A variational model for dislocations at semi-coherent interfaces

Silvio Fanzon (University of Sussex, UK)

in collaboration with
M. Palombaro (Sussex) \& M. Ponsiglione (Sapienza)

S. Fanzon, M. Palombaro and M. Ponsiglione. A variational model for dislocations at semi-coherent interfaces. Journal of Nonlinear Science (To appear).

Nucleation of an edge dislocation

Dislocations: topological defects in the otherwise periodic structure of a crystal. Edge dislocation: Burgers vector is orthogonal to dislocation line.

Semi-coherent interfaces

Semi-coherent interface: two crystalline materials joined at a flat interface:

- Underlayer: cubic lattice Λ^{-}with spacing $b>0$,
- Overlayer: lattice $\Lambda^{+}=\alpha \Lambda^{-}$, lying on top of Λ^{-}, with $\alpha \approx 1$ dilation.

Experimentally observed phenomena:

- interface mismatch accommodated by two non-parallel sets of edge dislocations with spacing $\delta=\frac{b}{\alpha-1}$
- far field stress is completely relieved

D.A. Porter, K.E. Easterling. Phase transformations in metals and alloys. CRC Press (2009)
G. Gottstein. Physical foundations of materials science. Springer (2013)

Our goal

$\alpha>1$ is the dilation and R is the size of the interface.
Goal: define a continuum model that captures the main features of the above phenomena:

- \exists a threshold R^{*} such that nucleation of dislocations is energetically more favorable for $R>R^{*}$
- as $R \rightarrow \infty$ the far field stress is relieved
- the dislocation spacing tends to $\delta=\frac{b}{\alpha-1}$

Plan:

- start from the analysis of a semi-discrete model where dislocations are line defects
- the analysis will motivate the definition of a simplified (dislocation density) continuum model.

Semi-discrete line defect model

The body: $\Omega_{R}:=\Omega_{R}^{-} \cup S_{R} \cup \Omega_{R}^{+}$with $R>0$,

- Ω_{R}^{+}overlayer (equilibrium $\alpha /$)
- Ω_{R}^{-}underlayer (in equilibrium and rigid)

Dislocation curves: relatively closed curves on $\mathcal{G} \subset S_{R}$. $\mathcal{G}:=(b \mathbb{Z} \times \mathbb{R}) \cup(\mathbb{R} \times b \mathbb{Z})$ with b lattice spacing of Ω_{R}.
Admissible dislocations: $(\Gamma, \mathbf{B}) \in \mathcal{A D}$ if $\Gamma=\left\{\gamma_{i}\right\}$, $\mathbf{B}=\left\{\mathbf{b}_{i}\right\}$ finite collection of $\gamma_{i} \subset \mathcal{G}$ and $\mathbf{b}_{i} \in b(\mathbb{Z} \oplus \mathbb{Z})$ corresponding Burgers vector.
Admissible strains: fix $1<p<2$. $F \in L^{p}\left(\Omega_{R} ; \mathbb{M}^{3 \times 3}\right)$ s.t.

$$
F=I \text { in } \Omega_{R}^{-} \quad \text { and } \quad \text { curl } F=-\mathbf{b} \otimes \dot{\gamma} d \mathcal{H}^{1}\llcorner\Gamma
$$

is an admissible strain for ($Г, \mathbf{B}$). We write $F \in A S(\Gamma, \mathbf{B})$.
Energy density: $W(F) \sim \operatorname{dist}(F, \alpha S O(3))^{2} \wedge\left(|F|^{p}+1\right)$
Dislocation Energy: he energy induced by the dislocation (Γ, \mathbf{B}) is

$$
E_{\alpha, R}(\Gamma, \mathbf{B}):=\inf \left\{\int_{\Omega_{R}^{+}} W(F(x)) d x: F \in \mathcal{A S}(\Gamma, \mathbf{B})\right\}
$$

Scaling properties of the energy

Energies induced by the misfit:

- $E_{\alpha, R}(\emptyset):=\inf \left\{\int_{\Omega_{R}^{+}} W(F(x)) d x:\right.$ curl $\left.F=0\right\}$
(Elastic energy)
- $E_{\alpha, R}:=\min \left\{E_{\alpha, R}(\Gamma, \mathbf{B}):(\Gamma, \mathbf{B}) \in \mathcal{A D}\right\}$
(Plastic energy)

Theorem (F., Palombaro, Ponsiglione (2015))

The dislocation-free elastic energy scales like R^{3} : we have $E_{\alpha, 1}(\emptyset)>0$ and

$$
E_{\alpha, R}(\emptyset)=R^{3} E_{\alpha, 1}(\emptyset) .
$$

The minimal energy induced by the lattice misfit scales like R^{2} : there exists $0<E_{\alpha}<+\infty$ such that

$$
\lim _{R \rightarrow+\infty} \frac{E_{\alpha, R}}{R^{2}}=E_{\alpha}
$$

In particular, for large R dislocations are energetically favorable.
S. Müller and M. Palombaro (2008) - G. Lazzaroni, M. Palombaro and A. Schlömerkemper (2015)

Upper bound construction

Construction: define a square array of edge dislocations with spacing $\delta:=\frac{b}{\alpha-1}$

1. Divide S_{R} into $(R / \delta)^{2}$ squares of side δ
2. Above Q_{i} define pyramids C_{i}^{1} (height $\delta / 2$) and C_{i}^{2} (height δ)
3. Deformation v defined as in the pictures.

Induced dislocations: if Q_{i} and Q_{j} adjacent then

- $\gamma_{i j}:=Q_{i} \cap Q_{j}$ admissible dislocation curve ($\delta=n b$ as $\alpha=1+1 / n$)
- $\mathbf{b}_{i j}:=(\alpha-1)\left(x_{j}-x_{i}\right)= \pm b \mathbf{e}_{s}$ Burgers vector (for some $\left.s=1,2\right)$.

Energy: in every pyramid it is bounded by $c=c(\alpha, b, p)$. Therefore $E_{\alpha, R} \leq c \frac{R^{2}}{\delta^{2}}$ since $W(\alpha I)=0$.

Some comments on the semi-discrete model

Deformed configuration: $v\left(S_{R}\right)$ with v as in the upper bound construction

Limitations of the considered model:

1. $v\left(S_{R}\right)$ does not match $S_{R} \Longrightarrow$ not appropriate for semi-coherent interfaces;
2. v induces the expected dislocation geometry with spacing $\frac{b}{\alpha-1}$. However its energy is only optimal in the scaling.

What we do now:

1. consider a smaller overlayer $\Omega_{\theta R}^{+}$with $\theta \in\left[\alpha^{-1}, 1\right]$ and enforce a perfect match between the underlayer and the deformed overlayer;
2. introduce a simplified continuum (dislocation density) model to better describe true minimizers.

Hypothesis for the continuum model

The body: set $r:=\theta R$ with $\theta \in\left[\alpha^{-1}, 1\right]$ and $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$.
Upper bound construction: with $\theta=\alpha^{-1}$ and $\delta=\frac{b}{\theta^{-1}-1} \Longrightarrow$ perfect match

$$
\text { Dislocation Length } \approx \frac{1}{b} \text { Area Gap }
$$

We proved that as $r \rightarrow \infty$

$$
E_{\alpha, r} \approx r^{2} E_{\alpha}=\sigma \text { Area Gap } \Longrightarrow E_{\alpha, r} \propto \text { Dislocation Length }
$$

Hypothesis for continuum model: dislocation energy assumed proportional to the total dislocation length. We then optimize over θ.

The continuum model

The body: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$. Here $r:=\theta R$ with $\theta \in\left[\alpha^{-1}, 1\right]$.

Admissible deformations: $v \in W^{1,2}\left(\Omega_{r}^{+} ; \mathbb{R}^{3}\right)$ enforcing $v(x)=x / \theta$ on $S_{r} \Longrightarrow v\left(S_{r}\right)=S_{R}$ (interface match).

Energy density: $W(F) \sim \operatorname{dist}(F, \alpha S O(3))^{2}$
Elastic: $E_{R}^{e l}(\theta):=\inf \left\{\int_{\Omega_{r}^{+}} W(\nabla v) d x: v=x / \theta\right.$ on $\left.S_{r}\right\}$
Plastic: $E_{R}^{p /}(\theta):=\sigma$ Area Gap $=\sigma R^{2}\left(1-\theta^{2}\right)$.
The energy functional: $E_{R}^{\text {tot }}(\theta):=E_{R}^{e l}(\theta)+E_{R}^{p l}(\theta)$

$$
E_{R}^{t o t}:=\min _{\theta}\left(E_{R}^{e l}(\theta)+E_{R}^{p l}(\theta)\right)
$$

Energy competition:

- $\theta=1 \Longrightarrow$ no dislocation energy
- $\theta=\alpha^{-1} \Longrightarrow$ no elastic energy $(v:=\alpha x$ admissible and $W(\alpha l)=0)$.

The asymptotic behaviour of $E_{R}^{\text {tot }}$

Let θ_{R} be the minimizer of $E_{R}^{\text {tot }}$, then as $R \rightarrow \infty$

$$
E_{R}^{\text {tot }}\left(\theta_{R}\right) \rightarrow 0 \quad \text { and } \quad \theta_{R} \rightarrow \alpha^{-1} \Longrightarrow \text { Linearization }
$$

Set

$$
\mathcal{E}^{e l}(R):=\frac{\sigma^{2}}{\alpha^{3} C^{e l}} R, \quad \mathcal{E}^{p l}(R):=\sigma R^{2}\left(1-\frac{1}{\alpha^{2}}\right)-2 \frac{\sigma^{2}}{\alpha^{3} C^{e l}} R .
$$

Theorem (F., Palombaro, Ponsiglione (2015))

The following expansion of the total energy holds true (as $R \rightarrow+\infty$)

$$
E_{R}^{e l}\left(\theta_{R}\right)=\mathcal{E}^{e l}(R)+O(R), \quad E_{R}^{p l}\left(\theta_{R}\right)=\mathcal{E}^{P l}(R)+O(R)
$$

and in particular

$$
E_{R}^{\text {tot }}=\mathcal{E}^{e l}(R)+\mathcal{E}^{p l}(R)+o(R) .
$$

For large R dislocations are energetically more favorable, the spacing tends to $\delta=\frac{b}{\alpha-1}$ and the far field stress is relieved.

[^0]
Conclusions and perspectives

Conclusions:

- A basic variational model describing the competition between the plastic energy spent at interfaces, and the corresponding release of bulk energy.
- The size of the overlayer is a free parameter \Longrightarrow free boundary problem, but only through the scalar parameter θ.

Perspectives:

- Grain boundaries, the misfit between the crystal lattices are described by rotations rather than dilations.
W. T. Read and W. Shockley (1950) - J.P. Hirth and B. Carnahan (1992)
- Optimal geometry for the dislocation net (square vs hexagonal) M. Koslowski and M. Ortiz (2004)

[^0]: G. Dal Maso, M. Negri and D. Percivale (2002).

