# Optimal transport regularization of dynamic inverse problems

Silvio Fanzon

University of Graz

(joint work with Kristian Bredies)

ICCOPT 2019 Berlin

#### Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales → artefacts in reconstructed images

- ► Imaging of lung or heart (motion cannot be suppressed)
- ► High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image

No regularizer

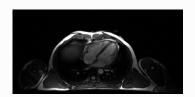
### Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales → artefacts in reconstructed images

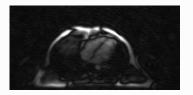
- Imaging of lung or heart (motion cannot be suppressed)
- ► High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating

Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution



Reference image

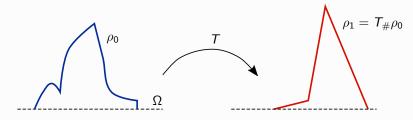


No regularizer

**Proposed model:** optimal transport regularization for dynamic reconstruction K. Bredies, S. Fanzon - An optimal transport approach for solving dynamic inverse problems in spaces of measures. Preprint 2019

#### Optimal Transport - Static Formulation

 $\Omega \subset \mathbb{R}^d$  bounded domain,  $\rho_0, \rho_1 \in \mathcal{P}(\Omega), \ T : \Omega \to \Omega$  measurable displacement



**Goal:** move  $\rho_0$  to  $\rho_1$  in the cheapest way, with cost of moving mass from x to y

$$c(x,y) := |x - y|^2$$

**Optimal Transport:** a transport plan T solving

$$\min\left\{\int_{\Omega}|T(x)-x|^2\,d
ho_0(x):\ T\colon\Omega o\Omega,\ T_\#
ho_0=
ho_1
ight\}$$

### Optimal Transport - Dynamic Formulation

**Idea:** introduce a time variable  $t \in [0,1]$  and consider evolution of  $ho_t$ 

time dependent probability measures

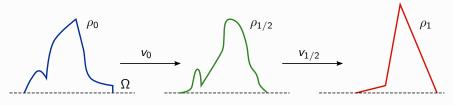
$$t\mapsto 
ho_t\in \mathcal{P}(\Omega)$$
 for  $t\in [0,1]$ 

ightharpoonup velocity field advecting  $ho_t$ 

$$v_t(x) \colon [0,1] \times \Omega \to \mathbb{R}^d$$

 $\triangleright$   $(\rho_t, v_t)$  solves the continuity equation with initial conditions

$$\begin{cases} \partial_t \rho_t + \operatorname{div}(\rho_t v_t) = 0 \\ \operatorname{Initial data} \ \rho_0, \ \operatorname{final data} \ \rho_1 \end{cases} \tag{CE-IC}$$



#### Connection and Advantages

#### Theorem (Benamou-Brenier '00)

$$\min_{\substack{(\rho_t, v_t) \\ \text{solving (CE-IC)}}} \int_0^1 \int_{\Omega} |v_t(x)|^2 \, \rho_t(x) dx \, dt = \min_{\substack{T : \Omega \to \Omega \\ T_{\#}\rho_0 = \rho_1}} \int_{\Omega} |T(x) - x|^2 \, \rho_0(x) \, dx$$

#### **Advantages of Dynamic Formulation:**

**1** By introducing the momentum  $m_t := \rho_t v_t$  we have

$$\int_0^1 \int_\Omega |v_t(x)|^2 \, \rho_t(x) \, dx \, dt = \int_0^1 \int_\Omega \frac{|m_t(x)|^2}{\rho_t(x)} \, dx \, dt$$

which is **convex** in  $(\rho_t, m_t)$ . The continuity equation becomes **linear** 

$$\partial_t \rho_t + \operatorname{div} m_t = 0$$

 $oldsymbol{2}$  we know the full trajectory  $ho_t$  and can recover the velocity field  $v_t$  from  $m_t$ 

#### Dynamic inverse problem

 $\Omega \subset \mathbb{R}^d$  bounded open domain,  $d \geq 1$ 

For  $t \in [0,1]$  assume given

- $ightharpoonup H_t$  Hilbert spaces (measurement spaces non isomorphic)
- $ightharpoonup K_t^*: \mathcal{M}(\overline{\Omega}) \to H_t$  linear continuous operators (forward-operators)

Time dependence allows for spatial undersampling - e.g. line or point sampling

#### **Problem**

Given some data  $\{f_t\}_{t\in[0,1]}$  with  $f_t\in H_t$ , find a curve of measures

$$t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$$

such that they solve the dynamic inverse problem

$$K_t^* \rho_t = f_t$$
 for a.e.  $t \in [0,1]$ .

#### Optimal transport regularization

Consider a triple  $(\rho_t, v_t, g_t)$  with

- $ightharpoonup v_t \colon (0,1) imes \overline{\Omega} o \mathbb{R}^d$  velocity field
- $g_t \colon (0,1) \times \overline{\Omega} \to \mathbb{R}$  growth rate

We propose to regularize (P) via minimization in  $(\rho_t, v_t, g_t)$  of

$$\underbrace{\frac{1}{2} \int_{0}^{1} \left\| K_{t}^{*} \rho_{t} - f_{t} \right\|_{H_{t}}^{2} \ dt}_{\text{Fidelity Term}} + \underbrace{\frac{\alpha}{2} \int_{0}^{1} \int_{\overline{\Omega}} |v_{t}(x)|^{2} + |g_{t}(x)|^{2} \ d\rho_{t}(x) dt}_{\text{Optimal Transport Regularizer}} + \underbrace{\int_{0}^{1} \left\| \rho_{t} \right\| \ dt}_{\text{TV Regularizer}}$$

s.t. 
$$\partial_t \rho + \text{div}(\rho v_t) = \rho g_t$$
 (Continuity Equation)

- v<sub>t</sub> keeps track of motion
- g<sub>t</sub> allows the presence of a contrast agent
- continuity equation enforces "regular" motion

### Formal definition of the OT Energy

Set  $X := (0,1) \times \overline{\Omega}$  and consider triples  $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$ 

Define the convex, 1-homogeneous functional

$$B(\rho, m, \mu) := \int_{X} \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}, \frac{d\mu}{d\lambda}\right) d\lambda$$

where  $\lambda \in \mathcal{M}^+(X)$  is such that  $\rho, m, \mu \ll \lambda$  and

$$\Psi(t,x,y):=rac{x^2+|y|^2}{2t}$$
 if  $t>0,\ \Psi=+\infty$  else

#### Proposition (Fanzon, Bredies '19)

B is weak\* lower-semicontinuous. If  $B(\rho, m, \mu) < +\infty$  and  $\partial_t \rho + \text{div } m = \mu$  then

- $ho = dt \otimes 
  ho_t$  for a weak\*-continuous curve  $t \mapsto 
  ho_t \in \mathcal{M}^+(\overline{\Omega})$
- $m = \rho v_t$  for some velocity field  $v_t : (0,1) \times \overline{\Omega} \to \mathbb{R}^d$
- $\blacktriangleright \mu = \rho g_t$  for some growth rate  $g_t : (0,1) \times \overline{\Omega} \to \mathbb{R}$

$$B(\rho, m, \mu) = \int_0^1 \int_{\overline{\Omega}} |v_t(x)|^2 + |g_t(x)|^2 d\rho_t(x) dt$$

### Sampling spaces

**Assumptions on**  $H_t$ : the spaces  $H_t$  vary in a "measurable" way

- ▶  $\exists$  Banach space D and  $i_t : D \rightarrow H_t$  linear continuous
- $ightharpoonup i_t(D) \subset H_t$  dense,  $\sup_t ||i_t|| \leq C$
- ▶ for each  $\varphi, \psi \in D$  the map  $t \mapsto \langle i_t \varphi, i_t \psi \rangle_{H_t}$  is Lebesgue measurable

 $f: [0,1] \to \cup_t H_t$  with  $f_t \in H_t$  is strongly measurable if  $\exists \varphi^n : [0,1] \to D$  step functions s.t.

$$\lim_{n} \|i_t \varphi_t^n - f_t\|_{H_t} = 0 \quad \text{ for a.e. } t \in (0,1)$$

We then define the Hilbert space

$$L^2([0,1];H) := \left\{f \colon [0,1] \to \cup_t H_t: \ f \text{ strongly meas }, \ \int_0^1 \left\|f_t\right\|_{H_t}^2 \ dt < \infty \right\}$$

#### Forward operators and Regularized Problem

**Assumptions on**  $K_t^*$ : the operators  $K_t^*: \mathcal{M}(\overline{\Omega}) \to H_t$  satisfy

- ▶ linear continuous and weak\*-to-weak continuous
- $ightharpoonup \sup_t \|K_t^*\| \leq C$
- for  $\rho \in \mathcal{M}(\overline{\Omega})$  the map  $t \mapsto K_t^* \rho$  is strongly measurable

#### Proposition (Fanzon, Bredies '19)

If  $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$  weak\* continuous then  $t \mapsto K_t^* \rho_t$  belongs to  $L^2([0,1]; H)$ .

#### Definition (Regularization)

Let  $f \in L^2([0,1]; H)$ . For  $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$  set

$$J_{\alpha,\beta}(\rho, m, \mu) := \frac{1}{2} \int_0^1 \left\| K_t^* \rho_t - f_t \right\|_{H_t}^2 dt + \alpha B(\rho, m, \mu) + \beta \left\| \rho \right\|_{\mathcal{M}(X)}$$

if  $\partial_t \rho + \text{div } m = \mu$ , and  $J_{\alpha,\beta}(\rho, m, \mu) = +\infty$  else.

### Existence & Regularity

#### Theorem (Fanzon, Bredies '19)

Assume (H)-(K) and let  $f \in L^2([0,1]; H)$ . Then

$$\min_{(\rho, m, \mu) \in \mathcal{M}} J_{\alpha, \beta}(\rho, m, \mu) \tag{MIN}$$

admits a solution. If  $K_t^*$  is injective for a.e. t, then the solution is unique.

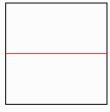
#### Theorem (Fanzon, Bredies '19)

Assume (H)-(K). Let  $f^{\dagger}$  be exact data and  $f^n$  be noisy data, with  $f^n \to f^{\dagger}$  in  $L^2$ . Let  $(\rho^n, m^n, \mu^n)$  be a minimizer of (MIN) with par.  $\alpha_n, \beta_n \to 0$  and data  $f^n$ . Then

$$(
ho^n, m^n, \mu^n) \stackrel{*}{\rightharpoonup} (
ho^\dagger, m^\dagger, \mu^\dagger)$$
 $K_t^* 
ho_t^\dagger = f_t^\dagger \quad \textit{for all} \quad t \in [0, 1]$ 

 $(\rho^{\dagger}, m^{\dagger}, \mu^{\dagger}) \in \operatorname{arg\,min} \ \alpha^* \ \mathcal{B}(\rho, m, \mu) + \beta^* \ \|\rho\|_{\mathcal{M}(X)}$ 

- $lackbox{ }\Omega=[0,1]^2$  image frame,  $t\mapsto 
  ho_t\in \mathcal{M}(\overline{\Omega})$  proton density
- $ightharpoonup H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures



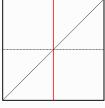
$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$$

- $lackbox{ }\Omega=[0,1]^2$  image frame,  $t\mapsto 
  ho_t\in \mathcal{M}(\overline{\Omega})$  proton density
- ▶  $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures



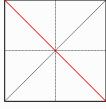
$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathit{L}_t$$

- $\Omega = [0,1]^2$  image frame,  $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$  proton density
- ▶  $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures



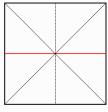
$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$$

- $lackbox{ }\Omega=[0,1]^2$  image frame,  $t\mapsto 
  ho_t\in \mathcal{M}(\overline{\Omega})$  proton density
- ▶  $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures



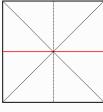
 $\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$ 

- $\Omega = [0,1]^2$  image frame,  $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$  proton density
- ▶  $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures

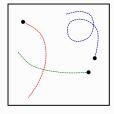


$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$$

- $lackbox{ }\Omega=[0,1]^2$  image frame,  $t\mapsto 
  ho_t\in \mathcal{M}(\overline{\Omega})$  proton density
- ▶  $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures

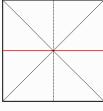


$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$$

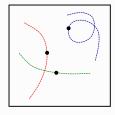


$$\sigma_t = \mathcal{H}^0 \, \bot \, P_t$$

- $\Omega = [0,1]^2$  image frame,  $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$  proton density
- ▶  $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures

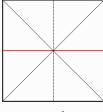


$$\sigma_t = \mathcal{H}^1 \, \bot \, \mathcal{L}_t$$

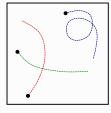


$$\sigma_t = \mathcal{H}^0 \, \bot \, P_t$$

- $lackbox{ }\Omega=[0,1]^2$  image frame,  $t\mapsto 
  ho_t\in \mathcal{M}(\overline{\Omega})$  proton density
- ▶  $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures

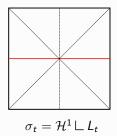


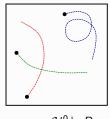
$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathit{L}_t$$



$$\sigma_t = \mathcal{H}^0 \, \bot \, P_t$$

- $lackbox{ }\Omega=[0,1]^2$  image frame,  $t\mapsto 
  ho_t\in \mathcal{M}(\overline{\Omega})$  proton density
- ▶  $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$  with  $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$  sampling measures





$$\sigma_t = \mathcal{H}^0 \, \bot \, P_t$$

 $ightharpoonup K_t^* \colon \mathcal{M}(\overline{\Omega}) o H_t$  masked Fourier transform

$$K_t^* \rho := (\mathfrak{F}(c_1 \rho), \ldots, \mathfrak{F}(c_N \rho))$$

with  $c_j \in C_0(\mathbb{R}^2; \mathbb{C})$  coil sensitivities (accounting for phase inhomogeneities)

#### Assumptions on $\sigma_t$ :

- ► (M1):  $\sup_t \|\sigma_t\| \leq C$
- ▶ (M2): for each  $\varphi \in C_0(\mathbb{R}^2; \mathbb{C})$  the map  $t \mapsto \int_{\mathbb{R}^2} \varphi(x) \, d\sigma_t(x)$  is measurable

#### Theorem (Fanzon, Bredies '19)

Assume (M1)-(M2). Let  $\alpha, \beta, \delta > 0$ ,  $f \in L^2([0,1]; H)$  and  $c \in C_0(\mathbb{R}^2; \mathbb{C}^N)$ . Then

$$\min_{\substack{(\rho,m,\mu)\\\partial_t\rho+\text{div}\,m=\mu}}\frac{1}{2}\sum_{j=1}^N\int_0^1\left\|\mathfrak{F}(c_j\rho_t)-f_t\right\|_{L^2_{\sigma_t}}^2\,dt+\alpha B_\delta(\rho,m,\mu)+\beta\left\|\rho\right\|$$

admits a solution  $(\rho, m, \mu)$  with

- $ho = dt \otimes \rho_t$  with  $t \mapsto \rho_t$  weak\* continuous
- $m = \rho v$  for some velocity  $v: (0,1) \times \overline{\Omega} \to \mathbb{R}^2$
- $\blacktriangleright \mu = \rho g$  for some growth rate  $g: (0,1) \times \overline{\Omega} \to \mathbb{R}^2$

#### **Extremal Points**

Consider the regularizer for the homogenous case (no source):  $(
ho,m)\in \mathcal{M}(X)^{d+1}$ 

$$R_{\alpha,\beta}(\rho,m) := \alpha B(\rho,m) + \beta \|\rho\|_{\mathcal{M}(X)}$$
 s.t.  $\partial_t \rho + \text{div } m = 0$ 

Recall: if  $\emph{m} = \emph{v} \rho$  and  $\rho = \emph{d} t \otimes \rho_t$ 

$$R_{\alpha,\beta}(\rho,m) := \frac{\alpha}{2} \int_0^1 |v(t,x)|^2 d\rho_t(x) dt + \beta \int_0^1 \|\rho_t\|_{\mathcal{M}(\overline{\Omega})} dt$$

#### Theorem (Fanzon, Bredies, Carioni, Romero '19)

Let  $C := \{(\rho, m) : R_{\alpha, \beta}(\rho, m) \leq 1\}$ . Then

$$\operatorname{Ext}(C) = \{(0,0)\} \cup C$$

where

$$\mathcal{C} := \left\{ (
ho_\gamma, m_\gamma) : \ \gamma \in \mathrm{AC}^2([0,1]; \overline{\Omega}) 
ight\}$$

$$ho_\gamma:= extstyle a_\gamma \ dt \otimes \delta_{\gamma(t)} \,, \ \ m_\gamma:=\dot\gamma \ 
ho_\gamma \,, \ \ extstyle a_\gamma^{-1}:=rac{lpha}{2} \int_0^1 |\dot\gamma(t)|^2 \ dt + eta$$

L. Ambrosio. Inventiones mathematicae, 158(2) '04

### Discrete time sampling and finite-dimensional data

Fix  $N \ge 1$  times  $0 < t_1 < t_2 < \cdots < t_N < 1$  and let

- ▶  $H_i$  finite dimensional Hilbert space,  $\mathcal{H} := \sum_{i=1}^N H_i$
- $K_i^* : \mathcal{M}(\overline{\Omega}) \to H_i$  linear and weak\*-continuous

**Inverse problem:** for  $(f_1, \ldots, f_N) \in \mathcal{H}$  find a curve  $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$  such that

$$K_i^* \rho_{t_i} = f_i$$
 for  $i = 1, \dots, N$ 

Regularization: we regularize with

$$J_{\alpha,\beta}(\rho,m) := \frac{1}{2} \sum_{i=1}^{N} \| K_i \rho_{t_i} - f_i \|_{H_i}^2 + \alpha B(\rho,m) + \beta \| \rho \|_{\mathcal{M}(X)}$$

#### Sparse minimizers

#### Theorem (Fanzon, Bredies, Carioni, Romero '19)

The minimization problem

$$\min_{(\rho,m)\in\mathcal{M}} \frac{1}{2} \sum_{i=1}^{N} \|K_{i}\rho_{t_{i}} - f_{i}\|_{H_{i}}^{2} + \alpha B(\rho,m) + \beta \|\rho\|_{\mathcal{M}(X)}$$

admits a sparse minimizer of the form

$$(
ho^*, m^*) = \sum_{i=1}^p c_i (
ho_{\gamma_i}, m_{\gamma})$$

where  $c_i > 0$ ,  $\gamma_i \in AC^2([0,1]; \overline{\Omega})$  and  $p \leq \dim \mathcal{H}$ .

K. Bredies, M. Carioni '18

C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss '18

#### Conclusions and Perspectives

#### Conclusions:

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Application to variational reconstruction for undersampled MRI
- Characterization of the extremal points of the regularizer
- Existence of sparse minimizers for discrete time sampling and finite dimensional data spaces

#### **Perspectives:**

- Numerical algorithms for dynamic spike reconstruction (in progress...)
   (based on knowledge of extremal points and conditional gradient methods)
- Extremal points for the non-homogeneous case and numerics (in progress...)

Thank You!