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Edge dislocations

Dislocations: topological defects in the otherwise periodic structure of a crystal.
Edge dislocation: pair (7, ¢) of dislocation line and Burgers vector, with & L ~.
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Screw dislocations

of dislocation line and Burgers vector, with £ //~.

Screw dislocation: pair (7, &)

slip plane
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Mixed type dislocations

Mixed dislocations: Burgers vector £ is constant and -y is curved.
Dislocation type: given by the angle between £ and 7.
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Nonlinear Elasticity

Reference configuration: Q C R3 open bounded
Deformations: regular maps v: Q — R3
Deformation strain: §:= Vv: Q — M3*3

Energy: associated to a deformation strain (8
E(9) = | W()ax.

Energy Density: W: M3*3 — [0, 00) s.t.
» W is continuous

> W(F) = W(RF), VR € SO(3), F € M*?
(frame indifferent),

> W(F) ~ dist(F,SO(3))? = W(I)=0.

Silvio Fanzon Geometric Patterns and Microstructures

Brighton, 11 December 2017 6/62



Part | - Geometric Patterns of Dislocations Dislocations

Semi-discrete model for dislocations

Dislocation lines: Lipschitz curves v C €2 such
that Q\ v is not simply connected

Burgers vector: £ € S set of slip directions

Strain generating (v, &): map 3: Q — M3*3 s t. —

- 2 Gl 1 N ¥ A
Curlf=—-€ER7H Ly B-tdH =¢. .. N
C N o \
\\ C \\

Geometric interpretation: if D encloses ~y, there | |~~~ 777777
exists a deformation v € SBV(Q; R3) s.t.

Dv=Vvdx+£@nH3’LD, B=Vv.

v has constant jump & across the slip region D.
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Strains are not L2

Let 8 generate (v,&). Consider € > 0 and

I.(7) = {x e R®: dist(x,7) < ¢e}.

Then we have DY

1B()] ~ Tot6e o) in I.(v) = B¢ L(L(7)) —

Proof: let o > ¢ and L := length(~) \\ 7@ \\\\
Sy %ls('y) .
/ 181 = L/ / BRdH dp L |
fo\te e JoB,(x(s))

2
71
(Jensen) > L/ — / B-tdH?
27p |JoB, (+(5))

dp
IE\2
Iog— — 00 as € =0
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Regularise the problem

Energy Truncation. Fix p € (1,2) and assume
W(F) ~ dist(F,SO(3))> A (|F|P +1).

Strains are maps 3 € L2(Q; M3*3) such that

CurlB=—-E@YH L ~. ¢

Core Radius Approach. Assume _

AN y
. 2 \\ 8 \\
W(F) ~ dist(F, SO(3))*. C@ls(v)\

Let € > 0 (oc atomic distance) and consider | [ 0

Q.(7) =Q\ (7).

Strains are maps 3 € L2(Q.(7); M®*3) such that

Curl BL Q.(y) =0, /B~td7—l1 =¢.
C
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Semi-coherent interfaces

Two different crystalline materials joined at a flat interface:
> Underlayer: cubic lattice A~, spacing b > 0 (equilibrium /),
> Overlayer: lattice AT = @A™, with a > 1 (not in equilibrium).
Semi-coherent interface: small dilation o = 1.

Equilibrium: A" has lower density than A~ =— edge dislocations at interface.

e o 0o o

e 0o 0o o

o o o o

o 0o o o

/\+ o 060 o
® o 00

® o 0 o
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Network of dislocations

Experimentally observed phenomena:

interface

¢ dislocation
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Network of dislocations

Experimentally observed phenomena:

> two non-parallel sets of edge dislocations with spacing § = _b_
a—1
> far field stress is completely relieved.
ab
? A
l 00 6610 0 06 06 6 6. 10 @ ©
pd
|
) P PR P A—
= = b

D.A. Porter, K.E. Easterling. Phase transformations in metals and alloys. CRC Press (2009)

G. Gottstein. Physical foundations of materials science. Springer (2013)
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Goal of the Paper

R is the size of the interface.

Goal: define a continuum model such that

»  critical size R* such that nucleation of dislocations is energetically more
favorable for R > R™,

» as R — oo the far field stress is relieved,

» the dislocation spacing tends to § = 1
a p—

Plan:

» analysis of a semi-discrete model where dislocations are line defects,

> derive the simplified (dislocation density) continuum model.

F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces.
Journal of Nonlinear Science (2017)

Silvio Fanzon Geometric Patterns and Microstructures Brighton, 11 December 2017 13 /62



Part | - Geometric Patterns of Dislocations Semi-coherent interfaces

Semi-discrete line defect model

Reference configuration: Q, := Q- US, UQS, r >0,
> QF overlayer (equilibrium al),
> Q- underlayer (in equilibrium and rigid).

Energy density: W : M3*3 — [0, 00) continuous, s.t.

> W(F)= W(RF), YR € SO(3) (frame indifference),
> W(F) ~ dist(F,aSO(3))?> A(|F|P+1) for 1 < p < 2.

Admissible dislocations: compatible with cubic lattice.
(I,B) e ADif I = {v;}, B ={&} with

» dislocation line v; C G relatively closed,
> Burgers vector & € b(Z D Z).

Admissible strains: for a dislocation (I, B) are the maps
3 € AS(T, B), such that 3 € LP(Q,; M3*3) and

B=1in Q, Curlf=—-6QAHILT.

Silvio Fanzon Geometric Patterns and Microstructures
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Scaling properties of the energy

Energies: induced by the misfit

E,..(0) := inf{ W(B)dx: Curlg = 0} (Elastic energy)
Jar
E.,h:= (r,gienADinf{ o W(B)dx: g e AS(T, B)} (Plastic energy)

Theorem (F., Palombaro, Ponsiglione '15)

The dislocation-free elastic energy scales like r*: we have E, 1(0)) > 0 and
Eor(0) = r*E,1(0).
The plastic energy scales like r?: there exists 0 < E,, < +oc such that

Eor= r? Eo + O(rz) :

Large r = dislocations are energetically favourable.

Miiller, Palombaro. Calculus of Variations and Partial Differential Equations (2008, 2013).
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Upper bound construction

Goal: define a square array of edge dislocations with spacing ¢ :=
> Divide S, into (r/d)? squares of side §.
> Above each @; define pyramids C} (height §/2) and C? (height §).
» Define deformation v € SBV(Q,; R®), and strain 3 := Vv (a.c. part of Dv).
Induced dislocations: Curl 8= —3_, .&; ® dH' L ~y; with
> ;i := Qi N Q; admissible dislocation curve (¢ =1+ 1/n = & = nb)
> &= (a—1)(xj — x;) € £b{er, &2} Burgers vector

Energy: in each pyramid is ¢ = c(a, b, p) = E,, < c (as W(al) = 0).

vV = aX
QF
1)
Qr_ V=X X+(O¢*1)X,‘ QITU> Qj X+(a_1))<j
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Remarks on the semi-discrete model

Deformed configuration: v(Sg) with v from the upper bound construction
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Remarks on the semi-discrete model

Deformed configuration: v(Sg) with v from the upper bound construction
or
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Remarks on the semi-discrete model

Deformed configuration: v(Sg) with v from the upper bound construction

ar
Eﬂ
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Remarks on the semi-discrete model

Deformed configuration: v(Sg) with v from the upper bound construction

ar
Eﬁ
IIIIIIIIII e @ o0 @ 00 © 006 000 0 O
s b e o0 @ o0 @ 00 © 00 © 0 O
eoe 000 000 000 000 A
eeo0o. 000000 . 000000
000 000000000000
IIIIIIIIII 000000000000 0O00OO
0000000000000 0O00O A~
o

EEEE  coeciiiena
5= b b
"

a—1

Limitations of the considered model:
> v(S,) does not match S, = not appropriate for semi-coherent interfaces,
» expected dislocation geometry with spacing ﬁ is only optimal in scaling.
What we do now:
» take a smaller overlayer and enforce match at the interface,
> introduce a simplified continuum (dislocation density) model to better
describe true minimisers.
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Heuristic for the continuum model

Reference configuration: Qg , := Qz US, UQ;, with r:=0R, 0 € [a™},1]
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Heuristic for the continuum model

Reference configuration: Qg , := Qz US, UQ;, with r:=0R, 0 € [a™},1]

Upper bound construction: with § = o~ and 6§ = 97?—1
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Heuristic for the continuum model

Reference configuration: Qg , := Qz US, UQ;, with r:=0R, 0 € [a™},1]
Upper bound construction: with § = o~ and 6§ = ﬁ = perfect match
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Heuristic for the continuum model

Reference configuration: Qg , := Qz US, UQ;, with r:=0R, 0 € [a™},1]
Upper bound construction: with § = o~ and 6§ = ﬁ = perfect match

roo2rr ) 2 .o g 1
Lf2RS—T(0 —077) = F(G _1)_B(R fr)szreaGap

Silvio Fanzon Geometric Patterns and Microstructures Brighton, 11 December 2017 18 /62



Part | - Geometric Patterns of Dislocations Semi-coherent interfaces

Heuristic for the continuum model

Reference configuration: Qg , := Qz US, UQ;, with r:=0R, 0 € [a™},1]
Upper bound construction: with § = o~ and 6§ = ﬁ = perfect match
1

b Area Gap

Dislocation Length &~
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Heuristic for the continuum model

Reference configuration: Qg , := Qz US, UQ;, with r:=0R, 0 € [a™},1]
Upper bound construction: with § = o~ and 6§ = ﬁ = perfect match
1

b Area Gap

Dislocation Length &~
E,, ~ r’E,

2]
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Heuristic for the continuum model

Reference configuration: Qg , := Qz US, UQ;, with r:=0R, 0 € [a™},1]
Upper bound construction: with § = o~ and 6§ = ﬁ = perfect match

1
Dislocation Length ~ EArea Gap

Eor~ r?E.,= o Area Gap with o := o
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Heuristic for the continuum model

Reference configuration: Qg , := Qz US, UQ;, with r:=0R, 0 € [a™},1]
Upper bound construction: with § = o~ and 6§ = ﬁ = perfect match

1
Dislocation Length ~ EArea Gap

E
E.,~ r’E,= o Area Gap with o := ﬁ
Hypothesis: Dislocation Energy o Dislocation Length. Then optimise over 6.
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Continuum model

Reference configuration: Qg, = Qp U S, UQ/, with — o+
r:=0R, 6¢cla"11] e r

Deformations: v € W12(Q;5; R3) such that v = % on S, : 3 >
= v(S,) = Sg (interface match) ‘ Sk
Energy density: W(F) ~ dist(F,aS0(3))?

Elastic: £5/q(0) := inf { fo: W(Vv)dx: v=x/0on 5, } 3 Qp

Silvio Fanzon Geometric Patterns and Microstructures Brighton, 11 December 2017 19/62
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Continuum model

Reference configuration: Qg, = Qp U S, UQ/, with
r:=0R, 6¢€la"11]

Deformations: v € W12(QF; R3) such that v = % on S,
= v(S,) = Sg (interface match)

Energy density: W(F) ~ dist(F,aS0(3))?

Elastic: E€o(0) = inf{fm W(Vv)dx: v =x/0 on 5,}
Plastic: E5/(0) := o Area Gap = oR2(1 — 62), 0 >0
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Continuum model

Reference configuration: Qg, = Qp U S, UQ/, with
r:=0R, 6¢€la"11]

Deformations: v € W12(QF; R3) such that v = % on S,
= v(S,) = Sg (interface match)

Energy density: W(F) ~ dist(F,aS0(3))?

Elastic: E€o(0) = inf{fm W(Vv)dx: v =x/0 on 5,}
Plastic: E5/(0) := o Area Gap = oR2(1 — 62), 0 >0

Total Energy: EL%%(6) = min (E:{R(e) + E,g’(e))
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Continuum model

Reference configuration: Qg, = Qp U S, UQ/, with
r:=0R, 6¢€la"11]

Deformations: v € W12(QF; R3) such that v = % on S,
= v(S,) = Sg (interface match)

Energy density: W(F) ~ dist(F,aS0(3))?

Elastic: E€o(0) = inf{fm W(Vv)dx: v =x/0 on 5,}
Plastic: E5/(0) := o Area Gap = oR2(1 — 62), 0 >0

Total Energy: EL%%(6) = min (E” <(0) + E,g’(e))

Question: behaviour of Ei°;(f) as R — 0o ?
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Continuum model

Reference configuration: Qg, = Qp U S, UQ/, with
r:=0R, 6¢€la"11]

Deformations: v € W12(QF; R3) such that v = % on S,
= v(S,) = Sg (interface match)

Energy density: W(F) ~ dist(F,aS0(3))?

Elastic: £/ (6) := inf{fm W(Vv)dx: v =x/0 on 5,}
Plastic: E5/(0) := o Area Gap = oR2(1 — 62), 0 >0

Total Energy: EL%%(6) = min (E” <(0) + Eg’(e))

Question: behaviour of Ei°;(f) as R — 0o ?

Energy competition:
» § =1 = no dislocation energy
> 0 =a"! = no elastic energy (v :=ax, W(al)=0)
» 0 c(al,1) = both present
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Asymptotic for E'%,

a’
Let O € [a~", 1] be a minimiser for £ and define

o2

el A
£5(R) = e

1 o?
/ R 2

Theorem (F., Palombaro, Ponsiglione '15)

As R — 400 we have

ESr(9r) = £9(R) + O(R),  ER(0r) = £”(R) + O(R),
and therefore
EXR = E9(R) + EP/(R) + o(R).
In particular, for large R:
» dislocations are energetically more favourable,

> dislocation spacing (density) tends to § = £,

» far field stress is relieved.

Silvio Fanzon Geometric Patterns and Microstructures Brighton, 11 December 2017 20/62
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|dea of the Proof
Step 1. Rescale the elastic energy
Eq r(0) = R°0° ES1(0)
Step 2. Let fg € [a',1] be a minimiser of EX%. Then, as R — oo
E§{1(9R) —0, 6r—a ' = Linearisation (about /)

Step 3. There exists C¢ > 0 such that, as R — oo,

1
5 Ea1(0r) = C
(0" — @)?

Step 4. Write the elastic energy as a polynomial

_ 1 . . _
EXr(0r) = ROK(0" — o) ooy 5 B2 (0) = KER0R (6 — o)’
R

where kg := C¥ +eg >0 and kg — C°.

Dal Maso, Negri, Percivale. Set-Valued Analysis (2002).

Silvio Fanzon Geometric Patterns and Microstructures Brighton, 11 December 2017

21/62



Part | - Geometric Patterns of Dislocations Semi-coherent interfaces

Idea of the Proof

Step 5. The total energy computed along 60 is equal to

EXL(0r) = kg RP0%(05" — o) + oR*(1 — 6%) (1.1)

1

with g — a~! minimisers and kg — C¢.

Step 6. For a fixed parameter k > 0, introduce the family of polynomials
Pri() :== k R%3(67! — a)? + oR?(1 — 6?)
Step 7. Show that for R > 0 there exists a unique minimiser 67 to
Prk(0R) = ee[@iﬁ Pr(0) .

11
Moreover 0F — a L.
Step 8. Since Or — 0F — 0, by using (1.1), minimality, and computing Pr «(67).
we have the thesis

EXR(0r) = R+oR*(1—a?) - 2— R +O(R).

3C’ C

Elastic Plastic
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Conclusions and Perspectives

Conclusions:
» A basic variational model describing the competition between the plastic
energy spent at interfaces, and the corresponding release of bulk energy.
» The size of the overlayer is a free parameter = free boundary problem, but
only through the scalar parameter 6.

Perspectives:
» Grain boundaries, the misfit between the crystal lattices are described by
rotations rather than dilations.
Read, Shockley (1950) - Hirth, Carnahan (1992)

» Optimal geometry for the dislocation net (square vs hexagonal)
Koslowski, Ortiz (2004)

Rotation Axis Roécation Axis

%!

Tilt boundary Twist boundary

Boundary plane Boundary plane
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Polycrystals

Polycrystal: formed by many grains, having the same lattice structure, mutually
rotated = interface misfit at grain boundaries.

Goal: obtain polycrystalline structures as minimisers of some energy functional.
F., Palombaro, Ponsiglione. Linearised Polycrystals from a 2D System of Edge Dislocations. Preprint (2017)
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Tilt grain boundaries

Tilt boundary: small angle rotation 6 between grains = edge dislocations.

€
Boundary structure: periodic array of edge dislocations with spacing § = 7

| ™

o | =

Porter, Easterling. CRC Press (2009) - Gottstein. Springer (2013)
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Plan

Setting: consider a 2D system of N edge dislocations, where € > 0 is the lattice
spacing and
N, — 400 as e—0.

Let F. be the energy of such system.

Plan:
» compute F, the I'-limit of . as ¢ — 0,

» show that under suitable boundary conditions F is minimised by polycrystals.
Linearised polycrystals: our energy regime will imply
1
N, < —
€

= we have less dislocations than tilt grain boundaries. However we still obtain
polycrystalline minimisers, but with grains rotated by an infinitesimal angle 6 ~ 0.
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Setting (linearised planar elasticity)

Reference configuration: Q C R? open bounded.
Dislocation lines: points xg € £ separated by 2¢.
Burgers vectors: finite set S := {b;, ..., bs} C R

Silvio Fanzon Geometric Patterns and Microstructures
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Linearised polycrystals

Setting (linearised planar elasticity)

Reference configuration: Q C R? open bounded.
Dislocation lines: points xg € £ separated by 2¢.
Burgers vectors: finite set S := {b;,..., b} C R2

Admissible dislocations: finite sums of Dirac masses

N
;L::Zf,-(sx/., & eS.
i=1

L —
S

W
\J

QxR

-y =3

Silvio Fanzon Geometric Patterns and Microstructures
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Linearised polycrystals

Setting (linearised planar elasticity)
Reference configuration: Q C R? open bounded.

Dislocation lines: points xg € £ separated by 2¢.
Burgers vectors: finite set S = {b;

bs} C R? : >
Admissible dislocations: finite sums of Dirac masses

N
,U,Z:Zg,‘(SX” & esS. QxR
i=1

Core radius approach: Q.(u) = Q\ UB.(x;).

Silvio Fanzon Geometric Patterns and Microstructures
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Setting (linearised planar elasticity)

Reference configuration: Q C R? open bounded.
Dislocation lines: points xg € £ separated by 2¢.
Burgers vectors: finite set S := {b;, ..., bs} C R

Admissible dislocations: finite sums of Dirac masses
N
W= Zg,-&x,., &eS.
i=1

Core radius approach: Q.(u) = Q\ UB.(x;).
Strains: inducing p are maps 3: Q.(u) — M2%2 s.t.

Curl pL Q. () =0, / B-tds=¢&.
OB (xi)

Silvio Fanzon Geometric Patterns and Microstructures
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Setting (linearised planar elasticity)
Reference configuration: Q C R? open bounded.

Dislocation lines: points xg € £ separated by 2¢. /‘7\
Burgers vectors: finite set S := {b;,..., b} C R2 &,\ ~ |

Admissible dislocations: finite sums of Dirac masses

N
,U,Z:Zg,‘(SX” & esS. QxR
i=1

Core radius approach: Q.(u) :=Q\ UB.(x;) . \_,\;%

Strains: inducing p are maps 3: Q.(u) — M2%2 s.t.

Curl pL Q. () =0, / B-tds=¢&.
OB (xi)

Linearised Energy: CF : F ~ |F™|2, then

E(1,8) 1= /Q()
JQ(p

Silvio Fanzon Geometric Patterns and Microstructures Brighton, 11 December 2017 28/62
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Self-energy of a single dislocation core

Let B generate £ dg, that is “Curl 8 = £ §p"

1
/ |6|2dx2/ / |3 - t|>dsdp > (Jensen)
B\ Be e JoB,

11 €12

> - ) ol
2

2
- td
o B MLRL

dp = |logel.

9B,
The reverse inequality can be obtained by computing the energy of

1 X

— ¢&®J——, J:= clock-wise rotation of T
2m |x|2

B(x) =

Remark: let s € (0,1), then

[ ipracz - 95 oge
B.s\B. - 27

Self-energy: is of order |loge| and concentrated in a small region around B..
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

The Hard Core assumption

HC Radius: fixed scale p. > ¢.

Clusters of dislocations at scale p. are identified with
a single multiple dislocation.
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The Hard Core assumption

HC Radius: fixed scale p. > ¢.

Clusters of dislocations at scale p. are identified with
a single multiple dislocation.

Admissible dislocations: finite sums of Dirac masses

N
pi=Y &6, &E€S,
=il

with S := Span; S set of multiple Burgers vectors, and

[xi — xj| > 2pe, dist(xk,0Q) > p. .
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

The Hard Core assumption

HC Radius: fixed scale p. > ¢.

Clusters of dislocations at scale p. are identified with
a single multiple dislocation.

Admissible dislocations: finite sums of Dirac masses
N
M::Zgi(sx;v 5,‘68,
i=1

with S := Span; S set of multiple Burgers vectors, and

[xi — xj| > 2pe, dist(xk,0Q) > p. .

Hypothesis on HC Radius: as ¢ — 0
> p./e° = o0, Vs e (0,1),

(HC contains almost all the self-energy)

e — U. easure o region vanisnes
> N.p2—0 M f HC regi ish

Silvio Fanzon Geometric Patterns and Microstructures
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

Energy regimes
Energy scaling: each dislocation accounts for |logs| = relevant scaling is
E. ~ N.|loge],

Rescaled energy functionals:
1
Felp, B ::—/ Cp: Bdx.
«(p B) Ncllogel Ja. ()

Energy regimes: the behaviour of N. determines three different regimes:

> N. < |loge| ~ Dilute dislocations
> N. ~ |loge| ~ Critical regime

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.

J. Eur. Math. Soc. (JEMS) (2010)

> N. > |loge| ~ Super-critical regime
F., Palombaro, Ponsiglione. Linearised Polycrystals from a 2D System of Edge Dislocations.
Preprint (2017)
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

Candidate -limit

Let (u, 8) with u = vazl &; 0y, be such that “Curl 5 = .
Energy decomposition: let HC. (1) := UN | B,_(x;) be the HC region

Ea(u,ﬁ):/ C‘B:de—i—/ CpB: Bdx.
JarHe. ()

HC. (1)

D-limit: S € [2(QM2X2), A€ [2(Q;MZE2), 1 € M(Q;R?) with Curl A =y,

skew

F(u, S, A) ::/cs:de+/<p<d’“‘> dlul .
Q Q d|p

Density (: the self-energy for a single dislocation core £dg is

. 1 : : o — 5
P(&) = alE»no|Io—gg|mﬁm {/BI\BE CpB: Bdx: "Curl = E&dg } .

Define ¢: R? — [0,00) as the relaxation of ¢ (splitting multiple dislocations)
M M
©(€) := min {Z X&) €= XN& MEN, X >0,4 € s} .

i=1 i=1
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

[-convergence result for N. > |log €|

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider (e, 5:) s.t. “Curl 5. = p." and Fo(pe, Be) < C =
Bsym ﬁskew
£ £

» = G,
/Ne|log e Ne

> % S in M(Q;R?),

&)

— A in L?(Q;M2x?),

> ue H1(Q;R?) and Curl A= p1.

T'-convergence: the functionals F. I-converge to

F(u, S, A) —/CS 5dx+/ (dd |) dp|, with Curl A= p.

Remark:
» S and A live on two different scales with S < A — terms in F decoupled.
> In the critical regime N. ~ |loge| we have S ~ A and Curl(S+ A) =1
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

Compactness of the measures

Let pu, := Zil\l"l 5,,7,-5&’,. and “Curl 5, = u,". We show that

Iun
En j=1
so that -2 *
En
C > F.,(tn, Bn) = / W(S3,) dx
: ( e En ,Z; ||Ogcn‘ (xn,)\Bep(x, 1) ( ”)
1 L Eni c &
> N ZLE,, &n/ = Z|§I‘ll| ¢sn( n7’> Z N Z‘ﬁn,iﬁ
€n =1 |§n,i| en 1
Mn
c I
> =c—— = (1.2
> 1 2 lenil = < 0 (12)
Silvio Fanzon Geometric Patterns and Microstructures Brighton, 11 December 2017
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

Compactness of the strains

Symmetric Part:

B

/Ne, |loge,|

Skew Part: since “Curl 3, = 11, we can apply the generalised Korn inequality:

—

CN.. | logen| > CE..(tim 1) > C / 8™ dx =
Q

/ |Bskev 12 dx < C </ |35Y™ 2 dx + (/ln(Q)>2) (Gen. Korn)
Ja Q
<cC (\/N5n| log .| + Ngn) <cn? (N. > |loge|)

skew

so that —2 — A.

€n

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.
J. Eur. Math. Soc. (JEMS) (2010)
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

Adding boundary conditions

Dirichlet type BC: at level £ > 0 fix a boundary condition g.: Q — M?*2 s t.

sym skew

€ €
Ne

—\ gA .
Admissible dislocations: measures p satisfying
w(2) = / g--tds. (GND)
aQ
Admissible strains: 3: Q.(u) — M?%2 such that “ Curl 3 = " and
f-t=g--t on 0Q.
T'-limit: the usual energy F. '-converges to
' d
Fece(p, S, A) = / CS:Sdx+ / 7 (,u) dlu| + / o((ga— A)-t)ds,
JQ JQ d|u| Jon
such that Curl A = 1, with u € M(;R?) N H1(Q; R?).

Remark: ™ < gskeW — BC pass to the limit only for A.
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

Minimising Fpc with piecewise constant BC

Remark: there are no BC on S = we can neglect elastic energy.

Piecewise constant BC: Fix a piecewise constant BC

0 a v
gA:—<_a 0>, a::kaXUk,

with mx < myy1 and {Ux}M.; Caccioppoli partition of Q.

Problem

Minimise

Faclis0.M) = [ (54) dlul+ [_ellea—a)-t)ds,

with Curl A = and p € M(Q; R?) N H~1(Q; R?).
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Polycrystals as energy minimisers

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition ga, there
exists a piecewise constant minimiser of Fpc(u, 0, A)

M
A= Z AKXE »
k=1

with Ay € M2X2 and {E,}M_, Caccioppoli partition of Q.

skew
We interpret A as a linearised polycrystal.

Open Question: Are all minimisers piecewise constant? Uniqueness?
Essential: that the boundary condition is piecewise affine on the whole 99.
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Part | - Geometric Patterns of Dislocations Linearised polycrystals

|dea of the proof

Problem: given a piecewise constant BC g4, consider

inf{/go(d'“) d|u|+/ o((ga—A)-t)ds CUHAueMmHl}.
o \dlu| 00

Since A and gu are antisymmetric, 3 u,a € L3(Q) s.t.

0 wu 0 a
= (5 0) w=(5%5):

Note: Curl A= Du € M(;R?>) = ue€ BV(2) = Equivalent Problem:

inf{/Qgp<dc|!gZ|) d|Du|+'/DQ<,0((ufa)1/)d5: ue BV(Q)}. (1.3)

Proof: let i be a minimiser for (1.3). By anisotropic Coarea Formula

/Q<p<d“|'gz> d|Diil :/RPerW({er: i(x) > £)) dt,

we can select the levels with minimal perimeter. This defines the Caccioppoli
partition.
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Comparison with classical Read-Shockley formula

Read-Shockley formula: Elastic energy= Eqf(1 + | log 6]).

» This energy corresponds to small rotations 6 between grains: small rotations
but larger than linearised rotations.

» It is a nonlinear formula that corresponds to a higher energy regime.
» The density of dislocations to obtain small rotations is

) 1
Density ~ - > N

Question: I-convergence analysis of the Read-Shockley formula?
Lauteri, Luckhaus. An energy estimate for dislocation configurations and the emergence of
Cosserat-type structures in metal plasticity. Preprint (2017)

Question: Are there some relevant energy regimes in between?
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Conclusions and Perspectives

Conclusions:

» A variational model for linearised polycrystals with infinitesimal rotations
between the grains, deduced by -convergence.

» Networks of dislocations are obtained as the result of energy minimisation,
under suitable boundary conditions.

Perspectives:
» Uniqueness of piecewise constant minimisers?

» Comparison with the Read-Shockley formula?
Lauteri, Luckhaus. Preprint (2017).

» Dynamics for linearised polycrystals?
Taylor. Crystalline variational problems. Bull. Amer. Math. Soc. (1978).
Chambolle, Morini, Ponsiglione. Existence and Uniqueness for a Crystalline Mean
Curvature Flow. Comm. Pure Appl. Math (2017).

» Supercritical regime analysis starting from a non-linear energy?
Miiller, Scardia, Zeppieri. Geometric rigidity for incompatible fields and an application to
strain-gradient plasticity. Indiana University Mathematics Journal (2014).
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Part Il - Microgeometries in Composites Critical lower integrability

Gradient integrability for solutions to elliptic equations

Q C R? bounded open domain. A map o € L>(Q; M?*?) is uniformly elliptic if
of-E>NE?,  VEER? xeq.

Problem

Study the gradient integrability of distributional solutions u € W1(Q) to
div(cVu) =0, (2.1)

when
o = 01Xg, + 02XE,,

with 01,02 € M?*2 constant elliptic matrices, { E1, E,} measurable partition of Q.
4

Application to composites:

» Q) is a section of a composite conductor obtained by mixing two materials
with conductivities o1 and o5,

> the electric field Vu solves (2.1),

> concentration of Vu in relation to the geometry {Eq, Ez}.
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Astala’s Theorem

\

Theorem (Astala '94)

Let o € L°°(2; M?*?) be uniformly elliptic. There exists exponents 1 < g <2 < p
such that if u € W19(Q) solves

div(eVu) =0,

then Vu € LY . (S, R?).

Are the exponents q and p optimal among two-phase elliptic conductivities

0 =01Xg + 02Xg, ?

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)
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Astala’s exponents for two-phase conductivities

1 doy,00 2 Poy,0,

For two-phase conductivities Astala's exponents ¢ = q,,,5, and p = p,, », have
been characterised.

Remark: it is sufficient to prove optimality in the case

(1)K 0 (K 0
a=Vo ys) 27\o s)

1
K>1 and RSS}gK, j=12.

where

The corresponding critical exponents for Astala’s theorem are
2K 2K

doy,00 = K-I—l’ Poy,00 = K_1"

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).
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Upper exponent optimality

2K 2K
1 K+1 2 K—1

Theorem (Nesi, Palombaro, Ponsiglione '14)
Let oy = diag(1/K,1/Sy), 02 = diag(K, S) with K > 1 and Sy, S, € [1/K, K].
® Ifo e L>®(Q;{0o1,02}) and u € Wl’%(ﬂ) solves

div(cVu) =0 (2.2)
2K
then Vu € L) (S, R?).
@ There exists G € L°(Q; {o1,02}) and a weak solution i € W12(Q) to (2.2)
with o = &, satisfying affine boundary conditions and such that
Vi ¢ LK1 (Q;R?).

Question we address

2K

<11 optimal?

Is the lower exponent
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Lower exponent optimality

2K
1 Pn —> K+1 2 K—1

\J

Theorem (F., Palombaro '17)

Let o1 = diag(1/K,1/51), 02 = diag(K, Sp) with K > 1 and 51, S, € [1/K, K].
There exist

> coefficients o, € L>(Q; {o1; 02}),

2K
» exponents p, € [1, K—H]
» functions u, € WY(Q) such that u,(x) = x; on 09,

such that

div(c,Vu,) =0,
2K

n .2
Vu,, (S Lgveak(Q'R ), Pn — m,

Vu, ¢ LK (Q;R?).

F., Palombaro. Calculus of Variations and Partial Differential Equations (2017)
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Part 1l - Microgeometries in Composites Convex integration

Solving differential inclusions

Theorem (Approximate solutions for two phases)

Let A;B € M?*2, C:= M+ (1 — \)B with A\ € [0,1], and § > 0. Assume that

B—A=a®n forsome acR?> neSt.

3 piecewise affine Lipschitz map f: Q — R2 such that f(x) = Cx on 9 and

dist(Vf,{A,B}) <dé ae. in

(Rank-one connection)

Q.

Solutions: built through simple laminates

» rank-one connection allows to laminate in
direction n,

» Vf oscillates in §-neighbourhoods of A and B,
> )\ proportion for A, 1 — X proportion for B,
» this allows to recover boundary data C.

Miiller. Variational models for microstructure and phase transitions.

Silvio Fanzon Geometric Patterns and Microstructures
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Part 1l - Microgeometries in Composites Convex integration

Laminates of first order

L3 is the normalised Lebesgue measure restricted to Q ~ L3(B) := |BNQ|/|Q).

Gradient distribution

Let f: Q — R? be Lipschitz. The gradient distribution of f is the Radon
measure V£x(L3) on M?*2 defined by

V(L3 (V) = LE((VF)"H(V)), V Borel set V C M?*?2.

Let f5 be the map given by the previous Theorem. Then as § — 0,
vs = (V) u(L3) 2 v :=Xa+(1—-A)dg in  M(M>*?).

The measure v is called a laminate of first order, and it encodes:
> Oscillations of Vf; about {A, B} and their proportions.
> Boundary condition since the barycentre of v is 7 := [, ... M dv(M) = C.
» Integrability since for p > 1 we have

1
IQ/ \Vﬁ;\pdx:/ \M|P dus(M).
Q M2x2
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lterating the Proposition

Let C = M+ (1 — )\)B with A € [0,1] and rank(B — A) = 1. Let f: Q — R?
such that f(x) = Cx on 09,

dist(VF,{A,B}) <¢é ae in Q.

Further splitting: B = 11B; + (1 — ) B> with p € [0,1], rank(B> — By) = 1.

New gradient: apply previous Proposition to the set {x € Q: Vf ~ B} to obtain
f: Q — R? such that f(x) = Cx on 0%,

dist(VF,{A, By, By}) <& ae in Q.
The gradient distribution of fis given by

v=Aoa+ (1 —Nudg +(1—N)(1—u)ds,.
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Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting
procedure in the previous slide.

Proposition (Convex integration)

Let v = vazl Aida; be a laminate of finite order, s.t.
> 7= A,
N . N
> A= Zi:l N A; with Zi:l Ai=1.
Fix § > 0. 3 a piecewise affine Lipschitz map f: Q — R? s.t. Vf ~ v, that is,
> dist(Vf,suppr) < 4§ a.e inQ,
> f(x) = Ax on 01,
> {xeQ: |[Vf(x)— A<} =N
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Part 1l - Microgeometries in Composites Proof of our main result

Strategy of the Proof

Strategy: explicit construction of u, by convex integration methods.
@ Rewrite the equation div(cVu) = 0 as a differential inclusion
Vf(x)e T, forae xeQ (2.3)

for f: Q — R? and an appropriate target set T C M?*2.
Note: u and f have the same integrability.

® Construct a laminate v with suppr C T and the right integrability.

© Convex integration Proposition = construct f: Q — R? s.t. Vf ~ v.
In this way f solves (2.3) and

2K 5 2K
K+1 TK+1|’

VF ¢ LR (Q;R?).

weak

Vfeld (QR%,qe<

These methods were developed for isotropic conductivities o € L>(Q; {KI, =1}).

The adaptation to our case is non-trivial because of the lack of symmetry of the target
set T, due to the anisotropy of o1 and oo.

Astala, Faraco, Székelyhidi. Convex integration and the LP theory of elliptic equations.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2008)
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Rewriting the PDE as a differential inclusion
Let K > 1, 5,5 € [1/K, K] and define

oy :=diag(1/K,1/51), o2 :=diag(K,5), 0= 01Xg + 02XE, ,

.7 2 -y . o X AR
(st ) e (G 7))

Lemma (F., Palombaro '17)

A function u € W11(Q) is solution to

div(cVu) =0
iff there exists v € WL(Q) such that f = (u,v): Q — R? satisfies
Vf(X) cTLuUT, in Q.

Moreover E; = {x € Q: Vf(x) € T1} and E; = {x € Q: Vf(x) € T,}.

Key Remark: u and f enjoy the same integrability properties.
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Proof of our main result

Targets in conformal coordinates

Conformal coordinates: Let A € M?*2. Then A= (a;,a_) for a;,a_ € C,
defined by

Aw =aw+a_w, VweC.
The sets of conformal linear maps and anti-conformal linear maps are

Ey :={(z,0): ze C}

(Conformal maps)
Ex :={(0,z): z€ C}

(Anti-conformal maps)
Target sets in conformal coordinates are
Ti={(a,di(3)) : a€C}, To ={(a,—cr(3)) : acC},

where the operators d;j: C — C are defined as

K-1
di(a) ==k Rea+isjlma, with k:= _——— and

K+1

N
+ |
==

Sj =
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Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRs = (0, ).

JRy = M A1 + (1 - )\1)P1

Exo

Silvio Fanzon Geometric Patterns and Microstructures

Brighton, 11 December 2017
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Part Il - Microgeometries in Composites Proof of our main result

Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRy = (0, ). Foo

JRG = A1A1 + (1 —_ )\1)P1
= MAL+ (1= X)) (B + (1 — p1) 2JRy)

. 2JRy
~ ] \\\\ Py
JRG //// T1
B \\\ //Al
X, p EO
T2
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Part Il - Microgeometries in Composites Proof of our main result

Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRy = (0, ). Foo
JRs = MAL+ (1= M)P1 Py
= MAL+ (1= )B4+ (1 — pa) 2JRp) 2JR,
~ V1 \\\\ Py .~
2JR0 = >\2A2 —|— (1 — )\2)P2 \\\\ JRG ,,’// Tl
N A2
Bl N b ’/Al E
NP 0
T2
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Part Il - Microgeometries in Composites Proof of our main result

Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRs = (0, ).

JRy = MAL+ (1= M)Py
= MAL+ (1= X)) (B + (1 — p1) 2JRy)
~
2JRy = XA+ (1 — X2) P2
= XA + (1 = X2) (2B + (1 — p2) 3JR»)

~> 19

Silvio Fanzon Geometric Patterns and Microstructures

Eso
3JRy
P>
2JRy
P1
JRG //// T1
e A
B> B <AL 2 =
0
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Brighton, 11 December 2017 58/62



Part Il - Microgeometries in Composites Proof of our main result

Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRs = (0, ).

JRy = MAL+ (1= M)Py
= MAL+ (1= X)) (B + (1 — p1) 2JRy)
~
2JRy = XA+ (1 — X2) P2
= XA + (1 = X2) (2B + (1 — p2) 3JR»)

~ o
Lemma: 3 p(9) € [52—45’1, ,f—fl] continuous, with T2
p(0) = Kz—fl and a sequence v, of laminates s.t.

S
1 = PO B
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Part 1l - Microgeometries in Composites Proof of our main result

Staircase Laminate (F., Palombaro '17)

Let 6 € [0,27], JRs = (0, ).

JRy = MAL+ (1= M)Py
= MA+ (1= A1) (1B + (1 — 1) 2JR)
~
2JRy = XA+ (1 — X2) P2
= XA + (1 = X2) (2B + (1 — p2) 3JR»)

~> 19

Lemma: 3 p(0) € [2, 25 continuous, with T2

p(0) = Kz—fl and a sequence v, of laminates s.t.
> suppv, C T1U Th U Ex
> U, =JRy
> [iexz IM|7dua(M) < 0o, Vg < p(6)

> fipxe IM|P©O) duy(M) = 0o as n — oo 1 52751 p(6) 2K

Remark: barycentre J gives the right growth.
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Constructing approximate solutions

We want to construct £: Q — R? such that

Eso

> dist(VFf, T UT,) <cae inQ, n
> f = Jx on 09, E
> Vfe Lweak' qc I5 = <K+1 6’ K2-}:1 T

2

> Vf ¢ LR

Idea: alternate one step of the staircase lami-
nate with the convex integration Proposition.

1

25

S+1

Silvio Fanzon Geometric Patterns and Microstructures
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Part Il - Microgeometries in Composites Proof of our main result

Constructing approximate solutions

_ (2K 2K
Recall I := (2% — o, 2%]. =
Step A. Define fi(x) := Jx = 61 =0,p1 = ’(2751
Ty
N oJ ///

\\\ ,/// Eg
T2

25 2K

1 SHl K+1
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Part 1l - Microgeometries in Composites Proof of our main result

Conclusions and Perspectives
Conclusions: analysis of critical integrability of distributional solutions to
div(cVu) =0, in Q, (2.4)

when o € {01, 05} for 01,00 € M?*? elliptic.

> Optimal exponents gy, -, and py, -, Were already characterised and the upper
exponent p,, -, Was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).
> We proved the optimality of the lower critical exponent ¢, o,
Perspectives:
> Stronger result for lower critical exponent: showing 3 u € W1(Q) solution
0 (2.4) andsit. Vu e LKJ'1 (Q;R?) but Vu ¢ L%(B;R2), Y ball B C Q.

weak
Modifying staircase laminate?

> Extend these results to three-phase conductivities o € {01, 02,03}.

» Dimension d > 3?7 Even only in the isotropic case o € {KI, K=/} for K > 1.
Main difficulty: Astala’s Theorem is missing in higher dimensions.
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