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Problem

Q C R? bounded open domain. A map o € L>(Q; M?*?) is uniformly elliptic if
ob- £ NEP, 07T £ 2 NP VEER? x€Q.

Study the gradient integrability of distributional solutions u € W1(Q) to

div(cVu) =0, (0.1)

when
o = 01Xg, + 02XE,,

with 01,02 € M?*2 constant elliptic matrices, { E1, E,} measurable partition of Q.
4

Application to composites:
» Q) is a section of a composite conductor obtained by mixing two materials
with conductivities o1 and o3
> the electric field Vu solves (0.1)
» How much can Vu concentrate, given the geometry {E;, E»}?
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Astala’s Theorem

\

Theorem (Astala '94)

Let o € L°°(2; M?*?) be uniformly elliptic. There exists exponents 1 < g <2 < p
such that if u € W19(Q) solves

div(cVu) =0,
then Vu e L (Q;R?).

weak

Are the exponents q and p optimal among two-phase elliptic conductivities

0 =01Xg + 02Xg, ?

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)
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Astala’s exponents for two-phase conductivities

1 doy,00 2 Poy,0,

For two-phase conductivities Astala's exponents ¢ = q,,,5, and p = p,, », have

been characterised.

Remark: it is sufficient to prove optimality in the case

(1)K 0 (K 0
a=Vo ys) 27\o s)

1
K>1 and RSS}gK, j=12.

where

The corresponding critical exponents for Astala’s theorem are
2K 2K

doy,00 = K-I—l’ Poy,00 = K_1"

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).
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Upper exponent optimality

2K 2K
1 K+1 2 K—1

Y

Theorem (Nesi, Palombaro, Ponsiglione '14)
Let oy = diag(1/K,1/Sy), 02 = diag(K, S) with K > 1 and Sy, S, € [1/K, K].
® Ifo e L>®(Q;{0o1,02}) and u € Wl’%(ﬂ) solves

div(cVu) =0 (0.2)
2K
then Vu € L) (S, R?).
@ There exists G € L°(Q; {01, 02}) and a weak solution i € W12(Q) to (0.2)
with o = &, satisfying affine boundary conditions and such that
Vi ¢ LK1 (Q;R?).

Question we address

2K

<11 optimal?

Is the lower exponent
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Lower exponent optimality

2K 2K
1 Pn —> K+1 2 K—1

\J

Theorem (F., Palombaro '17)

Let o1 = diag(1/K,1/51), 02 = diag(K, Sp) with K > 1 and 51, S, € [1/K, K].
There exist

> coefficients o, € L>(Q; {o1; 02}),

» exponents p, € [17 ;?—ffl]

» functions u, € WY(Q) such that u,(x) = x; on 09,

such that
div(c,Vu,) =0,
P 2 2K 2K 2
Vu, € Lw”eak(Q;R ), pPn— m, Vu, ¢ L1 (Q;R?).

F., Palombaro. Calculus of Variations and Partial Differential Equations (2017)
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Solving differential inclusions

Theorem (Approximate solutions for two phases)

Let A;B € M?*2, C:= M+ (1 — \)B with A\ € [0,1], and § > 0. Assume that

B—A=a®n forsome acR?> neSt.

3 piecewise affine Lipschitz map f: Q — R2 such that f(x) = Cx on 9 and

(Rank-one connection)

dist(VFf,{A,B}) <d ae in Q.
Solutions: built through simple laminates M| (1 -s
» rank-one connection allows to laminate in
direction n, -
» Vf oscillates in §-neighbourhoods of A and B, e
> )\ proportion for A, 1 — X proportion for B,
> this all .
this allows to recover boundary data C Al 58 lal 81a

Miiller. Variational models for microstructure and phase transitions.
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Laminates of first order

L3 is the normalised Lebesgue measure restricted to Q ~ L3(B) := |BNQ|/|Q).

Gradient distribution

Let f: Q — R? be Lipschitz. The gradient distribution of f is the Radon
measure V£x(L3) on M?*2 defined by

V(L3 (V) = LE((VF)"H(V)), V Borel set V C M?*?2.

Let f5 be the map given by the previous Theorem. Then as § — 0,
vs = (V) u(L3) 2 v :=Xa+(1—-A)dg in  M(M>*?).

The measure v is called a laminate of first order, and it encodes:
> Oscillations of Vf; about {A, B} and their proportions.
> Boundary condition since the barycentre of v is 7 := [, ... M dv(M) = C.
» Integrability since for p > 1 we have

1
IQ/ \Vﬁ;\pdx:/ \M|P dus(M).
Q M2x2
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lterating the Proposition
Let C = M+ (1 — )\)B with A € [0,1] and rank(B — A) = 1. Let f: Q — R?
such that f(x) = Cx on 09,

dist(VF,{A,B}) <¢é ae in Q.

Further splitting: B = By + (1 — 1) B, with u € [0,1], rank(B, — By) = 1.

New gradient: apply previous Proposition to the set {x € Q: Vf ~ B} to obtain
f: Q — R? such that f(x) = Cx on 0%,

dist(VF,{A, By, By}) <& ae in Q.
The gradient distribution of fis given by

v=Aoa+ (1 —Nudg +(1—N)(1—u)ds,.
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Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting

procedure in the previous slide.

Proposition (Convex integration)

Letv = vazl Aida, be a laminate of finite order, s.t.
> T=A
N ; N
> A= Zi:l N A; with Zi:l Ai=1.

Fix § > 0. 3 a piecewise affine Lipschitz map f: Q — R? s.t. Vf ~ v, that is,

> dist(Vf,suppr) < 4§ a.e inQ,
> f(x) = Ax on 01,
> [{xeQ: |VFf(x)—A]<dH=X\IQ
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BN
Strategy of the Proof

Strategy: explicit construction of u, by convex integration methods.
@ Rewrite the equation div(cVu) = 0 as a differential inclusion
Vf(x)e T, forae xeQ (0.3)

for f: Q — R? and an appropriate target set T C M?*2.
Note: u and f have the same integrability.

® Construct a laminate v with suppr C T and the right integrability.

© Convex integration Proposition = construct f: Q — R? s.t. Vf ~ v.
In this way f solves (0.3) and

2K 5 2K
K+1 TK+1|’

VF ¢ LR (Q;R?).

weak

Vfeld (QR%,qe<

These methods were developed for isotropic conductivities o € L>(Q; {KI, =1}).

The adaptation to our case is non-trivial because of the lack of symmetry of the target
set T, due to the anisotropy of o1 and oo.

Astala, Faraco, Székelyhidi. Convex integration and the LP theory of elliptic equations.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2008)
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Rewriting the PDE as a differential inclusion
Let K > 1, 5,5 € [1/K, K] and define

oy :=diag(1/K,1/51), o2 :=diag(K,5), 0= 01Xg + 02XE, ,

.7 2 -y . o X AR
(st ) e (G 7))

Lemma (F., Palombaro '17)

A function u € W11(Q) is solution to

div(cVu) =0
iff there exists v € WL(Q) such that f = (u,v): Q — R? satisfies
Vf(X) cTLuUT, in Q.

Moreover E; = {x € Q: Vf(x) € T1} and E; = {x € Q: Vf(x) € T,}.

Key Remark: u and f enjoy the same integrability properties.
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Targets in conformal coordinates

Conformal coordinates: Let A € M?*2. Then A= (a;,a_) for a;,a_ € C,
defined by

Aw =aw+a_w, VweC.
The sets of conformal linear maps and anti-conformal linear maps are

Ey :={(z,0): ze C}

(Conformal maps)
Ex :={(0,z): z€ C}

(Anti-conformal maps)
Target sets in conformal coordinates are
Ti={(a,di(3)) : a€C}, To ={(a,—cr(3)) : acC},

where the operators d;j: C — C are defined as

K-1
di(a) ==k Rea+isjlma, with k:= _——— and

K+1

N
+ |
==

Sj =
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I———
Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRy = (0, ). Foo

JRy = M A1 + (1 - )\1)P1

\\\\ Pl ////
\ JRy N
o E
0
T2
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I———
Staircase Laminate (F., Palombaro '17)
Let 6 € [0,27], JRs = (0, ). Eco

JRG = A1A1 + (1 —_ )\1)P1
= MAL+ (1= X)) (B + (1 — p1) 2JRy)

N 2JRy
~ ] \\\\ Py
JRG //// T1
By \\\ ///Al
Eo
T2
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I———
Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRy = (0, ). Foo
JRs = MAL+ (1= M)P1 Py
= MAL+ (1= )B4+ (1 — pa) 2JRp) 2JR,
~ V1 \\\\ Py .~
2JRy = XoAs + (1 — X2) P2 IR T
N A2
Bl N , ’/Al E
|- 0
T2
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Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRy = (0, ). Foo
JRy = MAL+ (1 — M\)Py ~ P> e
= MAL+ (1= )B4+ (1 — pa) 2JRp) 2JR,
~ V1 Py p
2JRo = XoA2 4+ (1 — X2) P2 - N
= DoAr + (1= Xo)(2B2 + (1= p2) 3JR)) _ Bo g /o N a2
~> 2 S EO
T2

Silvio Fanzon Higher Gradient Integrability Lisbon, 10-12 October 2018 13/17



Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRs = (0, ).

JRy = MAL+ (1= M)Py
= MA+ (1= A1) (1B + (1 — 1) 2JR)
~
2JRy = XA+ (1 — X2) P2
= XA + (1 = X2) (2B + (1 — p2) 3JR»)

~> 19

Lemma: 3 p(0) € [2, 25 continuous, with T2

p(0) = Kz—fl and a sequence v, of laminates s.t.
> suppv, C T1U Th U Ex
> U, =JRy
> [iexz IM|7dua(M) < 0o, Vg < p(6)

> fipxe IM|P©O) duy(M) = 0o as n — oo 1 52751 p(6) 2K

Remark: barycentre J gives the right growth.
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Constructing approximate solutions

- 2K 2K
Recall I := (2% — o, 2%]. =
Step A. Define fi(x) := Jx = 61 =0,p1 = ’(2751
N //// Tl
N oJ L

RN E
L ’ N T>

25 2K

1 SHl K+1
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N
Constructing approximate solutions

_ (2K 2K
Recall J5 := (m —s, K—H] e
Step A. Define fi(x) := Jx = 61 =0,p1 = 25
Step B. Laminate v from J to 2J ~ growth p; N
N 7
'\. J !
o Eo
e . T2
25 2K
1 S+1 K+1
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Constructing approximate solutions

Recall I := (2% — o, 2%].

Step A. Define fi(x) := Jx = 61 =0,p1 = 25
Step B. Laminate v from J to 2J ~ growth p;
Step C. Proposition =—> I map fs.t. L =JxondN .

and Vf ~ suppr; = V£ grows like p; N
This determines the exponent range /s

Ex

2S
1 S+1

K+1
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Constructing approximate solutions

Recall I := (2% — o, 2%].

Step A. Define fi(x) :=Jx = 601 =0,p1 = 2TK1

Step B. Laminate v from J to 2J ~ growth p;

Step C. Proposition = I map f s.t. f = Jx on 9Q
and Vf ~ suppr; = V£ grows like p;

This determines the exponent range /s

Ewo
Wy .
Moy ,
~ /// T1
S J
O e Eo
e . T2
2S 2K
S5+1 K+1
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Constructing approximate solutions

Recall I := (2% — o, 2%].

Step A. Define fi(x) := Jx = 61 =0,p1 = 25
Step B. Laminate v from J to 2J ~ growth p;

Step C. Proposition =—> I map fs.t. L =JxondN .

‘§

Ex

/ (2 + P)JR92
2J ,
s 7

and Vf ~ suppr; = V£ grows like p;
This determines the exponent range /s
Step 1. One step of the staircase
> Split Wi. Since Wy ~2J —s point y/a
(2 + p)JRp, with 02, p small. = p» € I5 o
1 #

2K
P2 K+1
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Constructing approximate solutions

— (2K 2K
Recall J5 := (m —s, K—H] e
Step A. Define fi(x) := Jx = 61 =0,p1 = 25
Step B. Laminate v from J to 2J ~ growth p; N
Step C. Proposition => I map fp s.t. fo = Jx on 9Q '\ /’
and Vf; ~suppr; = V£ grows like p; Wi (24 p)JRo,
. . /12 ,
This determines the exponent range /s
Step 1. One step of the staircase N J ) !
» Split Wi. Since W ~2J = point &
(2+ p)JRy, with 0>, psmall. = p, € 5 | e Eo
» Climb from (2 + p)JRy, to 3JRy, 7 |
7 . T2
2S 2K
S+1 P2 K11
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Constructing approximate solutions

_ (2K 2K
Recall J5 := (m —s, K—H] e
Step A. Define fi(x) := Jx = 61 =0,p1 = 25 -
Step B. Laminate v from J to 2J ~ growth p; N 3JRe, s
Step C. Proposition => JImap fs.t. L =JxondQ
and Vf; ~suppri = Vi grows like p; Wi (2+p)JRey -
This determines the exponent range /s %
Step 1. One step of the staircase J ) é !
» Split Wi. Since Wy ~2J = point
(2+ p)JRp, with 02, p small. = ps € I5 5 e Eo
> Climb from (2 + p)JRy, to 3JRy,
P " T.
» ~ Laminate v, with 7o = W and growth p 2
2S 2K
1 S+1 P2 K+1
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Constructing approximate solutions

Recall I := (2% — o, 2%].
2K

Step A. Define fi(x) :=Jx = 601 =0,p1 = 2
Step B. Laminate v from J to 2J ~ growth p;
Step C. Proposition = I map f s.t. f = Jx on 9Q

and Vf ~ suppr; = V£ grows like p;
This determines the exponent range /s
Step 1. One step of the staircase

> Split Wi. Since Wi ~ 2J = point
(24 p)JRo, with 0>, p small. = p> € I5

‘§

Exo

3JRs,

% (24 p)JRs,

Ty

Eo

» Climb from (2 + p)JRy, to 3JRy,
» ~ Laminate v, with 7o = W and growth p
Step 2. Define map f3 by modifying f»

» Proposition =—> I map g s.t. g = Wix on 0Q
and Vg ~ suppro = Vg grows like p»

2S
SHl

2K
P2 K+1

T
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Constructing approximate solutions

Recall I := (2% — o, 2%].
2K

Step A. Define fi(x) :=Jx = 601 =0,p1 = 2
Step B. Laminate v from J to 2J ~ growth p;
Step C. Proposition = I map f s.t. f = Jx on 9Q

and Vf ~ suppr; = V£ grows like p;
This determines the exponent range /s
Step 1. One step of the staircase

> Split Wi. Since Wi ~ 2J = point
(24 p)JRo, with 0>, p small. = p> € I5

‘§

Exo

3JRs,

% (24 p)JRs,

Ty

Eo

» Climb from (2 + p)JRy, to 3JRy,
» ~ Laminate v, with 7o = W and growth p
Step 2. Define map f3 by modifying f»
» Proposition =—> I map g s.t. g = Wix on 0Q
and Vg ~ suppro = Vg grows like p»
> Set f3 := g in theset {Vh ~ Wi} and f3 := £,
otherwise = V3 grows like p»

2S
SHl

2K
P2 K+1

T
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Constructing approximate solutions

Recall I := (2% — o, 2%].
2K

Step A. Define fi(x) :=Jx = 601 =0,p1 = 2
Step B. Laminate v from J to 2J ~ growth p;
Step C. Proposition = I map f s.t. f = Jx on 9Q

and Vf ~ suppr; = V£ grows like p;
This determines the exponent range /s
Step 1. One step of the staircase

> Split Wi. Since Wi ~ 2J = point
(24 p)JRo, with 0>, p small. = p> € I5

» Climb from (2 + p)JRy, to 3JRy,
» ~ Laminate v, with 7o = W and growth p
Step 2. Define map f3 by modifying f»
» Proposition =—> I map g s.t. g = Wix on 0Q
and Vg ~ suppro = Vg grows like p»
> Set f3 := g in theset {Vh ~ Wi} and f3 := £,
otherwise = V3 grows like p»
Step 1. Split W, ~ Laminate v3 with growth p3€ s

2S

SHl
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’ \\\ T2
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Constructing approximate solutions

Recall I := (2% — o, 2%].
2K

Step A. Define fi(x) :=Jx = 601 =0,p1 = 2
Step B. Laminate v from J to 2J ~ growth p;
Step C. Proposition = I map f s.t. f = Jx on 9Q

and Vf ~ suppr; = V£ grows like p;
This determines the exponent range /s
Step 1. One step of the staircase

> Split Wi. Since Wi ~ 2J = point
(24 p)JRo, with 0>, p small. = p> € I5

» Climb from (2 + p)JRy, to 3JRy,
» ~ Laminate v, with 7o = W and growth p
Step 2. Define map f3 by modifying f»
» Proposition =—> I map g s.t. g = Wix on 0Q
and Vg ~ suppro = Vg grows like p»
> Set f3 := g in theset {Vh ~ Wi} and f3 := £,
otherwise = V3 grows like p»
Step 1. Split W, ~ Laminate v3 with growth p3€ s

2S

SHl
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Constructing approximate solutions

Recall I := (2% — o, 2%].
2K

Step A. Define fi(x) :=Jx = 601 =0,p1 = ey
Step B. Laminate v from J to 2J ~ growth p;
Step C. Proposition = I map f s.t. f = Jx on 9Q

and Vf ~ suppr; = V£ grows like p;
This determines the exponent range /s
Step 1. One step of the staircase

> Split Wi. Since Wi ~ 2J = point
(24 p)JRo, with 0>, p small. = p> € I5

".§

Exo

3JRs,

2(2+p)JRe,

» Climb from (2 + p)JRy, to 3JRy,
» ~ Laminate v, with 7o = W and growth p
Step 2. Define map f3 by modifying f»

» Proposition =—> I map g s.t. g = Wix on 0Q
and Vg ~ suppro = Vg grows like p»

> Set f3 := g in theset {Vh ~ Wi} and f3 := £,
otherwise = V3 grows like p»

Step 1. Split W, ~ Laminate v3 with growth p3€ s

Iterating: ~ f, obtained by successive modifications

2K
P3 P2 K11

on nested sets going to zero in measure —> f, — f
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NS
Conclusions and Perspectives
Conclusions: analysis of critical integrability of distributional solutions to
div(cVu) =0, in Q, (0.4)

when o € {01, 05} for 01,00 € M?*? elliptic.

> Optimal exponents gy, -, and py, -, Were already characterised and the upper
exponent p,, -, Was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).
> We proved the optimality of the lower critical exponent ¢, o,
Perspectives:
> Stronger result for lower critical exponent: showing 3 u € W1(Q) solution
0(0.4) and s.t. Vu € LK+1 (Q; R?) but Vu ¢ LK+1(B R?), V ball B C Q.

Y ) weak
Modifying staircase laminate?

> Extend these results to three-phase conductivities o € {01, 02,03}.

» Dimension d > 3?7 Even only in the isotropic case o € {KI, K=/} for K > 1.
Main difficulty: Astala’s Theorem is missing in higher dimensions.

Silvio Fanzon Higher Gradient Integrability Lisbon, 10-12 October 2018 16 /17



Thank Youl



