Geometric Patterns and Microstructures in the study of Material Defects and Composites

### Silvio Fanzon

supervised by Mariapia Palombaro

University of Sussex Department of Mathematics



### Presentation Plan

#### **()** Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces (Chapter 3)

F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces. Journal of Nonlinear Science (2017)

Linearised polycrystals (Chapter 4)

F., Palombaro, Ponsiglione. *Linearized Polycrystals from a 2D System of Edge Dislocations*. Preprint (2017)

#### **2** Microstructures in Composites

Critical lower integrability (Chapter 5)

F., Palombaro. Optimal lower exponent for the higher gradient integrability of solutions to two-phase elliptic equations in two dimensions. Calculus of Variations and Partial Differential Equations (2017)

- Convex integration
- Proof of the main theorem

### Presentation Plan

#### **1** Geometric Patterns of Dislocations

#### Dislocations

- Semi-coherent interfaces
- Linearised polycrystals

#### **2** Microgeometries in Composites

- Critical lower integrability
- Convex integration
- Proof of our main result

# Edge dislocations

**Dislocations:** topological defects in the otherwise periodic structure of a crystal. **Edge dislocation:** pair  $(\gamma, \xi)$  of dislocation line and Burgers vector, with  $\xi \perp \gamma$ .



### Screw dislocations

**Screw dislocation:** pair  $(\gamma, \xi)$  of dislocation line and Burgers vector, with  $\xi // \gamma$ .



# Mixed type dislocations

**Mixed dislocations:** Burgers vector  $\xi$  is constant and  $\gamma$  is curved. **Dislocation type:** given by the angle between  $\xi$  and  $\dot{\gamma}$ .



# Nonlinear Elasticity

**Reference configuration:**  $\Omega \subset \mathbb{R}^3$  open bounded **Deformations:** regular maps  $v \colon \Omega \to \mathbb{R}^3$ **Deformation strain:**  $\beta := \nabla v \colon \Omega \to \mathbb{M}^{3 \times 3}$ **Energy:** associated to a deformation strain  $\beta$ 

$$E(\beta) := \int_{\Omega} W(\beta) \, dx$$
.

**Energy Density:**  $W \colon \mathbb{M}^{3 \times 3} \to [0, \infty)$  s.t.

- W is continuous
- ► W(F) = W(RF),  $\forall R \in SO(3), F \in \mathbb{M}^{3 \times 3}$ (frame indifferent),
- $W(F) \sim \operatorname{dist}(F, SO(3))^2 \implies W(I) = 0.$



# Semi-discrete model for dislocations

**Dislocation lines:** Lipschitz curves  $\gamma \subset \Omega$  such that  $\Omega \setminus \gamma$  is not simply connected

**Burgers vector:**  $\xi \in S$  set of slip directions

**Strain generating**  $(\gamma, \xi)$ : map  $\beta \colon \Omega \to \mathbb{M}^{3 \times 3}$  s.t.

$$\operatorname{Curl}\beta = -\xi \otimes \dot{\gamma} \,\mathcal{H}^1 \, \sqsubseteq \, \gamma \iff \int_C \beta \cdot t \, d\mathcal{H}^1 = \xi \,.$$

**Geometric interpretation:** if *D* encloses  $\gamma$ , there exists a deformation  $v \in SBV(\Omega; \mathbb{R}^3)$  s.t.

$$Dv = \nabla v \, dx + \xi \otimes n \, \mathcal{H}^2 \, \sqcup \, D, \quad \beta = \nabla v.$$

v has constant jump  $\xi$  across the slip region D.



# Strains are not $L^2$

Let  $\beta$  generate  $(\gamma, \xi)$ . Consider  $\varepsilon > 0$  and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)} \text{ in } I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma))$$

**Proof:** let  $\sigma > \varepsilon$  and  $L := \text{length}(\gamma)$ 

$$\begin{split} &\int_{I_{\sigma}\setminus I_{\varepsilon}} |\beta|^{2} = L \int_{\varepsilon}^{\sigma} \int_{\partial B_{\rho}(\gamma(s))} |\beta|^{2} d\mathcal{H}^{1} d\rho \\ & (\text{Jensen}) \geq L \int_{\varepsilon}^{\sigma} \frac{1}{2\pi\rho} \left| \int_{\partial B_{\rho}(\gamma(s))} \beta \cdot t \, d\mathcal{H}^{1} \right|^{2} d\rho \\ & = L \frac{|\xi|^{2}}{2\pi} \log \frac{\sigma}{\varepsilon} \to \infty \text{ as } \varepsilon \to 0 \end{split}$$



### Regularise the problem

**Energy Truncation.** Fix  $p \in (1, 2)$  and assume

$$W(F) \sim \operatorname{dist}(F, SO(3))^2 \wedge (|F|^p + 1).$$

Strains are maps  $\beta \in L^2(\Omega; \mathbb{M}^{3 \times 3})$  such that

$$\operatorname{Curl}\beta = -\xi \otimes \dot{\gamma} \,\mathcal{H}^1 \, \lfloor \, \gamma \,.$$

Core Radius Approach. Assume

$$W(F) \sim \operatorname{dist}(F, SO(3))^2$$
.

Let  $\varepsilon > 0$  ( $\propto$  atomic distance) and consider

 $\Omega_{\varepsilon}(\gamma) := \Omega \setminus I_{\varepsilon}(\gamma).$ 

Strains are maps  $eta\in L^2(\Omega_{arepsilon}(\gamma);\mathbb{M}^{3 imes 3})$  such that

$$\operatorname{Curl} \beta \sqcup \Omega_{\varepsilon}(\gamma) = 0, \quad \int_{C} \beta \cdot t \, d\mathcal{H}^{1} = \xi.$$

Silvio Fanzon



### Presentation Plan

#### **1** Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals

#### **2** Microgeometries in Composites

- Critical lower integrability
- Convex integration
- Proof of our main result

### Semi-coherent interfaces

Two different crystalline materials joined at a flat interface:

- Underlayer: cubic lattice  $\Lambda^-$ , spacing b > 0 (equilibrium I),
- Overlayer: lattice  $\Lambda^+ = \alpha \Lambda^-$ , with  $\alpha > 1$  (not in equilibrium).

**Semi-coherent interface:** small dilation  $\alpha \approx 1$ .

**Equilibrium:**  $\Lambda^+$  has lower density than  $\Lambda^- \implies \text{edge dislocations}$  at interface.



### Network of dislocations

#### Experimentally observed phenomena:



### Network of dislocations

#### Experimentally observed phenomena:

- two non-parallel sets of edge dislocations with spacing  $\delta = \frac{b}{\alpha-1}$ ,
- far field stress is completely relieved.



D.A. Porter, K.E. Easterling. *Phase transformations in metals and alloys*. CRC Press (2009) G. Gottstein. *Physical foundations of materials science*. Springer (2013)

Geometric Patterns and Microstructures

### Goal of the Paper

R is the size of the interface.

#### Goal: define a continuum model such that

- ∃ critical size R\* such that nucleation of dislocations is energetically more
   favorable for R > R\*,
- ▶ as  $R \to \infty$  the far field stress is relieved,
- the dislocation spacing tends to  $\delta = \frac{b}{\alpha 1}$ .

#### Plan:

- analysis of a semi-discrete model where dislocations are line defects,
- derive the simplified (dislocation density) continuum model.

F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces. Journal of Nonlinear Science (2017)

### Semi-discrete line defect model

**Reference configuration:**  $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+$ , r > 0,

- $\Omega_r^+$  overlayer (equilibrium  $\alpha I$ ),
- $\Omega_r^-$  underlayer (in equilibrium and rigid).

**Energy density:**  $W : \mathbb{M}^{3 \times 3} \to [0, \infty)$  continuous, s.t.

- W(F) = W(RF),  $\forall R \in SO(3)$  (frame indifference),
- $W(F) \sim \text{dist}(F, \alpha SO(3))^2 \wedge (|F|^p + 1)$  for 1 .

Admissible dislocations: compatible with cubic lattice.  $(\Gamma, B) \in AD$  if  $\Gamma = \{\gamma_i\}, B = \{\xi_i\}$  with

- ▶ dislocation line  $\gamma_i \subset \mathcal{G}$  relatively closed,
- Burgers vector  $\xi_i \in b(\mathbb{Z} \oplus \mathbb{Z})$ .

Admissible strains: for a dislocation  $(\Gamma, B)$  are the maps  $\beta \in AS(\Gamma, B)$ , such that  $\beta \in L^p(\Omega_r; \mathbb{M}^{3 \times 3})$  and

 $\beta = I \text{ in } \Omega_r^-, \qquad \operatorname{Curl} \beta = -\xi \otimes \dot{\gamma} \, \mathcal{H}^1 \, {\sqcup} \, \Gamma.$ 



# Scaling properties of the energy

Energies: induced by the misfit

$$E_{\alpha,r}(\emptyset) := \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \operatorname{Curl} \beta = 0 \right\}$$
(Elastic energy)  
$$E_{\alpha,r} := \min_{(\Gamma,\mathcal{B}) \in \mathcal{AD}} \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \beta \in \mathcal{AS}(\Gamma, B) \right\}$$
(Plastic energy)

#### Theorem (F., Palombaro, Ponsiglione '15)

The dislocation-free elastic energy scales like  $r^3$ : we have  $E_{\alpha,1}(\emptyset) > 0$  and

 $E_{\alpha,r}(\emptyset) = r^3 E_{\alpha,1}(\emptyset).$ 

The plastic energy scales like  $r^2$ : there exists  $0 < E_{\alpha} < +\infty$  such that

 $E_{\alpha,r}=r^2 E_{\alpha}+o(r^2).$ 

Large  $r \implies$  dislocations are energetically favourable.

Müller, Palombaro. Calculus of Variations and Partial Differential Equations (2008, 2013).

Silvio Fanzon

Geometric Patterns and Microstructures

### Upper bound construction

**Goal:** define a square array of edge dislocations with spacing  $\delta := \frac{D}{\alpha - 1}$ .

- Divide  $S_r$  into  $(r/\delta)^2$  squares of side  $\delta$ .
- Above each  $Q_i$  define pyramids  $C_i^1$  (height  $\delta/2$ ) and  $C_i^2$  (height  $\delta$ ).
- Define deformation  $v \in SBV(\Omega_r; \mathbb{R}^3)$ , and strain  $\beta := \nabla v$  (a.c. part of Dv).

Induced dislocations: Curl  $\beta = -\sum_{i,j} \xi_{ij} \otimes \dot{\gamma}_{ij} \, d\mathcal{H}^1 \, {\rm L} \, \gamma_{ij}$  with

γ<sub>ij</sub> := Q<sub>i</sub> ∩ Q<sub>j</sub> admissible dislocation curve (α = 1 + 1/n ⇒ δ = nb)
 ξ<sub>ii</sub> := (α − 1)(x<sub>i</sub> − x<sub>i</sub>) ∈ ±b{e<sub>1</sub>, e<sub>2</sub>} Burgers vector

**Energy:** in each pyramid is  $c = c(\alpha, b, p) \implies E_{\alpha, r} \le c \frac{r^2}{\delta^2}$  (as  $W(\alpha I) = 0$ ).



Silvio Fanzon

Geometric Patterns and Microstructures

#### **Deformed configuration:** $v(S_R)$ with v from the upper bound construction



**Deformed configuration:**  $v(S_R)$  with v from the upper bound construction



**Deformed configuration:**  $v(S_R)$  with v from the upper bound construction



**Deformed configuration:**  $v(S_R)$  with v from the upper bound construction



#### Limitations of the considered model:

- ▶  $v(S_r)$  does not match  $S_r \implies$  not appropriate for semi-coherent interfaces,
- expected dislocation geometry with spacing  $\frac{b}{\alpha-1}$  is only optimal in scaling.

#### What we do now:

- take a smaller overlayer and enforce match at the interface,
- introduce a simplified continuum (dislocation density) model to better describe true minimisers.



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$ 



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$ **Upper bound construction:** with  $\theta = \alpha^{-1}$  and  $\delta = \frac{b}{\theta^{-1}-1}$ 



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$ **Upper bound construction:** with  $\theta = \alpha^{-1}$  and  $\delta = \frac{b}{\theta^{-1}-1} \implies$  perfect match



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$ **Upper bound construction:** with  $\theta = \alpha^{-1}$  and  $\delta = \frac{b}{\theta^{-1}-1} \implies$  perfect match

$$L = 2R\frac{r}{\delta} = \frac{2r^2}{b}(\theta^{-2} - \theta^{-1}) \stackrel{(\theta^{-1} \approx 1)}{\approx} \frac{r^2}{b}(\theta^{-2} - 1) = \frac{1}{b}(R^2 - r^2) = \frac{1}{b}\text{Area Gap}$$



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$ **Upper bound construction:** with  $\theta = \alpha^{-1}$  and  $\delta = \frac{b}{\theta^{-1}-1} \implies$  perfect match

Dislocation Length 
$$pprox rac{1}{b}$$
 Area Gap



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$ **Upper bound construction:** with  $\theta = \alpha^{-1}$  and  $\delta = \frac{b}{\theta^{-1} - 1} \implies$  perfect match

# Dislocation Length $\approx \frac{1}{b}$ Area Gap

$$E_{\alpha,r} \approx r^2 E_{\alpha}$$



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$ **Upper bound construction:** with  $\theta = \alpha^{-1}$  and  $\delta = \frac{b}{\theta^{-1}-1} \implies$  perfect match

Dislocation Length 
$$\approx \frac{1}{b}$$
 Area Gap  
 $E_{\alpha,r} \approx r^2 E_{\alpha} = \sigma$  Area Gap with  $\sigma := \frac{E_{\alpha}}{\theta^{-2} - 1}$ 



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$ **Upper bound construction:** with  $\theta = \alpha^{-1}$  and  $\delta = \frac{b}{\theta^{-1}-1} \implies$  perfect match

Dislocation Length 
$$\approx \frac{1}{b}$$
 Area Gap  
 $E_{\alpha,r} \approx r^2 E_{\alpha} = \sigma$  Area Gap with  $\sigma := \frac{E_{\alpha}}{\theta^{-2} - 1}$   
Hypothesis: Dislocation Energy  $\propto$  Dislocation Length. Then optimise over  $\theta$ .

Silvio Fanzon

Geometric Patterns and Microstructures

**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$  **Deformations:**  $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$  such that  $v = \frac{x}{\theta}$  on  $S_r$   $\implies v(S_r) = S_R$  (interface match) **Energy density:**  $W(F) \sim \operatorname{dist}(F, \alpha SO(3))^2$ **Elastic:**  $E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$ 



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$  **Deformations:**  $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$  such that  $v = \frac{x}{\theta}$  on  $S_r$   $\implies v(S_r) = S_R$  (interface match) **Energy density:**  $W(F) \sim \operatorname{dist}(F, \alpha SO(3))^2$  **Elastic:**  $E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$ **Plastic:**  $E_R^{pl}(\theta) := \sigma \operatorname{Area} \operatorname{Gap} = \sigma R^2(1 - \theta^2), \sigma > 0$ 



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$  **Deformations:**  $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$  such that  $v = \frac{x}{\theta}$  on  $S_r$   $\implies v(S_r) = S_R$  (interface match) **Energy density:**  $W(F) \sim \operatorname{dist}(F, \alpha SO(3))^2$  **Elastic:**  $E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$ **Plastic:**  $E_R^{pl}(\theta) := \sigma \operatorname{Area} \operatorname{Gap} = \sigma R^2(1 - \theta^2), \sigma > 0$ 

**Total Energy:** 
$$E_{\alpha,R}^{tot}(\theta) := \min_{\theta} \left( E_{\alpha,R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$



**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$  **Deformations:**  $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$  such that  $v = \frac{x}{\theta}$  on  $S_r$   $\implies v(S_r) = S_R$  (interface match) **Energy density:**  $W(F) \sim \operatorname{dist}(F, \alpha SO(3))^2$  **Elastic:**  $E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$ **Plastic:**  $E_R^{pl}(\theta) := \sigma \operatorname{Area} \operatorname{Gap} = \sigma R^2(1-\theta^2), \sigma > 0$ 



**Total Energy:** 
$$E_{\alpha,R}^{tot}(\theta) := \min_{\theta} \left( E_{\alpha,R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$

**Question:** behaviour of  $E^{tot}_{\alpha,R}(\theta)$  as  $R \to \infty$ ?

**Reference configuration:**  $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ , with  $r := \theta R$ ,  $\theta \in [\alpha^{-1}, 1]$  **Deformations:**  $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$  such that  $v = \frac{x}{\theta}$  on  $S_r$   $\implies v(S_r) = S_R$  (interface match) **Energy density:**  $W(F) \sim \operatorname{dist}(F, \alpha SO(3))^2$  **Elastic:**  $E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$ **Plastic:**  $E_R^{pl}(\theta) := \sigma \operatorname{Area} \operatorname{Gap} = \sigma R^2(1-\theta^2), \sigma > 0$ 

**Total Energy:** 
$$E_{\alpha,R}^{tot}(\theta) := \min_{\theta} \left( E_{\alpha,R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$

**Question:** behaviour of  $E^{tot}_{\alpha,R}(\theta)$  as  $R \to \infty$ ?

#### **Energy competition:**

- ▶  $\theta = 1 \implies$  no dislocation energy
- ▶  $\theta = \alpha^{-1} \implies$  no elastic energy
- ▶  $heta \in (lpha^{-1}, 1) \implies$  both present



$$(\mathbf{v} := \alpha \mathbf{x}, W(\alpha I) = \mathbf{0})$$

# Asymptotic for $E_{\alpha,R}^{tot}$

Let  $\theta_R \in [\alpha^{-1}, 1]$  be a minimiser for  $E^{tot}_{\alpha, R}$  and define

$$\mathcal{E}^{el}(R) := \frac{\sigma^2}{\alpha^3 C^{el}} R, \qquad \mathcal{E}^{pl}(R) := \sigma R^2 \left(1 - \frac{1}{\alpha^2}\right) - 2 \frac{\sigma^2}{\alpha^3 C^{el}} R.$$

#### Theorem (F., Palombaro, Ponsiglione '15)

As  $R \to +\infty$  we have

$$E_{\alpha,R}^{el}(\theta_R) = \mathcal{E}^{el}(R) + O(R), \qquad E_R^{pl}(\theta_R) = \mathcal{E}^{pl}(R) + O(R),$$

and therefore

$$E_{\alpha,R}^{tot} = \mathcal{E}^{el}(R) + \frac{\mathcal{E}^{pl}(R)}{(R)} + o(R).$$

In particular, for large R:

- dislocations are energetically more favourable,
- dislocation spacing (density) tends to  $\delta = \frac{b}{\alpha 1}$ ,
- far field stress is relieved.
# Idea of the Proof

Step 1. Rescale the elastic energy

 $E_{\alpha,R}^{el}(\theta) = R^3 \theta^3 E_{\alpha,1}^{el}(\theta)$ 

**Step 2.** Let  $\theta_R \in [\alpha^{-1}, 1]$  be a minimiser of  $E_{\alpha, R}^{tot}$ . Then, as  $R \to \infty$ 

 $E_{\alpha,1}^{el}(\theta_R) o 0$ ,  $\theta_R o \alpha^{-1} \implies$  Linearisation (about  $\alpha l$ )

**Step 3.** There exists  $C^{el} > 0$  such that, as  $R \to \infty$ ,

$$\frac{1}{(\theta_R^{-1} - \alpha)^2} E_{\alpha,1}^{el}(\theta_R) \to C^{el}$$

Step 4. Write the elastic energy as a polynomial

$$\mathsf{E}^{el}_{\alpha,R}(\theta_R) = R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2 \frac{1}{(\theta_R^{-1} - \alpha)^2} \mathsf{E}^{el}_{\alpha,1}(\theta_R) = \mathsf{k}^{el}_R R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2$$

where  $k_R^{el} := C^{el} + \varepsilon_R > 0$  and  $k_R^{el} \to C^{el}$ .

Dal Maso, Negri, Percivale. Set-Valued Analysis (2002).

Silvio Fanzon

Geometric Patterns and Microstructures

# Idea of the Proof

**Step 5.** The total energy computed along  $\theta_R$  is equal to

$$E_{\alpha,R}^{tot}(\theta_R) = k_R^{el} R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2 + \sigma R^2 (1 - \theta_R^2)$$
(1.1)

with  $\theta_R \to \alpha^{-1}$  minimisers and  $k_R^{el} \to C^{el}$ .

**Step 6.** For a fixed parameter k > 0, introduce the family of polynomials

$$\mathcal{P}_{R,k}( heta) := k R^3 heta^3 ( heta^{-1} - lpha)^2 + \sigma R^2 (1 - heta^2)$$

**Step 7.** Show that for  $R \gg 0$  there exists a unique minimiser  $\theta_R^m$  to

$$P_{R,k}(\theta_R^m) = \min_{\theta \in [\alpha^{-1},1]} P_{R,k}(\theta).$$

Moreover  $\theta_R^m \to \alpha^{-1}$ .

**Step 8.** Since  $\theta_R - \theta_R^m \to 0$ , by using (1.1), minimality, and computing  $P_{R,k}(\theta_R^m)$ , we have the thesis

$$E_{\alpha,R}^{tot}(\theta_R) = \underbrace{\frac{\sigma^2}{\alpha^3 C^{el}}R}_{\text{Elastic}} + \underbrace{\frac{\sigma R^2 (1 - \alpha^{-2}) - 2 \frac{\sigma^2}{\alpha^3 C^{el}}R}_{\text{Plastic}} + O(R).$$

Silvio Fanzon

# **Conclusions and Perspectives**

## **Conclusions:**

- A basic variational model describing the competition between the plastic energy spent at interfaces, and the corresponding release of bulk energy.
- The size of the overlayer is a free parameter  $\implies$  free boundary problem, but only through the scalar parameter  $\theta$ .

#### **Perspectives:**

- Grain boundaries, the misfit between the crystal lattices are described by rotations rather than dilations.
   Read, Shockley (1950) - Hirth, Carnahan (1992)
- Optimal geometry for the dislocation net (square vs hexagonal) Koslowski, Ortiz (2004)



# Presentation Plan

## **1** Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals

## **2** Microgeometries in Composites

- Critical lower integrability
- Convex integration
- Proof of our main result

# Polycrystals

**Polycrystal:** formed by many grains, having the **same** lattice structure, mutually rotated  $\implies$  interface misfit at **grain boundaries**.



**Goal:** obtain polycrystalline structures as minimisers of some energy functional. F., Palombaro, Ponsiglione. *Linearised Polycrystals from a 2D System of Edge Dislocations*. Preprint (2017)

# Tilt grain boundaries

Tilt boundary: small angle rotation  $\theta$  between grains  $\implies$  edge dislocations. Boundary structure: periodic array of edge dislocations with spacing  $\delta = \frac{\varepsilon}{\theta}$ .



Porter, Easterling. CRC Press (2009) - Gottstein. Springer (2013)

## Plan

**Setting:** consider a 2D system of  $N_{\varepsilon}$  edge dislocations, where  $\varepsilon > 0$  is the lattice spacing and

 $N_{arepsilon} 
ightarrow +\infty$  as arepsilon 
ightarrow 0.

Let  $\mathcal{F}_{\varepsilon}$  be the energy of such system.

#### Plan:

- compute  $\mathcal{F}$ , the  $\Gamma$ -limit of  $\mathcal{F}_{\varepsilon}$  as  $\varepsilon \to 0$ ,
- **>** show that under suitable boundary conditions  $\mathcal{F}$  is minimised by polycrystals.

Linearised polycrystals: our energy regime will imply

$$N_arepsilon \ll rac{1}{arepsilon}$$

 $\implies$  we have less dislocations than tilt grain boundaries. However we still obtain polycrystalline minimisers, but with grains rotated by an infinitesimal angle  $\theta \approx 0$ .

#### Linearised polycrystals

# Setting (linearised planar elasticity)

**Reference configuration:**  $\Omega \subset \mathbb{R}^2$  open bounded. **Dislocation lines:** points  $x_0 \in \Omega$  separated by  $2\varepsilon$ . **Burgers vectors:** finite set  $\mathcal{S} := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$ .





**Reference configuration:**  $\Omega \subset \mathbb{R}^2$  open bounded. **Dislocation lines:** points  $x_0 \in \Omega$  separated by  $2\varepsilon$ . **Burgers vectors:** finite set  $S := \{b_1, \ldots, b_s\} \subset \mathbb{R}^2$ . **Admissible dislocations:** finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathbf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$





**Reference configuration:**  $\Omega \subset \mathbb{R}^2$  open bounded. **Dislocation lines:** points  $x_0 \in \Omega$  separated by  $2\varepsilon$ . **Burgers vectors:** finite set  $S := \{b_1, \ldots, b_s\} \subset \mathbb{R}^2$ . **Admissible dislocations:** finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathbf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach:  $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$ .





Reference configuration:  $\Omega \subset \mathbb{R}^2$  open bounded. Dislocation lines: points  $x_0 \in \Omega$  separated by  $2\varepsilon$ . Burgers vectors: finite set  $S := \{b_1, \ldots, b_s\} \subset \mathbb{R}^2$ . Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathbf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach:  $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$ . Strains: inducing  $\mu$  are maps  $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$  s.t.

$$\operatorname{Curl} \beta \, {\displaystyle \sqsubseteq} \, \Omega_{\varepsilon}(\mu) = 0 \,, \quad \int_{\partial B_{\varepsilon}(\mathsf{x}_i)} \beta \cdot t \, ds = \xi_i \,.$$





Reference configuration:  $\Omega \subset \mathbb{R}^2$  open bounded. Dislocation lines: points  $x_0 \in \Omega$  separated by  $2\varepsilon$ . Burgers vectors: finite set  $S := \{b_1, \ldots, b_s\} \subset \mathbb{R}^2$ . Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathbf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach:  $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$ . Strains: inducing  $\mu$  are maps  $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$  s.t.

$$\operatorname{Curl} eta ot \Omega_{arepsilon}(\mu) = 0 \,, \quad \int_{\partial B_{arepsilon}(\mathsf{x}_i)} eta \cdot t \, ds = \xi_i \,.$$

Linearised Energy:  $\mathbb{C}F : F \sim |F^{\mathrm{sym}}|^2$ , then

$$E_{\varepsilon}(\mu,\beta) := \int_{\Omega_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx = \int_{\Omega} \mathbb{C}\beta : \beta \, dx \, .$$



Geometric Patterns and Microstructures





# Self-energy of a single dislocation core

Let  $\beta$  generate  $\xi \, \delta_0$ , that is "Curl  $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathbf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot t|^2 \, ds \, d\rho \geq \text{(Jensen)} \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \left| \int_{\partial B_{\rho}} \beta \cdot t \, ds \right|^2 d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \xi \otimes J \frac{x}{|x|^2}, \quad J := \text{clock-wise rotation of } \frac{\pi}{2}$$

**Remark:** let  $s \in (0, 1)$ , then

$$\int_{B_{\varepsilon^s} \setminus B_{\varepsilon}} |\beta|^2 \, dx \geq (1-s) \frac{|\xi|^2}{2\pi} |\log \varepsilon|$$

**Self-energy:** is of order  $|\log \varepsilon|$  and concentrated in a small region around  $B_{\varepsilon}$ .

# The Hard Core assumption

**HC Radius:** fixed scale  $\rho_{\varepsilon} \gg \varepsilon$ .

**Clusters** of dislocations at scale  $\rho_{\varepsilon}$  are identified with a single **multiple dislocation**.



# The Hard Core assumption

**HC Radius:** fixed scale  $\rho_{\varepsilon} \gg \varepsilon$ .

**Clusters** of dislocations at scale  $\rho_{\varepsilon}$  are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{x_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with  $\mathbb{S} := \operatorname{Span}_{\mathbb{Z}} \mathcal{S}$  set of multiple Burgers vectors, and

 $|x_i - x_j| > 2\rho_{\varepsilon}$ ,  $dist(x_k, \partial \Omega) > \rho_{\varepsilon}$ .



# The Hard Core assumption

**HC Radius:** fixed scale  $\rho_{\varepsilon} \gg \varepsilon$ .

**Clusters** of dislocations at scale  $\rho_{\varepsilon}$  are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with  $\mathbb{S} := \operatorname{Span}_{\mathbb{Z}} \mathcal{S}$  set of multiple Burgers vectors, and

$$|x_i - x_j| > 2
ho_{arepsilon} \,, \quad {\sf dist}(x_k,\partial\Omega) > 
ho_{arepsilon} \,.$$

#### Hypothesis on HC Radius: as $\varepsilon \rightarrow 0$

▶ 
$$\rho_{\varepsilon}/\varepsilon^{s} \to \infty$$
,  $\forall s \in (0,1)$ ,  
▶  $N_{\varepsilon}\rho_{\varepsilon}^{2} \to 0$ .

(HC contains almost all the self-energy) (Measure of HC region vanishes)



# Energy regimes

**Energy scaling:** each dislocation accounts for  $|\log \varepsilon| \implies$  relevant scaling is

 $E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|,$ 

**Rescaled energy functionals:** 

$$\mathcal{F}_arepsilon(\mu,eta):=rac{1}{|\mathcal{N}_arepsilon|\logarepsilon|}\int_{\Omega_arepsilon(\mu)}\mathbb{C}eta:eta\,\mathrm{d}\mathsf{x}\,.$$

**Energy regimes:** the behaviour of  $N_{\varepsilon}$  determines three different regimes:

- ▶  $N_{\varepsilon} \ll |\log \varepsilon| \rightsquigarrow$  Dilute dislocations
- $N_{\varepsilon} \approx |\log \varepsilon| \rightsquigarrow$  Critical regime

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. (JEMS) (2010)

• 
$$N_{\varepsilon} \gg |\log \varepsilon| \rightsquigarrow$$
 Super-critical regime

F., Palombaro, Ponsiglione. *Linearised Polycrystals from a 2D System of Edge Dislocations*. Preprint (2017)

Silvio Fanzon

# Candidate **F**-limit

Let  $(\mu, \beta)$  with  $\mu = \sum_{i=1}^{N} \xi_i \, \delta_{x_i}$  be such that "Curl  $\beta = \mu$ ".

Energy decomposition: let  $HC_{\varepsilon}(\mu) := \cup_{i=1}^{N} B_{\rho_{\varepsilon}}(x_i)$  be the HC region

$$E_{\varepsilon}(\mu,\beta) = \int_{\Omega \setminus \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx + \int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx \, .$$

$$\begin{split} \mathbf{\Gamma}\text{-limit:} \ & S \in L^2(\Omega; \mathbb{M}^{2 \times 2}_{\text{sym}}), \ A \in L^2(\Omega; \mathbb{M}^{2 \times 2}_{\text{skew}}), \ \mu \in \mathcal{M}(\Omega; \mathbb{R}^2) \text{ with } \text{Curl } A = \mu, \\ & \mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|}\right) \, d|\mu| \,. \end{split}$$

**Density**  $\varphi$ **:** the self-energy for a single dislocation core  $\xi \delta_0$  is

$$\psi(\xi) := \lim_{\varepsilon \to 0} \frac{1}{|\log \varepsilon|} \min_{\beta} \left\{ \int_{B_1 \setminus B_\varepsilon} \mathbb{C}\beta : \beta \, dx : \text{ "Curl } \beta = \xi \delta_0 \text{"} \right\}.$$

Define  $\varphi \colon \mathbb{R}^2 \to [0,\infty)$  as the relaxation of  $\psi$  (splitting multiple dislocations)

$$arphi(\xi) := \min\left\{\sum_{i=1}^M \lambda_i \psi(\xi_i): \ \xi = \sum_{i=1}^M \lambda_i \xi_i, \ M \in \mathbb{N}, \ \lambda_i \ge 0, \ \xi_i \in \mathbb{S}
ight\}.$$

Silvio Fanzon

# **F**-convergence result for $N_{\varepsilon} \gg |\log \varepsilon|$

## Theorem (F., Palombaro, Ponsiglione '17)

**Compactness:** consider  $(\mu_{\varepsilon}, \beta_{\varepsilon})$  s.t. "Curl  $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and  $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$ 

$$\begin{array}{l} \bullet \quad \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S , \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \quad in \quad L^{2}(\Omega; \mathbb{M}^{2\times 2}), \\ \bullet \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\longrightarrow} \mu \quad in \quad \mathcal{M}(\Omega; \mathbb{R}^{2}), \end{array}$$

• 
$$\mu \in H^{-1}(\Omega; \mathbb{R}^2)$$
 and  $\operatorname{Curl} A = \mu$ .

**Γ-convergence:** the functionals  $\mathcal{F}_{\varepsilon}$  Γ-converge to

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi\left(\frac{d\mu}{d|\mu|}\right) \, d|\mu| \,, \quad \text{with } \operatorname{Curl} A = \mu \,.$$

## Remark:

- ▶ S and A live on two different scales with  $S \ll A \implies$  terms in  $\mathcal{F}$  decoupled.
- ▶ In the critical regime  $N_{\varepsilon} \approx |\log \varepsilon|$  we have  $S \approx A$  and  $Curl(S + A) = \mu$ .

# Compactness of the measures

Let  $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$  and "Curl  $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}}\sum_{i=1}^{M_n}|\xi_{n,i}| \le C, \qquad (1.2)$$

so that  $\frac{\mu_n}{N_{\varepsilon_n}} \stackrel{*}{\rightharpoonup} \nu$ .

1

$$C \geq \mathcal{F}_{\varepsilon_{n}}(\mu_{n},\beta_{n}) \geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \frac{1}{|\log \varepsilon_{n}|} \int_{B_{\rho_{\varepsilon_{n}}}(x_{n,i}) \setminus B_{\varepsilon_{n}(x_{n,i})}} W(\beta_{n}) dx$$
  
$$\geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \psi_{\varepsilon_{n}}(\xi_{n,i}) = \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n,i}|^{2} \psi_{\varepsilon_{n}}\left(\frac{\xi_{n,i}}{|\xi_{n,i}|}\right) \geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n,i}|^{2}$$
  
$$\geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n,i}| = c \frac{|\mu_{n}|(\Omega)}{N_{\varepsilon_{n}}} \implies (1.2)$$

# Compactness of the strains

Symmetric Part:

$$\mathcal{CN}_{\varepsilon_n}|\log \varepsilon_n| \geq \mathcal{CE}_{\varepsilon_n}(\mu_n, \beta_n) \geq \mathcal{C}\int_{\Omega} |\beta_n^{\mathrm{sym}}|^2 dx \implies rac{\beta_n^{\mathrm{sym}}}{\sqrt{\mathcal{N}_{\varepsilon_n}|\log \varepsilon_n|}} \rightharpoonup S$$

**Skew Part:** since "Curl  $\beta_n = \mu_n$ " we can apply the generalised Korn inequality:

$$\int_{\Omega} |\beta_n^{\text{skew}}|^2 \, dx \le C \left( \int_{\Omega} |\beta_n^{\text{sym}}|^2 \, dx + \left( |\mu_n|(\Omega) \right)^2 \right) \qquad (\text{Gen. Korn})$$
$$\le C \left( \sqrt{N_{\varepsilon_n} |\log \varepsilon_n|} + N_{\varepsilon_n}^2 \right) \le C N_{\varepsilon_n}^2 \qquad (N_{\varepsilon} \gg |\log \varepsilon|)$$

so that  $\frac{\beta_n^{\text{skew}}}{N_{\varepsilon_n}} \rightharpoonup A.$ 

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. (JEMS) (2010)

# Adding boundary conditions

**Dirichlet type BC:** at level  $\varepsilon > 0$  fix a boundary condition  $g_{\varepsilon} \colon \Omega \to \mathbb{M}^{2 \times 2}$  s.t.

$$\frac{g_{\varepsilon}^{\rm sym}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S} \,, \qquad \frac{g_{\varepsilon}^{\rm skew}}{N_{\varepsilon}} \rightharpoonup g_{A} \,.$$

Admissible dislocations: measures  $\mu$  satisfying

$$\mu(\Omega) = \int_{\partial\Omega} g_{\varepsilon} \cdot t \, ds \,. \tag{GND}$$

Admissible strains:  $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$  such that "  $\operatorname{Curl} \beta = \mu$ " and

 $\beta \cdot t = g_{\varepsilon} \cdot t$  on  $\partial \Omega$ .

**Γ-limit:** the usual energy  $\mathcal{F}_{\varepsilon}$  **Γ**-converges to

 $\mathcal{F}_{\mathrm{BC}}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi\left(\frac{d\mu}{d|\mu|}\right) \, d|\mu| + \int_{\partial\Omega} \varphi((g_A - A) \cdot t) \, ds \, ,$ 

such that  $\operatorname{Curl} A = \mu$ , with  $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2)$ .

**Remark:**  $\beta_{\varepsilon}^{\text{sym}} \ll \beta_{\varepsilon}^{\text{skew}} \implies$  BC pass to the limit only for A.

Silvio Fanzon

# Minimising $\mathcal{F}_{BC}$ with piecewise constant BC

**Remark:** there are no BC on  $S \implies$  we can neglect elastic energy. **Piecewise constant BC:** Fix a piecewise constant BC

$$g_{\mathcal{A}} := egin{pmatrix} 0 & a \ -a & 0 \end{pmatrix}, \quad a := \sum_{k=1}^M m_k \, \chi_{U_k} \, ,$$

with  $m_k < m_{k+1}$  and  $\{U_k\}_{k=1}^M$  Caccioppoli partition of  $\Omega$ .

## Problem

Minimise

$$\mathcal{F}_{
m BC}(\mu,0,A) = \int_\Omega arphi\left(rac{d\mu}{d|\mu|}
ight) \, d|\mu| + \int_{\partial\Omega} arphi((g_A-A)\cdot t) \, ds \, ,$$

with  $\operatorname{Curl} A = \mu$  and  $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2)$ .

# Polycrystals as energy minimisers

## Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition  $g_A$ , there exists a piecewise constant minimiser of  $\mathcal{F}_{\rm BC}(\mu, 0, A)$ 

$$A=\sum_{k=1}^M A_k\chi_{E_k}\,,$$

with  $A_k \in \mathbb{M}^{2 \times 2}_{\text{skew}}$  and  $\{E_k\}_{k=1}^M$  Caccioppoli partition of  $\Omega$ . We interpret A as a linearised polycrystal.



**Open Question:** Are all minimisers piecewise constant? Uniqueness? **Essential:** that the boundary condition is piecewise affine on the whole  $\partial\Omega$ .





# Idea of the proof

**Problem:** given a piecewise constant BC  $g_A$ , consider

$$\inf\left\{\int_{\Omega}\varphi\left(\frac{d\mu}{d|\mu|}\right)\,d|\mu|+\int_{\partial\Omega}\varphi((g_{A}-A)\cdot t)\,ds:\,\operatorname{\mathsf{Curl}} A=\mu\in\mathcal{M}\cap H^{-1}\right\}$$

Since A and  $g_A$  are antisymmetric,  $\exists u, a \in L^2(\Omega)$  s.t.

$$A = \begin{pmatrix} 0 & u \\ -u & 0 \end{pmatrix}, \quad g_A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}.$$
  
Note: Curl  $A = Du \in \mathcal{M}(\Omega; \mathbb{R}^2) \implies u \in BV(\Omega) \implies$  Equivalent Problem:  
$$\inf \left\{ \int_{\Omega} \varphi \left( \frac{dDu}{d|Du|} \right) d|Du| + \int_{\partial\Omega} \varphi((u-a)\nu) \, ds : u \in BV(\Omega) \right\}.$$
(1.3)

**Proof:** let  $\tilde{u}$  be a minimiser for (1.3). By anisotropic Coarea Formula

$$\int_{\Omega} \varphi\left(\frac{dD\tilde{u}}{d|D\tilde{u}|}\right) \, d|D\tilde{u}| = \int_{\mathbb{R}} \operatorname{Per}_{\varphi}(\{x \in \Omega : \, \tilde{u}(x) > t\}) \, dt \, ,$$

we can select the levels with minimal perimeter. This defines the Caccioppoli partition.

# Comparison with classical Read-Shockley formula

**Read-Shockley formula:** Elastic energy=  $E_0\theta(1 + |\log \theta|)$ .

- > This energy corresponds to small rotations  $\theta$  between grains: small rotations but larger than linearised rotations.
- ▶ It is a nonlinear formula that corresponds to a higher energy regime.
- The density of dislocations to obtain small rotations is

Density 
$$pprox rac{1}{arepsilon} \gg N_{arepsilon}$$
 .

**Question: C**-convergence analysis of the Read-Shockley formula? Lauteri, Luckhaus. An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity. Preprint (2017)

Question: Are there some relevant energy regimes in between?

# **Conclusions and Perspectives**

#### **Conclusions:**

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

## Perspectives:

- Uniqueness of piecewise constant minimisers?
- Comparison with the Read-Shockley formula? Lauteri, Luckhaus. Preprint (2017).
- Dynamics for linearised polycrystals?

Taylor. Crystalline variational problems. Bull. Amer. Math. Soc. (1978).

Chambolle, Morini, Ponsiglione. *Existence and Uniqueness for a Crystalline Mean Curvature Flow.* Comm. Pure Appl. Math (2017).

Supercritical regime analysis starting from a non-linear energy? Müller, Scardia, Zeppieri. Geometric rigidity for incompatible fields and an application to strain-gradient plasticity. Indiana University Mathematics Journal (2014).

Silvio Fanzon

Geometric Patterns and Microstructures

# Presentation Plan

## **1** Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals

## **2** Microgeometries in Composites

- Critical lower integrability
- Convex integration
- Proof of our main result

# Gradient integrability for solutions to elliptic equations

 $\Omega \subset \mathbb{R}^2$  bounded open domain. A map  $\sigma \in L^{\infty}(\Omega; \mathbb{M}^{2 \times 2})$  is **uniformly elliptic** if  $\sigma \xi \cdot \xi \geq \lambda |\xi|^2$ ,  $\forall \xi \in \mathbb{R}^2, x \in \Omega$ .

## Problem

Study the gradient integrability of distributional solutions  $u \in W^{1,1}(\Omega)$  to

 $\operatorname{div}(\sigma\nabla u)=0\,,$ 

when

 $\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} \,,$ 

with  $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$  constant elliptic matrices,  $\{E_1, E_2\}$  measurable partition of  $\Omega$ .

## Application to composites:

- Ω is a section of a composite conductor obtained by mixing two materials with conductivities σ<sub>1</sub> and σ<sub>2</sub>,
- the electric field  $\nabla u$  solves (2.1),
- concentration of  $\nabla u$  in relation to the geometry  $\{E_1, E_2\}$ .

(2.1)

# Astala's Theorem



## Question

Are the exponents q and p optimal among two-phase elliptic conductivities

$$\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} ?$$

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)

# Astala's exponents for two-phase conductivities



For two-phase conductivities Astala's exponents  $q = q_{\sigma_1,\sigma_2}$  and  $p = p_{\sigma_1,\sigma_2}$  have been characterised.

Remark: it is sufficient to prove optimality in the case

$$\sigma_1 = \begin{pmatrix} 1/K & 0 \\ 0 & 1/S_1 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} K & 0 \\ 0 & S_2 \end{pmatrix},$$

where

$$K > 1$$
 and  $\frac{1}{K} \leq S_j \leq K$ ,  $j = 1, 2$ .

The corresponding critical exponents for Astala's theorem are

$$q_{\sigma_1,\sigma_2} = rac{2K}{K+1}, \quad p_{\sigma_1,\sigma_2} = rac{2K}{K-1}$$

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

Silvio Fanzon

Geometric Patterns and Microstructures

# Upper exponent optimality



## Theorem (Nesi, Palombaro, Ponsiglione '14)

Let  $\sigma_1 = \text{diag}(1/K, 1/S_1), \sigma_2 = \text{diag}(K, S_2)$  with K > 1 and  $S_1, S_2 \in [1/K, K]$ . (i) If  $\sigma \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$  and  $u \in W^{1, \frac{2K}{K+1}}(\Omega)$  solves

$$\operatorname{div}(\sigma \nabla u) = 0 \tag{2.2}$$

then  $\nabla u \in L^{\frac{2K}{K-1}}_{\text{weak}}(\Omega; \mathbb{R}^2).$ 

**(i)** There exists  $\bar{\sigma} \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$  and a weak solution  $\bar{u} \in W^{1,2}(\Omega)$  to (2.2) with  $\sigma = \bar{\sigma}$ , satisfying affine boundary conditions and such that  $\nabla \bar{u} \notin L^{\frac{2K}{K-1}}(\Omega; \mathbb{R}^2)$ .

## Question we address

Is the lower exponent  $\frac{2K}{K+1}$  optimal?

# Lower exponent optimality

$$1 \qquad p_n \longrightarrow \frac{2K}{K+1} \qquad 2 \qquad \frac{2K}{K-1}$$

## Theorem (F., Palombaro '17)

Let  $\sigma_1 = \text{diag}(1/K, 1/S_1), \sigma_2 = \text{diag}(K, S_2)$  with K > 1 and  $S_1, S_2 \in [1/K, K]$ . There exist

• coefficients 
$$\sigma_n \in L^{\infty}(\Omega; \{\sigma_1; \sigma_2\})$$
,

• exponents 
$$p_n \in \left[1, \frac{2K}{K+1}\right]$$
,

• functions  $u_n \in W^{1,1}(\Omega)$  such that  $u_n(x) = x_1$  on  $\partial \Omega$ ,

such that

$$\begin{aligned} \mathsf{div}(\sigma_n \nabla u_n) &= 0\,,\\ \nabla u_n \in L^{p_n}_{\mathrm{weak}}(\Omega; \mathbb{R}^2), \quad p_n \to \frac{2K}{K+1}, \quad \nabla u_n \notin L^{\frac{2K}{K+1}}(\Omega; \mathbb{R}^2) \end{aligned}$$

#### F., Palombaro. Calculus of Variations and Partial Differential Equations (2017)

# Presentation Plan

## **1** Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals

## **2** Microgeometries in Composites

- Critical lower integrability
- Convex integration
- Proof of our main result

# Solving differential inclusions

Theorem (Approximate solutions for two phases)

Let  $A, B \in \mathbb{M}^{2 \times 2}$ ,  $C := \lambda A + (1 - \lambda)B$  with  $\lambda \in [0, 1]$ , and  $\delta > 0$ . Assume that

 $B - A = a \otimes n$  for some  $a \in \mathbb{R}^2, n \in S^1$ . (Rank-one connection)

 $\exists$  piecewise affine Lipschitz map  $f: \Omega \to \mathbb{R}^2$  such that f(x) = Cx on  $\partial \Omega$  and

dist $(\nabla f, \{A, B\}) < \delta$  a.e. in  $\Omega$ .

## Solutions: built through simple laminates

- rank-one connection allows to laminate in direction n.
- $\triangleright \nabla f$  oscillates in  $\delta$ -neighbourhoods of A and B,
- $\blacktriangleright$   $\lambda$  proportion for A,  $1 \lambda$  proportion for B,
- this allows to recover boundary data C.

Müller. Variational models for microstructure and phase transitions.



# Laminates of first order

 $\mathcal{L}^2_\Omega$  is the normalised Lebesgue measure restricted to  $\Omega \rightsquigarrow \mathcal{L}^2_\Omega(B) := |B \cap \Omega| / |\Omega|.$ 

## Gradient distribution

Let  $f: \Omega \to \mathbb{R}^2$  be Lipschitz. The gradient distribution of f is the Radon measure  $\nabla f_{\#}(\mathcal{L}^2_{\Omega})$  on  $\mathbb{M}^{2 \times 2}$  defined by

$$\nabla f_{\#}(\mathcal{L}^2_{\Omega})(V) := \mathcal{L}^2_{\Omega}((\nabla f)^{-1}(V))\,, \quad \forall \ \text{Borel set} \ V \subset \mathbb{M}^{2 \times 2}$$

Let  $f_{\delta}$  be the map given by the previous Theorem. Then as  $\delta \rightarrow 0$ ,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}^{2}_{\Omega}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda) \delta_{\mathcal{B}} \quad \text{ in } \quad \mathcal{M}(\mathbb{M}^{2 \times 2}) \,.$$

The measure  $\nu$  is called a laminate of first order, and it encodes:

- Oscillations of  $\nabla f_{\delta}$  about  $\{A, B\}$  and their proportions.
- Boundary condition since the barycentre of  $\nu$  is  $\overline{\nu} := \int_{\mathbb{M}^{2\times 2}} M \, d\nu(M) = C$ .
- ▶ Integrability since for *p* > 1 we have

$$\frac{1}{|\Omega|}\int_{\Omega}|\nabla f_{\delta}|^{p}\,dx=\int_{\mathbb{M}^{2\times 2}}|M|^{p}\,d\nu_{\delta}(M)\,.$$
## Iterating the Proposition

Let  $C = \lambda A + (1 - \lambda)B$  with  $\lambda \in [0, 1]$  and rank(B - A) = 1. Let  $f : \Omega \to \mathbb{R}^2$  such that f(x) = Cx on  $\partial\Omega$ ,

 $dist(\nabla f, \{A, B\}) < \delta$  a.e. in  $\Omega$ .

Further splitting:  $B = \mu B_1 + (1 - \mu)B_2$  with  $\mu \in [0, 1]$ , rank $(B_2 - B_1) = 1$ .

**New gradient:** apply previous Proposition to the set  $\{x \in \Omega : \nabla f \sim B\}$  to obtain  $\tilde{f}: \Omega \to \mathbb{R}^2$  such that f(x) = Cx on  $\partial \Omega$ ,

 $\operatorname{dist}(\nabla \tilde{f}, \{A, B_1, B_2\}) < \delta$  a.e. in  $\Omega$ .

The gradient distribution of  $\tilde{f}$  is given by

$$\nu = \lambda \, \delta_A + (1 - \lambda) \mu \, \delta_{B_1} + (1 - \lambda) (1 - \mu) \, \delta_{B_2} \, .$$

#### Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let 
$$\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$$
 be a laminate of finite order, s.t.  
 $\mathbf{\overline{\nu}} = A$ .

• 
$$A = \sum_{i=1}^{N} \lambda_i A_i$$
 with  $\sum_{i=1}^{N} \lambda_i = 1$ .

Fix  $\delta > 0$ .  $\exists$  a piecewise affine Lipschitz map  $f: \Omega \to \mathbb{R}^2$  s.t.  $\nabla f \sim \nu$ , that is,

- dist $(\nabla f, \operatorname{supp} \nu) < \delta$  a.e. in  $\Omega$ ,
- f(x) = Ax on  $\partial \Omega$ ,
- $\blacktriangleright |\{x \in \Omega : |\nabla f(x) A_i| < \delta\}| = \lambda_i |\Omega|.$

#### Presentation Plan

#### **1** Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals

#### **2** Microgeometries in Composites

- Critical lower integrability
- Convex integration
- Proof of our main result

# Strategy of the Proof

**Strategy:** explicit construction of *u<sub>n</sub>* by **convex integration methods**.

**1** Rewrite the equation  $div(\sigma \nabla u) = 0$  as a differential inclusion

$$abla f(x) \in T$$
, for a.e.  $x \in \Omega$  (2.3)

for  $f: \Omega \to \mathbb{R}^2$  and an appropriate target set  $T \subset \mathbb{M}^{2 \times 2}$ . Note: *u* and *f* have the same integrability.

- **2** Construct a laminate  $\nu$  with supp  $\nu \subset T$  and the right integrability.
- **3** Convex integration Proposition  $\implies$  construct  $f: \Omega \to \mathbb{R}^2$  s.t.  $\nabla f \sim \nu$ . In this way f solves (2.3) and

$$abla f \in L^q_{ ext{weak}}(\Omega;\mathbb{R}^2)\,, \ \ q \in \left(rac{2K}{K+1}-oldsymbol{\delta},rac{2K}{K+1}
ight]\,, \qquad 
abla f 
otin L^{rac{2K}{K+1}}(\Omega;\mathbb{R}^2)\,.$$

These methods were developed for isotropic conductivities  $\sigma \in L^{\infty}(\Omega; \{KI, \frac{1}{K}I\})$ . The adaptation to our case is non-trivial because of the lack of symmetry of the target set T, due to the anisotropy of  $\sigma_1$  and  $\sigma_2$ .

Astala, Faraco, Székelyhidi. *Convex integration and the L<sup>p</sup> theory of elliptic equations*. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2008)

Silvio Fanzon

Geometric Patterns and Microstructures

## Rewriting the PDE as a differential inclusion

Let K>1,  $S_1,S_2\in [1/K,K]$  and define

$$\begin{split} \sigma_1 &:= \mathsf{diag}(1/\mathcal{K}, 1/S_1), \quad \sigma_2 := \mathsf{diag}(\mathcal{K}, S_2), \qquad \sigma := \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2}, \\ T_1 &:= \left\{ \begin{pmatrix} x & -y \\ S_1^{-1} y & \mathcal{K}^{-1} x \end{pmatrix} : \, x, y \in \mathbb{R} \right\}, \quad T_2 := \left\{ \begin{pmatrix} x & -y \\ S_2 y & \mathcal{K} x \end{pmatrix} : \, x, y \in \mathbb{R} \right\}. \end{split}$$

#### Lemma (F., Palombaro '17)

A function  $u \in W^{1,1}(\Omega)$  is solution to

 $\operatorname{div}(\sigma\nabla u)=0$ 

iff there exists  $v \in W^{1,1}(\Omega)$  such that  $f = (u, v) \colon \Omega \to \mathbb{R}^2$  satisfies

 $\nabla f(x) \in T_1 \cup T_2$  in  $\Omega$ .

Moreover  $E_1 = \{x \in \Omega \colon \nabla f(x) \in T_1\}$  and  $E_2 = \{x \in \Omega \colon \nabla f(x) \in T_2\}.$ 

Key Remark: *u* and *f* enjoy the same integrability properties.

## Targets in conformal coordinates

**Conformal coordinates:** Let  $A \in \mathbb{M}^{2 \times 2}$ . Then  $A = (a_+, a_-)$  for  $a_+, a_- \in \mathbb{C}$ , defined by

$$Aw = a_+w + a_- \overline{w}, \quad \forall w \in \mathbb{C}.$$

The sets of conformal linear maps and anti-conformal linear maps are

$$\begin{split} E_0 &:= \{(z,0): \ z \in \mathbb{C}\} & (\text{Conformal maps}) \\ E_\infty &:= \{(0,z): \ z \in \mathbb{C}\} & (\text{Anti-conformal maps}) \end{split}$$

Target sets in conformal coordinates are

 $T_1 = \left\{ \left(a, d_1(\overline{a})\right) : \ a \in \mathbb{C} \right\}, \qquad T_2 = \left\{ \left(a, -d_2(\overline{a})\right) : \ a \in \mathbb{C} \right\},$ 

where the operators  $d_j \colon \mathbb{C} \to \mathbb{C}$  are defined as

$$d_j(a):=k\,\operatorname{Re} a+i\,s_j\,\operatorname{Im} a\,,\quad ext{with}\quad k:=rac{K-1}{K+1}\quad ext{and}\quad s_j:=rac{S_j-1}{S_j+1}$$

Let 
$$heta \in [0, 2\pi]$$
,  $JR_{ heta} = (0, e^{i\theta})$ .  
 $JR_{ heta} = \lambda_1 A_1 + (1 - \lambda_1)P_1$ 







Let 
$$\theta \in [0, 2\pi]$$
,  $JR_{\theta} = (0, e^{i\theta})$ .  
 $JR_{\theta} = \lambda_1 A_1 + (1 - \lambda_1)P_1$   
 $= \lambda_1 A_1 + (1 - \lambda_1)(\mu_1 B_1 + (1 - \mu_1) 2JR_{\theta})$   
 $\sim \nu_1$   
 $2JR_{\theta} = \lambda_2 A_2 + (1 - \lambda_2)P_2$ 



Let 
$$\theta \in [0, 2\pi]$$
,  $JR_{\theta} = (0, e^{i\theta})$ .  
 $JR_{\theta} = \lambda_1 A_1 + (1 - \lambda_1)P_1$   
 $= \lambda_1 A_1 + (1 - \lambda_1)(\mu_1 B_1 + (1 - \mu_1) 2JR_{\theta})$   
 $\sim \nu_1$   
 $2JR_{\theta} = \lambda_2 A_2 + (1 - \lambda_2)P_2$   
 $= \lambda_2 A_2 + (1 - \lambda_2)(\mu_2 B_2 + (1 - \mu_2) 3JR_{\theta})$   
 $\sim \nu_2$ 





 $p(\theta) = \frac{2K}{K+1}$ 

 $E_{\infty}$ 3 $JR_{\theta}$ 

 $2JR_{\theta}$ 

JRA

 $T_1$ 

 $E_0$ 

 $T_2$ 

Ab





 $E_{\infty}$ 3 $JR_{\theta}$ 







Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$
  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\rightsquigarrow$  growth  $p_1$ 



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
**Step A.** Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
**Step B.** Laminate  $\nu_1$  from  $J$  to  $2J \rightsquigarrow$  growth  $p_1$ 



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
**Step A.** Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
**Step B.** Laminate  $\nu_1$  from  $J$  to  $2J \rightsquigarrow$  growth  $p_1$ 



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\sim$  growth  $p_1$   
Step C. Proposition  $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$   
and  $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$  grows like  $p_1$ 

This determines the exponent range  $I_{\delta}$ 



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\sim$  growth  $p_1$   
Step C. Proposition  $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$   
and  $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$  grows like  $p_1$ 

This determines the exponent range  $I_{\delta}$ 



$$\begin{array}{ll} \operatorname{Recall} \ I_{\delta} := \Big( \frac{2K}{K+1} - \delta, \frac{2K}{K+1} \Big]. \\ \begin{array}{ll} \operatorname{Step} \ A. \ \operatorname{Define} \ f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1} \\ \begin{array}{ll} \operatorname{Step} \ B. \ \operatorname{Laminate} \ \nu_1 \ \operatorname{from} \ J \ \operatorname{to} \ 2J \sim \ \operatorname{growth} \ p_1 \\ \end{array} \\ \begin{array}{ll} \operatorname{Step} \ C. \ \operatorname{Proposition} \implies \exists \ \operatorname{map} \ f_2 \ \operatorname{st.} \ f_2 = Jx \ \operatorname{on} \ \partial\Omega \\ & \operatorname{and} \ \nabla f_2 \sim \operatorname{supp} \nu_1 \implies \nabla f_2 \ \operatorname{grows} \ \operatorname{like} \ p_1 \end{array}$$

This determines the exponent range  $I_{\delta}$ 



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\sim$  growth  $p_1$   
Step C. Proposition  $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$   
and  $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$  grows like  $p_1$ 

This determines the exponent range  $I_{\delta}$ 

Step 1. One step of the staircase

► Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$ 





This determines the exponent range  $I_{\delta}$ 

Step 1. One step of the staircase

► Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$ 



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\rightsquigarrow$  growth  $p_1$   
Step C. Proposition  $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$   
and  $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$  grows like  $p_1$ 

This determines the exponent range  $I_{\delta}$ 

- Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$
- Climb from  $(2 + \rho)JR_{\theta_2}$  to  $3JR_{\theta_2}$



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\rightsquigarrow$  growth  $p_1$   
Step C. Proposition  $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$   
and  $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$  grows like  $p_1$ 

This determines the exponent range  $I_{\delta}$ 

- Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$
- Climb from  $(2 + \rho)JR_{\theta_2}$  to  $3JR_{\theta_2}$



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\rightsquigarrow$  growth  $p_1$   
Step C. Proposition  $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$   
and  $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$  grows like  $p_1$ 

This determines the exponent range  $I_{\delta}$ 

- Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$
- Climb from  $(2 + \rho)JR_{\theta_2}$  to  $3JR_{\theta_2}$



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\rightsquigarrow$  growth  $p_1$   
Step C. Proposition  $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$   
and  $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$  grows like  $p_1$ 

This determines the exponent range  $I_{\delta}$ 

Step 1. One step of the staircase

- Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$
- Climb from  $(2 + \rho)JR_{\theta_2}$  to  $3JR_{\theta_2}$

▶  $\sim$  Laminate  $\nu_2$  with  $\overline{\nu}_2 = W_1$  and growth  $p_2$ 



Recall 
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.  
Step A. Define  $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$   
Step B. Laminate  $\nu_1$  from J to 2J  $\rightsquigarrow$  growth  $p_1$   
Step C. Proposition  $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$   
and  $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2$  grows like  $p_1$ 

This determines the exponent range  $I_{\delta}$ 

Step 1. One step of the staircase

- Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$
- Climb from  $(2 + \rho)JR_{\theta_2}$  to  $3JR_{\theta_2}$
- $\rightsquigarrow$  Laminate  $\nu_2$  with  $\overline{\nu}_2 = W_1$  and growth  $p_2$

**Step 2.** Define map  $f_3$  by modifying  $f_2$ 





This determines the exponent range  $I_{\delta}$ 

Step 1. One step of the staircase

- Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$
- Climb from  $(2 + \rho)JR_{\theta_2}$  to  $3JR_{\theta_2}$
- $\sim$  Laminate  $\nu_2$  with  $\overline{\nu}_2 = W_1$  and growth  $\rho_2$

**Step 2.** Define map  $f_3$  by modifying  $f_2$ 

► Proposition  $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and  $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } p_2$ 





This determines the exponent range  $I_{\delta}$ 

Step 1. One step of the staircase

- Split  $W_1$ . Since  $W_1 \sim 2J \implies$  point  $(2 + \rho)JR_{\theta_2}$  with  $\theta_2$ ,  $\rho$  small.  $\implies p_2 \in I_{\delta}$
- Climb from  $(2 + \rho)JR_{\theta_2}$  to  $3JR_{\theta_2}$
- $\sim$  Laminate  $\nu_2$  with  $\overline{\nu}_2 = W_1$  and growth  $\rho_2$

**Step 2.** Define map  $f_3$  by modifying  $f_2$ 

► Proposition  $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and  $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } p_2$ 









 $p_2 \frac{2K}{K+1}$ 

 $E_{\infty}$ 

2Y

 $(2 + \rho)JR_{\theta}$ 

 $T_1$ 

En

 $T_2$ 

W<sub>2</sub> 3JR<sub>θ</sub>

 $W_1$ 









## Conclusions and Perspectives

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{2.4}$$

when  $\sigma \in \{\sigma_1, \sigma_2\}$  for  $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$  elliptic.

Optimal exponents q<sub>σ1,σ2</sub> and p<sub>σ1,σ2</sub> were already characterised and the upper exponent p<sub>σ1,σ2</sub> was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent  $q_{\sigma_1,\sigma_2}$ .

#### **Perspectives:**

- Stronger result for lower critical exponent: showing  $\exists u \in W^{1,1}(\Omega)$  solution to (2.4) and s.t.  $\nabla u \in L^{\frac{2K}{K+1}}_{weak}(\Omega; \mathbb{R}^2)$  but  $\nabla u \notin L^{\frac{2K}{K+1}}(B; \mathbb{R}^2)$ ,  $\forall$  ball  $B \subset \Omega$ . Modifying staircase laminate?
- Extend these results to three-phase conductivities  $\sigma \in \{\sigma_1, \sigma_2, \sigma_3\}$ .
- Dimension d ≥ 3? Even only in the isotropic case σ ∈ {KI, K<sup>-1</sup>I} for K > 1. Main difficulty: Astala's Theorem is missing in higher dimensions.

Thank You!