 1

I Since J↵,�(⇢j ,mj) = 1 then ⇢j = a
j
dt ⌦ ⇢jt , m

j = v
j ⇢j for some a

j > 0,

(t 7! ⇢jt) 2 P(⌦) narrowly continuous, v j : (0, 1)⇥ ⌦! Rd measurable

I From (D) and uniqueness of disintegration

a� ��(t) = � a1 ⇢1
t
+ (1� �) a2 ⇢2

t

a
j>0
=) ⇢jt = ��(t)

I @t⇢j + divmj = 0 and ⇢j = a
j
dt ⌦ ��(t), m

j = v
j⇢j . This forces

v
j(t, �(t)) = �̇(t)

I Since ⇢j = a
j
dt ⌦ ��(t) and m

j = �̇(t) ⇢j =) J↵,�(⇢j ,mj) = a
j/a�

I Since J↵,�(⇢j ,mj) = 1 then a
j = a� . Hence (⇢j ,mj) = (⇢� ,m�)
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Idea of the proof - Extr(C ) ⇢ {0} [ C

Let ⌦ ⇢ Rd be open and bounded. Consider

� := {� : [0, 1] ! Rd : � continuous }

with the supremum norm

Theorem (SF, Bredies, Carioni, Romero ’19)

Let t 7! ⇢t 2 P(⌦) be narrowly continuous and v : (0, 1)⇥ ⌦! Rd
. Assume

@t⇢t + div(⇢tv) = 0 ,

Z 1

0

Z

⌦

|v(t, x)|2 d⇢t(x) dt < +1

There exists � 2 P(�) such that

Z

⌦

'(x) d⇢t(x) =

Z

�

'(�(t)) d�(�) for all ' 2 C (⌦), t 2 [0, 1]

Moreover � is concentrated on curves � 2 AC
2([0, 1];⌦) such that

�̇(t) = v(t, �(t))

L. Ambrosio (Inv. Math. ’04) for ⌦ = Rd
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Idea of the proof - Extr(C ) ⇢ {0} [ C

I Smooth ⇢t and v so that @t⇢t + div(⇢tv) = 0 holds and the ODE

d

dt
Xt(x) = v(t,Xt(x)) , X0(x) = x

admits a global solution Xt(x) : [0, 1]⇥ Rd
! Rd . Freezing time, we have

⇢t = (Xt)#⇢0 (A)

I Interpret X as a map X : Rd
! � via x 7! (t 7! Xt(x)) and define

� := (X )#⇢0 2 P(�) (B)

The representation formula holds for fixed t 2 [0, 1]:
Z

�

'(�(t)) d�(�)
(B)

=

Z

Rd

'(Xt(x)) d⇢0(x)
(A)

=

Z

Rd

'(x) d⇢t(x) (F)

Then one can pass to the limit to get thesis (hard part is the concentration)
I Assume (⇢,m) is an extremal point: Since J↵,�(⇢,m)  1 we can apply the

Theorem and represent ⇢ via (F). Extremality forces

� = ��⇤ for some �⇤ 2 AC
2([0, 1];⌦)

(F)

=) Thesis
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Discrete time sampling and finite-dimensional data

Fix N � 1 times 0 < t1 < t2 < · · · < tN < 1 and let

I Hi finite dimensional Hilbert space, H :=⇥
N

i=1
Hi

I K
⇤
i
: M(⌦) ! Hi linear and weak*-continuous

Inverse problem: for (f1, . . . , fN) 2 H find a curve t 7! ⇢t 2 M(⌦) such that

K
⇤
i
⇢ti = fi for i = 1, . . . ,N

Regularization: we regularize via

T↵,�(⇢,m) :=
1

2

NX

i=1

kKi⇢ti � fik
2

Hi
+ ↵B(⇢,m) + � k⇢kM(X )
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Sparse minimizers

Theorem (Fanzon, Bredies, Carioni, Romero ’19)

The minimization problem

min
(⇢,m)2M(X )d+1

1

2

NX

i=1

kKi⇢ti � fik
2

Hi
+ ↵B(⇢,m) + � k⇢kM(X )

admits a sparse minimizer of the form

(⇢⇤,m⇤) =
pX

i=1

ci (⇢�i
,m�)

where ci > 0, �i 2 AC2([0, 1];⌦) and p  dimH.

K. Bredies, M. Carioni (Calc. Var. PDEs ’19)

C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss (SIAM Opt. ’19)
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Sparse reconstruction (time continuous case)

Definition (Regularizer)

Let ↵,� > 0. For (⇢,m) 2 M(X )⇥M(X )d we set

J↵,�(⇢,m) :=

(
↵B(⇢,m) + � k⇢kM(X )

if @t⇢+ divm = 0

+1 otherwise

For t 2 [0, 1] assume given:

I Ht family of Hilbert spaces satisfying (H)

I K
⇤
t
: M(⌦) ! Ht linear continuous operators satisfying (K)

Problem

Given f 2 L
2([0, 1];H) compute a minimizer (⇢,m) 2 M(X )d+1

⇥M(X )d for

T↵,�(⇢,m) :=
1

2

Z 1

0

kK
⇤
t
⇢t � ftk

2

Ht
+ J↵,�(⇢,m)
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Generalized conditional gradient method 1/2

First one can replace

min
(⇢,m)

T↵,�(⇢,m) :=
1

2

Z 1

0

kK
⇤
t
⇢t � ftk

2

Ht
+ J↵,�(⇢,m)

by the equivalent problem

min
(⇢,m)

T̃↵,�(⇢,m) :=
1

2

Z 1

0

kK
⇤
t
⇢t � ftk

2

Ht
+ '(J↵,�(⇢,m)) (P)

where ' : R ! [0,1] is for example

'(t) := t + �{s M0}(t) , M0 :=
1

2

Z 1

0

kftk
2

Ht
dt

Then one approximates (P) by linearizing the quadratic term around (⇢̃, m̃)

min
(⇢,m)

�

Z 1

0

h⇢t ,wtiM(⌦),C(⌦)
dt + '(J↵,�(⇢,m)) , wt := �Kt(K

⇤
t
⇢̃t � ft)
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Generalized conditional gradient method 2/2

Consider the convex unit ball of J↵,�

C :=
�
(⇢,m) 2 M(X )d+1 : J↵,�(⇢,m)  1

 

and denote by Extr(C ) its extremal points

Theorem (SF, Bredies, Carioni, Romero ’19)

Assume (H)-(K). Let f 2 L
2

H
and fix t 7! ⇢̃t 2 M(⌦) narrowly continuous. Set

wt := �Kt(K
⇤
t
⇢̃t � ft)

Then there exists a solution (⇢⇤,m⇤) 2 Extr(C ) to the problem

min
(⇢,m)2C

�

Z 1

0

h⇢t ,wtiM(⌦),C(⌦)
dt (L)

Moreover there exists M � 0 such that (M⇢⇤,Mm
⇤) is a solution to

min
(⇢,m)

�

Z 1

0

h⇢t ,wtiM(⌦),C(⌦)
dt + '(J↵,�(⇢,m))
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Algorithm

Let f 2 L
2

H
be given. Initialize (⇢0,m0) := (0, 0) in M(X )⇥M(X )d

1 (Insertion) Assume given �j 2 AC
2([0, 1];⌦) pairwise distinct, cj > 0 and set

(⇢n,mn) :=
X

j

cj (⇢�j
,m�j

)

Compute the dual variable wt := �Kt(K⇤
t
⇢n
t
� ft) and solve

�⇤ 2 argmin
�2AC 2([0,1];⌦)

�

✓
↵

2

Z 1

0

|�̇(t)|2 dt + �

◆�1 Z 1

0

wt(�(t)) dt

Set (⇢n+1/2,mn+1/2) := (⇢n,mn) + (⇢�⇤ ,m�⇤) =
P

j
cj (⇢�j

,m�j
)

2 (Optimization) Solve the quadratic problem

C̄ = (c̄j)j 2 argmin
cj�0

T↵,�

⇣
⇢n+1/2,mn+1/2

⌘

Define
(⇢n+1,mn+1) :=

X

j

c̄j (⇢�j
,m�j

)
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Convergence

Define the functional distance

r(⇢,m) := T↵,�(⇢,m)�minT↵,�

Theorem (SF, Bredies, Carioni, Romero ’19)

Let f 2 L
2

H
, ↵,� > 0 and (⇢n,mn) 2 M(X )d+1

be the sequence in the Algorithm

I (⇢n,mn) is minimizing with

r(⇢n,mn) 
C

n
(B)

where C > 0 depends only on f ,↵,�

I Each weak* accumulation point of (⇢n,mn) is a minimum for T↵,�

Improving convergence: In the simulations we obtain linear convergence.
Therefore one could expect that (B) can be improved (current proof does not take
advantage of coe�cients optimization step)
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Simulations 1/4

I ⌦ = [0, 1]2, � = H
1

s where s =spiral in ⌦
I Ht := L

2
�(R2;C) (time independent)

I K
⇤
t
: M(⌦) ! Ht masked Fourier transform (time independent)

I Data is ft = K
⇤
t
⇢t where ⇢t are the curves in picture (no noise)
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Simulations 2/4

Dual variable first iteration wt := �Kt ft

(Recall that wt 2 C (⌦) for each t 2 [0, 1])
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Simulations 3/4

Reconstructed trajectories
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Simulations 4/4

Convergence plot: exhibits linear rate

Error = T↵,�(⇢n,mn)� T↵,�(⇢n+1,mn+1)
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Further directions: unbalanced OT case

Consider the regularizer

J↵,�(⇢,m, µ) := ↵

Z

X

 

✓
d⇢

d�
,
dm

d�
,
dµ

d�

◆
d�+ � k⇢kM(X )

if @t⇢+ divm = µ

where � 2 M
+(X ) is such that ⇢,m, µ ⌧ � and  (t, x , y) := |x|2+y

2

2t
if t > 0

Further direction: carry out same analysis for the regularizer J↵,� above

Key ingredients:

I Characterization of the extremal points of J↵,� , which are of the form

⇢ = h(t) dt ⌦ ��(t) , m = �̇⇢ , µ =
ḣ

h
⇢

where h : [0, 1] ! [0,1), � : [0, 1] ! ⌦ satisfy certain regularity properties

I Characterization is based on a superposition principle for @t⇢+ divm = µ

SF, Bredies, Carioni, Romero - A superposition principle for the non-homogeneous continuity

equation (In preparation)
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Conclusions and Perspectives

Conclusions:

I Introduced rigorous framework for optimal transport regularization of time
dependent inverse problems

I Application to variational reconstruction for undersampled MRI

I Characterization of the extremal points of the Benamou-Brenier regularizer

I Numerical algorithm for dynamic spike reconstruction

Perspectives:

I Linear convergence for the conditional gradient method (in progress...)

I Extremal points for the unbalanced transport regularizer (almost done!)

I Numerical analysis for the unbalanced transport regularizer (in progress...)
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Thank You!
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