Optimal lower exponent of solutions to two-phase elliptic equations in two dimensions

Silvio Fanzon

(joint work with Mariapia Palombaro)

Karl-Franzens University, Graz
Department of Mathematics

Problem

$\Omega \subset \mathbb{R}^{2}$ bounded open domain. A map $\sigma \in L^{\infty}\left(\Omega ; \mathbb{M}^{2 \times 2}\right)$ is uniformly elliptic if

$$
\sigma \xi \cdot \xi \geq \lambda|\xi|^{2}, \sigma^{-1} \xi \cdot \xi \geq \lambda|\xi|^{2} \quad \forall \xi \in \mathbb{R}^{2}, x \in \Omega
$$

Problem

Study the gradient integrability of distributional solutions $u \in W^{1,1}(\Omega)$ to

$$
\begin{equation*}
\operatorname{div}(\sigma \nabla u)=0 \tag{0.1}
\end{equation*}
$$

when

$$
\sigma=\sigma_{1} \chi_{E_{1}}+\sigma_{2} \chi_{E_{2}},
$$

with $\sigma_{1}, \sigma_{2} \in \mathbb{M}^{2 \times 2}$ constant elliptic matrices, $\left\{E_{1}, E_{2}\right\}$ measurable partition of Ω.
Application to composites:

- Ω is a section of a composite conductor obtained by mixing two materials with conductivities σ_{1} and σ_{2}
- the electric field ∇u solves (0.1)
- How much can ∇u concentrate, given the geometry $\left\{E_{1}, E_{2}\right\}$?

Astala's Theorem

Theorem (Astala '94)

Let $\sigma \in L^{\infty}\left(\Omega ; \mathbb{M}^{2 \times 2}\right)$ be uniformly elliptic. There exists exponents $1<q<2<p$ such that if $u \in W^{1, q}(\Omega)$ solves

$$
\operatorname{div}(\sigma \nabla u)=0
$$

then $\nabla u \in L_{\text {weak }}^{p}\left(\Omega ; \mathbb{R}^{2}\right)$.

Question

Are the exponents q and p optimal among two-phase elliptic conductivities

$$
\sigma=\sigma_{1} \chi_{E_{1}}+\sigma_{2} \chi_{E_{2}} ?
$$

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)

Astala's exponents for two-phase conductivities

$\xrightarrow{1} \xrightarrow{q_{\sigma_{1}, \sigma_{2}}}$

For two-phase conductivities Astala's exponents $q=q_{\sigma_{1}, \sigma_{2}}$ and $p=p_{\sigma_{1}, \sigma_{2}}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$
\sigma_{1}=\left(\begin{array}{cc}
1 / K & 0 \\
0 & 1 / S_{1}
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
K & 0 \\
0 & S_{2}
\end{array}\right)
$$

where

$$
K>1 \quad \text { and } \quad \frac{1}{K} \leq S_{j} \leq K, \quad j=1,2
$$

The corresponding critical exponents for Astala's theorem are

$$
q_{\sigma_{1}, \sigma_{2}}=\frac{2 K}{K+1}, \quad p_{\sigma_{1}, \sigma_{2}}=\frac{2 K}{K-1} .
$$

Upper exponent optimality

Theorem (Nesi, Palombaro, Ponsiglione '14)

Let $\sigma_{1}=\operatorname{diag}\left(1 / K, 1 / S_{1}\right), \sigma_{2}=\operatorname{diag}\left(K, S_{2}\right)$ with $K>1$ and $S_{1}, S_{2} \in[1 / K, K]$.
(d) If $\sigma \in L^{\infty}\left(\Omega ;\left\{\sigma_{1}, \sigma_{2}\right\}\right)$ and $u \in W^{1, \frac{2 K}{K+1}}(\Omega)$ solves

$$
\begin{equation*}
\operatorname{div}(\sigma \nabla u)=0 \tag{0.2}
\end{equation*}
$$

then $\nabla u \in L_{\text {weak }}^{\frac{2 k}{K-1}}\left(\Omega ; \mathbb{R}^{2}\right)$.
(17) There exists $\bar{\sigma} \in L^{\infty}\left(\Omega ;\left\{\sigma_{1}, \sigma_{2}\right\}\right)$ and a weak solution $\bar{u} \in W^{1,2}(\Omega)$ to (0.2) with $\sigma=\bar{\sigma}$, satisfying affine boundary conditions and such that $\nabla \bar{u} \notin L^{\frac{2 K}{K-1}}\left(\Omega ; \mathbb{R}^{2}\right)$.

Question we address

Is the lower exponent $\frac{2 K}{K+1}$ optimal?

Lower exponent optimality

Theorem (F., Palombaro '17)

Let $\sigma_{1}=\operatorname{diag}\left(1 / K, 1 / S_{1}\right), \sigma_{2}=\operatorname{diag}\left(K, S_{2}\right)$ with $K>1$ and $S_{1}, S_{2} \in[1 / K, K]$. There exist

- coefficients $\sigma_{n} \in L^{\infty}\left(\Omega ;\left\{\sigma_{1} ; \sigma_{2}\right\}\right)$,
- exponents $p_{n} \in\left[1, \frac{2 K}{K+1}\right]$,
- functions $u_{n} \in W^{1,1}(\Omega)$ such that $u_{n}(x)=x_{1}$ on $\partial \Omega$, such that

$$
\begin{aligned}
& \operatorname{div}\left(\sigma_{n} \nabla u_{n}\right)=0, \\
& \nabla u_{n} \in L_{\text {weak }}^{p_{n}}\left(\Omega ; \mathbb{R}^{2}\right), \quad p_{n} \rightarrow \frac{2 K}{K+1}, \quad \nabla u_{n} \notin L^{\frac{2 K}{K+1}}\left(\Omega ; \mathbb{R}^{2}\right) .
\end{aligned}
$$

[^0]
Solving differential inclusions

Theorem (Approximate solutions for two phases)

Let $A, B \in \mathbb{M}^{2 \times 2}, C:=\lambda A+(1-\lambda) B$ with $\lambda \in[0,1]$, and $\delta>0$. Assume that

$$
B-A=a \otimes n \quad \text { for some } \quad a \in \mathbb{R}^{2}, n \in S^{1} . \quad \text { (Rank-one connection) }
$$

\exists piecewise affine Lipschitz map $f: \Omega \rightarrow \mathbb{R}^{2}$ such that $f(x)=C x$ on $\partial \Omega$ and

$$
\operatorname{dist}(\nabla f,\{A, B\})<\delta \quad \text { a.e. in } \quad \Omega .
$$

Solutions: built through simple laminates

- rank-one connection allows to laminate in direction n,
- ∇f oscillates in δ-neighbourhoods of A and B,
- λ proportion for $A, 1-\lambda$ proportion for B,
- this allows to recover boundary data C.

Müller. Variational models for microstructure and phase transitions.

Laminates of first order

\mathcal{L}_{Ω}^{2} is the normalised Lebesgue measure restricted to $\Omega \sim \mathcal{L}_{\Omega}^{2}(B):=|B \cap \Omega| /|\Omega|$.

Gradient distribution

Let $f: \Omega \rightarrow \mathbb{R}^{2}$ be Lipschitz. The gradient distribution of f is the Radon measure $\nabla f_{\#}\left(\mathcal{L}_{\Omega}^{2}\right)$ on $\mathbb{M}^{2 \times 2}$ defined by

$$
\nabla f_{\#}\left(\mathcal{L}_{\Omega}^{2}\right)(V):=\mathcal{L}_{\Omega}^{2}\left((\nabla f)^{-1}(V)\right), \quad \forall \text { Borel set } V \subset \mathbb{M}^{2 \times 2}
$$

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \rightarrow 0$,

$$
\nu_{\delta}:=\left(\nabla f_{\delta}\right)_{\#}\left(\mathcal{L}_{\Omega}^{2}\right) \stackrel{*}{\rightharpoonup} \nu:=\lambda \delta_{A}+(1-\lambda) \delta_{B} \quad \text { in } \quad \mathcal{M}\left(\mathbb{M}^{2 \times 2}\right) .
$$

The measure ν is called a laminate of first order, and it encodes:

- Oscillations of ∇f_{δ} about $\{A, B\}$ and their proportions.
- Boundary condition since the barycentre of ν is $\bar{\nu}:=\int_{\mathbb{M}^{2} \times 2} M d \nu(M)=C$.
- Integrability since for $p>1$ we have

$$
\frac{1}{|\Omega|} \int_{\Omega}\left|\nabla f_{\delta}\right|^{p} d x=\int_{\mathbb{M}^{2} \times 2}|M|^{p} d \nu_{\delta}(M)
$$

Iterating the Proposition

Let $C=\lambda A+(1-\lambda) B$ with $\lambda \in[0,1]$ and $\operatorname{rank}(B-A)=1$. Let $f: \Omega \rightarrow \mathbb{R}^{2}$ such that $f(x)=C x$ on $\partial \Omega$,

$$
\operatorname{dist}(\nabla f,\{A, B\})<\delta \quad \text { a.e. in } \quad \Omega .
$$

Further splitting: $B=\mu B_{1}+(1-\mu) B_{2}$ with $\mu \in[0,1], \operatorname{rank}\left(B_{2}-B_{1}\right)=1$.
New gradient: apply previous Proposition to the set $\{x \in \Omega: \nabla f \sim B\}$ to obtain $\tilde{f}: \Omega \rightarrow \mathbb{R}^{2}$ such that $f(x)=C_{x}$ on $\partial \Omega$,

$$
\operatorname{dist}\left(\nabla \tilde{f},\left\{A, B_{1}, B_{2}\right\}\right)<\delta \quad \text { a.e. in } \quad \Omega .
$$

The gradient distribution of \tilde{f} is given by

$$
\nu=\lambda \delta_{A}+(1-\lambda) \mu \delta_{B_{1}}+(1-\lambda)(1-\mu) \delta_{B_{2}} .
$$

Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu=\sum_{i=1}^{N} \lambda_{i} \delta_{A_{i}}$ be a laminate of finite order, s.t.

- $\bar{\nu}=A$,
- $A=\sum_{i=1}^{N} \lambda_{i} A_{i}$ with $\sum_{i=1}^{N} \lambda_{i}=1$.

Fix $\delta>0$. ヨa piecewise affine Lipschitz map $f: \Omega \rightarrow \mathbb{R}^{2}$ s.t. $\nabla f \sim \nu$, that is,

- $\operatorname{dist}(\nabla f, \operatorname{supp} \nu)<\delta$ a.e. in Ω,
- $f(x)=A x$ on $\partial \Omega$,
- $\left|\left\{x \in \Omega:\left|\nabla f(x)-A_{i}\right|<\delta\right\}\right|=\lambda_{i}|\Omega|$.

Strategy of the Proof

Strategy: explicit construction of u_{n} by convex integration methods.
(1) Rewrite the equation $\operatorname{div}(\sigma \nabla u)=0$ as a differential inclusion

$$
\begin{equation*}
\nabla f(x) \in T, \quad \text { for a.e. } \quad x \in \Omega \tag{0.3}
\end{equation*}
$$

for $f: \Omega \rightarrow \mathbb{R}^{2}$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$.
Note: u and f have the same integrability.
(2) Construct a laminate ν with $\operatorname{supp} \nu \subset T$ and the right integrability.
(3) Convex integration Proposition \Longrightarrow construct $f: \Omega \rightarrow \mathbb{R}^{2}$ s.t. $\nabla f \sim \nu$. In this way f solves (0.3) and

$$
\nabla f \in L_{\text {weak }}^{q}\left(\Omega ; \mathbb{R}^{2}\right), \quad q \in\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right], \quad \nabla f \notin L^{\frac{2 K}{K+1}}\left(\Omega ; \mathbb{R}^{2}\right) .
$$

These methods were developed for isotropic conductivities $\sigma \in L^{\infty}\left(\Omega ;\left\{K I, \frac{1}{K} I\right\}\right)$.
The adaptation to our case is non-trivial because of the lack of symmetry of the target set T, due to the anisotropy of σ_{1} and σ_{2}.
Astala, Faraco, Székelyhidi. Convex integration and the L^{p} theory of elliptic equations.
Ann. Scuola Norm. Sup. Pisa CI. Sci. (2008)

Rewriting the PDE as a differential inclusion

 Let $K>1, S_{1}, S_{2} \in[1 / K, K]$ and define$$
\begin{gathered}
\sigma_{1}:=\operatorname{diag}\left(1 / K, 1 / S_{1}\right), \quad \sigma_{2}:=\operatorname{diag}\left(K, S_{2}\right), \quad \sigma:=\sigma_{1} \chi_{E_{1}}+\sigma_{2} \chi_{E_{2}}, \\
T_{1}:=\left\{\left(\begin{array}{cc}
x & -y \\
S_{1}^{-1} y & K^{-1} x
\end{array}\right): x, y \in \mathbb{R}\right\}, \quad T_{2}:=\left\{\left(\begin{array}{cc}
x & -y \\
S_{2} y & K x
\end{array}\right): x, y \in \mathbb{R}\right\} .
\end{gathered}
$$

Lemma (F., Palombaro '17)

A function $u \in W^{1,1}(\Omega)$ is solution to

$$
\operatorname{div}(\sigma \nabla u)=0
$$

iff there exists $v \in W^{1,1}(\Omega)$ such that $f=(u, v): \Omega \rightarrow \mathbb{R}^{2}$ satisfies

$$
\nabla f(x) \in T_{1} \cup T_{2} \quad \text { in } \quad \Omega .
$$

Moreover $E_{1}=\left\{x \in \Omega: \nabla f(x) \in T_{1}\right\}$ and $E_{2}=\left\{x \in \Omega: \nabla f(x) \in T_{2}\right\}$.
Key Remark: u and f enjoy the same integrability properties.

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2 \times 2}$. Then $A=\left(a_{+}, a_{-}\right)$for $a_{+}, a_{-} \in \mathbb{C}$, defined by

$$
A w=a_{+} w+a_{-} \bar{w}, \quad \forall w \in \mathbb{C} .
$$

The sets of conformal linear maps and anti-conformal linear maps are

$$
\begin{aligned}
& E_{0}:=\{(z, 0): z \in \mathbb{C}\} \\
& E_{\infty}:=\{(0, z): z \in \mathbb{C}\}
\end{aligned}
$$

(Conformal maps)
(Anti-conformal maps)

Target sets in conformal coordinates are

$$
T_{1}=\left\{\left(a, d_{1}(\bar{a})\right): a \in \mathbb{C}\right\}, \quad T_{2}=\left\{\left(a,-d_{2}(\bar{a})\right): a \in \mathbb{C}\right\},
$$

where the operators $d_{j}: \mathbb{C} \rightarrow \mathbb{C}$ are defined as

$$
d_{j}(a):=k \operatorname{Re} a+i s_{j} \operatorname{Im} a, \quad \text { with } \quad k:=\frac{K-1}{K+1} \quad \text { and } \quad s_{j}:=\frac{S_{j}-1}{S_{j}+1} .
$$

Staircase Laminate (F., Palombaro '17)

Let $\theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right)$.

$$
J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1}
$$

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
& \text { Let } \theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \text {. } \\
& J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1} \\
& =\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \sim \nu_{1}
\end{aligned}
$$

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
& \text { Let } \theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \text {. } \\
& J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1} \\
& =\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \sim \nu_{1} \\
& 2 J R_{\theta}=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right) P_{2}
\end{aligned}
$$

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
& \text { Let } \theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \text {. } \\
& J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1} \\
& =\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \sim \nu_{1} \\
& 2 J R_{\theta}=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right) P_{2} \\
& =\lambda_{2} A_{2}+\left(1-\lambda_{2}\right)\left(\mu_{2} B_{2}+\left(1-\mu_{2}\right) 3 J R_{\theta}\right) \\
& \sim \nu_{2}
\end{aligned}
$$

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
& \text { Let } \theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \text {. } \\
& J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1} \\
& =\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \sim \nu_{1} \\
& 2 J R_{\theta}=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right) P_{2} \\
& =\lambda_{2} A_{2}+\left(1-\lambda_{2}\right)\left(\mu_{2} B_{2}+\left(1-\mu_{2}\right) 3 J R_{\theta}\right) \\
& \sim \nu_{2}
\end{aligned}
$$

Lemma: $\exists p(\theta) \in\left[\frac{2 S}{S+1}, \frac{2 K}{K+1}\right]$ continuous, with $p(0)=\frac{2 K}{K+1}$ and a sequence ν_{n} of laminates s.t.
$-\operatorname{supp} \nu_{n} \subset T_{1} \cup T_{2} \cup E_{\infty}$

- $\bar{\nu}_{n}=J R_{\theta}$
$-\int_{\mathbb{M}^{2} \times 2}|M|^{q} d \nu_{n}(M)<\infty, \quad \forall q<p(\theta)$
$-\int_{\mathbb{M}^{2} \times 2}|M|^{p(\theta)} d \nu_{n}(M) \rightarrow \infty$ as $n \rightarrow \infty$
Remark: barycentre J gives the right growth.

Constructing approximate solutions

Recall $\boldsymbol{I}_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$

Constructing approximate solutions

Recall $\boldsymbol{I}_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in I_{\delta}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\delta}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in I_{\delta}$

- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}
- Set $f_{3}:=g$ in the set $\left\{\nabla f_{2} \sim W_{1}\right\}$ and $f_{3}:=f_{2}$ otherwise $\Longrightarrow \nabla f_{3}$ grows like p_{2}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\delta}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}
- Set $f_{3}:=g$ in the set $\left\{\nabla f_{2} \sim W_{1}\right\}$ and $f_{3}:=f_{2}$ otherwise $\Longrightarrow \nabla f_{3}$ grows like p_{2}
Step 1. Split $W_{2} \sim$ Laminate ν_{3} with growth $p_{3} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\delta}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}
- Set $f_{3}:=g$ in the set $\left\{\nabla f_{2} \sim W_{1}\right\}$ and $f_{3}:=f_{2}$ otherwise $\Longrightarrow \nabla f_{3}$ grows like p_{2}
Step 1. Split $W_{2} \sim$ Laminate ν_{3} with growth $p_{3} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\delta}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}
- Set $f_{3}:=g$ in the set $\left\{\nabla f_{2} \sim W_{1}\right\}$ and $f_{3}:=f_{2}$ otherwise $\Longrightarrow \nabla f_{3}$ grows like p_{2}
Step 1. Split $W_{2} \sim$ Laminate ν_{3} with growth $p_{3} \in I_{\delta}$
Iterating: $\sim f_{n}$ obtained by successive modifications
 on nested sets going to zero in measure $\Longrightarrow f_{n} \rightarrow f$

Conclusions and Perspectives

Conclusions: analysis of critical integrability of distributional solutions to

$$
\begin{equation*}
\operatorname{div}(\sigma \nabla u)=0, \quad \text { in } \Omega, \tag{0.4}
\end{equation*}
$$

when $\sigma \in\left\{\sigma_{1}, \sigma_{2}\right\}$ for $\sigma_{1}, \sigma_{2} \in \mathbb{M}^{2 \times 2}$ elliptic.

- Optimal exponents $q_{\sigma_{1}, \sigma_{2}}$ and $p_{\sigma_{1}, \sigma_{2}}$ were already characterised and the upper exponent $p_{\sigma_{1}, \sigma_{2}}$ was proved to be optimal.
Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).
- We proved the optimality of the lower critical exponent $q_{\sigma_{1}, \sigma_{2}}$.

Perspectives:

- Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (0.4) and s.t. $\nabla u \in L_{\text {weak }}^{\frac{2 k}{K+1}}\left(\Omega ; \mathbb{R}^{2}\right)$ but $\nabla u \notin L^{\frac{2 k}{K+1}}\left(B ; \mathbb{R}^{2}\right), \forall$ ball $B \subset \Omega$. Modifying staircase laminate?
- Extend these results to three-phase conductivities $\sigma \in\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$.
- Dimension $d \geq 3$? Even only in the isotropic case $\sigma \in\left\{K I, K^{-1} /\right\}$ for $K>1$. Main difficulty: Astala's Theorem is missing in higher dimensions.

Thank You!

[^0]: F., Palombaro. Calculus of Variations and Partial Differential Equations (2017)

