Optimal transport regularization of dynamic inverse problems

Silvio Fanzon

University of Graz

Based on joint works with Kristian Bredies, Marcello Carioni and Francisco Romero

Paris, 20-21 November 2019

Plan of the Talk

- Analytical framework for OT regularization of dynamic inverse problems (with K. Bredies)
 - An optimal transport approach for solving dynamic inverse problems in spaces of measures. (Preprint 2019)
- Numerical results for sparse reconstruction in spaces of measures (with K. Bredies, M. Carioni, F. Romero)
 - On the extremal points of the ball of the Benamou-Benier energy (Preprint 2019)
 - A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization (In preparation)
 - A superposition principle for the non-homogeneous continuity equation (In preparation)

Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales \sim artefacts in reconstructed images

- Imaging of lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating **Drawbacks:** assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image

No regularizer

Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales \sim artefacts in reconstructed images

- Imaging of lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image

No regularizer

Proposed model: optimal transport regularization for dynamic reconstruction

Optimal Transport - Static Formulation

 $\Omega \subset \mathbb{R}^d$ bounded domain, $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$, $\mathcal{T} \colon \Omega \to \Omega$ measurable displacement

Goal: move ρ_0 to ρ_1 in the cheapest way, with cost of moving mass from x to y

$$c(x,y) := |x-y|^2$$

Optimal Transport: a transport plan T solving

$$\min\left\{\int_{\Omega}|T(x)-x|^2\,d\rho_0(x):\ T:\Omega\to\Omega,\ T_{\#}\rho_0=\rho_1\right\}$$

Optimal Transport - Dynamic Formulation

Idea: introduce a time variable $t \in [0, 1]$ and consider evolution of ρ_t

time dependent probability measures

$$t\mapsto
ho_t\in \mathcal{P}(\Omega)$$
 for $t\in [0,1]$

velocity field advecting ρ_t

$$v_t(x) \colon [0,1] \times \Omega \to \mathbb{R}^d$$

 (ρ_t, v_t) solves the continuity equation with initial conditions

$$\begin{cases} \partial_t \rho_t + \operatorname{div}(\rho_t v_t) = 0\\ \text{Initial data } \rho_0, \text{ final data } \rho_1 \end{cases}$$
(CE-IC)

Connection and Advantages

Theorem (Benamou-Brenier '00)

$$\min_{\substack{(\rho_t, v_t)\\\text{solving (CE-IC)}}} \int_0^1 \int_\Omega |v_t(x)|^2 \rho_t(x) dx \, dt = \min_{\substack{T \colon \Omega \to \Omega\\ T_{\#}\rho_0 = \rho_1}} \int_\Omega |T(x) - x|^2 \rho_0(x) \, dx$$

Advantages of Dynamic Formulation:

1 By introducing the momentum $m_t := \rho_t v_t$ we have

$$\int_0^1 \int_\Omega |v_t(x)|^2 \,\rho_t(x) \, dx \, dt = \int_0^1 \int_\Omega \frac{|m_t(x)|^2}{\rho_t(x)} \, dx \, dt$$

which is convex in (ρ_t, m_t) . The continuity equation becomes linear

$$\partial_t \rho_t + \operatorname{div} m_t = 0$$

2 we know the full trajectory ρ_t and can recover the velocity field v_t from m_t

5

Dynamic inverse problem

 $\Omega \subset \mathbb{R}^d$ bounded open domain, $d \geq 1$

For $t \in [0, 1]$ assume given

- H_t Hilbert spaces (measurement spaces non isomorphic)
- $K_t^*: \mathcal{M}(\overline{\Omega}) \to H_t$ linear continuous operators (forward-operators)

(Time dependence allows for spatial undersampling - e.g. line or point sampling)

Problem

Given some data $\{f_t\}_{t \in [0,1]}$ with $f_t \in H_t$, find a curve of measures

$$t\mapsto
ho_t\in \mathcal{M}(\overline{\Omega})$$

such that they solve the dynamic inverse problem

$$\mathcal{K}_t^*
ho_t = f_t$$
 for a.e. $t\in [0,1]$.

Unbalanced optimal transport regularization

Consider a triple (ρ_t, v_t, g_t) with

- $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ mass density (not probability measures)
- $\blacktriangleright \ v_t \colon (0,1) \times \overline{\Omega} \to \mathbb{R}^d \text{ velocity field, } g_t \colon (0,1) \times \overline{\Omega} \to \mathbb{R} \text{ growth rate}$

We propose to regularize $K_t^* \rho_t = f_t$ via minimization in (ρ_t, v_t, g_t) of

$$\underbrace{\frac{1}{2}\int_{0}^{1} \|K_{t}^{*}\rho_{t} - f_{t}\|_{H_{t}}^{2} dt}_{\text{Fidelity Term}} + \underbrace{\frac{\alpha}{2}}_{\text{Optimal Transport Regularizer}} \int_{\Omega}^{1} \int_{\overline{\Omega}} |v_{t}(x)|^{2} + |g_{t}(x)|^{2} d\rho_{t}(x)dt}_{\text{TV Regularizer}} + \underbrace{\int_{0}^{1} \|\rho_{t}\| dt}_{\text{TV Regularizer}}$$
s.t. $\partial_{t}\rho + \operatorname{div}(\rho v_{t}) = \rho g_{t}$ (Continuity Equation - No IC)

 \blacktriangleright v_t keeps track of motion, g_t keeps track of contrast agent

continuity equation enforces time "regularity"

Chizat, Peyré, Schmitzer, Vialard (Found. of Comp. Math. '18, JFA '18) Liero, Mielke, Savaré (Inv. Math. '18)

Silvio Fanzon - University of Graz

7/35

Formal definition of the Unbalanced OT Energy

Set $X := (0,1) \times \overline{\Omega}$ and consider triples $(\rho, m, \mu) \in \mathcal{M}(X) \times \mathcal{M}(X)^d \times \mathcal{M}(X)$ Define the convex, 1-homogeneous functional

$$B(\rho, m, \mu) := \int_X \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}, \frac{d\mu}{d\lambda}\right) d\lambda$$

where $\lambda \in \mathcal{M}^+(X)$ is such that $ho, m, \mu \ll \lambda$ and

$$\Psi(t,x,y):=rac{|x|^2+y^2}{2t}$$
 if $t>0, \ \Psi=+\infty$ else

Proposition

B is weak* lower-semicontinuous. If $B(
ho,m,\mu)<+\infty$ and $\partial_t
ho+{
m div}\,m=\mu$ then

- $\rho = dt \otimes \rho_t$ for a weak*-continuous curve $t \mapsto \rho_t \in \mathcal{M}^+(\overline{\Omega})$
- $m = \rho v_t$ for some velocity field $v_t : (0,1) \times \overline{\Omega} \to \mathbb{R}^d$
- $\mu = \rho g_t$ for some growth rate $g_t : (0,1) \times \overline{\Omega} \to \mathbb{R}$

$$B(\rho, m, \mu) = \int_0^1 \int_{\overline{\Omega}} |v_t(x)|^2 + |g_t(x)|^2 d\rho_t(x) dt$$

Sampling spaces 1/3

(H): the spaces H_t vary in a "measurable" way as $t \in [0, 1]$

▶ ∃ Banach space D and $i_t : D \to H_t$ linear continuous

•
$$i_t(D) \subset H_t$$
 dense, $\sup_t \|i_t\| \leq C$

▶ for each $\varphi, \psi \in D$ the map $t \mapsto \langle i_t \varphi, i_t \psi \rangle_{H_t}$ is Lebesgue measurable

Step Functions: a map $\varphi \colon [0,1] \to D$ is a step function if

$$arphi_t = \sum_{j=1}^N \chi_{E_j}(t) \, arphi_j$$

for $\varphi_j \in D$, $E_j \subset [0,1]$ measurable, $N \in \mathbb{N}$.

Strong Measurability: a map $f: [0,1] \to \bigcup_t H_t$ with $f_t \in H_t$ is str. meas. if $\exists \varphi^n : [0,1] \to D$ step functions s.t.

$$\lim_{n} \|i_t \varphi_t^n - f_t\|_{H_t} = 0 \quad \text{for a.e.} \quad t \in (0,1)$$

Sampling spaces 2/3

Integrability: a str. meas. map $f: [0,1] \to \bigcup_t H_t$ with $f_t \in H_t$ is integrable if $\exists \varphi^n : [0,1] \to D$ step functions s.t.

$$\lim_n \int_0^1 \|i_t \varphi_t^n - f_t\|_{H_t} dt = 0$$

Theorem (SF, Bredies '19)

Let $f: [0,1] \rightarrow \cup_t H_t$ be strongly measurable. Then f is integrable iff

 $\int_0^1 \|f_t\|_{H_t} \,\,dt < \infty$

Note: it is possible to show the Theorem after introducing suitable notions of weakly measurable and of separably valued maps $f: [0,1] \rightarrow \bigcup_t H_t$, in a way that a version of Pettis Theorem holds.

Sampling spaces 3/3

Definition (Data space)

$$L^2_H = \left\{ f \colon [0,1] \to \cup_t H_t : \ f_t \in H_t, \ f \text{ strongly meas }, \ \int_0^1 \left\| f_t \right\|_{H_t}^2 \ dt < \infty \right\}$$

Theorem (SF, Bredies '19)

The space L_H^2 is Hilbert with the scalar product $\langle f,g \rangle_{L_H^2} := \int_0^1 \langle f_t,g_t \rangle_{H_t} dt$

Note: No notion of integral for $f \in L^2_H$. However $i_t^* f_t : [0, 1] \to D^*$

▶ $i_t^* f_t$ is always Gelfand integrable: for $E \subset [0, 1]$ measurable $\exists I_E(f) \in D^*$ s.t.

$$\langle I(f), \varphi \rangle_{D^*, D} = \int_0^1 \langle i_t^* f_t, \varphi \rangle_{D^*, D} dt \quad \text{for all} \quad \varphi \in D$$

i^{*}_t *f*_t is not Bochner integrable, as it is not strongly measurable in general (counterexamples for *D* non reflexive)

Forward operators and Regularized Problem

(K): the operators $K_t^* \colon \mathcal{M}(\overline{\Omega}) \to H_t$ satisfy

- K_t^* linear continuous and weak*-to-weak continuous
- $\blacktriangleright \sup_t \|K_t^*\| \leq C$
- ▶ for $\rho \in \mathcal{M}(\overline{\Omega})$ the map $t \mapsto K_t^* \rho$ is strongly measurable

Proposition (SF, Bredies '19)

If $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ is weak* continuous then $t \mapsto K_t^* \rho_t$ belongs to L^2_H

Definition (Regularization)

Let $f\in L^2_H$ be some data. For $(
ho,m,\mu)\in \mathcal{M}(X) imes \mathcal{M}(X)^d imes \mathcal{M}(X)$ set

$$\mathcal{T}_{lpha,eta}(
ho, extbf{m}, \mu) := rac{1}{2} \int_0^1 \| extsf{K}_t^*
ho_t - f_t \|_{H_t}^2 \, dt + lpha \, B(
ho, extbf{m}, \mu) + eta \, \|
ho \|_{\mathcal{M}(X)}$$

if $\partial_t \rho + \operatorname{div} m = \mu$, and $T_{\alpha,\beta}(\rho, m, \mu) = +\infty$ else.

Existence & Stability

Theorem (SF, Bredies '19)

Assume (H)-(K) and let $f \in L^2_H$. Then

$$\min_{(\rho,m,\mu)\in\mathcal{M}(X)^{d+2}}T_{\alpha,\beta}(\rho,m,\mu) \tag{MIN}$$

admits a solution. If K_t^* is injective for a.e. t, then the solution is unique.

Theorem (SF, Bredies '19)

Assume (H)-(K). Let f^n be noisy data such that $f^n \to f^{\dagger}$ strongly in L^2_H . Let (ρ^n, m^n, μ^n) be solution to (MIN) with par. $\alpha_n, \beta_n \to 0$ and data f^n . Then

$$(\rho^n, m^n, \mu^n) \stackrel{*}{\rightharpoonup} (\rho^\dagger, m^\dagger, \mu^\dagger)$$
 in $\mathcal{M}(X)^{d+2}, \quad K_t^* \rho_t^\dagger = f_t^\dagger$ for all $t \in [0, 1]$

$$(
ho^{\dagger}, m^{\dagger}, \mu^{\dagger}) \in rg\min \, lpha^* \, B(
ho, m, \mu) + eta^* \, \|
ho\|_{\mathcal{M}(X)} \,, \quad \exists \, lpha^*, eta^* \geq 1$$

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

$$\sigma_t = \mathcal{H}^1 \, {\sqsubseteq} \, L_t$$

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

- $\Omega = [0,1]^2$ image frame, $t \mapsto
 ho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

• $K_t^* : \mathcal{M}(\overline{\Omega}) \to H_t$ masked Fourier transform

$$K_t^* \rho := (\mathfrak{F}(c_1 \rho), \ldots, \mathfrak{F}(c_N \rho))$$

with $c_j \in C_0(\mathbb{R}^2; \mathbb{C})$ coil sensitivities (accounting for phase inhomogeneities)

(M): Assume that the family $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ satisfies:

- $\blacktriangleright \sup_t \|\sigma_t\| \leq C$
- ▶ for each $\varphi \in C_0(\mathbb{R}^2; \mathbb{C})$ the map $t \mapsto \int_{\mathbb{R}^2} \varphi(x) \, d\sigma_t(x)$ is measurable

Theorem (SF, Bredies '19)

Assume (M). Let $\alpha, \beta, \delta > 0$, $f \in L^2_H$ and $c \in C_0(\mathbb{R}^2; \mathbb{C}^N)$. Then

$$\min_{\substack{(\rho,m,\mu)\in\mathcal{M}(X)^{4}\\\partial_{t}\rho+\operatorname{div} m=\mu}}\frac{1}{2}\sum_{j=1}^{N}\int_{0}^{1}\left\|\mathfrak{F}(c_{j}\rho_{t})-f_{t}\right\|_{L^{2}_{\sigma_{t}}}^{2}dt+\alpha B_{\delta}(\rho,m,\mu)+\beta\left\|\rho\right\|$$

admits a solution (ρ, m, μ) with

$$\rho = dt \otimes \rho_t \text{ with } t \mapsto \rho_t \text{ weak}^* \text{ continuous }$$

•
$$m = \rho v$$
 for some velocity $v : (0, 1) \times \overline{\Omega} \to \mathbb{R}^2$

• $\mu = \rho g$ for some growth rate $g: (0,1) \times \overline{\Omega} \to \mathbb{R}^2$

Numerical Results for Benamou-Brenier regularizer

Let $\Omega \subset \mathbb{R}^d$ be open bounded, $X := (0,1) \times \overline{\Omega}$. Consider the Benamou-Brenier energy

$$B(\rho, m) := \int_{X} \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}\right) d\lambda$$

where $\lambda \in \mathcal{M}^+(X)$ is such that $ho, m \ll \lambda$ and

$$\Psi(t,x):=rac{|x|^2}{2t}$$
 if $t>0, \ \Psi=+\infty$ else

Recall: if $\rho = dt \otimes \rho_t$ and $m = v\rho$

$$B(\rho,m) := \frac{\alpha}{2} \int_0^1 |v(t,x)|^2 \, d\rho_t(x) \, dt$$

Bibliography:

- SF, Bredies, Carioni, Romero On the extremal points of the ball of the Benamou-Benier energy (Preprint 2019)
- SF, Bredies, Carioni, Romero A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization (In preparation)

Main Question

Definition (Regularizer)

Let $\alpha, \beta > 0$. For $(\rho, m) \in \mathcal{M}(X) \times \mathcal{M}(X)^d$ we set

$$J_{lpha,eta}(
ho,m) := egin{cases} lpha B(
ho,m) + eta \left\|
ho
ight\|_{\mathcal{M}(X)} & ext{if } \partial_t
ho + ext{div}\ m = 0 \ +\infty & ext{otherwise} \end{cases}$$

For $t \in [0, 1]$ assume given:

- *H_t* family of Hilbert spaces satisfying (H)
- $K_t^* : \mathcal{M}(\overline{\Omega}) \to H_t$ linear continuous operators satisfying (K)

Problem

Given $f \in L^2([0,1]; H)$ compute a minimizer $(\rho, m) \in \mathcal{M}(X)^{d+1}$ for

$$T_{\alpha,\beta}(\rho,m) := \frac{1}{2} \int_0^1 \left\| K_t^* \rho_t - f_t \right\|_{H_t}^2 + J_{\alpha,\beta}(\rho,m)$$

Extremal points of $J_{\alpha,\beta}$

Consider the convex unit ball of $J_{\alpha,\beta}$

$$\mathcal{C} := \left\{ (
ho, m) \in \mathcal{M}(X) imes \mathcal{M}(X)^d: \ J_{lpha, eta}(
ho, m) \leq 1
ight\}$$

Definition

For $\gamma \in \mathrm{AC}^2([0,1];\overline{\Omega})$ define the measures $\rho_\gamma \in \mathcal{M}(X)$, $m_\gamma \in \mathcal{M}(X)^d$ as

$$ho_{\gamma} := a_{\gamma} \, dt \otimes \delta_{\gamma(t)} \,, \quad m_{\gamma} := \dot{\gamma} \,
ho_{\gamma} \,, \quad a_{\gamma}^{-1} := rac{lpha}{2} \int_{0}^{1} |\dot{\gamma}(t)|^2 \, dt + eta$$

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The extremal points of C are characterized by

$$\operatorname{Extr}(\mathcal{C}) = \{(0,0)\} \cup \mathcal{C}$$

where

$$\mathcal{C}:=\left\{(
ho_\gamma, m_\gamma):\ \gamma\in\mathrm{AC}^2([0,1];\overline\Omega)
ight\}$$

Silvio Fanzon - University of Graz

18/35

Idea of the proof - $\{0\} \cup C \subset \operatorname{Extr}(C)$

The case $(\rho, m) = (0, 0)$ is trivial. Then let $\gamma \in AC^2([0, 1]; \overline{\Omega})$ and define

$$ho_{\gamma} := a_{\gamma} \, dt \otimes \delta_{\gamma(t)} \,, \quad m_{\gamma} := \dot{\gamma} \,
ho_{\gamma} \,, \quad a_{\gamma}^{-1} := rac{lpha}{2} \int_{0}^{1} |\dot{\gamma}(t)|^2 \, dt + eta$$

We first show that $(
ho_\gamma, m_\gamma) \in C$

 $\begin{aligned} & (\rho_{\gamma}, m_{\gamma}) \text{ solves continuity equation: let } \varphi \in C_{c}^{1}((0, 1) \times \overline{\Omega}) \\ & \int_{0}^{1} \int_{\Omega} \partial_{t} \varphi \, d\rho_{\gamma} + \nabla \varphi \cdot dm_{\gamma} = a_{\gamma} \int_{0}^{1} \partial_{t} \varphi(t, \gamma(t)) + \nabla \varphi(t, \gamma(t)) \cdot \dot{\gamma}(t) \, dt \\ & = a_{\gamma} \int_{0}^{1} \frac{d}{dt} \varphi(t, \gamma(t)) \, dt = 0 \end{aligned}$

• $J_{\alpha,\beta}(\rho_{\gamma}, m_{\gamma}) = 1$: Take $\lambda := \rho_{\gamma}$ and recall that $\Psi(t, x) = |x|^2/2t$,

$$\begin{split} J_{\alpha,\beta}(\rho_{\gamma},m_{\gamma}) &= \alpha \int_{0}^{1} \int_{\Omega} \Psi\left(\frac{d\rho_{\gamma}}{d\lambda},\frac{dm_{\lambda}}{d\lambda}\right) \, d\lambda + \beta \, \|\rho\|_{\mathcal{M}(X)} \\ &= \mathsf{a}_{\gamma} \, \left(\alpha \int_{0}^{1} \int_{\Omega} \Psi\left(1,\dot{\gamma}(t)\right) \, d\delta_{\gamma(t)} \, dt + \beta\right) = \mathsf{a}_{\gamma} \, \mathsf{a}_{\gamma}^{-1} = 1 \end{split}$$

Idea of the proof - $\{0\} \cup \mathcal{C} \subset \operatorname{Extr}(\mathcal{C})$

Assume we can decompose

$$(\rho_{\gamma}, m_{\gamma}) = \lambda \left(\rho^{1}, m^{1}\right) + (1 - \lambda) \left(\rho^{2}, m^{2}\right) \tag{D}$$

with $(
ho^j, m^j) \in C$ and $\lambda \in (0, 1)$.

- Since $J_{\alpha,\beta}(\rho_{\gamma}, m_{\gamma}) = 1$, by convexity and (D) we have $J_{\alpha,\beta}(\rho^{j}, m^{j}) = 1$
- Since $J_{\alpha,\beta}(\rho^j, m^j) = 1$ then $\rho^j = a^j dt \otimes \rho^j_t$, $m^j = v^j \rho^j$ for some $a^j > 0$, $(t \mapsto \rho^j_t) \in P(\overline{\Omega})$ narrowly continuous, $v^j : (0,1) \times \overline{\Omega} \to \mathbb{R}^d$ measurable

From (D) and uniqueness of disintegration

$$\mathbf{a}_{\gamma} \, \delta_{\gamma(t)} = \lambda \, \mathbf{a}^1 \, \rho_t^1 + (1 - \lambda) \, \mathbf{a}^2 \, \rho_t^2 \qquad \stackrel{\mathbf{a}' > 0}{\Longrightarrow} \qquad \rho_t^j = \delta_{\gamma(t)}$$

► $\partial_t \rho^j + \text{div } m^j = 0$ and $\rho^j = a^j dt \otimes \delta_{\gamma(t)}$, $m^j = v^j \rho^j$. This forces

$$v^j(t,\gamma(t))=\dot{\gamma}(t)$$

► Since $\rho^j = a^j dt \otimes \delta_{\gamma(t)}$ and $m^j = \dot{\gamma}(t) \rho^j \implies J_{\alpha,\beta}(\rho^j, m^j) = a^j/a_\gamma$ ► Since $J_{\alpha,\beta}(\rho^j, m^j) = 1$ then $a^j = a_\gamma$. Hence $(\rho^j, m^j) = (\rho_\gamma, m_\gamma)$

Idea of the proof - $\operatorname{Extr}(\mathcal{C}) \subset \{0\} \cup \mathcal{C}$

Let $\Omega \subset \mathbb{R}^d$ be open and bounded. Consider

 $\Gamma := \{ \gamma \colon [0,1] \to \mathbb{R}^d : \gamma \text{ continuous } \}$

with the supremum norm

Theorem (SF, Bredies, Carioni, Romero '19)

Let $t \mapsto \rho_t \in P(\overline{\Omega})$ be narrowly continuous and $v \colon (0,1) \times \overline{\Omega} \to \mathbb{R}^d$. Assume

$$\partial_t \rho_t + \operatorname{div}(\rho_t v) = 0, \quad \int_0^1 \int_\Omega |v(t,x)|^2 \, d\rho_t(x) \, dt < +\infty$$

There exists $\sigma \in P(\Gamma)$ such that

 $\int_{\overline{\Omega}} \varphi(x) \, d\rho_t(x) = \int_{\Gamma} \varphi(\gamma(t)) \, d\sigma(\gamma) \quad \text{for all} \quad \varphi \in C(\overline{\Omega}), \ t \in [0,1]$

Moreover σ is concentrated on curves $\gamma \in AC^2([0,1];\overline{\Omega})$ such that

$$\dot{\gamma}(t) = v(t, \gamma(t))$$

L. Ambrosio (Inv. Math. '04) for $\Omega = \mathbb{R}^d$

Silvio Fanzon - University of Graz

Dynamic inverse problems

21/35

Idea of the proof - $\operatorname{Extr}(\mathcal{C}) \subset \{0\} \cup \mathcal{C}$

Smooth ρ_t and v so that $\partial_t \rho_t + \operatorname{div}(\rho_t v) = 0$ holds and the ODE

$$\frac{d}{dt}X_t(x) = v(t, X_t(x)), \quad X_0(x) = x$$

admits a global solution $X_t(x) \colon [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$. Freezing time, we have

$$\rho_t = (X_t)_{\#} \rho_0 \tag{A}$$

▶ Interpret X as a map $X : \mathbb{R}^d \to \Gamma$ via $x \mapsto (t \mapsto X_t(x))$ and define

$$\sigma := (X)_{\#} \rho_0 \in P(\Gamma) \tag{B}$$

The representation formula holds for fixed $t \in [0, 1]$:

$$\int_{\Gamma} \varphi(\gamma(t)) \, d\sigma(\gamma) \stackrel{(\mathsf{B})}{=} \int_{\mathbb{R}^d} \varphi(X_t(x)) \, d\rho_0(x) \stackrel{(\mathsf{A})}{=} \int_{\mathbb{R}^d} \varphi(x) \, d\rho_t(x) \tag{F}$$

Then one can pass to the limit to get thesis (hard part is the concentration)
 Assume (ρ, m) is an extremal point: Since J_{α,β}(ρ, m) ≤ 1 we can apply the Theorem and represent ρ via (F). Extremality forces

$$\sigma = \delta_{\gamma^*}$$
 for some $\gamma^* \in \mathcal{AC}^2([0,1];\overline{\Omega}) \stackrel{(\mathsf{F})}{\Longrightarrow}$ Thesis

Discrete time sampling and finite-dimensional data

Fix $N \geq 1$ times $0 < t_1 < t_2 < \cdots < t_N < 1$ and let

• H_i finite dimensional Hilbert space, $\mathcal{H} := \bigotimes_{i=1}^N H_i$

• $K_i^* \colon \mathcal{M}(\overline{\Omega}) \to H_i$ linear and weak*-continuous

Inverse problem: for $(f_1, \ldots, f_N) \in \mathcal{H}$ find a curve $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ such that

$$K_i^* \rho_{t_i} = f_i$$
 for $i = 1, \ldots, N$

Regularization: we regularize via

$$T_{\alpha,\beta}(\rho,m) := \frac{1}{2} \sum_{i=1}^{N} \| \mathcal{K}_i \rho_{t_i} - f_i \|_{\mathcal{H}_i}^2 + \alpha \mathcal{B}(\rho,m) + \beta \| \rho \|_{\mathcal{M}(X)}$$

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The minimization problem

$$\min_{(\rho,m)\in\mathcal{M}(X)^{d+1}}\frac{1}{2}\sum_{i=1}^{N}\|K_{i}\rho_{t_{i}}-f_{i}\|_{H_{i}}^{2}+\alpha B(\rho,m)+\beta\|\rho\|_{\mathcal{M}(X)}$$

admits a sparse minimizer of the form

$$(\rho^*, m^*) = \sum_{i=1}^{p} c_i (\rho_{\gamma_i}, m_{\gamma})$$

where $c_i > 0$, $\gamma_i \in AC^2([0,1];\overline{\Omega})$ and $p \leq \dim \mathcal{H}$.

K. Bredies, M. Carioni (Calc. Var. PDEs '19)

C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss (SIAM Opt. '19)

Sparse reconstruction (time continuous case)

Definition (Regularizer)

Let $\alpha, \beta > 0$. For $(\rho, m) \in \mathcal{M}(X) \times \mathcal{M}(X)^d$ we set

$$J_{lpha,eta}(
ho,m) := egin{cases} lpha B(
ho,m) + eta \left\|
ho
ight\|_{\mathcal{M}(X)} & ext{if } \partial_t
ho + ext{div}\ m = 0 \ +\infty & ext{otherwise} \end{cases}$$

For $t \in [0, 1]$ assume given:

- ► *H_t* family of Hilbert spaces satisfying (H)
- $K_t^* \colon \mathcal{M}(\overline{\Omega}) \to H_t$ linear continuous operators satisfying (K)

Problem

Given $f \in L^2([0,1]; H)$ compute a minimizer $(\rho, m) \in \mathcal{M}(X)^{d+1} \times \mathcal{M}(X)^d$ for

$$\mathcal{T}_{lpha,eta}(
ho,m{m}):=rac{1}{2}\int_0^1 \|m{K}_t^*
ho_t-f_t\|_{H_t}^2+J_{lpha,eta}(
ho,m{m})$$

Generalized conditional gradient method 1/2

First one can replace

$$\min_{(\rho,m)} T_{\alpha,\beta}(\rho,m) := \frac{1}{2} \int_0^1 \|K_t^* \rho_t - f_t\|_{H_t}^2 + J_{\alpha,\beta}(\rho,m)$$

by the equivalent problem

$$\min_{(\rho,m)} \tilde{T}_{\alpha,\beta}(\rho,m) := \frac{1}{2} \int_0^1 \|\mathcal{K}_t^* \rho_t - f_t\|_{H_t}^2 + \varphi(J_{\alpha,\beta}(\rho,m)) \tag{P}$$

where $\varphi \colon \mathbb{R} \to [0,\infty]$ is for example

$$\varphi(t) := t + \chi_{\{s \le M_0\}}(t), \quad M_0 := \frac{1}{2} \int_0^1 \|f_t\|_{H_t}^2 dt$$

Then one approximates (P) by linearizing the quadratic term around $(\tilde{\rho}, \tilde{m})$

$$\min_{(\rho,m)} - \int_0^1 \langle \rho_t, w_t \rangle_{\mathcal{M}(\overline{\Omega}), C(\overline{\Omega})} dt + \varphi(J_{\alpha,\beta}(\rho,m)), \quad w_t := -\mathcal{K}_t(\mathcal{K}_t^* \tilde{\rho}_t - f_t)$$

Generalized conditional gradient method 2/2

Consider the convex unit ball of $J_{lpha,eta}$

$$\mathcal{C}:=\left\{(
ho, m)\in \mathcal{M}(X)^{d+1}: \; J_{lpha,eta}(
ho, m)\leq 1
ight\}$$

and denote by Extr(C) its extremal points

Theorem (SF, Bredies, Carioni, Romero '19)

Assume (H)-(K). Let $f \in L^2_H$ and fix $t \mapsto \tilde{\rho}_t \in \mathcal{M}(\overline{\Omega})$ narrowly continuous. Set

$$w_t := -K_t (K_t^* \tilde{\rho}_t - f_t)$$

Then there exists a solution $(
ho^*, m^*) \in \mathsf{Extr}(C)$ to the problem

$$\min_{(\rho,m)\in C} -\int_0^1 \langle \rho_t, w_t \rangle_{\mathcal{M}(\overline{\Omega}), C(\overline{\Omega})} dt$$
 (L)

Moreover there exists $M \ge 0$ such that $(M\rho^*, Mm^*)$ is a solution to

$$\min_{(\rho,m)} - \int_0^1 \langle \rho_t, w_t \rangle_{\mathcal{M}(\overline{\Omega}), C(\overline{\Omega})} dt + \varphi(J_{\alpha,\beta}(\rho, m))$$

Silvio Fanzon - University of Graz

27 / 35

Algorithm

- Let $f\in L^2_H$ be given. Initialize $(
 ho^0,m^0):=(0,0)$ in $\mathcal{M}(X) imes\mathcal{M}(X)^d$
 - (Insertion) Assume given $\gamma_j \in AC^2([0,1];\overline{\Omega})$ pairwise distinct, $c_j > 0$ and set

$$(
ho^n, m^n) := \sum_j c_j \left(
ho_{\gamma_j}, m_{\gamma_j}
ight)$$

Compute the dual variable $w_t := -K_t(K_t^* \rho_t^n - f_t)$ and solve

$$\gamma^* \in \argmin_{\gamma \in \mathcal{AC}^2([0,1];\overline{\Omega})} - \left(\frac{\alpha}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt + \beta\right)^{-1} \int_0^1 w_t(\gamma(t)) dt$$

Set $(\rho^{n+1/2}, m^{n+1/2}) := (\rho^n, m^n) + (\rho_{\gamma^*}, m_{\gamma^*}) = \sum_j c_j (\rho_{\gamma_j}, m_{\gamma_j})$

2 (Optimization) Solve the quadratic problem

$$ar{\mathcal{C}} = (ar{c}_j)_j \in rgmin_{c_j \geq 0} \ T_{lpha,eta} \left(
ho^{n+1/2}, m^{n+1/2}
ight)$$

Define

$$(\rho^{n+1}, m^{n+1}) := \sum_{j} \bar{c}_{j} \left(\rho_{\gamma_{j}}, m_{\gamma_{j}} \right)$$

Silvio Fanzon - University of Graz

28 / 35

Convergence

Define the functional distance

$$r(
ho, m) := T_{lpha, eta}(
ho, m) - \min T_{lpha, eta}$$

Theorem (SF, Bredies, Carioni, Romero '19)

Let $f \in L^2_H$, $\alpha, \beta > 0$ and $(\rho^n, m^n) \in \mathcal{M}(X)^{d+1}$ be the sequence in the Algorithm

• (ρ^n, m^n) is minimizing with

$$r(\rho^n, m^n) \le \frac{C}{n}$$
 (B)

where C > 0 depends only on f, α, β

• Each weak* accumulation point of (ρ^n, m^n) is a minimum for $T_{\alpha,\beta}$

Improving convergence: In the simulations we obtain linear convergence. Therefore one could expect that (B) can be improved (current proof does not take advantage of coefficients optimization step)

Simulations 1/4

- $\Omega = [0,1]^2$, $\sigma = \mathcal{H}^1 igsquart s$ where s = spiral in Ω
- $H_t := L^2_{\sigma}(\mathbb{R}^2; \mathbb{C})$ (time independent)
- $K_t^* : \mathcal{M}(\overline{\Omega}) \to H_t$ masked Fourier transform (time independent)
- ▶ Data is $f_t = K_t^* \rho_t$ where ρ_t are the curves in picture (no noise)

Simulations 2/4

Dual variable first iteration $w_t := -K_t f_t$ (Recall that $w_t \in C(\overline{\Omega})$ for each $t \in [0, 1]$)

Simulations 3/4

Reconstructed trajectories

Simulations 4/4

Further directions: unbalanced OT case

Consider the regularizer

$$J_{\alpha,\beta}(\rho,m,\mu) := \alpha \int_{X} \Psi\left(\frac{d\rho}{d\lambda},\frac{dm}{d\lambda},\frac{d\mu}{d\lambda}\right) \, d\lambda + \beta \, \|\rho\|_{\mathcal{M}(X)} \quad \text{if} \quad \partial_{t}\rho + \operatorname{div} m = \mu$$

where $\lambda \in \mathcal{M}^+(X)$ is such that $\rho, m, \mu \ll \lambda$ and $\Psi(t, x, y) := \frac{|x|^2 + y^2}{2t}$ if t > 0

Further direction: carry out same analysis for the regularizer $J_{\alpha,\beta}$ above **Key ingredients:**

• Characterization of the extremal points of $J_{\alpha,\beta}$, which are of the form

$$ho = h(t) \, dt \otimes \delta_{\gamma(t)} \,, \quad m = \dot{\gamma}
ho \,, \quad \mu = rac{\dot{h}}{h} \,
ho$$

where $h \colon [0,1] \to [0,\infty)$, $\gamma \colon [0,1] \to \overline{\Omega}$ satisfy certain regularity properties

• Characterization is based on a superposition principle for $\partial_t \rho + \operatorname{div} m = \mu$

SF, Bredies, Carioni, Romero - A superposition principle for the non-homogeneous continuity equation (In preparation)

Silvio Fanzon - University of Graz

Dynamic inverse problems

Conclusions and Perspectives

Conclusions:

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Application to variational reconstruction for undersampled MRI
- Characterization of the extremal points of the Benamou-Brenier regularizer
- Numerical algorithm for dynamic spike reconstruction

Perspectives:

- Linear convergence for the conditional gradient method (in progress...)
- Extremal points for the unbalanced transport regularizer (almost done!)
- Numerical analysis for the unbalanced transport regularizer (in progress...)

Thank You!