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Problem

⌦ ⇢ R2 bounded open domain. A map � 2 L1(⌦;M2⇥2) is uniformly elliptic if

�⇠ · ⇠ � �|⇠|2 , ��1⇠ · ⇠ � �|⇠|2 8 ⇠ 2 R2, x 2 ⌦ .

Problem

Study the gradient integrability of distributional solutions u 2 W 1,1(⌦) to

div(�ru) = 0 , (0.1)

when
� = �1�E1 + �2�E2 ,

with �1,�2 2 M2⇥2 constant elliptic matrices, {E1,E2} measurable partition of ⌦.

Application to composites:
I ⌦ is a section of a composite conductor obtained by mixing two materials

with conductivities �1 and �2

I the electric field ru solves (0.1)
I How much can ru concentrate, given the geometry {E1,E2}?
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Astala’s Theorem

1 2q p

Theorem (Astala ’94)

Let � 2 L1(⌦;M2⇥2) be uniformly elliptic. There exists exponents 1 < q < 2 < p
such that if u 2 W 1,q(⌦) solves

div(�ru) = 0 ,

then ru 2 Lpweak(⌦;R2).

Question
Are the exponents q and p optimal among two-phase elliptic conductivities

� = �1�E1 + �2�E2 ?

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)
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Astala’s exponents for two-phase conductivities

1 2q�1,�2 p�1,�2

For two-phase conductivities Astala’s exponents q = q�1,�2 and p = p�1,�2 have
been characterised.

Remark: it is su�cient to prove optimality in the case

�1 =

✓
1/K 0
0 1/S1

◆
, �2 =

✓
K 0
0 S2

◆
,

where

K > 1 and
1

K
 Sj  K , j = 1, 2 .

The corresponding critical exponents for Astala’s theorem are

q�1,�2 =
2K

K + 1
, p�1,�2 =

2K

K � 1
.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).
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Upper exponent optimality

1 2
2K
K+1

2K
K�1

Theorem (Nesi, Palombaro, Ponsiglione ’14)

Let �1 = diag(1/K , 1/S1),�2 = diag(K , S2) with K > 1 and S1, S2 2 [1/K ,K ].

(i) If � 2 L1(⌦; {�1,�2}) and u 2 W 1, 2K
K+1 (⌦) solves

div(�ru) = 0 (0.2)

then ru 2 L
2K

K�1

weak(⌦;R2).

(ii) There exists �̄ 2 L1(⌦; {�1,�2}) and a weak solution ū 2 W 1,2(⌦) to (0.2)
with � = �̄, satisfying a�ne boundary conditions and such that

rū /2 L
2K

K�1 (⌦;R2).

Question we address

Is the lower exponent 2K
K+1 optimal?
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Lower exponent optimality

1 2
2K
K+1

2K
K�1pn

Theorem (F., Palombaro ’17)

Let �1 = diag(1/K , 1/S1),�2 = diag(K , S2) with K > 1 and S1, S2 2 [1/K ,K ].
There exist

I coe�cients �n 2 L1(⌦; {�1;�2}),
I exponents pn 2

h
1, 2K

K+1

i
,

I functions un 2 W 1,1(⌦) such that un(x) = x1 on @⌦,

such that

div(�nrun) = 0 ,

run 2 Lpnweak(⌦;R
2), pn ! 2K

K + 1
, run /2 L

2K
K+1 (⌦;R2) .

F., Palombaro. Calculus of Variations and Partial Di↵erential Equations (2017)
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Solving di↵erential inclusions

Theorem (Approximate solutions for two phases)

Let A,B 2 M2⇥2, C := �A+ (1� �)B with � 2 [0, 1], and � > 0. Assume that

B � A = a⌦ n for some a 2 R2, n 2 S1 . (Rank-one connection)

9 piecewise a�ne Lipschitz map f : ⌦ ! R2 such that f (x) = Cx on @⌦ and

dist(rf , {A,B}) < � a.e. in ⌦ .

Solutions: built through simple laminates

I rank-one connection allows to laminate in
direction n,

I rf oscillates in �-neighbourhoods of A and B ,

I � proportion for A, 1� � proportion for B ,

I this allows to recover boundary data C .

Müller. Variational models for microstructure and phase transitions.

A B A B A

�� (1� �)�

n
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Laminates of first order

L2
⌦ is the normalised Lebesgue measure restricted to ⌦ ; L2

⌦(B) := |B \ ⌦|/|⌦|.

Gradient distribution

Let f : ⌦ ! R2 be Lipschitz. The gradient distribution of f is the Radon
measure rf#(L2

⌦) on M2⇥2 defined by

rf#(L2
⌦)(V ) := L2

⌦((rf )�1(V )) , 8 Borel set V ⇢ M2⇥2 .

Let f� be the map given by the previous Theorem. Then as � ! 0,

⌫� := (rf�)#(L2
⌦)

⇤
* ⌫ := ��A + (1� �)�B in M(M2⇥2) .

The measure ⌫ is called a laminate of first order, and it encodes:
I Oscillations of rf� about {A,B} and their proportions.
I Boundary condition since the barycentre of ⌫ is ⌫ :=

R
M2⇥2 M d⌫(M) = C .

I Integrability since for p > 1 we have

1

|⌦|

Z

⌦
|rf�|p dx =

Z

M2⇥2

|M|p d⌫�(M) .
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Iterating the Proposition

Let C = �A+ (1� �)B with � 2 [0, 1] and rank(B � A) = 1. Let f : ⌦ ! R2

such that f (x) = Cx on @⌦,

dist(rf , {A,B}) < � a.e. in ⌦.

Further splitting: B = µB1 + (1� µ)B2 with µ 2 [0, 1], rank(B2 � B1) = 1.

New gradient: apply previous Proposition to the set {x 2 ⌦ : rf ⇠ B} to obtain
f̃ : ⌦ ! R2 such that f (x) = Cx on @⌦,

dist(rf̃ , {A,B1,B2}) < � a.e. in ⌦.

The gradient distribution of f̃ is given by

⌫ = � �A + (1� �)µ �B1 + (1� �)(1� µ) �B2 .
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Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting
procedure in the previous slide.

Proposition (Convex integration)

Let ⌫ =
PN

i=1 �i�Ai be a laminate of finite order, s.t.

I ⌫ = A,

I A =
PN

i=1 �iAi with
PN

i=1 �i = 1.

Fix � > 0. 9 a piecewise a�ne Lipschitz map f : ⌦ ! R2 s.t. rf ⇠ ⌫, that is,

I dist(rf , supp ⌫) < � a.e. in ⌦,

I f (x) = Ax on @⌦,

I |{x 2 ⌦ : |rf (x)� Ai | < �}| = �i |⌦|.
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Strategy of the Proof

Strategy: explicit construction of un by convex integration methods.

1 Rewrite the equation div(�ru) = 0 as a di↵erential inclusion

rf (x) 2 T , for a.e. x 2 ⌦ (0.3)

for f : ⌦ ! R2 and an appropriate target set T ⇢ M2⇥2.
Note: u and f have the same integrability.

2 Construct a laminate ⌫ with supp ⌫ ⇢ T and the right integrability.
3 Convex integration Proposition =) construct f : ⌦ ! R2 s.t. rf ⇠ ⌫.

In this way f solves (0.3) and

rf 2 Lqweak(⌦;R
2) , q 2

✓
2K

K + 1
� �,

2K

K + 1

�
, rf /2 L

2K
K+1 (⌦;R2) .

These methods were developed for isotropic conductivities � 2 L1(⌦; {KI , 1
K I}).

The adaptation to our case is non-trivial because of the lack of symmetry of the target
set T , due to the anisotropy of �1 and �2.
Astala, Faraco, Székelyhidi. Convex integration and the Lp theory of elliptic equations.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2008)
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Rewriting the PDE as a di↵erential inclusion

Let K > 1, S1, S2 2 [1/K ,K ] and define

�1 := diag(1/K , 1/S1) , �2 := diag(K , S2) , � := �1�E1 + �2�E2 ,

T1 :=

⇢✓
x �y

S�1
1 y K�1 x

◆
: x , y 2 R

�
, T2 :=

⇢✓
x �y

S2 y K x

◆
: x , y 2 R

�
.

Lemma (F., Palombaro ’17)

A function u 2 W 1,1(⌦) is solution to

div(�ru) = 0

i↵ there exists v 2 W 1,1(⌦) such that f = (u, v) : ⌦ ! R2 satisfies

rf (x) 2 T1 [ T2 in ⌦ .

Moreover E1 = {x 2 ⌦ : rf (x) 2 T1} and E2 = {x 2 ⌦ : rf (x) 2 T2}.

Key Remark: u and f enjoy the same integrability properties.
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Targets in conformal coordinates

Conformal coordinates: Let A 2 M2⇥2. Then A = (a+, a�) for a+, a� 2 C,
defined by

Aw = a+w + a� w , 8w 2 C .

The sets of conformal linear maps and anti-conformal linear maps are

E0 := {(z , 0) : z 2 C} (Conformal maps)

E1 := {(0, z) : z 2 C} (Anti-conformal maps)

Target sets in conformal coordinates are

T1 = {(a, d1(a)) : a 2 C} , T2 = {(a,�d2(a)) : a 2 C} ,

where the operators dj : C ! C are defined as

dj(a) := k Re a+ i sj Im a , with k :=
K � 1

K + 1
and sj :=

Sj � 1

Sj + 1
.
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Staircase Laminate (F., Palombaro ’17)

Let ✓ 2 [0, 2⇡], JR✓ = (0, e i✓).

JR✓ = �1A1 + (1� �1)P1

= �1A1 + (1� �1)(µ1B1 + (1� µ1) 2JR✓)

; ⌫1

2JR✓ = �2A2 + (1� �2)P2

= �2A2 + (1� �2)(µ2B2 + (1� µ2) 3JR✓)

; ⌫2

Lemma: 9 p(✓) 2
⇥

2S
S+1 ,

2K
K+1

⇤
continuous, with

p(0) = 2K
K+1 and a sequence ⌫n of laminates s.t.

I supp ⌫n ⇢ T1 [ T2 [ E1

I ⌫n = JR✓

I R
M2⇥2 |M|q d⌫n(M) < 1, 8 q < p(✓)

I R
M2⇥2 |M|p(✓) d⌫n(M) ! 1 as n ! 1

Remark: barycentre J gives the right growth.

E1

E0

T1

T2

JR✓

A1

P1
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Staircase Laminate (F., Palombaro ’17)

Let ✓ 2 [0, 2⇡], JR✓ = (0, e i✓).

JR✓ = �1A1 + (1� �1)P1

= �1A1 + (1� �1)(µ1B1 + (1� µ1) 2JR✓)

; ⌫1

2JR✓ = �2A2 + (1� �2)P2

= �2A2 + (1� �2)(µ2B2 + (1� µ2) 3JR✓)

; ⌫2

Lemma: 9 p(✓) 2
⇥

2S
S+1 ,

2K
K+1

⇤
continuous, with

p(0) = 2K
K+1 and a sequence ⌫n of laminates s.t.

I supp ⌫n ⇢ T1 [ T2 [ E1

I ⌫n = JR✓

I R
M2⇥2 |M|q d⌫n(M) < 1, 8 q < p(✓)

I R
M2⇥2 |M|p(✓) d⌫n(M) ! 1 as n ! 1

Remark: barycentre J gives the right growth.

E1

E0

T1

T2

JR✓

A1B1

2JR✓
P1
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Staircase Laminate (F., Palombaro ’17)

Let ✓ 2 [0, 2⇡], JR✓ = (0, e i✓).

JR✓ = �1A1 + (1� �1)P1

= �1A1 + (1� �1)(µ1B1 + (1� µ1) 2JR✓)

; ⌫1

2JR✓ = �2A2 + (1� �2)P2

= �2A2 + (1� �2)(µ2B2 + (1� µ2) 3JR✓)

; ⌫2

Lemma: 9 p(✓) 2
⇥

2S
S+1 ,

2K
K+1

⇤
continuous, with

p(0) = 2K
K+1 and a sequence ⌫n of laminates s.t.

I supp ⌫n ⇢ T1 [ T2 [ E1

I ⌫n = JR✓

I R
M2⇥2 |M|q d⌫n(M) < 1, 8 q < p(✓)

I R
M2⇥2 |M|p(✓) d⌫n(M) ! 1 as n ! 1

Remark: barycentre J gives the right growth.

E1

E0

T1

T2

JR✓

A1B1

P2

2JR✓

A2

P1
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Staircase Laminate (F., Palombaro ’17)

Let ✓ 2 [0, 2⇡], JR✓ = (0, e i✓).

JR✓ = �1A1 + (1� �1)P1

= �1A1 + (1� �1)(µ1B1 + (1� µ1) 2JR✓)

; ⌫1

2JR✓ = �2A2 + (1� �2)P2

= �2A2 + (1� �2)(µ2B2 + (1� µ2) 3JR✓)

; ⌫2

Lemma: 9 p(✓) 2
⇥

2S
S+1 ,

2K
K+1

⇤
continuous, with

p(0) = 2K
K+1 and a sequence ⌫n of laminates s.t.

I supp ⌫n ⇢ T1 [ T2 [ E1

I ⌫n = JR✓

I R
M2⇥2 |M|q d⌫n(M) < 1, 8 q < p(✓)

I R
M2⇥2 |M|p(✓) d⌫n(M) ! 1 as n ! 1

Remark: barycentre J gives the right growth.

E1

E0

T1

T2

JR✓

A1B1

P2

3JR✓

2JR✓

A2B2

P1
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Staircase Laminate (F., Palombaro ’17)

Let ✓ 2 [0, 2⇡], JR✓ = (0, e i✓).

JR✓ = �1A1 + (1� �1)P1

= �1A1 + (1� �1)(µ1B1 + (1� µ1) 2JR✓)

; ⌫1

2JR✓ = �2A2 + (1� �2)P2

= �2A2 + (1� �2)(µ2B2 + (1� µ2) 3JR✓)

; ⌫2

Lemma: 9 p(✓) 2
⇥

2S
S+1 ,

2K
K+1

⇤
continuous, with

p(0) = 2K
K+1 and a sequence ⌫n of laminates s.t.

I supp ⌫n ⇢ T1 [ T2 [ E1

I ⌫n = JR✓

I R
M2⇥2 |M|q d⌫n(M) < 1, 8 q < p(✓)

I R
M2⇥2 |M|p(✓) d⌫n(M) ! 1 as n ! 1

Remark: barycentre J gives the right growth.

E1

E0

T1

T2

JR✓

A1B1

P2

3JR✓

2JR✓

A2B2

P1

p(✓)1
2K
K+1

2S
S+1
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Constructing approximate solutions

Recall I� :=
⇣

2K
K+1 � �, 2K

K+1

i
.

Step A. Define f1(x) := Jx =) ✓1 = 0, p1 = 2K
K+1

Step B. Laminate ⌫1 from J to 2J ; growth p1
Step C. Proposition =) 9 map f2 s.t. f2 = Jx on @⌦

and rf2 ⇠ supp ⌫1 =) rf2 grows like p1

This determines the exponent range I�

Step 1. One step of the staircase

I Split W1. Since W1 ⇠ 2J =) point
(2 + ⇢)JR✓2 with ✓2, ⇢ small. =) p2 2 I�

I Climb from (2 + ⇢)JR✓2 to 3JR✓2

I ; Laminate ⌫2 with ⌫2 = W1 and growth p2

Step 2. Define map f3 by modifying f2

I Proposition =) 9 map g s.t. g = W1x on @⌦
and rg ⇠ supp ⌫2 =) rg grows like p2

I Set f3 := g in the set {rf2 ⇠ W1} and f3 := f2
otherwise =) rf3 grows like p2

Step 1. Split W2 ; Laminate ⌫3 with growth p32 I�

Iterating: ; fn obtained by successive modifications
on nested sets going to zero in measure =) fn ! f

E1

E0

T1

T2

J

1
2K
K+1

2S
S+1
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Constructing approximate solutions

Recall I� :=
⇣

2K
K+1 � �, 2K

K+1

i
.

Step A. Define f1(x) := Jx =) ✓1 = 0, p1 = 2K
K+1

Step B. Laminate ⌫1 from J to 2J ; growth p1

Step C. Proposition =) 9 map f2 s.t. f2 = Jx on @⌦
and rf2 ⇠ supp ⌫1 =) rf2 grows like p1

This determines the exponent range I�

Step 1. One step of the staircase

I Split W1. Since W1 ⇠ 2J =) point
(2 + ⇢)JR✓2 with ✓2, ⇢ small. =) p2 2 I�

I Climb from (2 + ⇢)JR✓2 to 3JR✓2

I ; Laminate ⌫2 with ⌫2 = W1 and growth p2

Step 2. Define map f3 by modifying f2

I Proposition =) 9 map g s.t. g = W1x on @⌦
and rg ⇠ supp ⌫2 =) rg grows like p2

I Set f3 := g in the set {rf2 ⇠ W1} and f3 := f2
otherwise =) rf3 grows like p2

Step 1. Split W2 ; Laminate ⌫3 with growth p32 I�

Iterating: ; fn obtained by successive modifications
on nested sets going to zero in measure =) fn ! f

E1

E0

T1

T2

J

1
2K
K+1

2S
S+1
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Constructing approximate solutions

Recall I� :=
⇣

2K
K+1 � �, 2K

K+1

i
.

Step A. Define f1(x) := Jx =) ✓1 = 0, p1 = 2K
K+1

Step B. Laminate ⌫1 from J to 2J ; growth p1
Step C. Proposition =) 9 map f2 s.t. f2 = Jx on @⌦

and rf2 ⇠ supp ⌫1 =) rf2 grows like p1

This determines the exponent range I�

Step 1. One step of the staircase

I Split W1. Since W1 ⇠ 2J =) point
(2 + ⇢)JR✓2 with ✓2, ⇢ small. =) p2 2 I�

I Climb from (2 + ⇢)JR✓2 to 3JR✓2

I ; Laminate ⌫2 with ⌫2 = W1 and growth p2

Step 2. Define map f3 by modifying f2

I Proposition =) 9 map g s.t. g = W1x on @⌦
and rg ⇠ supp ⌫2 =) rg grows like p2

I Set f3 := g in the set {rf2 ⇠ W1} and f3 := f2
otherwise =) rf3 grows like p2

Step 1. Split W2 ; Laminate ⌫3 with growth p32 I�

Iterating: ; fn obtained by successive modifications
on nested sets going to zero in measure =) fn ! f

E1

E0

T1

T2

J

2J

1
2K
K+1

2S
S+1
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Constructing approximate solutions

Recall I� :=
⇣

2K
K+1 � �, 2K

K+1

i
.

Step A. Define f1(x) := Jx =) ✓1 = 0, p1 = 2K
K+1

Step B. Laminate ⌫1 from J to 2J ; growth p1
Step C. Proposition =) 9 map f2 s.t. f2 = Jx on @⌦

and rf2 ⇠ supp ⌫1 =) rf2 grows like p1

This determines the exponent range I�

Step 1. One step of the staircase

I Split W1. Since W1 ⇠ 2J =) point
(2 + ⇢)JR✓2 with ✓2, ⇢ small. =) p2 2 I�

I Climb from (2 + ⇢)JR✓2 to 3JR✓2

I ; Laminate ⌫2 with ⌫2 = W1 and growth p2

Step 2. Define map f3 by modifying f2

I Proposition =) 9 map g s.t. g = W1x on @⌦
and rg ⇠ supp ⌫2 =) rg grows like p2

I Set f3 := g in the set {rf2 ⇠ W1} and f3 := f2
otherwise =) rf3 grows like p2

Step 1. Split W2 ; Laminate ⌫3 with growth p32 I�

Iterating: ; fn obtained by successive modifications
on nested sets going to zero in measure =) fn ! f

E1

E0

T1

T2

J

2J

1
2K
K+1

2S
S+1

W1
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Constructing approximate solutions

Recall I� :=
⇣

2K
K+1 � �, 2K

K+1

i
.

Step A. Define f1(x) := Jx =) ✓1 = 0, p1 = 2K
K+1

Step B. Laminate ⌫1 from J to 2J ; growth p1
Step C. Proposition =) 9 map f2 s.t. f2 = Jx on @⌦

and rf2 ⇠ supp ⌫1 =) rf2 grows like p1

This determines the exponent range I�

Step 1. One step of the staircase

I Split W1. Since W1 ⇠ 2J =) point
(2 + ⇢)JR✓2 with ✓2, ⇢ small. =) p2 2 I�

I Climb from (2 + ⇢)JR✓2 to 3JR✓2

I ; Laminate ⌫2 with ⌫2 = W1 and growth p2

Step 2. Define map f3 by modifying f2

I Proposition =) 9 map g s.t. g = W1x on @⌦
and rg ⇠ supp ⌫2 =) rg grows like p2

I Set f3 := g in the set {rf2 ⇠ W1} and f3 := f2
otherwise =) rf3 grows like p2

Step 1. Split W2 ; Laminate ⌫3 with growth p32 I�

Iterating: ; fn obtained by successive modifications
on nested sets going to zero in measure =) fn ! f

E1

E0

T1

T2

J

p2

2J

1
2K
K+1

2S
S+1

(2 + ⇢)JR✓2W1
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Constructing approximate solutions

Recall I� :=
⇣

2K
K+1 � �, 2K

K+1

i
.

Step A. Define f1(x) := Jx =) ✓1 = 0, p1 = 2K
K+1

Step B. Laminate ⌫1 from J to 2J ; growth p1
Step C. Proposition =) 9 map f2 s.t. f2 = Jx on @⌦

and rf2 ⇠ supp ⌫1 =) rf2 grows like p1

This determines the exponent range I�

Step 1. One step of the staircase

I Split W1. Since W1 ⇠ 2J =) point
(2 + ⇢)JR✓2 with ✓2, ⇢ small. =) p2 2 I�

I Climb from (2 + ⇢)JR✓2 to 3JR✓2

I ; Laminate ⌫2 with ⌫2 = W1 and growth p2
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Conclusions and Perspectives

Conclusions: analysis of critical integrability of distributional solutions to

div(�ru) = 0 , in ⌦ , (0.4)

when � 2 {�1,�2} for �1,�2 2 M2⇥2 elliptic.
I Optimal exponents q�1,�2 and p�1,�2 were already characterised and the upper

exponent p�1,�2 was proved to be optimal.
Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

I We proved the optimality of the lower critical exponent q�1,�2 .

Perspectives:
I Stronger result for lower critical exponent: showing 9 u 2 W 1,1(⌦) solution

to (0.4) and s.t. ru 2 L
2K
K+1

weak(⌦;R2) but ru /2 L
2K
K+1 (B ;R2), 8 ball B ⇢ ⌦.

Modifying staircase laminate?

I Extend these results to three-phase conductivities � 2 {�1,�2,�3}.
I Dimension d � 3? Even only in the isotropic case � 2 {KI ,K�1I} for K > 1.

Main di�culty: Astala’s Theorem is missing in higher dimensions.
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Thank You!


