Optimal lower exponent of solutions to two-phase elliptic equations in two dimensions

Silvio Fanzon

(joint work with Mariapia Palombaro)

Karl-Franzens University, Graz Department of Mathematics

Problem

$\Omega \subset \mathbb{R}^2$ bounded open domain. A map $\sigma \in L^{\infty}(\Omega; \mathbb{M}^{2 \times 2})$ is uniformly elliptic if $\sigma \xi \cdot \xi \geq \lambda |\xi|^2$, $\sigma^{-1}\xi \cdot \xi \geq \lambda |\xi|^2$ $\forall \xi \in \mathbb{R}^2, x \in \Omega$.

Problem

Study the gradient integrability of distributional solutions $u \in W^{1,1}(\Omega)$ to

 $\operatorname{div}(\sigma\nabla u)=0\,,$

when

 $\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} \,,$

with $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ constant elliptic matrices, $\{E_1, E_2\}$ measurable partition of Ω .

Application to composites:

- Ω is a section of a composite conductor obtained by mixing two materials with conductivities σ₁ and σ₂
- the electric field ∇u solves (0.1)
- How much can ∇u concentrate, given the geometry $\{E_1, E_2\}$?

Silvio Fanzon

Higher Gradient Integrability

(0.1)

1/17

Astala's Theorem

Question

Are the exponents q and p optimal among two-phase elliptic conductivities

$$\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} ?$$

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)

Silvio Fanzon	Higher Gradient Integrability

Astala's exponents for two-phase conductivities

For two-phase conductivities Astala's exponents $q = q_{\sigma_1,\sigma_2}$ and $p = p_{\sigma_1,\sigma_2}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$\sigma_1 = \begin{pmatrix} 1/K & 0 \\ 0 & 1/S_1 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} K & 0 \\ 0 & S_2 \end{pmatrix},$$

where

$$\mathcal{K} > 1$$
 and $\frac{1}{\mathcal{K}} \leq S_j \leq \mathcal{K}, \quad j = 1, 2.$

The corresponding critical exponents for Astala's theorem are

$$q_{\sigma_1,\sigma_2} = \frac{2K}{K+1}, \quad p_{\sigma_1,\sigma_2} = \frac{2K}{K-1}$$

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

Silvio Fanzon

Higher Gradient Integrability

Upper exponent optimality

Theorem (Nesi, Palombaro, Ponsiglione '14)

Let $\sigma_1 = \text{diag}(1/K, 1/S_1), \sigma_2 = \text{diag}(K, S_2)$ with K > 1 and $S_1, S_2 \in [1/K, K]$. (i) If $\sigma \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and $u \in W^{1, \frac{2K}{K+1}}(\Omega)$ solves

$$\operatorname{div}(\sigma \nabla u) = 0 \tag{0.2}$$

then $\nabla u \in L^{\frac{2K}{K-1}}_{\text{weak}}(\Omega; \mathbb{R}^2).$

(b) There exists $\bar{\sigma} \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and a weak solution $\bar{u} \in W^{1,2}(\Omega)$ to (0.2) with $\sigma = \bar{\sigma}$, satisfying affine boundary conditions and such that $\nabla \bar{u} \notin L^{\frac{2K}{K-1}}(\Omega; \mathbb{R}^2)$.

Question we address

Is the lower exponent $\frac{2K}{K+1}$ optimal?

Lower exponent optimality

$$1 \qquad p_n \longrightarrow \frac{2K}{K+1} \qquad 2 \qquad \frac{2K}{K-1}$$

Theorem (F., Palombaro '17)

Let $\sigma_1 = \text{diag}(1/K, 1/S_1), \sigma_2 = \text{diag}(K, S_2)$ with K > 1 and $S_1, S_2 \in [1/K, K]$. There exist

• coefficients
$$\sigma_n \in L^{\infty}(\Omega; \{\sigma_1; \sigma_2\})$$
,

• exponents
$$p_n \in \left[1, \frac{2K}{K+1}\right]$$
,

• functions $u_n \in W^{1,1}(\Omega)$ such that $u_n(x) = x_1$ on $\partial \Omega$,

such that

$$\begin{aligned} \mathsf{div}(\sigma_n \nabla u_n) &= 0\,,\\ \nabla u_n \in L^{p_n}_{\mathrm{weak}}(\Omega; \mathbb{R}^2), \quad p_n \to \frac{2K}{K+1}, \quad \nabla u_n \notin L^{\frac{2K}{K+1}}(\Omega; \mathbb{R}^2) \end{aligned}$$

F., Palombaro. Calculus of Variations and Partial Differential Equations (2017)

Sil	vio	Fanzon

Solving differential inclusions

Theorem (Approximate solutions for two phases)

Let $A, B \in \mathbb{M}^{2 \times 2}$, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that

 $B - A = a \otimes n$ for some $a \in \mathbb{R}^2, n \in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial \Omega$ and

dist $(\nabla f, \{A, B\}) < \delta$ a.e. in Ω .

Solutions: built through simple laminates

- rank-one connection allows to laminate in direction n.
- \triangleright ∇f oscillates in δ -neighbourhoods of A and B.
- \blacktriangleright λ proportion for A, 1λ proportion for B,
- this allows to recover boundary data C.

Müller. Variational models for microstructure and phase transitions.

Laminates of first order

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \rightsquigarrow \mathcal{L}^2_\Omega(B) := |B \cap \Omega| / |\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The gradient distribution of f is the Radon measure $\nabla f_{\#}(\mathcal{L}^2_{\Omega})$ on $\mathbb{M}^{2 \times 2}$ defined by

$$abla f_{\#}(\mathcal{L}^2_\Omega)(V) := \mathcal{L}^2_\Omega((
abla f)^{-1}(V))\,, \quad orall \,\, ext{Borel set} \,\, V \subset \mathbb{M}^{2 imes 2}$$

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \rightarrow 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}^{2}_{\Omega}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda) \delta_{\mathcal{B}} \quad \text{ in } \quad \mathcal{M}(\mathbb{M}^{2 \times 2}) \,.$$

The measure ν is called a **laminate of first order**, and it encodes:

- Oscillations of ∇f_{δ} about $\{A, B\}$ and their proportions.
- Boundary condition since the barycentre of ν is $\overline{\nu} := \int_{\mathbb{M}^{2\times 2}} M \, d\nu(M) = C$.
- ▶ Integrability since for *p* > 1 we have

$$\frac{1}{|\Omega|}\int_{\Omega}|\nabla f_{\delta}|^{p}\,dx=\int_{\mathbb{M}^{2\times 2}}|M|^{p}\,d\nu_{\delta}(M)\,.$$

Iterating the Proposition

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and rank(B - A) = 1. Let $f : \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

 $dist(\nabla f, \{A, B\}) < \delta$ a.e. in Ω .

Further splitting: $B = \mu B_1 + (1 - \mu)B_2$ with $\mu \in [0, 1]$, rank $(B_2 - B_1) = 1$.

New gradient: apply previous Proposition to the set $\{x \in \Omega : \nabla f \sim B\}$ to obtain $\tilde{f}: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial \Omega$,

 $\operatorname{dist}(\nabla \tilde{f}, \{A, B_1, B_2\}) < \delta$ a.e. in Ω .

The gradient distribution of \tilde{f} is given by

$$\nu = \lambda \, \delta_A + (1 - \lambda) \mu \, \delta_{B_1} + (1 - \lambda) (1 - \mu) \, \delta_{B_2} \, .$$

Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let
$$\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$$
 be a laminate of finite order, s.t
 $\overline{\nu} = A$,
 $A = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ with $\sum_{i=1}^{N} \lambda_i = 1$

•
$$A = \sum_{i=1}^{N} \lambda_i A_i$$
 with $\sum_{i=1}^{N} \lambda_i = 1$.

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

- dist $(\nabla f, \operatorname{supp} \nu) < \delta$ a.e. in Ω ,
- f(x) = Ax on $\partial \Omega$,
- $\blacktriangleright |\{x \in \Omega : |\nabla f(x) A_i| < \delta\}| = \lambda_i |\Omega|.$

Strategy of the Proof

Strategy: explicit construction of *u_n* by **convex integration methods**.

1 Rewrite the equation $div(\sigma \nabla u) = 0$ as a differential inclusion

$$abla f(x) \in T$$
, for a.e. $x \in \Omega$ (0.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$. Note: *u* and *f* have the same integrability.

- **2** Construct a laminate ν with supp $\nu \subset T$ and the right integrability.
- **3** Convex integration Proposition \implies construct $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$. In this way f solves (0.3) and

$$abla f \in L^q_{ ext{weak}}(\Omega;\mathbb{R}^2)\,, \ \ q \in \left(rac{2K}{K+1}-oldsymbol{\delta},rac{2K}{K+1}
ight]\,, \qquad
abla f
otin L^rac{2K}{K+1}(\Omega;\mathbb{R}^2)\,.$$

These methods were developed for isotropic conductivities $\sigma \in L^{\infty}(\Omega; \{KI, \frac{1}{K}I\})$. The adaptation to our case is non-trivial because of the lack of symmetry of the target set T, due to the anisotropy of σ_1 and σ_2 .

Astala, Faraco, Székelyhidi. Convex integration and the L^p theory of elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2008)

Silvio Fanzon

Higher Gradient Integrability

Rewriting the PDE as a differential inclusion

Let K>1, $S_1,S_2\in [1/K,K]$ and define

$$\begin{split} \sigma_1 &:= \mathsf{diag}(1/\mathcal{K}, 1/S_1), \quad \sigma_2 := \mathsf{diag}(\mathcal{K}, S_2), \qquad \sigma := \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2}, \\ T_1 &:= \left\{ \begin{pmatrix} x & -y \\ S_1^{-1} y & \mathcal{K}^{-1} x \end{pmatrix} : \, x, y \in \mathbb{R} \right\}, \quad T_2 := \left\{ \begin{pmatrix} x & -y \\ S_2 y & \mathcal{K} x \end{pmatrix} : \, x, y \in \mathbb{R} \right\}. \end{split}$$

Lemma (F., Palombaro '17)

A function $u \in W^{1,1}(\Omega)$ is solution to

 $\operatorname{div}(\sigma\nabla u)=0$

iff there exists $v \in W^{1,1}(\Omega)$ such that $f = (u, v) \colon \Omega \to \mathbb{R}^2$ satisfies

 $\nabla f(x) \in T_1 \cup T_2$ in Ω .

Moreover $E_1 = \{x \in \Omega \colon \nabla f(x) \in T_1\}$ and $E_2 = \{x \in \Omega \colon \nabla f(x) \in T_2\}.$

Key Remark: *u* and *f* enjoy the same integrability properties.

Silvio Fanzon

Higher Gradient Integrability

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2 \times 2}$. Then $A = (a_+, a_-)$ for $a_+, a_- \in \mathbb{C}$, defined by

$$Aw = a_+w + a_- \overline{w}, \quad \forall w \in \mathbb{C}.$$

The sets of conformal linear maps and anti-conformal linear maps are

$$\begin{split} E_0 &:= \{(z,0): \ z \in \mathbb{C}\} & (\text{Conformal maps}) \\ E_\infty &:= \{(0,z): \ z \in \mathbb{C}\} & (\text{Anti-conformal maps}) \end{split}$$

Target sets in conformal coordinates are

 $T_1 = \{(a, d_1(\overline{a})) : a \in \mathbb{C}\}, \qquad T_2 = \{(a, -d_2(\overline{a})) : a \in \mathbb{C}\},$

where the operators $d_j \colon \mathbb{C} \to \mathbb{C}$ are defined as

$$d_j(a):=k\,\operatorname{Re} a+i\,s_j\,\operatorname{Im} a\,,\quad ext{with}\quad k:=rac{K-1}{K+1}\quad ext{and}\quad s_j:=rac{S_j-1}{S_j+1}$$

Let $heta \in [0, 2\pi]$, $JR_ heta = (0, e^{i heta})$. $JR_ heta = \lambda_1 A_1 + (1 - \lambda_1) P_1$

 T_1

 E_0

 T_2

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.
 $JR_{\theta} = \lambda_1 A_1 + (1 - \lambda_1)P_1$
 $= \lambda_1 A_1 + (1 - \lambda_1)(\mu_1 B_1 + (1 - \mu_1) 2JR_{\theta})$
 $\sim \nu_1$
 $2JR_{\theta} = \lambda_2 A_2 + (1 - \lambda_2)P_2$

 $\frac{2K}{K+1}$

 T_1

En

 T_2

 A_2

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.
Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
Step B. Laminate ν_1 from J to 2J \sim growth p_1
Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$
and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$ grows like p_1

This determines the exponent range I_{δ}

$$\begin{array}{ll} \operatorname{Recall} \ I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]. \\ \begin{array}{ll} \operatorname{Step} \ A. \ \operatorname{Define} \ f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1} \\ \begin{array}{ll} \operatorname{Step} \ B. \ \operatorname{Laminate} \ \nu_1 \ \operatorname{from} \ J \ \operatorname{to} \ 2J \rightsquigarrow \ \operatorname{growth} \ p_1 \\ \end{array} \\ \begin{array}{ll} \operatorname{Step} \ C. \ \operatorname{Proposition} \implies \exists \ \operatorname{map} \ f_2 \ \operatorname{st.} \ f_2 = Jx \ \operatorname{on} \ \partial\Omega \\ & \operatorname{and} \ \nabla f_2 \sim \operatorname{supp} \nu_1 \implies \nabla f_2 \ \operatorname{grows} \ \operatorname{like} \ p_1 \end{array}$$

This determines the exponent range I_{δ}

This determines the exponent range I_{δ}

Step 1. One step of the staircase

► Split W_1 . Since $W_1 \sim 2J \implies$ point $(2 + \rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.
Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
Step B. Laminate ν_1 from J to 2J \rightarrow growth p_1
Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$
and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$ grows like p_1

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies$ point $(2 + \rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.
Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
Step B. Laminate ν_1 from J to 2J \rightarrow growth p_1
Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$
and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$ grows like p_1

This determines the exponent range I_{δ}

- Step 1. One step of the staircase
 - Split W_1 . Since $W_1 \sim 2J \implies$ point $(2 + \rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
 - Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$

▶ \sim Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth p_2

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies$ point $(2 + \rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ▶ \sim Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth p_2

Step 2. Define map f_3 by modifying f_2

► Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } p_2$

Conclusions and Perspectives

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{0.4}$$

when $\sigma \in {\sigma_1, \sigma_2}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

• Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Perspectives:

- Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (0.4) and s.t. $\nabla u \in L^{\frac{2K}{K+1}}_{weak}(\Omega; \mathbb{R}^2)$ but $\nabla u \notin L^{\frac{2K}{K+1}}(B; \mathbb{R}^2)$, \forall ball $B \subset \Omega$. Modifying staircase laminate?
- Extend these results to three-phase conductivities $\sigma \in \{\sigma_1, \sigma_2, \sigma_3\}$.
- Dimension d ≥ 3? Even only in the isotropic case σ ∈ {KI, K⁻¹I} for K > 1. Main difficulty: Astala's Theorem is missing in higher dimensions.

Thank You!