Optimal transport regularization of dynamic inverse problems

Silvio Fanzon

University of Graz

(joint work with Kristian Bredies)

ICCOPT 2019 Berlin

Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales → artefacts in reconstructed images

- ► Imaging of lung or heart (motion cannot be suppressed)
- ► High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution

Reference image

No regularizer

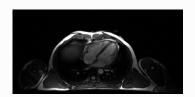
Motivation: Motion-Aware Tomographic Reconstruction

Motion on sub-acquisition time scales → artefacts in reconstructed images

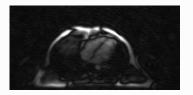
- Imaging of lung or heart (motion cannot be suppressed)
- ► High-resolution imaging (sub-millimeter motion poses problems)

Workarounds: use of anaesthetics, breath-holding strategies, gating

Drawbacks: assumes periodicity (arrhythmias?). Still limited to low-resolution



Reference image

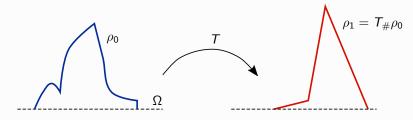


No regularizer

Proposed model: optimal transport regularization for dynamic reconstruction K. Bredies, S. Fanzon - An optimal transport approach for solving dynamic inverse problems in spaces of measures. Preprint 2019

Optimal Transport - Static Formulation

 $\Omega \subset \mathbb{R}^d$ bounded domain, $\rho_0, \rho_1 \in \mathcal{P}(\Omega), \ T : \Omega \to \Omega$ measurable displacement



Goal: move ρ_0 to ρ_1 in the cheapest way, with cost of moving mass from x to y

$$c(x,y) := |x - y|^2$$

Optimal Transport: a transport plan T solving

$$\min\left\{\int_{\Omega}|T(x)-x|^2\,d
ho_0(x):\ T\colon\Omega o\Omega,\ T_\#
ho_0=
ho_1
ight\}$$

Optimal Transport - Dynamic Formulation

Idea: introduce a time variable $t \in [0,1]$ and consider evolution of ho_t

time dependent probability measures

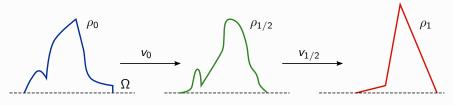
$$t\mapsto
ho_t\in \mathcal{P}(\Omega)$$
 for $t\in [0,1]$

ightharpoonup velocity field advecting ho_t

$$v_t(x) \colon [0,1] \times \Omega \to \mathbb{R}^d$$

 \triangleright (ρ_t, v_t) solves the continuity equation with initial conditions

$$\begin{cases} \partial_t \rho_t + \operatorname{div}(\rho_t v_t) = 0 \\ \operatorname{Initial data} \ \rho_0, \ \operatorname{final data} \ \rho_1 \end{cases} \tag{CE-IC}$$



Connection and Advantages

Theorem (Benamou-Brenier '00)

$$\min_{\substack{(\rho_t, v_t) \\ \text{solving (CE-IC)}}} \int_0^1 \int_{\Omega} |v_t(x)|^2 \, \rho_t(x) dx \, dt = \min_{\substack{T : \Omega \to \Omega \\ T_{\#}\rho_0 = \rho_1}} \int_{\Omega} |T(x) - x|^2 \, \rho_0(x) \, dx$$

Advantages of Dynamic Formulation:

1 By introducing the momentum $m_t := \rho_t v_t$ we have

$$\int_0^1 \int_\Omega |v_t(x)|^2 \, \rho_t(x) \, dx \, dt = \int_0^1 \int_\Omega \frac{|m_t(x)|^2}{\rho_t(x)} \, dx \, dt$$

which is **convex** in (ρ_t, m_t) . The continuity equation becomes **linear**

$$\partial_t \rho_t + \operatorname{div} m_t = 0$$

 $oldsymbol{2}$ we know the full trajectory ho_t and can recover the velocity field v_t from m_t

Dynamic inverse problem

 $\Omega \subset \mathbb{R}^d$ bounded open domain, $d \geq 1$

For $t \in [0,1]$ assume given

- $ightharpoonup H_t$ Hilbert spaces (measurement spaces non isomorphic)
- $ightharpoonup K_t^*: \mathcal{M}(\overline{\Omega}) \to H_t$ linear continuous operators (forward-operators)

Time dependence allows for spatial undersampling - e.g. line or point sampling

Problem

Given some data $\{f_t\}_{t\in[0,1]}$ with $f_t\in H_t$, find a curve of measures

$$t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$$

such that they solve the dynamic inverse problem

$$K_t^* \rho_t = f_t$$
 for a.e. $t \in [0,1]$.

Optimal transport regularization

Consider a triple (ρ_t, v_t, g_t) with

- $ightharpoonup v_t \colon (0,1) imes \overline{\Omega} o \mathbb{R}^d$ velocity field
- $g_t \colon (0,1) \times \overline{\Omega} \to \mathbb{R}$ growth rate

We propose to regularize (P) via minimization in (ρ_t, v_t, g_t) of

$$\underbrace{\frac{1}{2} \int_{0}^{1} \left\| K_{t}^{*} \rho_{t} - f_{t} \right\|_{H_{t}}^{2} \ dt}_{\text{Fidelity Term}} + \underbrace{\frac{\alpha}{2} \int_{0}^{1} \int_{\overline{\Omega}} |v_{t}(x)|^{2} + |g_{t}(x)|^{2} \ d\rho_{t}(x) dt}_{\text{Optimal Transport Regularizer}} + \underbrace{\int_{0}^{1} \left\| \rho_{t} \right\| \ dt}_{\text{TV Regularizer}}$$

s.t.
$$\partial_t \rho + \text{div}(\rho v_t) = \rho g_t$$
 (Continuity Equation)

- v_t keeps track of motion
- g_t allows the presence of a contrast agent
- continuity equation enforces "regular" motion

Formal definition of the OT Energy

Set $X := (0,1) \times \overline{\Omega}$ and consider triples $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$

Define the convex, 1-homogeneous functional

$$B(\rho, m, \mu) := \int_{X} \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}, \frac{d\mu}{d\lambda}\right) d\lambda$$

where $\lambda \in \mathcal{M}^+(X)$ is such that $\rho, m, \mu \ll \lambda$ and

$$\Psi(t,x,y):=rac{x^2+|y|^2}{2t}$$
 if $t>0,\ \Psi=+\infty$ else

Proposition (Fanzon, Bredies '19)

B is weak* lower-semicontinuous. If $B(\rho, m, \mu) < +\infty$ and $\partial_t \rho + \text{div } m = \mu$ then

- $ho = dt \otimes
 ho_t$ for a weak*-continuous curve $t \mapsto
 ho_t \in \mathcal{M}^+(\overline{\Omega})$
- $m = \rho v_t$ for some velocity field $v_t : (0,1) \times \overline{\Omega} \to \mathbb{R}^d$
- $\blacktriangleright \mu = \rho g_t$ for some growth rate $g_t : (0,1) \times \overline{\Omega} \to \mathbb{R}$

$$B(\rho, m, \mu) = \int_0^1 \int_{\overline{\Omega}} |v_t(x)|^2 + |g_t(x)|^2 d\rho_t(x) dt$$

Sampling spaces

Assumptions on H_t : the spaces H_t vary in a "measurable" way

- ▶ \exists Banach space D and $i_t : D \rightarrow H_t$ linear continuous
- $ightharpoonup i_t(D) \subset H_t$ dense, $\sup_t ||i_t|| \leq C$
- ▶ for each $\varphi, \psi \in D$ the map $t \mapsto \langle i_t \varphi, i_t \psi \rangle_{H_t}$ is Lebesgue measurable

 $f: [0,1] \to \cup_t H_t$ with $f_t \in H_t$ is strongly measurable if $\exists \varphi^n : [0,1] \to D$ step functions s.t.

$$\lim_{n} \|i_t \varphi_t^n - f_t\|_{H_t} = 0 \quad \text{ for a.e. } t \in (0,1)$$

We then define the Hilbert space

$$L^2([0,1];H) := \left\{f \colon [0,1] \to \cup_t H_t: \ f \text{ strongly meas }, \ \int_0^1 \left\|f_t\right\|_{H_t}^2 \ dt < \infty \right\}$$

Forward operators and Regularized Problem

Assumptions on K_t^* : the operators $K_t^*: \mathcal{M}(\overline{\Omega}) \to H_t$ satisfy

- ▶ linear continuous and weak*-to-weak continuous
- $ightharpoonup \sup_t \|K_t^*\| \leq C$
- for $\rho \in \mathcal{M}(\overline{\Omega})$ the map $t \mapsto K_t^* \rho$ is strongly measurable

Proposition (Fanzon, Bredies '19)

If $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ weak* continuous then $t \mapsto K_t^* \rho_t$ belongs to $L^2([0,1]; H)$.

Definition (Regularization)

Let $f \in L^2([0,1]; H)$. For $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$ set

$$J_{\alpha,\beta}(\rho, m, \mu) := \frac{1}{2} \int_0^1 \left\| K_t^* \rho_t - f_t \right\|_{H_t}^2 dt + \alpha B(\rho, m, \mu) + \beta \left\| \rho \right\|_{\mathcal{M}(X)}$$

if $\partial_t \rho + \text{div } m = \mu$, and $J_{\alpha,\beta}(\rho, m, \mu) = +\infty$ else.

Existence & Regularity

Theorem (Fanzon, Bredies '19)

Assume (H)-(K) and let $f \in L^2([0,1]; H)$. Then

$$\min_{(\rho, m, \mu) \in \mathcal{M}} J_{\alpha, \beta}(\rho, m, \mu) \tag{MIN}$$

admits a solution. If K_t^* is injective for a.e. t, then the solution is unique.

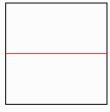
Theorem (Fanzon, Bredies '19)

Assume (H)-(K). Let f^{\dagger} be exact data and f^n be noisy data, with $f^n \to f^{\dagger}$ in L^2 . Let (ρ^n, m^n, μ^n) be a minimizer of (MIN) with par. $\alpha_n, \beta_n \to 0$ and data f^n . Then

$$(
ho^n, m^n, \mu^n) \stackrel{*}{\rightharpoonup} (
ho^\dagger, m^\dagger, \mu^\dagger)$$
 $K_t^*
ho_t^\dagger = f_t^\dagger \quad \textit{for all} \quad t \in [0, 1]$

 $(\rho^{\dagger}, m^{\dagger}, \mu^{\dagger}) \in \operatorname{arg\,min} \ \alpha^* \ \mathcal{B}(\rho, m, \mu) + \beta^* \ \|\rho\|_{\mathcal{M}(X)}$

- $lackbox{ }\Omega=[0,1]^2$ image frame, $t\mapsto
 ho_t\in \mathcal{M}(\overline{\Omega})$ proton density
- $ightharpoonup H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures



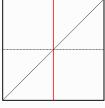
$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$$

- $lackbox{ }\Omega=[0,1]^2$ image frame, $t\mapsto
 ho_t\in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures



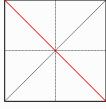
$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathit{L}_t$$

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures



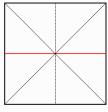
$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$$

- $lackbox{ }\Omega=[0,1]^2$ image frame, $t\mapsto
 ho_t\in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures



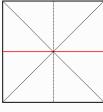
 $\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

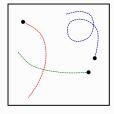


$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$$

- $lackbox{ }\Omega=[0,1]^2$ image frame, $t\mapsto
 ho_t\in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

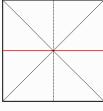


$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathcal{L}_t$$

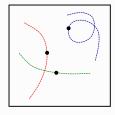


$$\sigma_t = \mathcal{H}^0 \, \bot \, P_t$$

- $\Omega = [0,1]^2$ image frame, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

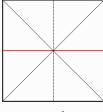


$$\sigma_t = \mathcal{H}^1 \, \bot \, \mathcal{L}_t$$

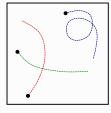


$$\sigma_t = \mathcal{H}^0 \, \bot \, P_t$$

- $lackbox{ }\Omega=[0,1]^2$ image frame, $t\mapsto
 ho_t\in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures

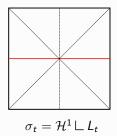


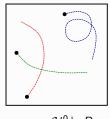
$$\sigma_t = \mathcal{H}^1 \, \llcorner \, \mathit{L}_t$$



$$\sigma_t = \mathcal{H}^0 \, \bot \, P_t$$

- $lackbox{ }\Omega=[0,1]^2$ image frame, $t\mapsto
 ho_t\in \mathcal{M}(\overline{\Omega})$ proton density
- ▶ $H_t := L^2_{\sigma_t}(\mathbb{R}^2; \mathbb{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbb{R}^2)$ sampling measures





$$\sigma_t = \mathcal{H}^0 \, \bot \, P_t$$

 $ightharpoonup K_t^* \colon \mathcal{M}(\overline{\Omega}) o H_t$ masked Fourier transform

$$K_t^* \rho := (\mathfrak{F}(c_1 \rho), \ldots, \mathfrak{F}(c_N \rho))$$

with $c_j \in C_0(\mathbb{R}^2; \mathbb{C})$ coil sensitivities (accounting for phase inhomogeneities)

Assumptions on σ_t :

- ► (M1): $\sup_t \|\sigma_t\| \leq C$
- ▶ (M2): for each $\varphi \in C_0(\mathbb{R}^2; \mathbb{C})$ the map $t \mapsto \int_{\mathbb{R}^2} \varphi(x) \, d\sigma_t(x)$ is measurable

Theorem (Fanzon, Bredies '19)

Assume (M1)-(M2). Let $\alpha, \beta, \delta > 0$, $f \in L^2([0,1]; H)$ and $c \in C_0(\mathbb{R}^2; \mathbb{C}^N)$. Then

$$\min_{\substack{(\rho,m,\mu)\\\partial_t\rho+\text{div}\,m=\mu}}\frac{1}{2}\sum_{j=1}^N\int_0^1\left\|\mathfrak{F}(c_j\rho_t)-f_t\right\|_{L^2_{\sigma_t}}^2\,dt+\alpha B_\delta(\rho,m,\mu)+\beta\left\|\rho\right\|$$

admits a solution (ρ, m, μ) with

- $ho = dt \otimes \rho_t$ with $t \mapsto \rho_t$ weak* continuous
- $m = \rho v$ for some velocity $v: (0,1) \times \overline{\Omega} \to \mathbb{R}^2$
- $\blacktriangleright \mu = \rho g$ for some growth rate $g: (0,1) \times \overline{\Omega} \to \mathbb{R}^2$

Extremal Points

Consider the regularizer for the homogenous case (no source): $(
ho,m)\in \mathcal{M}(X)^{d+1}$

$$R_{\alpha,\beta}(\rho,m) := \alpha B(\rho,m) + \beta \|\rho\|_{\mathcal{M}(X)}$$
 s.t. $\partial_t \rho + \text{div } m = 0$

Recall: if $\emph{m} = \emph{v} \rho$ and $\rho = \emph{d} t \otimes \rho_t$

$$R_{\alpha,\beta}(\rho,m) := \frac{\alpha}{2} \int_0^1 |v(t,x)|^2 d\rho_t(x) dt + \beta \int_0^1 \|\rho_t\|_{\mathcal{M}(\overline{\Omega})} dt$$

Theorem (Fanzon, Bredies, Carioni, Romero '19)

Let $C := \{(\rho, m) : R_{\alpha, \beta}(\rho, m) \leq 1\}$. Then

$$\operatorname{Ext}(C) = \{(0,0)\} \cup C$$

where

$$\mathcal{C} := \left\{ (
ho_\gamma, m_\gamma) : \ \gamma \in \mathrm{AC}^2([0,1]; \overline{\Omega})
ight\}$$

$$ho_\gamma:= extstyle a_\gamma \ dt \otimes \delta_{\gamma(t)} \,, \ \ m_\gamma:=\dot\gamma \
ho_\gamma \,, \ \ extstyle a_\gamma^{-1}:=rac{lpha}{2} \int_0^1 |\dot\gamma(t)|^2 \ dt + eta$$

L. Ambrosio. Inventiones mathematicae, 158(2) '04

Discrete time sampling and finite-dimensional data

Fix $N \ge 1$ times $0 < t_1 < t_2 < \cdots < t_N < 1$ and let

- ▶ H_i finite dimensional Hilbert space, $\mathcal{H} := \sum_{i=1}^N H_i$
- $K_i^* : \mathcal{M}(\overline{\Omega}) \to H_i$ linear and weak*-continuous

Inverse problem: for $(f_1, \ldots, f_N) \in \mathcal{H}$ find a curve $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ such that

$$K_i^* \rho_{t_i} = f_i$$
 for $i = 1, \dots, N$

Regularization: we regularize with

$$J_{\alpha,\beta}(\rho,m) := \frac{1}{2} \sum_{i=1}^{N} \| K_i \rho_{t_i} - f_i \|_{H_i}^2 + \alpha B(\rho,m) + \beta \| \rho \|_{\mathcal{M}(X)}$$

Sparse minimizers

Theorem (Fanzon, Bredies, Carioni, Romero '19)

The minimization problem

$$\min_{(\rho,m)\in\mathcal{M}} \frac{1}{2} \sum_{i=1}^{N} \|K_{i}\rho_{t_{i}} - f_{i}\|_{H_{i}}^{2} + \alpha B(\rho,m) + \beta \|\rho\|_{\mathcal{M}(X)}$$

admits a sparse minimizer of the form

$$(
ho^*, m^*) = \sum_{i=1}^p c_i (
ho_{\gamma_i}, m_{\gamma})$$

where $c_i > 0$, $\gamma_i \in AC^2([0,1]; \overline{\Omega})$ and $p \leq \dim \mathcal{H}$.

K. Bredies, M. Carioni '18

C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss '18

Conclusions and Perspectives

Conclusions:

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Application to variational reconstruction for undersampled MRI
- Characterization of the extremal points of the regularizer
- Existence of sparse minimizers for discrete time sampling and finite dimensional data spaces

Perspectives:

- Numerical algorithms for dynamic spike reconstruction (in progress...)
 (based on knowledge of extremal points and conditional gradient methods)
- Extremal points for the non-homogeneous case and numerics (in progress...)

Thank You!