Optimal transport regularization of dynamic inverse problems

Silvio Fanzon
University of Graz
Based on joint works with
Kristian Bredies, Marcello Carioni and Francisco Romero

Paris, 20-21 November 2019

Plan of the Talk

(1) Analytical framework for OT regularization of dynamic inverse problems (with K. Bredies)

- An optimal transport approach for solving dynamic inverse problems in spaces of measures. (Preprint 2019)
(2) Numerical results for sparse reconstruction in spaces of measures (with K. Bredies, M. Carioni, F. Romero)
- On the extremal points of the ball of the Benamou-Benier energy (Preprint 2019)
- A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization (In preparation)
- A superposition principle for the non-homogeneous continuity equation (In preparation)

Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales \sim artefacts in reconstructed images

- Imaging of lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating
Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales \sim artefacts in reconstructed images

- Imaging of lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating
Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image

No regularizer

Proposed model: optimal transport regularization for dynamic reconstruction

Optimal Transport - Static Formulation

$\Omega \subset \mathbb{R}^{d}$ bounded domain, $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega), T: \Omega \rightarrow \Omega$ measurable displacement

Goal: move ρ_{0} to ρ_{1} in the cheapest way, with cost of moving mass from x to y

$$
c(x, y):=|x-y|^{2}
$$

Optimal Transport: a transport plan T solving

$$
\min \left\{\int_{\Omega}|T(x)-x|^{2} d \rho_{0}(x): T: \Omega \rightarrow \Omega, T_{\#} \rho_{0}=\rho_{1}\right\}
$$

Optimal Transport - Dynamic Formulation

Idea: introduce a time variable $t \in[0,1]$ and consider evolution of ρ_{t}

- time dependent probability measures

$$
t \mapsto \rho_{t} \in \mathcal{P}(\Omega) \text { for } t \in[0,1]
$$

- velocity field advecting ρ_{t}

$$
v_{t}(x):[0,1] \times \Omega \rightarrow \mathbb{R}^{d}
$$

- $\left(\rho_{t}, v_{t}\right)$ solves the continuity equation with initial conditions

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0 \tag{CE-IC}\\
\text { Initial data } \rho_{0}, \text { final data } \rho_{1}
\end{array}\right.
$$

Connection and Advantages

Theorem (Benamou-Brenier '00)

$\min _{\substack{\left(\rho_{t}, v_{t}\right) \\ \text { solving (CE-CC)}}} \int_{0}^{1} \int_{\Omega}\left|v_{t}(x)\right|^{2} \rho_{t}(x) d x d t=\min _{\substack{T: \Omega \rightarrow \Omega \\ T_{\#}: \rho_{0}=\rho_{1}}} \int_{\Omega}|T(x)-x|^{2} \rho_{0}(x) d x$

Advantages of Dynamic Formulation:

(1) By introducing the momentum $m_{t}:=\rho_{t} v_{t}$ we have

$$
\int_{0}^{1} \int_{\Omega}\left|v_{t}(x)\right|^{2} \rho_{t}(x) d x d t=\int_{0}^{1} \int_{\Omega} \frac{\left|m_{t}(x)\right|^{2}}{\rho_{t}(x)} d x d t
$$

which is convex in $\left(\rho_{t}, m_{t}\right)$. The continuity equation becomes linear

$$
\partial_{t} \rho_{t}+\operatorname{div} m_{t}=0
$$

(2) we know the full trajectory ρ_{t} and can recover the velocity field v_{t} from m_{t}

Dynamic inverse problem

$\Omega \subset \mathbb{R}^{d}$ bounded open domain, $d \geq 1$
For $t \in[0,1]$ assume given

- H_{t} Hilbert spaces (measurement spaces - non isomorphic)
- $K_{t}^{*}: \mathcal{M}(\bar{\Omega}) \rightarrow H_{t}$ linear continuous operators (forward-operators)
(Time dependence allows for spatial undersampling - e.g. line or point sampling)

Problem

Given some data $\left\{f_{t}\right\}_{t \in[0,1]}$ with $f_{t} \in H_{t}$, find a curve of measures

$$
t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})
$$

such that they solve the dynamic inverse problem

$$
\begin{equation*}
K_{t}^{*} \rho_{t}=f_{t} \quad \text { for a.e. } t \in[0,1] . \tag{P}
\end{equation*}
$$

Unbalanced optimal transport regularization

Consider a triple $\left(\rho_{t}, v_{t}, g_{t}\right)$ with

- $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ mass density (not probability measures)
- $v_{t}:(0,1) \times \bar{\Omega} \rightarrow \mathbb{R}^{d}$ velocity field, $g_{t}:(0,1) \times \bar{\Omega} \rightarrow \mathbb{R}$ growth rate We propose to regularize $K_{t}^{*} \rho_{t}=f_{t}$ via minimization in $\left(\rho_{t}, v_{t}, g_{t}\right)$ of

$$
\begin{array}{r}
\underbrace{\frac{1}{2} \int_{0}^{1}\left\|K_{t}^{*} \rho_{t}-f_{t}\right\|_{H_{t}}^{2} d t}_{\text {Fidelity Term }}+\frac{\alpha}{2} \underbrace{\int_{0}^{1} \int_{\bar{\Omega}}\left|v_{t}(x)\right|^{2}+\left|g_{t}(x)\right|^{2} d \rho_{t}(x) d t}_{\text {Optimal Transport Regularizer }}+\beta \underbrace{\int_{0}^{1}\left\|\rho_{t}\right\| d t}_{\text {TV Regularizer }} \\
\text { s.t. } \quad \partial_{t} \rho+\operatorname{div}\left(\rho v_{t}\right)=\rho g_{t} \quad \text { (Continuity Equation - No IC) }
\end{array}
$$

- v_{t} keeps track of motion, g_{t} keeps track of contrast agent
- continuity equation enforces time "regularity"

Chizat, Peyré, Schmitzer, Vialard (Found. of Comp. Math. '18, JFA '18)
Liero, Mielke, Savaré (Inv. Math. '18)

Formal definition of the Unbalanced OT Energy

Set $X:=(0,1) \times \bar{\Omega}$ and consider triples $(\rho, m, \mu) \in \mathcal{M}(X) \times \mathcal{M}(X)^{d} \times \mathcal{M}(X)$ Define the convex, 1 -homogeneous functional

$$
B(\rho, m, \mu):=\int_{X} \Psi\left(\frac{d \rho}{d \lambda}, \frac{d m}{d \lambda}, \frac{d \mu}{d \lambda}\right) d \lambda
$$

where $\lambda \in \mathcal{M}^{+}(X)$ is such that $\rho, m, \mu \ll \lambda$ and

$$
\Psi(t, x, y):=\frac{|x|^{2}+y^{2}}{2 t} \text { if } t>0, \Psi=+\infty \text { else }
$$

Proposition

B is weak* lower-semicontinuous. If $B(\rho, m, \mu)<+\infty$ and $\partial_{t} \rho+\operatorname{div} m=\mu$ then

- $\rho=d t \otimes \rho_{t}$ for a weak*-continuous curve $t \mapsto \rho_{t} \in \mathcal{M}^{+}(\bar{\Omega})$
- $m=\rho v_{t}$ for some velocity field $v_{t}:(0,1) \times \bar{\Omega} \rightarrow \mathbb{R}^{d}$
- $\mu=\rho g_{t}$ for some growth rate $g_{t}:(0,1) \times \bar{\Omega} \rightarrow \mathbb{R}$

$$
B(\rho, m, \mu)=\int_{0}^{1} \int_{\bar{\Omega}}\left|v_{t}(x)\right|^{2}+\left|g_{t}(x)\right|^{2} d \rho_{t}(x) d t
$$

Sampling spaces $1 / 3$

$(\mathrm{H}):$ the spaces H_{t} vary in a "measurable" way as $t \in[0,1]$

- \exists Banach space D and $i_{t}: D \rightarrow H_{t}$ linear continuous
- $i_{t}(D) \subset H_{t}$ dense, $\sup _{t}\left\|i_{t}\right\| \leq C$
- for each $\varphi, \psi \in D$ the map $t \mapsto\left\langle i_{t} \varphi, i_{t} \psi\right\rangle_{H_{t}}$ is Lebesgue measurable

Step Functions: a map $\varphi:[0,1] \rightarrow D$ is a step function if

$$
\varphi_{t}=\sum_{j=1}^{N} \chi_{E_{j}}(t) \varphi_{j}
$$

for $\varphi_{j} \in D, E_{j} \subset[0,1]$ measurable, $N \in \mathbb{N}$.
Strong Measurability: a map $f:[0,1] \rightarrow \cup_{t} H_{t}$ with $f_{t} \in H_{t}$ is str. meas. if
$\exists \varphi^{n}:[0,1] \rightarrow D$ step functions s.t.

$$
\lim _{n}\left\|i_{t} \varphi_{t}^{n}-f_{t}\right\|_{H_{t}}=0 \quad \text { for a.e. } \quad t \in(0,1)
$$

Sampling spaces $2 / 3$

Integrability: a str. meas. map $f:[0,1] \rightarrow \cup_{t} H_{t}$ with $f_{t} \in H_{t}$ is integrable if $\exists \varphi^{n}:[0,1] \rightarrow D$ step functions s.t.

$$
\lim _{n} \int_{0}^{1}\left\|i_{t} \varphi_{t}^{n}-f_{t}\right\|_{H_{t}} d t=0
$$

Theorem (SF, Bredies '19)

Let $f:[0,1] \rightarrow \cup_{t} H_{t}$ be strongly measurable. Then f is integrable iff

$$
\int_{0}^{1}\left\|f_{t}\right\|_{H_{t}} d t<\infty
$$

Note: it is possible to show the Theorem after introducing suitable notions of weakly measurable and of separably valued maps $f:[0,1] \rightarrow \cup_{t} H_{t}$, in a way that a version of Pettis Theorem holds.

Sampling spaces $3 / 3$

Definition (Data space)

$$
L_{H}^{2}=\left\{f:[0,1] \rightarrow \cup_{t} H_{t}: f_{t} \in H_{t}, f \text { strongly meas }, \int_{0}^{1}\left\|f_{t}\right\|_{H_{t}}^{2} d t<\infty\right\}
$$

Theorem (SF, Bredies '19)

The space L_{H}^{2} is Hilbert with the scalar product

$$
\langle f, g\rangle_{L_{H}^{2}}:=\int_{0}^{1}\left\langle f_{t}, g_{t}\right\rangle_{H_{t}} d t
$$

Note: No notion of integral for $f \in L_{H}^{2}$. However $i_{t}^{*} f_{t}:[0,1] \rightarrow D^{*}$

- $i_{t}^{*} f_{t}$ is always Gelfand integrable: for $E \subset[0,1]$ measurable $\exists I_{E}(f) \in D^{*}$ s.t.

$$
\langle I(f), \varphi\rangle_{D^{*}, D}=\int_{0}^{1}\left\langle i_{t}^{*} f_{t}, \varphi\right\rangle_{D^{*}, D} d t \quad \text { for all } \quad \varphi \in D
$$

- $i_{t}^{*} f_{t}$ is not Bochner integrable, as it is not strongly measurable in general (counterexamples for D non reflexive)

Forward operators and Regularized Problem

(K) : the operators $K_{t}^{*}: \mathcal{M}(\bar{\Omega}) \rightarrow H_{t}$ satisfy

- K_{t}^{*} linear continuous and weak*-to-weak continuous
$-\sup _{t}\left\|K_{t}^{*}\right\| \leq C$
- for $\rho \in \mathcal{M}(\bar{\Omega})$ the map $t \mapsto K_{t}^{*} \rho$ is strongly measurable

Proposition (SF, Bredies '19)

If $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ is weak* continuous then $t \mapsto K_{t}^{*} \rho_{t}$ belongs to L_{H}^{2}

Definition (Regularization)

Let $f \in L_{H}^{2}$ be some data. For $(\rho, m, \mu) \in \mathcal{M}(X) \times \mathcal{M}(X)^{d} \times \mathcal{M}(X)$ set

$$
T_{\alpha, \beta}(\rho, m, \mu):=\frac{1}{2} \int_{0}^{1}\left\|K_{t}^{*} \rho_{t}-f_{t}\right\|_{H_{t}}^{2} d t+\alpha B(\rho, m, \mu)+\beta\|\rho\|_{\mathcal{M}(X)}
$$

if $\partial_{t} \rho+\operatorname{div} m=\mu$, and $T_{\alpha, \beta}(\rho, m, \mu)=+\infty$ else.

Existence \& Stability

Theorem (SF, Bredies '19)

Assume (H)-(K) and let $f \in L_{H}^{2}$. Then

$$
\begin{equation*}
\min _{(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}} T_{\alpha, \beta}(\rho, m, \mu) \tag{MIN}
\end{equation*}
$$

admits a solution. If K_{t}^{*} is injective for a.e. t, then the solution is unique.

Theorem (SF, Bredies '19)

Assume (H)-(K). Let f^{n} be noisy data such that $f^{n} \rightarrow f^{\dagger}$ strongly in L_{H}^{2}. Let $\left(\rho^{n}, m^{n}, \mu^{n}\right)$ be solution to (MIN) with par. $\alpha_{n}, \beta_{n} \rightarrow 0$ and data f^{n}. Then

$$
\begin{aligned}
& \left(\rho^{n}, m^{n}, \mu^{n}\right) \stackrel{*}{\rightharpoonup}\left(\rho^{\dagger}, m^{\dagger}, \mu^{\dagger}\right) \text { in } \mathcal{M}(X)^{d+2}, \quad K_{t}^{*} \rho_{t}^{\dagger}=f_{t}^{\dagger} \quad \text { for all } t \in[0,1] \\
& \left(\rho^{\dagger}, m^{\dagger}, \mu^{\dagger}\right) \in \arg \min \alpha^{*} B(\rho, m, \mu)+\beta^{*}\|\rho\|_{\mathcal{M}(X)}, \quad \exists \alpha^{*}, \beta^{*} \geq 1
\end{aligned}
$$

Variational reconstruction for undersampled MRI $1 / 2$

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$$
\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.
$$

Variational reconstruction for undersampled MRI $1 / 2$

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$$
\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.
$$

Variational reconstruction for undersampled MRI 1/2

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$$
\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.
$$

Variational reconstruction for undersampled MRI 1/2

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$$
\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.
$$

Variational reconstruction for undersampled MRI 1/2

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$$
\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.
$$

Variational reconstruction for undersampled MRI 1/2

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$$
\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.
$$

$\sigma_{t}=\mathcal{H}^{0}\left\llcorner P_{t}\right.$

Variational reconstruction for undersampled MRI 1/2

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$$
\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.
$$

$\sigma_{t}=\mathcal{H}^{0}\left\llcorner P_{t}\right.$

Variational reconstruction for undersampled MRI 1/2

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$$
\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.
$$

$\sigma_{t}=\mathcal{H}^{0}\left\llcorner P_{t}\right.$

Variational reconstruction for undersampled MRI 1/2

- $\Omega=[0,1]^{2}$ image frame, $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ proton density
- $H_{t}:=L_{\sigma_{t}}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$ with $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ sampling measures

$\sigma_{t}=\mathcal{H}^{1}\left\llcorner L_{t}\right.$

$\sigma_{t}=\mathcal{H}^{0}\left\llcorner P_{t}\right.$
- $K_{t}^{*}: \mathcal{M}(\bar{\Omega}) \rightarrow H_{t}$ masked Fourier transform

$$
K_{t}^{*} \rho:=\left(\mathfrak{F}\left(c_{1} \rho\right), \ldots, \mathfrak{F}\left(c_{N} \rho\right)\right)
$$

with $c_{j} \in C_{0}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ coil sensitivities (accounting for phase inhomogeneities)

Variational reconstruction for undersampled MRI 2/2

(M): Assume that the family $\sigma_{t} \in \mathcal{M}^{+}\left(\mathbb{R}^{2}\right)$ satisfies:

- $\sup _{t}\left\|\sigma_{t}\right\| \leq C$
- for each $\varphi \in C_{0}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ the map $t \mapsto \int_{\mathbb{R}^{2}} \varphi(x) d \sigma_{t}(x)$ is measurable

Theorem (SF, Bredies '19)

Assume (M). Let $\alpha, \beta, \delta>0, f \in L_{H}^{2}$ and $c \in C_{0}\left(\mathbb{R}^{2} ; \mathbb{C}^{N}\right)$. Then

$$
\min _{\substack{(\rho, m, \mu) \in \mathcal{M}(X)^{4} \\ \partial_{t} \rho+\operatorname{div} m=\mu}} \frac{1}{2} \sum_{j=1}^{N} \int_{0}^{1}\left\|\mathfrak{F}\left(c_{j} \rho_{t}\right)-f_{t}\right\|_{L_{\sigma_{t}}^{2}}^{2} d t+\alpha B_{\delta}(\rho, m, \mu)+\beta\|\rho\|
$$

admits a solution (ρ, m, μ) with

- $\rho=d t \otimes \rho_{t}$ with $t \mapsto \rho_{t}$ weak* continuous
- $m=\rho v$ for some velocity $v:(0,1) \times \bar{\Omega} \rightarrow \mathbb{R}^{2}$
- $\mu=\rho g$ for some growth rate $g:(0,1) \times \bar{\Omega} \rightarrow \mathbb{R}^{2}$

Numerical Results for Benamou-Brenier regularizer

Let $\Omega \subset \mathbb{R}^{d}$ be open bounded, $X:=(0,1) \times \bar{\Omega}$. Consider the Benamou-Brenier energy

$$
B(\rho, m):=\int_{X} \Psi\left(\frac{d \rho}{d \lambda}, \frac{d m}{d \lambda}\right) d \lambda
$$

where $\lambda \in \mathcal{M}^{+}(X)$ is such that $\rho, m \ll \lambda$ and

$$
\Psi(t, x):=\frac{|x|^{2}}{2 t} \quad \text { if } \quad t>0, \quad \Psi=+\infty \text { else }
$$

Recall: if $\rho=d t \otimes \rho_{t}$ and $m=v \rho$

$$
B(\rho, m):=\frac{\alpha}{2} \int_{0}^{1}|v(t, x)|^{2} d \rho_{t}(x) d t
$$

Bibliography:

- SF, Bredies, Carioni, Romero - On the extremal points of the ball of the Benamou-Benier energy (Preprint 2019)
- SF, Bredies, Carioni, Romero - A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization (In preparation)

Main Question

Definition (Regularizer)

Let $\alpha, \beta>0$. For $(\rho, m) \in \mathcal{M}(X) \times \mathcal{M}(X)^{d}$ we set

$$
J_{\alpha, \beta}(\rho, m):= \begin{cases}\alpha B(\rho, m)+\beta\|\rho\|_{\mathcal{M}(X)} & \text { if } \partial_{t} \rho+\operatorname{div} m=0 \\ +\infty & \text { otherwise }\end{cases}
$$

For $t \in[0,1]$ assume given:

- H_{t} family of Hilbert spaces satisfying (H)
- $K_{t}^{*}: \mathcal{M}(\bar{\Omega}) \rightarrow H_{t}$ linear continuous operators satisfying (K)

Problem

Given $f \in L^{2}([0,1] ; H)$ compute a minimizer $(\rho, m) \in \mathcal{M}(X)^{d+1}$ for

$$
T_{\alpha, \beta}(\rho, m):=\frac{1}{2} \int_{0}^{1}\left\|K_{t}^{*} \rho_{t}-f_{t}\right\|_{H_{t}}^{2}+J_{\alpha, \beta}(\rho, m)
$$

Extremal points of $J_{\alpha, \beta}$

Consider the convex unit ball of $J_{\alpha, \beta}$

$$
C:=\left\{(\rho, m) \in \mathcal{M}(X) \times \mathcal{M}(X)^{d}: J_{\alpha, \beta}(\rho, m) \leq 1\right\}
$$

Definition

For $\gamma \in \operatorname{AC}^{2}([0,1] ; \bar{\Omega})$ define the measures $\rho_{\gamma} \in \mathcal{M}(X), m_{\gamma} \in \mathcal{M}(X)^{d}$ as

$$
\rho_{\gamma}:=a_{\gamma} d t \otimes \delta_{\gamma(t)}, \quad m_{\gamma}:=\dot{\gamma} \rho_{\gamma}, \quad a_{\gamma}^{-1}:=\frac{\alpha}{2} \int_{0}^{1}|\dot{\gamma}(t)|^{2} d t+\beta
$$

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The extremal points of C are characterized by

$$
\operatorname{Extr}(C)=\{(0,0)\} \cup \mathcal{C}
$$

where

$$
\mathcal{C}:=\left\{\left(\rho_{\gamma}, m_{\gamma}\right): \gamma \in \mathrm{AC}^{2}([0,1] ; \bar{\Omega})\right\}
$$

Idea of the proof $-\{0\} \cup \mathcal{C} \subset \operatorname{Extr}(C)$
The case $(\rho, m)=(0,0)$ is trivial. Then let $\gamma \in \operatorname{AC}^{2}([0,1] ; \bar{\Omega})$ and define

$$
\rho_{\gamma}:=a_{\gamma} d t \otimes \delta_{\gamma(t)}, \quad m_{\gamma}:=\dot{\gamma} \rho_{\gamma}, \quad a_{\gamma}^{-1}:=\frac{\alpha}{2} \int_{0}^{1}|\dot{\gamma}(t)|^{2} d t+\beta
$$

We first show that $\left(\rho_{\gamma}, m_{\gamma}\right) \in C$

- $\left(\rho_{\gamma}, m_{\gamma}\right)$ solves continuity equation: let $\varphi \in C_{c}^{1}((0,1) \times \bar{\Omega})$

$$
\begin{aligned}
\int_{0}^{1} \int_{\Omega} \partial_{t} \varphi d \rho_{\gamma}+\nabla \varphi \cdot d m_{\gamma} & =a_{\gamma} \int_{0}^{1} \partial_{t} \varphi(t, \gamma(t))+\nabla \varphi(t, \gamma(t)) \cdot \dot{\gamma}(t) d t \\
& =a_{\gamma} \int_{0}^{1} \frac{d}{d t} \varphi(t, \gamma(t)) d t=0
\end{aligned}
$$

- $J_{\alpha, \beta}\left(\rho_{\gamma}, m_{\gamma}\right)=1$: Take $\lambda:=\rho_{\gamma}$ and recall that $\Psi(t, x)=|x|^{2} / 2 t$,

$$
\begin{aligned}
J_{\alpha, \beta}\left(\rho_{\gamma}, m_{\gamma}\right) & =\alpha \int_{0}^{1} \int_{\Omega} \Psi\left(\frac{d \rho_{\gamma}}{d \lambda}, \frac{d m_{\lambda}}{d \lambda}\right) d \lambda+\beta\|\rho\|_{\mathcal{M}(X)} \\
& =a_{\gamma}\left(\alpha \int_{0}^{1} \int_{\Omega} \Psi(1, \dot{\gamma}(t)) d \delta_{\gamma(t)} d t+\beta\right)=a_{\gamma} a_{\gamma}^{-1}=1
\end{aligned}
$$

Idea of the proof $-\{0\} \cup \mathcal{C} \subset \operatorname{Extr}(C)$

Assume we can decompose

$$
\begin{equation*}
\left(\rho_{\gamma}, m_{\gamma}\right)=\lambda\left(\rho^{1}, m^{1}\right)+(1-\lambda)\left(\rho^{2}, m^{2}\right) \tag{D}
\end{equation*}
$$

with $\left(\rho^{j}, m^{j}\right) \in C$ and $\lambda \in(0,1)$.

- Since $J_{\alpha, \beta}\left(\rho_{\gamma}, m_{\gamma}\right)=1$, by convexity and (D) we have $J_{\alpha, \beta}\left(\rho^{j}, m^{j}\right)=1$
- Since $J_{\alpha, \beta}\left(\rho^{j}, m^{j}\right)=1$ then $\rho^{j}=a^{j} d t \otimes \rho_{t}^{j}, m^{j}=v^{j} \rho^{j}$ for some $a^{j}>0$, $\left(t \mapsto \rho_{t}^{j}\right) \in P(\bar{\Omega})$ narrowly continuous, $v^{j}:(0,1) \times \bar{\Omega} \rightarrow \mathbb{R}^{d}$ measurable
- From (D) and uniqueness of disintegration

$$
a_{\gamma} \delta_{\gamma(t)}=\lambda a^{1} \rho_{t}^{1}+(1-\lambda) a^{2} \rho_{t}^{2} \quad \stackrel{a^{j}>0}{\Longrightarrow} \quad \rho_{t}^{j}=\delta_{\gamma(t)}
$$

- $\partial_{t} \rho^{j}+\operatorname{div} m^{j}=0$ and $\rho^{j}=a^{j} d t \otimes \delta_{\gamma(t)}, m^{j}=v^{j} \rho^{j}$. This forces

$$
v^{j}(t, \gamma(t))=\dot{\gamma}(t)
$$

- Since $\rho^{j}=a^{j} d t \otimes \delta_{\gamma(t)}$ and $m^{j}=\dot{\gamma}(t) \rho^{j} \Longrightarrow J_{\alpha, \beta}\left(\rho^{j}, m^{j}\right)=a^{j} / a_{\gamma}$
- Since $J_{\alpha, \beta}\left(\rho^{j}, m^{j}\right)=1$ then $a^{j}=a_{\gamma}$. Hence $\left(\rho^{j}, m^{j}\right)=\left(\rho_{\gamma}, m_{\gamma}\right)$

Idea of the proof $-\operatorname{Extr}(C) \subset\{0\} \cup \mathcal{C}$

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded. Consider

$$
\Gamma:=\left\{\gamma:[0,1] \rightarrow \mathbb{R}^{d}: \gamma \text { continuous }\right\}
$$

with the supremum norm

Theorem (SF, Bredies, Carioni, Romero '19)

Let $t \mapsto \rho_{t} \in P(\bar{\Omega})$ be narrowly continuous and $v:(0,1) \times \bar{\Omega} \rightarrow \mathbb{R}^{d}$. Assume

$$
\partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v\right)=0, \quad \int_{0}^{1} \int_{\Omega}|v(t, x)|^{2} d \rho_{t}(x) d t<+\infty
$$

There exists $\sigma \in P(\Gamma)$ such that

$$
\int_{\bar{\Omega}} \varphi(x) d \rho_{t}(x)=\int_{\Gamma} \varphi(\gamma(t)) d \sigma(\gamma) \quad \text { for all } \quad \varphi \in C(\bar{\Omega}), t \in[0,1]
$$

Moreover σ is concentrated on curves $\gamma \in A C^{2}([0,1] ; \bar{\Omega})$ such that

$$
\dot{\gamma}(t)=v(t, \gamma(t))
$$

L. Ambrosio (Inv. Math. '04) for $\Omega=\mathbb{R}^{d}$

Idea of the proof $-\operatorname{Extr}(C) \subset\{0\} \cup \mathcal{C}$

- Smooth ρ_{t} and v so that $\partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v\right)=0$ holds and the ODE

$$
\frac{d}{d t} X_{t}(x)=v\left(t, X_{t}(x)\right), \quad X_{0}(x)=x
$$

admits a global solution $X_{t}(x):[0,1] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. Freezing time, we have

$$
\begin{equation*}
\rho_{t}=\left(X_{t}\right)_{\#} \rho_{0} \tag{A}
\end{equation*}
$$

- Interpret X as a map $X: \mathbb{R}^{d} \rightarrow \Gamma$ via $x \mapsto\left(t \mapsto X_{t}(x)\right)$ and define

$$
\begin{equation*}
\sigma:=(X)_{\#} \rho_{0} \in P(\Gamma) \tag{B}
\end{equation*}
$$

The representation formula holds for fixed $t \in[0,1]$:

$$
\begin{equation*}
\int_{\Gamma} \varphi(\gamma(t)) d \sigma(\gamma) \stackrel{(\mathrm{B})}{=} \int_{\mathbb{R}^{d}} \varphi\left(X_{t}(x)\right) d \rho_{0}(x) \stackrel{(\mathrm{A})}{=} \int_{\mathbb{R}^{d}} \varphi(x) d \rho_{t}(x) \tag{F}
\end{equation*}
$$

Then one can pass to the limit to get thesis (hard part is the concentration)

- Assume (ρ, m) is an extremal point: Since $J_{\alpha, \beta}(\rho, m) \leq 1$ we can apply the Theorem and represent ρ via (F). Extremality forces

$$
\sigma=\delta_{\gamma^{*}} \text { for some } \gamma^{*} \in A C^{2}([0,1] ; \bar{\Omega}) \xrightarrow{(F)} \text { Thesis }
$$

Discrete time sampling and finite-dimensional data

Fix $N \geq 1$ times $0<t_{1}<t_{2}<\cdots<t_{N}<1$ and let

- H_{i} finite dimensional Hilbert space, $\mathcal{H}:=X_{i=1}^{N} H_{i}$
- $K_{i}^{*}: \mathcal{M}(\bar{\Omega}) \rightarrow H_{i}$ linear and weak*-continuous

Inverse problem: for $\left(f_{1}, \ldots, f_{N}\right) \in \mathcal{H}$ find a curve $t \mapsto \rho_{t} \in \mathcal{M}(\bar{\Omega})$ such that

$$
K_{i}^{*} \rho_{t_{i}}=f_{i} \text { for } i=1, \ldots, N
$$

Regularization: we regularize via

$$
T_{\alpha, \beta}(\rho, m):=\frac{1}{2} \sum_{i=1}^{N}\left\|K_{i} \rho_{t_{i}}-f_{i}\right\|_{H_{i}}^{2}+\alpha B(\rho, m)+\beta\|\rho\|_{\mathcal{M}(X)}
$$

Sparse minimizers

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The minimization problem

$$
\min _{(\rho, m) \in \mathcal{M}(X)^{d+1}} \frac{1}{2} \sum_{i=1}^{N}\left\|K_{i} \rho_{t_{i}}-f_{i}\right\|_{H_{i}}^{2}+\alpha B(\rho, m)+\beta\|\rho\|_{\mathcal{M}(X)}
$$

admits a sparse minimizer of the form

$$
\left(\rho^{*}, m^{*}\right)=\sum_{i=1}^{p} c_{i}\left(\rho_{\gamma_{i}}, m_{\gamma}\right)
$$

where $c_{i}>0, \gamma_{i} \in \operatorname{AC}^{2}([0,1] ; \bar{\Omega})$ and $p \leq \operatorname{dim} \mathcal{H}$.
K. Bredies, M. Carioni (Calc. Var. PDEs '19)
C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss (SIAM Opt. '19)

Sparse reconstruction (time continuous case)

Definition (Regularizer)

Let $\alpha, \beta>0$. For $(\rho, m) \in \mathcal{M}(X) \times \mathcal{M}(X)^{d}$ we set

$$
J_{\alpha, \beta}(\rho, m):= \begin{cases}\alpha B(\rho, m)+\beta\|\rho\|_{\mathcal{M}(X)} & \text { if } \partial_{t} \rho+\operatorname{div} m=0 \\ +\infty & \text { otherwise }\end{cases}
$$

For $t \in[0,1]$ assume given:

- H_{t} family of Hilbert spaces satisfying (H)
- $K_{t}^{*}: \mathcal{M}(\bar{\Omega}) \rightarrow H_{t}$ linear continuous operators satisfying (K)

Problem

Given $f \in L^{2}([0,1] ; H)$ compute a minimizer $(\rho, m) \in \mathcal{M}(X)^{d+1} \times \mathcal{M}(X)^{d}$ for

$$
T_{\alpha, \beta}(\rho, m):=\frac{1}{2} \int_{0}^{1}\left\|K_{t}^{*} \rho_{t}-f_{t}\right\|_{H_{t}}^{2}+J_{\alpha, \beta}(\rho, m)
$$

Generalized conditional gradient method $1 / 2$

First one can replace

$$
\min _{(\rho, m)} T_{\alpha, \beta}(\rho, m):=\frac{1}{2} \int_{0}^{1}\left\|K_{t}^{*} \rho_{t}-f_{t}\right\|_{H_{t}}^{2}+J_{\alpha, \beta}(\rho, m)
$$

by the equivalent problem

$$
\begin{equation*}
\min _{(\rho, m)} \tilde{T}_{\alpha, \beta}(\rho, m):=\frac{1}{2} \int_{0}^{1}\left\|K_{t}^{*} \rho_{t}-f_{t}\right\|_{H_{t}}^{2}+\varphi\left(J_{\alpha, \beta}(\rho, m)\right) \tag{P}
\end{equation*}
$$

where $\varphi: \mathbb{R} \rightarrow[0, \infty]$ is for example

$$
\varphi(t):=t+\chi_{\left\{s \leq M_{0}\right\}}(t), \quad M_{0}:=\frac{1}{2} \int_{0}^{1}\left\|f_{t}\right\|_{H_{t}}^{2} d t
$$

Then one approximates (P) by linearizing the quadratic term around ($\tilde{\rho}, \tilde{m})$

$$
\min _{(\rho, m)}-\int_{0}^{1}\left\langle\rho_{t}, w_{t}\right\rangle_{\mathcal{M}(\bar{\Omega}), C(\bar{\Omega})} d t+\varphi\left(J_{\alpha, \beta}(\rho, m)\right), \quad w_{t}:=-K_{t}\left(K_{t}^{*} \tilde{\rho}_{t}-f_{t}\right)
$$

Generalized conditional gradient method $2 / 2$

Consider the convex unit ball of $J_{\alpha, \beta}$

$$
C:=\left\{(\rho, m) \in \mathcal{M}(X)^{d+1}: J_{\alpha, \beta}(\rho, m) \leq 1\right\}
$$

and denote by $\operatorname{Extr}(C)$ its extremal points

Theorem (SF, Bredies, Carioni, Romero '19)

Assume (H)-(K). Let $f \in L_{H}^{2}$ and fix $t \mapsto \tilde{\rho}_{t} \in \mathcal{M}(\bar{\Omega})$ narrowly continuous. Set

$$
w_{t}:=-K_{t}\left(K_{t}^{*} \tilde{\rho}_{t}-f_{t}\right)
$$

Then there exists a solution $\left(\rho^{*}, m^{*}\right) \in \operatorname{Extr}(C)$ to the problem

$$
\begin{equation*}
\min _{(\rho, m) \in C}-\int_{0}^{1}\left\langle\rho_{t}, w_{t}\right\rangle_{\mathcal{M}(\bar{\Omega}), C(\bar{\Omega})} d t \tag{L}
\end{equation*}
$$

Moreover there exists $M \geq 0$ such that $\left(M \rho^{*}, M m^{*}\right)$ is a solution to

$$
\min _{(\rho, m)}-\int_{0}^{1}\left\langle\rho_{t}, w_{t}\right\rangle_{\mathcal{M}(\bar{\Omega}), C(\bar{\Omega})} d t+\varphi\left(J_{\alpha, \beta}(\rho, m)\right)
$$

Algorithm

Let $f \in L_{H}^{2}$ be given. Initialize $\left(\rho^{0}, m^{0}\right):=(0,0)$ in $\mathcal{M}(X) \times \mathcal{M}(X)^{d}$
(1) (Insertion) Assume given $\gamma_{j} \in A C^{2}([0,1] ; \bar{\Omega})$ pairwise distinct, $c_{j}>0$ and set

$$
\left(\rho^{n}, m^{n}\right):=\sum_{j} c_{j}\left(\rho_{\gamma_{j}}, m_{\gamma_{j}}\right)
$$

Compute the dual variable $w_{t}:=-K_{t}\left(K_{t}^{*} \rho_{t}^{n}-f_{t}\right)$ and solve

$$
\gamma^{*} \in \underset{\gamma \in A C^{2}([0,1] ; \bar{\Omega})}{\arg \min }-\left(\frac{\alpha}{2} \int_{0}^{1}|\dot{\gamma}(t)|^{2} d t+\beta\right)^{-1} \int_{0}^{1} w_{t}(\gamma(t)) d t
$$

Set $\left(\rho^{n+1 / 2}, m^{n+1 / 2}\right):=\left(\rho^{n}, m^{n}\right)+\left(\rho_{\gamma^{*}}, m_{\gamma^{*}}\right)=\sum_{j} c_{j}\left(\rho_{\gamma_{j}}, m_{\gamma_{j}}\right)$
(2) (Optimization) Solve the quadratic problem

$$
\bar{C}=\left(\bar{c}_{j}\right)_{j} \in \underset{c_{j} \geq 0}{\arg \min } T_{\alpha, \beta}\left(\rho^{n+1 / 2}, m^{n+1 / 2}\right)
$$

Define

$$
\left(\rho^{n+1}, m^{n+1}\right):=\sum_{j} \bar{c}_{j}\left(\rho_{\gamma_{j}}, m_{\gamma_{j}}\right)
$$

Convergence

Define the functional distance

$$
r(\rho, m):=T_{\alpha, \beta}(\rho, m)-\min T_{\alpha, \beta}
$$

Theorem (SF, Bredies, Carioni, Romero '19)

Let $f \in L_{H}^{2}, \alpha, \beta>0$ and $\left(\rho^{n}, m^{n}\right) \in \mathcal{M}(X)^{d+1}$ be the sequence in the Algorithm

- $\left(\rho^{n}, m^{n}\right)$ is minimizing with

$$
\begin{equation*}
r\left(\rho^{n}, m^{n}\right) \leq \frac{C}{n} \tag{B}
\end{equation*}
$$

where $C>0$ depends only on f, α, β

- Each weak* accumulation point of $\left(\rho^{n}, m^{n}\right)$ is a minimum for $T_{\alpha, \beta}$

Improving convergence: In the simulations we obtain linear convergence.
Therefore one could expect that (B) can be improved (current proof does not take advantage of coefficients optimization step)

Simulations $1 / 4$

- $\Omega=[0,1]^{2}, \sigma=\mathcal{H}^{1}\llcorner s$ where $s=$ spiral in Ω
- $H_{t}:=L_{\sigma}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ (time independent)
- $K_{t}^{*}: \mathcal{M}(\bar{\Omega}) \rightarrow H_{t}$ masked Fourier transform (time independent)
- Data is $f_{t}=K_{t}^{*} \rho_{t}$ where ρ_{t} are the curves in picture (no noise)

Simulations 2/4

Dual variable first iteration $w_{t}:=-K_{t} f_{t}$
(Recall that $w_{t} \in C(\bar{\Omega})$ for each $t \in[0,1]$)

Simulations 3/4

Simulations 4/4

Convergence plot: exhibits linear rate

$$
\text { Error }=T_{\alpha, \beta}\left(\rho^{n}, m^{n}\right)-T_{\alpha, \beta}\left(\rho^{n+1}, m^{n+1}\right)
$$

Further directions: unbalanced OT case

Consider the regularizer
$J_{\alpha, \beta}(\rho, m, \mu):=\alpha \int_{X} \Psi\left(\frac{d \rho}{d \lambda}, \frac{d m}{d \lambda}, \frac{d \mu}{d \lambda}\right) d \lambda+\beta\|\rho\|_{\mathcal{M}(X)} \quad$ if $\quad \partial_{t} \rho+\operatorname{div} m=\mu$
where $\lambda \in \mathcal{M}^{+}(X)$ is such that $\rho, m, \mu \ll \lambda$ and $\Psi(t, x, y):=\frac{|x|^{2}+y^{2}}{2 t}$ if $t>0$
Further direction: carry out same analysis for the regularizer $J_{\alpha, \beta}$ above Key ingredients:

- Characterization of the extremal points of $J_{\alpha, \beta}$, which are of the form

$$
\rho=h(t) d t \otimes \delta_{\gamma(t)}, \quad m=\dot{\gamma} \rho, \quad \mu=\frac{\dot{h}}{h} \rho
$$

where $h:[0,1] \rightarrow[0, \infty), \gamma:[0,1] \rightarrow \bar{\Omega}$ satisfy certain regularity properties

- Characterization is based on a superposition principle for $\partial_{t} \rho+\operatorname{div} m=\mu$ SF, Bredies, Carioni, Romero - A superposition principle for the non-homogeneous continuity equation (In preparation)

Conclusions and Perspectives

Conclusions:

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Application to variational reconstruction for undersampled MRI
- Characterization of the extremal points of the Benamou-Brenier regularizer
- Numerical algorithm for dynamic spike reconstruction

Perspectives:

- Linear convergence for the conditional gradient method (in progress...)
- Extremal points for the unbalanced transport regularizer (almost done!)
- Numerical analysis for the unbalanced transport regularizer (in progress...)

Thank You!

