Geometric Patterns and Microstructures in the study of Material Defects and Composites

Silvio Fanzon

supervised by
Mariapia Palombaro

University of Sussex
Department of Mathematics
US
UNIVERSITY

Presentation Plan

(1) Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces (Chapter 3)
F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces. Journal of Nonlinear Science (2017)
- Linearised polycrystals (Chapter 4)
F., Palombaro, Ponsiglione. Linearized Polycrystals from a 2D System of Edge Dislocations.

Preprint (2017)
(2) Microstructures in Composites

- Critical lower integrability (Chapter 5)
F., Palombaro. Optimal lower exponent for the higher gradient integrability of solutions to two-phase elliptic equations in two dimensions.
Calculus of Variations and Partial Differential Equations (2017)
- Convex integration
- Proof of the main theorem

Presentation Plan

(1) Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals
(2) Microgeometries in Composites
- Critical lower integrability
- Convex integration
- Proof of our main result

Edge dislocations

Dislocations: topological defects in the otherwise periodic structure of a crystal. Edge dislocation: pair (γ, ξ) of dislocation line and Burgers vector, with $\xi \perp \gamma$.

Screw dislocations

Screw dislocation: pair (γ, ξ) of dislocation line and Burgers vector, with $\xi / / \gamma$.

Mixed type dislocations

Mixed dislocations: Burgers vector ξ is constant and γ is curved.
Dislocation type: given by the angle between ξ and $\dot{\gamma}$.

Nonlinear Elasticity

Reference configuration: $\Omega \subset \mathbb{R}^{3}$ open bounded
Deformations: regular maps $v: \Omega \rightarrow \mathbb{R}^{3}$
Deformation strain: $\beta:=\nabla v: \Omega \rightarrow \mathbb{M}^{3 \times 3}$
Energy: associated to a deformation strain β

$$
E(\beta):=\int_{\Omega} W(\beta) d x
$$

Energy Density: $W: \mathbb{M}^{3 \times 3} \rightarrow[0, \infty)$ s.t.

- W is continuous
- $W(F)=W(R F), \forall R \in S O(3), F \in \mathbb{M}^{3 \times 3}$ (frame indifferent),

- $W(F) \sim \operatorname{dist}(F, S O(3))^{2} \Longrightarrow W(I)=0$.

Semi-discrete model for dislocations

Dislocation lines: Lipschitz curves $\gamma \subset \Omega$ such that $\Omega \backslash \gamma$ is not simply connected

Burgers vector: $\xi \in \mathcal{S}$ set of slip directions
Strain generating $(\gamma, \xi): \operatorname{map} \beta: \Omega \rightarrow \mathbb{M}^{3 \times 3}$ s.t.

$$
\text { Curl } \beta=-\xi \otimes \dot{\gamma} \mathcal{H}^{1}\left\llcorner\gamma \Longleftrightarrow \int_{C} \beta \cdot t d \mathcal{H}^{1}=\xi .\right.
$$

Geometric interpretation: if D encloses γ, there exists a deformation $v \in \operatorname{SBV}\left(\Omega ; \mathbb{R}^{3}\right)$ s.t.

$$
D v=\nabla v d x+\xi \otimes n \mathcal{H}^{2}\llcorner D, \quad \beta=\nabla v
$$

v has constant jump ξ across the slip region D.

Strains are not L^{2}

Let β generate (γ, ξ). Consider $\varepsilon>0$ and

$$
I_{\varepsilon}(\gamma):=\left\{x \in \mathbb{R}^{3}: \operatorname{dist}(x, \gamma)<\varepsilon\right\} .
$$

Then we have

$$
|\beta(x)| \sim \frac{1}{\operatorname{dist}(x, \gamma)} \text { in } I_{\varepsilon}(\gamma) \Longrightarrow \beta \notin L^{2}\left(I_{\varepsilon}(\gamma)\right)
$$

Proof: let $\sigma>\varepsilon$ and $L:=\operatorname{length}(\gamma)$

$$
\begin{aligned}
\int_{I_{\sigma} \backslash I_{\varepsilon}}|\beta|^{2} & =L \int_{\varepsilon}^{\sigma} \int_{\partial B_{\rho}(\gamma(s))}|\beta|^{2} d \mathcal{H}^{1} d \rho \\
(\text { Jensen }) & \geq L \int_{\varepsilon}^{\sigma} \frac{1}{2 \pi \rho}\left|\int_{\partial B_{\rho}(\gamma(s))} \beta \cdot t d \mathcal{H}^{1}\right|^{2} d \rho \\
& =L \frac{|\xi|^{2}}{2 \pi} \log \frac{\sigma}{\varepsilon} \rightarrow \infty \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

Regularise the problem

Energy Truncation. Fix $p \in(1,2)$ and assume

$$
W(F) \sim \operatorname{dist}(F, S O(3))^{2} \wedge\left(|F|^{p}+1\right) .
$$

Strains are maps $\beta \in L^{2}\left(\Omega ; \mathbb{M}^{3 \times 3}\right)$ such that

$$
\text { Curl } \beta=-\xi \otimes \dot{\gamma} \mathcal{H}^{1}\llcorner\gamma .
$$

Core Radius Approach. Assume

$$
W(F) \sim \operatorname{dist}(F, S O(3))^{2} .
$$

Let $\varepsilon>0$ (\propto atomic distance) and consider

$$
\Omega_{\varepsilon}(\gamma):=\Omega \backslash I_{\varepsilon}(\gamma) .
$$

Strains are maps $\beta \in L^{2}\left(\Omega_{\varepsilon}(\gamma) ; \mathbb{M}^{3 \times 3}\right)$ such that

$$
\operatorname{Curl} \beta\left\llcorner\Omega_{\varepsilon}(\gamma)=0, \quad \int_{C} \beta \cdot t d \mathcal{H}^{1}=\xi .\right.
$$

Presentation Plan

(1) Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals
(2) Microgeometries in Composites
- Critical lower integrability
- Convex integration
- Proof of our main result

Semi-coherent interfaces

Two different crystalline materials joined at a flat interface:

- Underlayer: cubic lattice Λ^{-}, spacing $b>0$ (equilibrium I),
- Overlayer: lattice $\Lambda^{+}=\alpha \Lambda^{-}$, with $\alpha>1$ (not in equilibrium).

Semi-coherent interface: small dilation $\alpha \approx 1$.
Equilibrium: Λ^{+}has lower density than $\Lambda^{-} \Longrightarrow$ edge dislocations at interface.

Network of dislocations

Experimentally observed phenomena:

Network of dislocations

Experimentally observed phenomena:

- two non-parallel sets of edge dislocations with spacing $\delta=\frac{b}{\alpha-1}$,
- far field stress is completely relieved.

D.A. Porter, K.E. Easterling. Phase transformations in metals and alloys. CRC Press (2009) G. Gottstein. Physical foundations of materials science. Springer (2013)

Goal of the Paper

R is the size of the interface.

Goal: define a continuum model such that

- \exists critical size R^{*} such that nucleation of dislocations is energetically more favorable for $R>R^{*}$,
- as $R \rightarrow \infty$ the far field stress is relieved,
- the dislocation spacing tends to $\delta=\frac{\boldsymbol{b}}{\alpha-1}$.

Plan:

- analysis of a semi-discrete model where dislocations are line defects,
- derive the simplified (dislocation density) continuum model.

F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces. Journal of Nonlinear Science (2017)

Semi-discrete line defect model

Reference configuration: $\Omega_{r}:=\Omega_{r}^{-} \cup S_{r} \cup \Omega_{r}^{+}, r>0$,

- Ω_{r}^{+}overlayer (equilibrium αl),
- Ω_{r}^{-}underlayer (in equilibrium and rigid).

Energy density: $W: \mathbb{M}^{3 \times 3} \rightarrow[0, \infty)$ continuous, s.t.

- $W(F)=W(R F), \forall R \in S O$ (3) (frame indifference),
- $W(F) \sim \operatorname{dist}(F, \alpha S O(3))^{2} \wedge\left(|F|^{p}+1\right)$ for $1<p<2$.

Admissible dislocations: compatible with cubic lattice. $(\Gamma, B) \in \mathcal{A D}$ if $\Gamma=\left\{\gamma_{i}\right\}, B=\left\{\xi_{i}\right\}$ with

- dislocation line $\gamma_{i} \subset \mathcal{G}$ relatively closed,
- Burgers vector $\xi_{i} \in b(\mathbb{Z} \oplus \mathbb{Z})$.

Admissible strains: for a dislocation (Γ, B) are the maps
 $\beta \in A S(\Gamma, B)$, such that $\beta \in L^{p}\left(\Omega_{r} ; \mathbb{M}^{3 \times 3}\right)$ and

$$
\beta=I \text { in } \Omega_{r}^{-}, \quad \text { Curl } \beta=-\xi \otimes \dot{\gamma} \mathcal{H}^{1}\llcorner\ulcorner.
$$

Scaling properties of the energy

Energies: induced by the misfit

$$
\begin{aligned}
& E_{\alpha, r}(\emptyset):=\inf \left\{\int_{\Omega_{r}^{+}} W(\beta) d x: \operatorname{Curl} \beta=0\right\} \quad \text { (Elastic energy) } \\
& E_{\alpha, r}:=\min _{(\Gamma, B) \in \mathcal{A D}} \inf \left\{\int_{\Omega_{r}^{+}} W(\beta) d x: \beta \in \mathcal{A S}(\Gamma, B)\right\} \quad \text { (Plastic energy) }
\end{aligned}
$$

Theorem (F., Palombaro, Ponsiglione '15)

The dislocation-free elastic energy scales like r^{3} : we have $E_{\alpha, 1}(\emptyset)>0$ and

$$
E_{\alpha, r}(\emptyset)=r^{3} E_{\alpha, 1}(\emptyset)
$$

The plastic energy scales like r^{2} : there exists $0<E_{\alpha}<+\infty$ such that

$$
E_{\alpha, r}=r^{2} E_{\alpha}+o\left(r^{2}\right)
$$

Large $r \Longrightarrow$ dislocations are energetically favourable.

Upper bound construction

Goal: define a square array of edge dislocations with spacing $\delta:=\frac{b}{\alpha-1}$.

- Divide S_{r} into $(r / \delta)^{2}$ squares of side δ.
- Above each Q_{i} define pyramids C_{i}^{1} (height $\delta / 2$) and C_{i}^{2} (height δ).
- Define deformation $v \in \operatorname{SBV}\left(\Omega_{r} ; \mathbb{R}^{3}\right)$, and strain $\beta:=\nabla v$ (a.c. part of $\left.D v\right)$. Induced dislocations: $\operatorname{Curl} \beta=-\sum_{i, j} \xi_{i j} \otimes \dot{\gamma}_{i j} d \mathcal{H}^{1}\left\llcorner\gamma_{i j}\right.$ with
- $\gamma_{i j}:=Q_{i} \cap Q_{j}$ admissible dislocation curve ($\alpha=1+1 / n \Longrightarrow \delta=n b$)
- $\xi_{i j}:=(\alpha-1)\left(x_{j}-x_{i}\right) \in \pm b\left\{e_{1}, e_{2}\right\}$ Burgers vector

Energy: in each pyramid is $c=c(\alpha, b, p) \Longrightarrow E_{\alpha, r} \leq c \frac{r^{2}}{\delta^{2}}($ as $W(\alpha I)=0)$.

Remarks on the semi-discrete model

Deformed configuration: $v\left(S_{R}\right)$ with v from the upper bound construction

Remarks on the semi-discrete model

Deformed configuration: $v\left(S_{R}\right)$ with v from the upper bound construction

Remarks on the semi-discrete model

Deformed configuration: $v\left(S_{R}\right)$ with v from the upper bound construction

Remarks on the semi-discrete model

Deformed configuration: $v\left(S_{R}\right)$ with v from the upper bound construction

Limitations of the considered model:

- $v\left(S_{r}\right)$ does not match $S_{r} \Longrightarrow$ not appropriate for semi-coherent interfaces,
- expected dislocation geometry with spacing $\frac{b}{\alpha-1}$ is only optimal in scaling.

What we do now:

- take a smaller overlayer and enforce match at the interface,
- introduce a simplified continuum (dislocation density) model to better describe true minimisers.

Heuristic for the continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \theta \in\left[\alpha^{-1}, 1\right]$

Heuristic for the continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \theta \in\left[\alpha^{-1}, 1\right]$ Upper bound construction: with $\theta=\alpha^{-1}$ and $\delta=\frac{b}{\theta^{-1}-1}$

Heuristic for the continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \theta \in\left[\alpha^{-1}, 1\right]$ Upper bound construction: with $\theta=\alpha^{-1}$ and $\delta=\frac{b}{\theta^{-1}-1} \Longrightarrow$ perfect match

Heuristic for the continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \theta \in\left[\alpha^{-1}, 1\right]$ Upper bound construction: with $\theta=\alpha^{-1}$ and $\delta=\frac{b}{\theta^{-1}-1} \Longrightarrow$ perfect match

$$
L=2 R \frac{r}{\delta}=\frac{2 r^{2}}{b}\left(\theta^{-2}-\theta^{-1}\right) \stackrel{\left(\theta^{-1} \approx 1\right)}{\approx} \frac{r^{2}}{b}\left(\theta^{-2}-1\right)=\frac{1}{b}\left(R^{2}-r^{2}\right)=\frac{1}{b} \text { Area Gap }
$$

Heuristic for the continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \theta \in\left[\alpha^{-1}, 1\right]$ Upper bound construction: with $\theta=\alpha^{-1}$ and $\delta=\frac{b}{\theta^{-1}-1} \Longrightarrow$ perfect match

$$
\text { Dislocation Length } \approx \frac{1}{b} \text { Area Gap }
$$

Heuristic for the continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \theta \in\left[\alpha^{-1}, 1\right]$ Upper bound construction: with $\theta=\alpha^{-1}$ and $\delta=\frac{b}{\theta^{-1}-1} \Longrightarrow$ perfect match

$$
\begin{aligned}
& \text { Dislocation Length } \approx \frac{1}{b} \text { Area Gap } \\
& E_{\alpha, r} \approx r^{2} E_{\alpha}
\end{aligned}
$$

Heuristic for the continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \theta \in\left[\alpha^{-1}, 1\right]$ Upper bound construction: with $\theta=\alpha^{-1}$ and $\delta=\frac{b}{\theta^{-1}-1} \Longrightarrow$ perfect match

$$
\begin{gathered}
\text { Dislocation Length } \approx \frac{1}{b} \text { Area Gap } \\
E_{\alpha, r} \approx r^{2} E_{\alpha}=\sigma \text { Area Gap with } \sigma:=\frac{E_{\alpha}}{\theta^{-2}-1}
\end{gathered}
$$

Heuristic for the continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \theta \in\left[\alpha^{-1}, 1\right]$ Upper bound construction: with $\theta=\alpha^{-1}$ and $\delta=\frac{b}{\theta^{-1}-1} \Longrightarrow$ perfect match

$$
\begin{gathered}
\text { Dislocation Length } \approx \frac{1}{b} \text { Area Gap } \\
E_{\alpha, r} \approx r^{2} E_{\alpha}=\sigma \text { Area Gap with } \sigma:=\frac{E_{\alpha}}{\theta^{-2}-1}
\end{gathered}
$$

Hypothesis: Dislocation Energy \propto Dislocation Length. Then optimise over θ.

Continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \quad \theta \in\left[\alpha^{-1}, 1\right]$
Deformations: $v \in W^{1,2}\left(\Omega_{r}^{+} ; \mathbb{R}^{3}\right)$ such that $v=\frac{x}{\theta}$ on S_{r} $\Longrightarrow v\left(S_{r}\right)=S_{R}$ (interface match)

Energy density: $W(F) \sim \operatorname{dist}(F, \alpha S O(3))^{2}$
Elastic: $E_{\alpha, R}^{e l}(\theta):=\inf \left\{\int_{\Omega_{r}^{+}} W(\nabla v) d x: v=x / \theta\right.$ on $\left.S_{r}\right\}$

Continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \quad \theta \in\left[\alpha^{-1}, 1\right]$
Deformations: $v \in W^{1,2}\left(\Omega_{r}^{+} ; \mathbb{R}^{3}\right)$ such that $v=\frac{x}{\theta}$ on S_{r} $\Longrightarrow v\left(S_{r}\right)=S_{R}$ (interface match)

Energy density: $W(F) \sim \operatorname{dist}(F, \alpha S O(3))^{2}$
Elastic: $E_{\alpha, R}^{e l}(\theta):=\inf \left\{\int_{\Omega_{r}^{+}} W(\nabla v) d x: v=x / \theta\right.$ on $\left.S_{r}\right\}$
Plastic: $E_{R}^{p l}(\theta):=\sigma$ Area Gap $=\sigma R^{2}\left(1-\theta^{2}\right), \sigma>0$

Continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \quad \theta \in\left[\alpha^{-1}, 1\right]$
Deformations: $v \in W^{1,2}\left(\Omega_{r}^{+} ; \mathbb{R}^{3}\right)$ such that $v=\frac{x}{\theta}$ on S_{r} $\Longrightarrow v\left(S_{r}\right)=S_{R}$ (interface match)

Energy density: $W(F) \sim \operatorname{dist}(F, \alpha S O(3))^{2}$
Elastic: $E_{\alpha, R}^{e l}(\theta):=\inf \left\{\int_{\Omega_{r}^{+}} W(\nabla v) d x: v=x / \theta\right.$ on $\left.S_{r}\right\}$
Plastic: $E_{R}^{p l}(\theta):=\sigma$ Area Gap $=\sigma R^{2}\left(1-\theta^{2}\right), \sigma>0$

Total Energy: $E_{\alpha, R}^{\text {tot }}(\theta):=\min _{\theta}\left(E_{\alpha, R}^{e l}(\theta)+E_{R}^{p l}(\theta)\right)$

Continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \quad \theta \in\left[\alpha^{-1}, 1\right]$
Deformations: $v \in W^{1,2}\left(\Omega_{r}^{+} ; \mathbb{R}^{3}\right)$ such that $v=\frac{x}{\theta}$ on S_{r} $\Longrightarrow v\left(S_{r}\right)=S_{R}$ (interface match)

Energy density: $W(F) \sim \operatorname{dist}(F, \alpha S O(3))^{2}$
Elastic: $E_{\alpha, R}^{e l}(\theta):=\inf \left\{\int_{\Omega_{r}^{+}} W(\nabla v) d x: v=x / \theta\right.$ on $\left.S_{r}\right\}$
Plastic: $E_{R}^{p l}(\theta):=\sigma$ Area Gap $=\sigma R^{2}\left(1-\theta^{2}\right), \sigma>0$

Total Energy: $E_{\alpha, R}^{\text {tot }}(\theta):=\min _{\theta}\left(E_{\alpha, R}^{e l}(\theta)+E_{R}^{p \prime}(\theta)\right)$
Question: behaviour of $E_{\alpha, R}^{\text {tot }}(\theta)$ as $R \rightarrow \infty$?

Continuum model

Reference configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$, with $r:=\theta R, \quad \theta \in\left[\alpha^{-1}, 1\right]$
Deformations: $v \in W^{1,2}\left(\Omega_{r}^{+} ; \mathbb{R}^{3}\right)$ such that $v=\frac{x}{\theta}$ on S_{r}
$\Longrightarrow v\left(S_{r}\right)=S_{R}$ (interface match)
Energy density: $W(F) \sim \operatorname{dist}(F, \alpha S O(3))^{2}$
Elastic: $E_{\alpha, R}^{e l}(\theta):=\inf \left\{\int_{\Omega_{r}^{+}} W(\nabla v) d x: v=x / \theta\right.$ on $\left.S_{r}\right\}$
Plastic: $E_{R}^{p l}(\theta):=\sigma$ Area Gap $=\sigma R^{2}\left(1-\theta^{2}\right), \sigma>0$

Total Energy: $E_{\alpha, R}^{\text {tot }}(\theta):=\min _{\theta}\left(E_{\alpha, R}^{e l}(\theta)+E_{R}^{p l}(\theta)\right)$
Question: behaviour of $E_{\alpha, R}^{\text {tot }}(\theta)$ as $R \rightarrow \infty$?

Energy competition:

- $\theta=1 \Longrightarrow$ no dislocation energy
- $\theta=\alpha^{-1} \Longrightarrow$ no elastic energy
- $\theta \in\left(\alpha^{-1}, 1\right) \Longrightarrow$ both present

Asymptotic for $E_{\alpha, R}^{\text {tot }}$

Let $\theta_{R} \in\left[\alpha^{-1}, 1\right]$ be a minimiser for $E_{\alpha, R}^{\text {tot }}$ and define

$$
\mathcal{E}^{e l}(R):=\frac{\sigma^{2}}{\alpha^{3} C^{e l}} R, \quad \mathcal{E}^{p l}(R):=\sigma R^{2}\left(1-\frac{1}{\alpha^{2}}\right)-2 \frac{\sigma^{2}}{\alpha^{3} C^{e l}} R .
$$

Theorem (F., Palombaro, Ponsiglione '15)

As $R \rightarrow+\infty$ we have

$$
E_{\alpha, R}^{e l}\left(\theta_{R}\right)=\mathcal{E}^{e l}(R)+O(R), \quad E_{R}^{p l}\left(\theta_{R}\right)=\mathcal{E}^{p l}(R)+O(R),
$$

and therefore

$$
E_{\alpha, R}^{\text {tot }}=\mathcal{E}^{e l}(R)+\mathcal{E}^{p^{\prime}}(R)+o(R) .
$$

In particular, for large R :

- dislocations are energetically more favourable,
- dislocation spacing (density) tends to $\delta=\frac{b}{\alpha-1}$,
- far field stress is relieved.

Idea of the Proof

Step 1. Rescale the elastic energy

$$
E_{\alpha, R}^{e l}(\theta)=R^{3} \theta^{3} E_{\alpha, 1}^{e l}(\theta)
$$

Step 2. Let $\theta_{R} \in\left[\alpha^{-1}, 1\right]$ be a minimiser of $E_{\alpha, R}^{\text {tot }}$. Then, as $R \rightarrow \infty$

$$
E_{\alpha, 1}^{e l}\left(\theta_{R}\right) \rightarrow 0, \quad \theta_{R} \rightarrow \alpha^{-1} \Longrightarrow \text { Linearisation (about } \alpha I \text {) }
$$

Step 3. There exists $C^{e l}>0$ such that, as $R \rightarrow \infty$,

$$
\frac{1}{\left(\theta_{R}^{-1}-\alpha\right)^{2}} E_{\alpha, 1}^{e l}\left(\theta_{R}\right) \rightarrow C^{e l}
$$

Step 4. Write the elastic energy as a polynomial

$$
E_{\alpha, R}^{e l}\left(\theta_{R}\right)=R^{3} \theta_{R}^{3}\left(\theta_{R}^{-1}-\alpha\right)^{2} \frac{1}{\left(\theta_{R}^{-1}-\alpha\right)^{2}} E_{\alpha, 1}^{e l}\left(\theta_{R}\right)=k_{R}^{e l} R^{3} \theta_{R}^{3}\left(\theta_{R}^{-1}-\alpha\right)^{2}
$$

where $k_{R}^{e l}:=C^{e l}+\varepsilon_{R}>0$ and $k_{R}^{e l} \rightarrow C^{e l}$.
Dal Maso, Negri, Percivale. Set-Valued Analysis (2002).

Idea of the Proof

Step 5. The total energy computed along θ_{R} is equal to

$$
\begin{equation*}
E_{\alpha, R}^{\text {tot }}\left(\theta_{R}\right)=k_{R}^{e l} R^{3} \theta_{R}^{3}\left(\theta_{R}^{-1}-\alpha\right)^{2}+\sigma R^{2}\left(1-\theta_{R}^{2}\right) \tag{1.1}
\end{equation*}
$$

with $\theta_{R} \rightarrow \alpha^{-1}$ minimisers and $k_{R}^{e l} \rightarrow C^{e l}$.
Step 6. For a fixed parameter $k>0$, introduce the family of polynomials

$$
P_{R, k}(\theta):=k R^{3} \theta^{3}\left(\theta^{-1}-\alpha\right)^{2}+\sigma R^{2}\left(1-\theta^{2}\right)
$$

Step 7. Show that for $R \gg 0$ there exists a unique minimiser θ_{R}^{m} to

$$
P_{R, k}\left(\theta_{R}^{m}\right)=\min _{\theta \in\left[\alpha^{-1}, 1\right]} P_{R, k}(\theta) .
$$

Moreover $\theta_{R}^{m} \rightarrow \alpha^{-1}$.
Step 8. Since $\theta_{R}-\theta_{R}^{m} \rightarrow 0$, by using (1.1), minimality, and computing $P_{R, k}\left(\theta_{R}^{m}\right)$, we have the thesis

$$
E_{\alpha, R}^{\text {tot }}\left(\theta_{R}\right)=\underbrace{\frac{\sigma^{2}}{\alpha^{3} C^{e l}} R}_{\text {Elastic }}+\underbrace{\sigma R^{2}\left(1-\alpha^{-2}\right)-2 \frac{\sigma^{2}}{\alpha^{3} C^{e l}} R}_{\text {Plastic }}+O(R)
$$

Conclusions and Perspectives

Conclusions:

- A basic variational model describing the competition between the plastic energy spent at interfaces, and the corresponding release of bulk energy.
- The size of the overlayer is a free parameter \Longrightarrow free boundary problem, but only through the scalar parameter θ.

Perspectives:

- Grain boundaries, the misfit between the crystal lattices are described by rotations rather than dilations.
Read, Shockley (1950) - Hirth, Carnahan (1992)
- Optimal geometry for the dislocation net (square vs hexagonal) Koslowski, Ortiz (2004)

Tilt boundary

Presentation Plan

(1) Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals
(2) Microgeometries in Composites
- Critical lower integrability
- Convex integration
- Proof of our main result

Polycrystals

Polycrystal: formed by many grains, having the same lattice structure, mutually rotated \Longrightarrow interface misfit at grain boundaries.

Goal: obtain polycrystalline structures as minimisers of some energy functional. F., Palombaro, Ponsiglione. Linearised Polycrystals from a 2D System of Edge Dislocations. Preprint (2017)

Tilt grain boundaries

Tilt boundary: small angle rotation θ between grains \Longrightarrow edge dislocations. Boundary structure: periodic array of edge dislocations with spacing $\delta=\frac{\varepsilon}{\theta}$.

Porter, Easterling. CRC Press (2009) - Gottstein. Springer (2013)

Plan

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon>0$ is the lattice spacing and

$$
N_{\varepsilon} \rightarrow+\infty \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

Plan:

- compute \mathcal{F}, the Γ-limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \rightarrow 0$,
- show that under suitable boundary conditions \mathcal{F} is minimised by polycrystals.

Linearised polycrystals: our energy regime will imply

$$
N_{\varepsilon} \ll \frac{1}{\varepsilon}
$$

\Longrightarrow we have less dislocations than tilt grain boundaries. However we still obtain polycrystalline minimisers, but with grains rotated by an infinitesimal angle $\theta \approx 0$.

Setting (linearised planar elasticity)

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded. Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε. Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$.

Setting (linearised planar elasticity)

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded. Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε. Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$. Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathcal{S}
$$

Setting (linearised planar elasticity)

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded. Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε. Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$. Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathcal{S} .
$$

Core radius approach: $\Omega_{\varepsilon}(\mu):=\Omega \backslash \cup B_{\varepsilon}\left(x_{i}\right)$.

Setting (linearised planar elasticity)

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded.
Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε.
Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$. Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathcal{S}
$$

Core radius approach: $\Omega_{\varepsilon}(\mu):=\Omega \backslash \cup B_{\varepsilon}\left(x_{i}\right)$.
Strains: inducing μ are maps $\beta: \Omega_{\varepsilon}(\mu) \rightarrow \mathbb{M}^{2 \times 2}$ s.t.

$$
\operatorname{Curl} \beta\left\llcorner\Omega_{\varepsilon}(\mu)=0, \quad \int_{\partial B_{\varepsilon}\left(x_{i}\right)} \beta \cdot t d s=\xi_{i} .\right.
$$

Setting (linearised planar elasticity)

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded.
Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε.
Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$. Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathcal{S} .
$$

Core radius approach: $\Omega_{\varepsilon}(\mu):=\Omega \backslash \cup B_{\varepsilon}\left(x_{i}\right)$. Strains: inducing μ are maps $\beta: \Omega_{\varepsilon}(\mu) \rightarrow \mathbb{M}^{2 \times 2}$ s.t.

$$
\operatorname{Curl} \beta\left\llcorner\Omega_{\varepsilon}(\mu)=0, \quad \int_{\partial B_{\varepsilon}\left(x_{i}\right)} \beta \cdot t d s=\xi_{i} .\right.
$$

Linearised Energy: $\mathbb{C} F: F \sim\left|F^{\text {sym }}\right|^{2}$, then

$$
E_{\varepsilon}(\mu, \beta):=\int_{\Omega_{\varepsilon}(\mu)} \mathbb{C} \beta: \beta d x=\int_{\Omega} \mathbb{C} \beta: \beta d x
$$

Self-energy of a single dislocation core

Let β generate $\xi \delta_{0}$, that is "Curl $\beta=\xi \delta_{0}$ "

$$
\begin{aligned}
\int_{B_{1} \backslash B_{\varepsilon}}|\beta|^{2} d x & \geq \int_{\varepsilon}^{1} \int_{\partial B_{\rho}}|\beta \cdot t|^{2} d s d \rho \geq \text { (Jensen) } \\
& \geq \frac{1}{2 \pi} \int_{\varepsilon}^{1} \frac{1}{\rho}\left|\int_{\partial B_{\rho}} \beta \cdot t d s\right|^{2} d \rho=\frac{|\xi|^{2}}{2 \pi}|\log \varepsilon|
\end{aligned}
$$

The reverse inequality can be obtained by computing the energy of

$$
\beta(x):=\frac{1}{2 \pi} \xi \otimes J \frac{x}{|x|^{2}}, \quad J:=\text { clock-wise rotation of } \frac{\pi}{2} .
$$

Remark: let $s \in(0,1)$, then

$$
\int_{B_{\varepsilon} s \backslash B_{\varepsilon}}|\beta|^{2} d x \geq(1-s) \frac{|\xi|^{2}}{2 \pi}|\log \varepsilon|
$$

Self-energy: is of order $|\log \varepsilon|$ and concentrated in a small region around B_{ε}.

The Hard Core assumption

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.
Clusters of dislocations at scale ρ_{ε} are identified with a single multiple dislocation.

The Hard Core assumption

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.
Clusters of dislocations at scale ρ_{ε} are identified with a single multiple dislocation.
Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathbb{S}
$$

with $\mathbb{S}:=\operatorname{Span}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$
\left|x_{i}-x_{j}\right|>2 \rho_{\varepsilon}, \quad \operatorname{dist}\left(x_{k}, \partial \Omega\right)>\rho_{\varepsilon}
$$

The Hard Core assumption

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.
Clusters of dislocations at scale ρ_{ε} are identified with a single multiple dislocation.
Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathbb{S}
$$

with $\mathbb{S}:=\operatorname{Span}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$
\left|x_{i}-x_{j}\right|>2 \rho_{\varepsilon}, \quad \operatorname{dist}\left(x_{k}, \partial \Omega\right)>\rho_{\varepsilon}
$$

Hypothesis on HC Radius: as $\varepsilon \rightarrow 0$

- $\rho_{\varepsilon} / \varepsilon^{s} \rightarrow \infty, \forall s \in(0,1)$,
(HC contains almost all the self-energy)
- $N_{\varepsilon} \rho_{\varepsilon}^{2} \rightarrow 0$.

Energy regimes

Energy scaling: each dislocation accounts for $|\log \varepsilon| \Longrightarrow$ relevant scaling is

$$
E_{\varepsilon} \approx N_{\varepsilon}|\log \varepsilon|,
$$

Rescaled energy functionals:

$$
\mathcal{F}_{\varepsilon}(\mu, \beta):=\frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega_{\varepsilon}(\mu)} \mathbb{C} \beta: \beta d x .
$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

- $N_{\varepsilon} \ll|\log \varepsilon| \sim$ Dilute dislocations
- $N_{\varepsilon} \approx|\log \varepsilon| \sim$ Critical regime

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.
J. Eur. Math. Soc. (JEMS) (2010)

- $N_{\varepsilon} \gg|\log \varepsilon| \sim$ Super-critical regime
F., Palombaro, Ponsiglione. Linearised Polycrystals from a 2D System of Edge Dislocations.

Preprint (2017)

Candidate「-limit

Let (μ, β) with $\mu=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}$ be such that "Curl $\beta=\mu$ ".
Energy decomposition: let $\mathrm{HC}_{\varepsilon}(\mu):=\cup_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{B}_{\rho_{\varepsilon}}\left(\mathrm{x}_{\mathrm{i}}\right)$ be the HC region

$$
E_{\varepsilon}(\mu, \beta)=\int_{\Omega \backslash \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C} \beta: \beta d x+\int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C} \beta: \beta d x .
$$

Γ-limit: $S \in L^{2}\left(\Omega ; \mathbb{M}_{\text {sym }}^{2 \times 2}\right), A \in L^{2}\left(\Omega ; \mathbb{M}_{\text {skew }}^{2 \times 2}\right), \mu \in \mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right)$ with Curl $A=\mu$,

$$
\mathcal{F}(\mu, S, A):=\int_{\Omega} \mathbb{C} S: S d x+\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu| .
$$

Density φ : the self-energy for a single dislocation core $\xi \delta_{0}$ is

$$
\psi(\xi):=\lim _{\varepsilon \rightarrow 0} \frac{1}{|\log \varepsilon|} \min _{\beta}\left\{\int_{B_{1} \backslash B_{\varepsilon}} \mathbb{C} \beta: \beta d x: \text { "Curl } \beta=\xi \delta_{0} "\right\} .
$$

Define $\varphi: \mathbb{R}^{2} \rightarrow[0, \infty)$ as the relaxation of ψ (splitting multiple dislocations)

$$
\varphi(\xi):=\min \left\{\sum_{i=1}^{M} \lambda_{i} \psi\left(\xi_{i}\right): \xi=\sum_{i=1}^{M} \lambda_{i} \xi_{i}, M \in \mathbb{N}, \lambda_{i}>0, \xi_{i} \in \mathbb{S}\right\},
$$

「-convergence result for $N_{\varepsilon} \gg|\log \varepsilon|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $\left(\mu_{\varepsilon}, \beta_{\varepsilon}\right)$ s.t. "Curl $\beta_{\varepsilon}=\mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}\left(\mu_{\varepsilon}, \beta_{\varepsilon}\right) \leq C \Longrightarrow$
$\triangleright \frac{\beta_{\varepsilon}^{\text {sym }}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \frac{\beta_{\varepsilon}^{\text {skew }}}{N_{\varepsilon}} \rightharpoonup A$ in $L^{2}\left(\Omega ; \mathbb{M}^{2 \times 2}\right)$,

- $\frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu$ in $\mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right)$,
- $\mu \in H^{-1}\left(\Omega ; \mathbb{R}^{2}\right)$ and Curl $A=\mu$.
Γ-convergence: the functionals $\mathcal{F}_{\varepsilon} \Gamma$-converge to

$$
\mathcal{F}(\mu, S, A):=\int_{\Omega} \mathbb{C} S: S d x+\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu| \text {, with Curl } A=\mu \text {. }
$$

Remark:

- S and A live on two different scales with $S \ll A \Longrightarrow$ terms in \mathcal{F} decoupled.
- In the critical regime $N_{\varepsilon} \approx|\log \varepsilon|$ we have $S \approx A$ and $\operatorname{Curl}(S+A)=\mu$.

Compactness of the measures

Let $\mu_{n}:=\sum_{i=1}^{M_{n}} \xi_{n, i} \delta_{\chi_{n, i}}$ and "Curl $\beta_{n}=\mu_{n}$ ". We show that

$$
\begin{equation*}
\frac{1}{N_{\varepsilon_{n}}}\left|\mu_{n}\right|(\Omega)=\frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}}\left|\xi_{n, i}\right| \leq C, \tag{1.2}
\end{equation*}
$$

so that $\frac{\mu_{n}}{N_{\varepsilon_{n}}} \stackrel{*}{\rightharpoonup} \nu$.

$$
\begin{aligned}
C & \geq \mathcal{F}_{\varepsilon_{n}}\left(\mu_{n}, \beta_{n}\right) \geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \frac{1}{\left|\log \varepsilon_{n}\right|} \int_{B_{\rho \varepsilon_{n}}\left(x_{n, i}\right) \backslash B_{\varepsilon_{n}\left(x_{n}, i\right)}} W\left(\beta_{n}\right) d x \\
& \geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \psi_{\varepsilon_{n}}\left(\xi_{n, i}\right)=\frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}}\left|\xi_{n, i}\right|^{2} \psi_{\varepsilon_{n}}\left(\frac{\xi_{n, i}}{\left|\xi_{n, i}\right|}\right) \geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}}\left|\xi_{n, i}\right|^{2} \\
& \geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}}\left|\xi_{n, i}\right|=c \frac{\left|\mu_{n}\right|(\Omega)}{N_{\varepsilon_{n}}} \Longrightarrow(1.2)
\end{aligned}
$$

Compactness of the strains

Symmetric Part:

$$
C N_{\varepsilon_{n}}\left|\log \varepsilon_{n}\right| \geq C E_{\varepsilon_{n}}\left(\mu_{n}, \beta_{n}\right) \geq C \int_{\Omega}\left|\beta_{n}^{\text {sym }}\right|^{2} d x \Longrightarrow \frac{\beta_{n}^{\text {sym }}}{\sqrt{N_{\varepsilon_{n}}\left|\log \varepsilon_{n}\right|}} \rightharpoonup S
$$

Skew Part: since "Curl $\beta_{n}=\mu_{n}$ " we can apply the generalised Korn inequality:

$$
\begin{array}{rlr}
\int_{\Omega}\left|\beta_{n}^{\text {skew }}\right|^{2} d x & \leq C\left(\int_{\Omega}\left|\beta_{n}^{\text {sym }}\right|^{2} d x+\left(\left|\mu_{n}\right|(\Omega)\right)^{2}\right) & \text { (Gen. Korn) } \\
& \leq C\left(\sqrt{N_{\varepsilon_{n}}\left|\log \varepsilon_{n}\right|}+N_{\varepsilon_{n}}^{2}\right) \leq C N_{\varepsilon_{n}}^{2} & \left(N_{\varepsilon} \gg|\log \varepsilon|\right)
\end{array}
$$

so that $\frac{\beta_{n}^{\text {skew }}}{N_{\varepsilon_{n}}} \rightharpoonup A$.

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.
J. Eur. Math. Soc. (JEMS) (2010)

Adding boundary conditions

Dirichlet type BC: at level $\varepsilon>0$ fix a boundary condition $g_{\varepsilon}: \Omega \rightarrow \mathbb{M}^{2 \times 2}$ s.t.

$$
\frac{g_{\varepsilon}^{\text {sym }}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S}, \quad \frac{g_{\varepsilon}^{\text {skew }}}{N_{\varepsilon}} \rightharpoonup g_{A}
$$

Admissible dislocations: measures μ satisfying

$$
\begin{equation*}
\mu(\Omega)=\int_{\partial \Omega} g_{\varepsilon} \cdot t d s \tag{GND}
\end{equation*}
$$

Admissible strains: $\beta: \Omega_{\varepsilon}(\mu) \rightarrow \mathbb{M}^{2 \times 2}$ such that " $\operatorname{Curl} \beta=\mu$ " and

$$
\beta \cdot t=g_{\varepsilon} \cdot t \quad \text { on } \quad \partial \Omega
$$

Γ-limit: the usual energy $\mathcal{F}_{\varepsilon} \Gamma$-converges to

$$
\mathcal{F}_{\mathrm{BC}}(\mu, S, A):=\int_{\Omega} \mathbb{C} S: S d x+\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu|+\int_{\partial \Omega} \varphi\left(\left(g_{A}-A\right) \cdot t\right) d s
$$

such that Curl $A=\mu$, with $\mu \in \mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right) \cap H^{-1}\left(\Omega ; \mathbb{R}^{2}\right)$.
Remark: $\beta_{\varepsilon}^{\text {sym }} \ll \beta_{\varepsilon}^{\text {skew }} \Longrightarrow B C$ pass to the limit only for A.

Minimising $\mathcal{F}_{\mathrm{BC}}$ with piecewise constant BC

Remark: there are no BC on $S \Longrightarrow$ we can neglect elastic energy. Piecewise constant BC: Fix a piecewise constant BC

$$
g_{A}:=\left(\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right), \quad a:=\sum_{k=1}^{M} m_{k} \chi_{U_{k}},
$$

with $m_{k}<m_{k+1}$ and $\left\{U_{k}\right\}_{k=1}^{M}$ Caccioppoli partition of Ω.

Problem

Minimise

$$
\mathcal{F}_{\mathrm{BC}}(\mu, 0, A)=\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu|+\int_{\partial \Omega} \varphi\left(\left(g_{A}-A\right) \cdot t\right) d s,
$$

with Curl $A=\mu$ and $\mu \in \mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right) \cap H^{-1}\left(\Omega ; \mathbb{R}^{2}\right)$.

Polycrystals as energy minimisers

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition g_{A}, there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\mu, 0, A)$

$$
A=\sum_{k=1}^{M} A_{k} \chi_{E_{k}}
$$

with $A_{k} \in \mathbb{M}_{\text {skew }}^{2 \times 2}$ and $\left\{E_{k}\right\}_{k=1}^{M}$ Caccioppoli partition of Ω. We interpret A as a linearised polycrystal.

Open Question: Are all minimisers piecewise constant? Uniqueness?
Essential: that the boundary condition is piecewise affine on the whole $\partial \Omega$.

Idea of the proof

Problem: given a piecewise constant $\mathrm{BC} g_{A}$, consider

$$
\inf \left\{\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu|+\int_{\partial \Omega} \varphi\left(\left(g_{A}-A\right) \cdot t\right) d s: \text { Curl } A=\mu \in \mathcal{M} \cap H^{-1}\right\} .
$$

Since A and g_{A} are antisymmetric, $\exists u, a \in L^{2}(\Omega)$ s.t.

$$
A=\left(\begin{array}{cc}
0 & u \\
-u & 0
\end{array}\right), \quad g_{A}=\left(\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right) .
$$

Note: Curl $A=D u \in \mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right) \Longrightarrow u \in B V(\Omega) \Longrightarrow$ Equivalent Problem:

$$
\begin{equation*}
\inf \left\{\int_{\Omega} \varphi\left(\frac{d D u}{d|D u|}\right) d|D u|+\int_{\partial \Omega} \varphi((u-a) \nu) d s: u \in B V(\Omega)\right\} . \tag{1.3}
\end{equation*}
$$

Proof: let \tilde{u} be a minimiser for (1.3). By anisotropic Coarea Formula

$$
\int_{\Omega} \varphi\left(\frac{d D \tilde{u}}{d|D \tilde{u}|}\right) d|D \tilde{u}|=\int_{\mathbb{R}} \operatorname{Per}_{\varphi}(\{x \in \Omega: \tilde{u}(x)>t\}) d t,
$$

we can select the levels with minimal perimeter. This defines the Caccioppoli partition.

Comparison with classical Read-Shockley formula

Read-Shockley formula: Elastic energy $=E_{0} \theta(1+|\log \theta|)$.

- This energy corresponds to small rotations θ between grains: small rotations but larger than linearised rotations.
- It is a nonlinear formula that corresponds to a higher energy regime.
- The density of dislocations to obtain small rotations is

$$
\text { Density } \approx \frac{1}{\varepsilon} \gg N_{\varepsilon} \text {. }
$$

Question: 「-convergence analysis of the Read-Shockley formula?
Lauteri, Luckhaus. An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity. Preprint (2017)
Question: Are there some relevant energy regimes in between?

Conclusions and Perspectives

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Perspectives:

- Uniqueness of piecewise constant minimisers?
- Comparison with the Read-Shockley formula?

Lauteri, Luckhaus. Preprint (2017).

- Dynamics for linearised polycrystals?

Taylor. Crystalline variational problems. Bull. Amer. Math. Soc. (1978).
Chambolle, Morini, Ponsiglione. Existence and Uniqueness for a Crystalline Mean Curvature Flow. Comm. Pure Appl. Math (2017).

- Supercritical regime analysis starting from a non-linear energy?

Müller, Scardia, Zeppieri. Geometric rigidity for incompatible fields and an application to strain-gradient plasticity. Indiana University Mathematics Journal (2014).

Presentation Plan

(1) Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals
(2) Microgeometries in Composites
- Critical lower integrability
- Convex integration
- Proof of our main result

Gradient integrability for solutions to elliptic equations

$\Omega \subset \mathbb{R}^{2}$ bounded open domain. A map $\sigma \in L^{\infty}\left(\Omega ; \mathbb{M}^{2 \times 2}\right)$ is uniformly elliptic if

$$
\sigma \xi \cdot \xi \geq \lambda|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{2}, x \in \Omega
$$

Problem

Study the gradient integrability of distributional solutions $u \in W^{1,1}(\Omega)$ to

$$
\begin{equation*}
\operatorname{div}(\sigma \nabla u)=0 \tag{2.1}
\end{equation*}
$$

when

$$
\sigma=\sigma_{1} \chi_{E_{1}}+\sigma_{2} \chi_{E_{2}}
$$

with $\sigma_{1}, \sigma_{2} \in \mathbb{M}^{2 \times 2}$ constant elliptic matrices, $\left\{E_{1}, E_{2}\right\}$ measurable partition of Ω.

Application to composites:

- Ω is a section of a composite conductor obtained by mixing two materials with conductivities σ_{1} and σ_{2},
- the electric field ∇u solves (2.1),
- concentration of ∇u in relation to the geometry $\left\{E_{1}, E_{2}\right\}$.

Astala's Theorem

Theorem (Astala '94)

Let $\sigma \in L^{\infty}\left(\Omega ; \mathbb{M}^{2 \times 2}\right)$ be uniformly elliptic. There exists exponents $1<q<2<p$ such that if $u \in W^{1, q}(\Omega)$ solves

$$
\operatorname{div}(\sigma \nabla u)=0
$$

then $\nabla u \in L_{\text {weak }}^{p}\left(\Omega ; \mathbb{R}^{2}\right)$.

Question

Are the exponents q and p optimal among two-phase elliptic conductivities

$$
\sigma=\sigma_{1} \chi_{E_{1}}+\sigma_{2} \chi_{E_{2}} ?
$$

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)

Astala's exponents for two-phase conductivities

$\xrightarrow{1} \xrightarrow{q_{\sigma_{1}, \sigma_{2}}}$

For two-phase conductivities Astala's exponents $q=q_{\sigma_{1}, \sigma_{2}}$ and $p=p_{\sigma_{1}, \sigma_{2}}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$
\sigma_{1}=\left(\begin{array}{cc}
1 / K & 0 \\
0 & 1 / S_{1}
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
K & 0 \\
0 & S_{2}
\end{array}\right)
$$

where

$$
K>1 \quad \text { and } \quad \frac{1}{K} \leq S_{j} \leq K, \quad j=1,2
$$

The corresponding critical exponents for Astala's theorem are

$$
q_{\sigma_{1}, \sigma_{2}}=\frac{2 K}{K+1}, \quad p_{\sigma_{1}, \sigma_{2}}=\frac{2 K}{K-1}
$$

Upper exponent optimality

Theorem (Nesi, Palombaro, Ponsiglione '14)

Let $\sigma_{1}=\operatorname{diag}\left(1 / K, 1 / S_{1}\right), \sigma_{2}=\operatorname{diag}\left(K, S_{2}\right)$ with $K>1$ and $S_{1}, S_{2} \in[1 / K, K]$.
(d) If $\sigma \in L^{\infty}\left(\Omega ;\left\{\sigma_{1}, \sigma_{2}\right\}\right)$ and $u \in W^{1, \frac{2 K}{K+1}}(\Omega)$ solves

$$
\begin{equation*}
\operatorname{div}(\sigma \nabla u)=0 \tag{2.2}
\end{equation*}
$$

then $\nabla u \in L_{\text {weak }}^{\frac{2 k}{K-1}}\left(\Omega ; \mathbb{R}^{2}\right)$.
(1) There exists $\bar{\sigma} \in L^{\infty}\left(\Omega ;\left\{\sigma_{1}, \sigma_{2}\right\}\right)$ and a weak solution $\bar{u} \in W^{1,2}(\Omega)$ to (2.2) with $\sigma=\bar{\sigma}$, satisfying affine boundary conditions and such that $\nabla \bar{u} \notin L^{\frac{2 K}{K-1}}\left(\Omega ; \mathbb{R}^{2}\right)$.

Question we address

Is the lower exponent $\frac{2 K}{K+1}$ optimal?

Lower exponent optimality

Theorem (F., Palombaro '17)

Let $\sigma_{1}=\operatorname{diag}\left(1 / K, 1 / S_{1}\right), \sigma_{2}=\operatorname{diag}\left(K, S_{2}\right)$ with $K>1$ and $S_{1}, S_{2} \in[1 / K, K]$. There exist

- coefficients $\sigma_{n} \in L^{\infty}\left(\Omega ;\left\{\sigma_{1} ; \sigma_{2}\right\}\right)$,
- exponents $p_{n} \in\left[1, \frac{2 K}{K+1}\right]$,
- functions $u_{n} \in W^{1,1}(\Omega)$ such that $u_{n}(x)=x_{1}$ on $\partial \Omega$, such that

$$
\begin{gathered}
\operatorname{div}\left(\sigma_{n} \nabla u_{n}\right)=0, \\
\nabla u_{n} \in L_{\text {weak }}^{p_{n}}\left(\Omega ; \mathbb{R}^{2}\right), \quad p_{n} \rightarrow \frac{2 K}{K+1}, \quad \nabla u_{n} \notin L^{\frac{2 K}{K+1}}\left(\Omega ; \mathbb{R}^{2}\right) .
\end{gathered}
$$

[^0]
Presentation Plan

(1) Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals
(2) Microgeometries in Composites
- Critical lower integrability
- Convex integration
- Proof of our main result

Solving differential inclusions

Theorem (Approximate solutions for two phases)

Let $A, B \in \mathbb{M}^{2 \times 2}, C:=\lambda A+(1-\lambda) B$ with $\lambda \in[0,1]$, and $\delta>0$. Assume that

$$
B-A=a \otimes n \quad \text { for some } a \in \mathbb{R}^{2}, n \in S^{1} . \quad \text { (Rank-one connection) }
$$

\exists piecewise affine Lipschitz map $f: \Omega \rightarrow \mathbb{R}^{2}$ such that $f(x)=C x$ on $\partial \Omega$ and

$$
\operatorname{dist}(\nabla f,\{A, B\})<\delta \quad \text { a.e. in } \quad \Omega .
$$

Solutions: built through simple laminates

- rank-one connection allows to laminate in direction n,
- ∇f oscillates in δ-neighbourhoods of A and B,
- λ proportion for $A, 1-\lambda$ proportion for B,
- this allows to recover boundary data C.

Müller. Variational models for microstructure and phase transitions.

Laminates of first order

\mathcal{L}_{Ω}^{2} is the normalised Lebesgue measure restricted to $\Omega \sim \mathcal{L}_{\Omega}^{2}(B):=|B \cap \Omega| /|\Omega|$.

Gradient distribution

Let $f: \Omega \rightarrow \mathbb{R}^{2}$ be Lipschitz. The gradient distribution of f is the Radon measure $\nabla f_{\#}\left(\mathcal{L}_{\Omega}^{2}\right)$ on $\mathbb{M}^{2 \times 2}$ defined by

$$
\nabla f_{\#}\left(\mathcal{L}_{\Omega}^{2}\right)(V):=\mathcal{L}_{\Omega}^{2}\left((\nabla f)^{-1}(V)\right), \quad \forall \text { Borel set } V \subset \mathbb{M}^{2 \times 2}
$$

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \rightarrow 0$,

$$
\nu_{\delta}:=\left(\nabla f_{\delta}\right)_{\#}\left(\mathcal{L}_{\Omega}^{2}\right) \stackrel{*}{\rightharpoonup} \nu:=\lambda \delta_{A}+(1-\lambda) \delta_{B} \quad \text { in } \quad \mathcal{M}\left(\mathbb{M}^{2 \times 2}\right) .
$$

The measure ν is called a laminate of first order, and it encodes:

- Oscillations of ∇f_{δ} about $\{A, B\}$ and their proportions.
- Boundary condition since the barycentre of ν is $\bar{\nu}:=\int_{\mathbb{M}^{2} \times 2} M d \nu(M)=C$.
- Integrability since for $p>1$ we have

$$
\frac{1}{|\Omega|} \int_{\Omega}\left|\nabla f_{\delta}\right|^{p} d x=\int_{\mathbb{M}^{2} \times 2}|M|^{p} d \nu_{\delta}(M)
$$

Iterating the Proposition

Let $C=\lambda A+(1-\lambda) B$ with $\lambda \in[0,1]$ and $\operatorname{rank}(B-A)=1$. Let $f: \Omega \rightarrow \mathbb{R}^{2}$ such that $f(x)=C x$ on $\partial \Omega$,

$$
\operatorname{dist}(\nabla f,\{A, B\})<\delta \quad \text { a.e. in } \quad \Omega .
$$

Further splitting: $B=\mu B_{1}+(1-\mu) B_{2}$ with $\mu \in[0,1], \operatorname{rank}\left(B_{2}-B_{1}\right)=1$.
New gradient: apply previous Proposition to the set $\{x \in \Omega: \nabla f \sim B\}$ to obtain $\tilde{f}: \Omega \rightarrow \mathbb{R}^{2}$ such that $f(x)=C_{x}$ on $\partial \Omega$,

$$
\operatorname{dist}\left(\nabla \tilde{f},\left\{A, B_{1}, B_{2}\right\}\right)<\delta \quad \text { a.e. in } \quad \Omega .
$$

The gradient distribution of \tilde{f} is given by

$$
\nu=\lambda \delta_{A}+(1-\lambda) \mu \delta_{B_{1}}+(1-\lambda)(1-\mu) \delta_{B_{2}} .
$$

Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu=\sum_{i=1}^{N} \lambda_{i} \delta_{A_{i}}$ be a laminate of finite order, s.t.

- $\bar{\nu}=A$,
- $A=\sum_{i=1}^{N} \lambda_{i} A_{i}$ with $\sum_{i=1}^{N} \lambda_{i}=1$.

Fix $\delta>0$. \exists a piecewise affine Lipschitz map $f: \Omega \rightarrow \mathbb{R}^{2}$ s.t. $\nabla f \sim \nu$, that is,
$-\operatorname{dist}(\nabla f, \operatorname{supp} \nu)<\delta$ a.e. in Ω,

- $f(x)=A x$ on $\partial \Omega$,
- $\left|\left\{x \in \Omega:\left|\nabla f(x)-A_{i}\right|<\delta\right\}\right|=\lambda_{i}|\Omega|$.

Presentation Plan

(1) Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals
(2) Microgeometries in Composites
- Critical lower integrability
- Convex integration
- Proof of our main result

Strategy of the Proof

Strategy: explicit construction of u_{n} by convex integration methods.
(1) Rewrite the equation $\operatorname{div}(\sigma \nabla u)=0$ as a differential inclusion

$$
\begin{equation*}
\nabla f(x) \in T, \quad \text { for a.e. } \quad x \in \Omega \tag{2.3}
\end{equation*}
$$

for $f: \Omega \rightarrow \mathbb{R}^{2}$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$.
Note: u and f have the same integrability.
(2) Construct a laminate ν with $\operatorname{supp} \nu \subset T$ and the right integrability.
(3) Convex integration Proposition \Longrightarrow construct $f: \Omega \rightarrow \mathbb{R}^{2}$ s.t. $\nabla f \sim \nu$. In this way f solves (2.3) and

$$
\nabla f \in L_{\text {weak }}^{q}\left(\Omega ; \mathbb{R}^{2}\right), \quad q \in\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right], \quad \nabla f \notin L^{\frac{2 K}{K+1}}\left(\Omega ; \mathbb{R}^{2}\right) .
$$

These methods were developed for isotropic conductivities $\sigma \in L^{\infty}\left(\Omega ;\left\{K I, \frac{1}{K} I\right\}\right)$.
The adaptation to our case is non-trivial because of the lack of symmetry of the target set T, due to the anisotropy of σ_{1} and σ_{2}.
Astala, Faraco, Székelyhidi. Convex integration and the L^{p} theory of elliptic equations.
Ann. Scuola Norm. Sup. Pisa CI. Sci. (2008)

Rewriting the PDE as a differential inclusion

Let $K>1, S_{1}, S_{2} \in[1 / K, K]$ and define

$$
\begin{gathered}
\sigma_{1}:=\operatorname{diag}\left(1 / K, 1 / S_{1}\right), \quad \sigma_{2}:=\operatorname{diag}\left(K, S_{2}\right), \quad \sigma:=\sigma_{1} \chi_{E_{1}}+\sigma_{2} \chi_{E_{2}}, \\
T_{1}:=\left\{\left(\begin{array}{cc}
x & -y \\
S_{1}^{-1} y & K^{-1} x
\end{array}\right): x, y \in \mathbb{R}\right\}, \quad T_{2}:=\left\{\left(\begin{array}{cc}
x & -y \\
S_{2} y & K x
\end{array}\right): x, y \in \mathbb{R}\right\} .
\end{gathered}
$$

Lemma (F., Palombaro '17)

A function $u \in W^{1,1}(\Omega)$ is solution to

$$
\operatorname{div}(\sigma \nabla u)=0
$$

iff there exists $v \in W^{1,1}(\Omega)$ such that $f=(u, v): \Omega \rightarrow \mathbb{R}^{2}$ satisfies

$$
\nabla f(x) \in T_{1} \cup T_{2} \quad \text { in } \quad \Omega .
$$

Moreover $E_{1}=\left\{x \in \Omega: \nabla f(x) \in T_{1}\right\}$ and $E_{2}=\left\{x \in \Omega: \nabla f(x) \in T_{2}\right\}$.
Key Remark: u and f enjoy the same integrability properties.

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2 \times 2}$. Then $A=\left(a_{+}, a_{-}\right)$for $a_{+}, a_{-} \in \mathbb{C}$, defined by

$$
A w=a_{+} w+a_{-} \bar{w}, \quad \forall w \in \mathbb{C} .
$$

The sets of conformal linear maps and anti-conformal linear maps are

$$
\begin{aligned}
& E_{0}:=\{(z, 0): z \in \mathbb{C}\} \\
& E_{\infty}:=\{(0, z): z \in \mathbb{C}\}
\end{aligned}
$$

Target sets in conformal coordinates are

$$
T_{1}=\left\{\left(a, d_{1}(\bar{a})\right): a \in \mathbb{C}\right\}, \quad T_{2}=\left\{\left(a,-d_{2}(\bar{a})\right): a \in \mathbb{C}\right\},
$$

where the operators $d_{j}: \mathbb{C} \rightarrow \mathbb{C}$ are defined as

$$
d_{j}(a):=k \operatorname{Re} a+i s_{j} \operatorname{Im} a, \quad \text { with } \quad k:=\frac{K-1}{K+1} \quad \text { and } \quad s_{j}:=\frac{S_{j}-1}{S_{j}+1} .
$$

Staircase Laminate (F., Palombaro '17)

Let $\theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right)$.
$J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1}$

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
& \text { Let } \theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \text {. } \\
& J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1} \\
& =\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \sim \nu_{1}
\end{aligned}
$$

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
& \text { Let } \theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \text {. } \\
& J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1} \\
& =\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \sim \nu_{1} \\
& 2 J R_{\theta}=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right) P_{2}
\end{aligned}
$$

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
& \text { Let } \theta \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \text {. } \\
& J R_{\theta}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1} \\
& =\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \sim \nu_{1} \\
& 2 J R_{\theta}=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right) P_{2} \\
& =\lambda_{2} A_{2}+\left(1-\lambda_{2}\right)\left(\mu_{2} B_{2}+\left(1-\mu_{2}\right) 3 J R_{\theta}\right) \\
& \sim \nu_{2}
\end{aligned}
$$

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
\text { Let } \theta & \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \\
& J R_{\theta}
\end{aligned}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1}, ~ \begin{aligned}
& \\
&=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \sim \nu_{1} \\
& 2 J R_{\theta}=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right) P_{2} \\
&=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right)\left(\mu_{2} B_{2}+\left(1-\mu_{2}\right) 3 J R_{\theta}\right) \\
& \sim \nu_{2}
\end{aligned}
$$

Lemma: $\exists p(\theta) \in\left[\frac{2 S}{S+1}, \frac{2 K}{K+1}\right]$ continuous, with $p(0)=\frac{2 K}{K+1}$ and a sequence ν_{n} of laminates s.t.

Staircase Laminate (F., Palombaro '17)

$$
\begin{aligned}
\text { Let } \theta & \in[0,2 \pi], J R_{\theta}=\left(0, e^{i \theta}\right) \\
& J R_{\theta}
\end{aligned}=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right) P_{1}, ~ \begin{aligned}
& \\
&=\lambda_{1} A_{1}+\left(1-\lambda_{1}\right)\left(\mu_{1} B_{1}+\left(1-\mu_{1}\right) 2 J R_{\theta}\right) \\
& \leadsto \nu_{1} \\
& 2 J R_{\theta}=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right) P_{2} \\
&=\lambda_{2} A_{2}+\left(1-\lambda_{2}\right)\left(\mu_{2} B_{2}+\left(1-\mu_{2}\right) 3 J R_{\theta}\right) \\
& \leadsto \nu_{2}
\end{aligned}
$$

Lemma: $\exists p(\theta) \in\left[\frac{2 S}{S+1}, \frac{2 K}{K+1}\right]$ continuous, with $p(0)=\frac{2 K}{K+1}$ and a sequence ν_{n} of laminates s.t.
$-\operatorname{supp} \nu_{n} \subset T_{1} \cup T_{2} \cup E_{\infty}$

- $\bar{\nu}_{n}=J R_{\theta}$
$-\int_{\mathbb{M}^{2} \times 2}|M|^{q} d \nu_{n}(M)<\infty, \quad \forall q<p(\theta)$
$-\int_{\mathbb{M}^{2} \times 2}|M|^{p(\theta)} d \nu_{n}(M) \rightarrow \infty$ as $n \rightarrow \infty$
Remark: barycentre J gives the right growth.

Constructing approximate solutions

We want to construct $f: \Omega \rightarrow \mathbb{R}^{2}$ such that
$-\operatorname{dist}\left(\nabla f, T_{1} \cup T_{2}\right)<\varepsilon$ a.e. in Ω,

- $f=J x$ on $\partial \Omega$,
- $\nabla f \in L_{\text {weak }}^{q}, q \in I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$,
- $\nabla f \notin L^{\frac{2 K}{K+1}}$.

Idea: alternate one step of the staircase laminate with the convex integration Proposition.

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$

Constructing approximate solutions

Recall $\boldsymbol{I}_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}

Constructing approximate solutions

Recall $\boldsymbol{I}_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}

Constructing approximate solutions

Recall $\boldsymbol{I}_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\boldsymbol{\delta}}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
- \sim Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in I_{\delta}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\boldsymbol{\delta}}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\boldsymbol{\delta}}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\boldsymbol{\delta}}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}
- Set $f_{3}:=g$ in the set $\left\{\nabla f_{2} \sim W_{1}\right\}$ and $f_{3}:=f_{2}$ otherwise $\Longrightarrow \nabla f_{3}$ grows like p_{2}

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\boldsymbol{\delta}}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}
- Set $f_{3}:=g$ in the set $\left\{\nabla f_{2} \sim W_{1}\right\}$ and $f_{3}:=f_{2}$ otherwise $\Longrightarrow \nabla f_{3}$ grows like p_{2}
Step 1. Split $W_{2} \sim$ Laminate ν_{3} with growth $p_{3} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\delta}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} \times$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}
- Set $f_{3}:=g$ in the set $\left\{\nabla f_{2} \sim W_{1}\right\}$ and $f_{3}:=f_{2}$ otherwise $\Longrightarrow \nabla f_{3}$ grows like p_{2}
Step 1. Split $W_{2} \sim$ Laminate ν_{3} with growth $p_{3} \in I_{\delta}$

Constructing approximate solutions

Recall $I_{\delta}:=\left(\frac{2 K}{K+1}-\delta, \frac{2 K}{K+1}\right]$.
Step A. Define $f_{1}(x):=J x \Longrightarrow \theta_{1}=0, p_{1}=\frac{2 K}{K+1}$
Step B. Laminate ν_{1} from J to $2 J \sim$ growth p_{1}
Step C. Proposition $\Longrightarrow \exists$ map f_{2} s.t. $f_{2}=J x$ on $\partial \Omega$ and $\nabla f_{2} \sim \operatorname{supp} \nu_{1} \Longrightarrow \nabla f_{2}$ grows like p_{1}
This determines the exponent range I_{δ}
Step 1. One step of the staircase

- Split W_{1}. Since $W_{1} \sim 2 J \Longrightarrow$ point $(2+\rho) J R_{\theta_{2}}$ with θ_{2}, ρ small. $\Longrightarrow p_{2} \in \boldsymbol{I}_{\delta}$
- Climb from $(2+\rho) J R_{\theta_{2}}$ to $3 J R_{\theta_{2}}$
$-\sim$ Laminate ν_{2} with $\bar{\nu}_{2}=W_{1}$ and growth p_{2}
Step 2. Define map f_{3} by modifying f_{2}
- Proposition $\Longrightarrow \exists$ map g s.t. $g=W_{1} x$ on $\partial \Omega$ and $\nabla g \sim \operatorname{supp} \nu_{2} \Longrightarrow \nabla g$ grows like p_{2}
- Set $f_{3}:=g$ in the set $\left\{\nabla f_{2} \sim W_{1}\right\}$ and $f_{3}:=f_{2}$ otherwise $\Longrightarrow \nabla f_{3}$ grows like p_{2}
Step 1. Split $W_{2} \sim$ Laminate ν_{3} with growth $p_{3} \in I_{\delta}$
Iterating: $\sim f_{n}$ obtained by successive modifications
 on nested sets going to zero in measure $\Longrightarrow f_{n} \rightarrow f$

Conclusions and Perspectives

Conclusions: analysis of critical integrability of distributional solutions to

$$
\begin{equation*}
\operatorname{div}(\sigma \nabla u)=0, \quad \text { in } \Omega, \tag{2.4}
\end{equation*}
$$

when $\sigma \in\left\{\sigma_{1}, \sigma_{2}\right\}$ for $\sigma_{1}, \sigma_{2} \in \mathbb{M}^{2 \times 2}$ elliptic.

- Optimal exponents $q_{\sigma_{1}, \sigma_{2}}$ and $p_{\sigma_{1}, \sigma_{2}}$ were already characterised and the upper exponent $p_{\sigma_{1}, \sigma_{2}}$ was proved to be optimal.
Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).
- We proved the optimality of the lower critical exponent $q_{\sigma_{1}, \sigma_{2}}$.

Perspectives:

- Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (2.4) and s.t. $\nabla u \in L_{\text {weak }}^{\frac{2 k}{K+1}}\left(\Omega ; \mathbb{R}^{2}\right)$ but $\nabla u \notin L^{\frac{2 k}{K+1}}\left(B ; \mathbb{R}^{2}\right), \forall$ ball $B \subset \Omega$. Modifying staircase laminate?
- Extend these results to three-phase conductivities $\sigma \in\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$.
- Dimension $d \geq 3$? Even only in the isotropic case $\sigma \in\left\{K I, K^{-1} /\right\}$ for $K>1$. Main difficulty: Astala's Theorem is missing in higher dimensions.

Thank You!

[^0]: F., Palombaro. Calculus of Variations and Partial Differential Equations (2017)

