A variational model for dislocations at semi-coherent interfaces

Silvio Fanzon (University of Sussex, UK)

in collaboration with

M. Palombaro (Sussex) & M. Ponsiglione (Sapienza)

S. Fanzon, M. Palombaro and M. Ponsiglione. A variational model for dislocations at semi-coherent interfaces. *Journal of Nonlinear Science* (To appear).

Silvio Fanzon (University of Sussex, UK)

Nucleation of an edge dislocation

Dislocations: topological defects in the otherwise periodic structure of a crystal. **Edge dislocation:** Burgers vector is orthogonal to dislocation line.

Semi-coherent interfaces

Semi-coherent interface: two crystalline materials joined at a flat interface:

- Underlayer: cubic lattice Λ⁻ with spacing b > 0,
- Overlayer: lattice $\Lambda^+ = \alpha \Lambda^-$, lying on top of Λ^- , with $\alpha \approx 1$ dilation.

Experimentally observed phenomena:

- interface mismatch accommodated by two non-parallel sets of edge dislocations with spacing $\delta=\frac{b}{\alpha-1}$
- far field stress is completely relieved

D.A. Porter, K.E. Easterling. Phase transformations in metals and alloys. CRC Press (2009)G. Gottstein. Physical foundations of materials science. Springer (2013)

Our goal

 $\alpha > 1$ is the dilation and R is the size of the interface.

Goal: define a continuum model that captures the main features of the above phenomena:

- \exists a threshold R^* such that nucleation of dislocations is energetically more favorable for $R > R^*$
- as $R o \infty$ the far field stress is relieved
- the dislocation spacing tends to $\delta = \frac{b}{\alpha 1}$

Plan:

- start from the analysis of a semi-discrete model where dislocations are line defects
- the analysis will motivate the definition of a simplified (dislocation density) continuum model.

Semi-discrete line defect model

The body: $\Omega_R := \Omega_R^- \cup S_R \cup \Omega_R^+$ with R > 0,

- Ω_R^+ overlayer (equilibrium αI)
- Ω_R^- underlayer (in equilibrium and rigid)

Dislocation curves: relatively closed curves on $\mathcal{G} \subset S_R$. $\mathcal{G} := (b\mathbb{Z} \times \mathbb{R}) \cup (\mathbb{R} \times b\mathbb{Z})$ with *b* lattice spacing of Ω_R .

Admissible dislocations: $(\Gamma, \mathbf{B}) \in \mathcal{AD}$ if $\Gamma = \{\gamma_i\}$, $\mathbf{B} = \{\mathbf{b}_i\}$ finite collection of $\gamma_i \subset \mathcal{G}$ and $\mathbf{b}_i \in b(\mathbb{Z} \oplus \mathbb{Z})$ corresponding Burgers vector.

Admissible strains: fix $1 . <math>F \in L^p(\Omega_R; \mathbb{M}^{3 \times 3})$ s.t.

F = I in Ω_R^- and $\operatorname{curl} F = -\mathbf{b} \otimes \dot{\gamma} \, d\mathcal{H}^1 \llcorner \Gamma$

is an admissible strain for (Γ, \mathbf{B}) . We write $F \in AS(\Gamma, \mathbf{B})$. Energy density: $W(F) \sim \operatorname{dist}(F, \alpha SO(3))^2 \wedge (|F|^p + 1)$ Dislocation Energy: he energy induced by the dislocation (Γ, \mathbf{B}) is

$$E_{\alpha,R}(\Gamma,\mathbf{B}):=\inf\left\{\int_{\Omega_R^+}W(F(x))\,dx:F\in\mathcal{AS}(\Gamma,\mathbf{B})\right\}$$

Scaling properties of the energy

Energies induced by the misfit:

- $E_{\alpha,R}(\emptyset) := \inf \left\{ \int_{\Omega_R^+} W(F(x)) \, dx : \operatorname{curl} F = 0 \right\}$
- $E_{\alpha,R} := \min \{ E_{\alpha,R}(\Gamma, \mathbf{B}) : (\Gamma, \mathbf{B}) \in \mathcal{AD} \}$

(Elastic energy) (Plastic energy)

Theorem (F., Palombaro, Ponsiglione (2015))

The dislocation-free elastic energy scales like R^3 : we have $E_{\alpha,1}(\emptyset) > 0$ and

$$E_{\alpha,R}(\emptyset) = R^3 E_{\alpha,1}(\emptyset)$$
.

The minimal energy induced by the lattice misfit scales like R^2 : there exists $0 < E_{\alpha} < +\infty$ such that

$$\lim_{R\to+\infty}\frac{E_{\alpha,R}}{R^2}=E_{\alpha}.$$

In particular, for large R dislocations are energetically favorable.

S. Müller and M. Palombaro (2008) - G. Lazzaroni, M. Palombaro and A. Schlömerkemper (2015)

Upper bound construction

Construction: define a square array of edge dislocations with spacing $\delta := \frac{D}{\alpha - 1}$

- 1. Divide S_R into $(R/\delta)^2$ squares of side δ
- 2. Above Q_i define pyramids C_i^1 (height $\delta/2$) and C_i^2 (height δ)
- 3. Deformation v defined as in the pictures.

Induced dislocations: if Q_i and Q_j adjacent then

- $\gamma_{ij} := Q_i \cap Q_j$ admissible dislocation curve ($\delta = nb$ as $\alpha = 1 + 1/n$)
- $\mathbf{b}_{ij} := (\alpha 1)(x_j x_i) = \pm b \mathbf{e}_s$ Burgers vector (for some s = 1, 2).

Energy: in every pyramid it is bounded by $c = c(\alpha, b, p)$. Therefore $E_{\alpha,R} \le c \frac{R^2}{\delta^2}$ since $W(\alpha I) = 0$.

Silvio Fanzon (University of Sussex, UK)

Some comments on the semi-discrete model

Deformed configuration: $v(S_R)$ with v as in the upper bound construction

Limitations of the considered model:

- 1. $v(S_R)$ does not match $S_R \implies$ not appropriate for semi-coherent interfaces;
- 2. v induces the expected dislocation geometry with spacing $\frac{b}{\alpha-1}$. However its energy is only optimal in the scaling.

What we do now:

- 1. consider a smaller overlayer $\Omega_{\theta R}^+$ with $\theta \in [\alpha^{-1}, 1]$ and enforce a perfect match between the underlayer and the deformed overlayer;
- 2. introduce a simplified continuum (dislocation density) model to better describe true minimizers.

Silvio Fanzon (University of Sussex, UK)

Hypothesis for the continuum model

The body: set $r := \theta R$ with $\theta \in [\alpha^{-1}, 1]$ and $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$. **Upper bound construction:** with $\theta = \alpha^{-1}$ and $\delta = \frac{b}{\theta^{-1}-1} \implies$ perfect match

Dislocation Length
$$\approx \frac{1}{b}$$
 Area Gap

We proved that as $r o \infty$

 $E_{\alpha,r} \approx r^2 E_{\alpha} = \sigma$ Area Gap $\implies E_{\alpha,r} \propto$ Dislocation Length

Hypothesis for continuum model: dislocation energy assumed proportional to the total dislocation length. We then optimize over θ .

Silvio Fanzon (University of Sussex, UK)

The continuum model

The body: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$. Here $r := \theta R$ with $\theta \in [\alpha^{-1}, 1]$.

Admissible deformations: $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$ enforcing $v(x) = x/\theta$ on $S_r \implies v(S_r) = S_R$ (interface match).

Energy density: $W(F) \sim dist(F, \alpha SO(3))^2$

Elastic: $E_R^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$ **Plastic:** $E_R^{pl}(\theta) := \sigma \text{ Area } \text{Gap} = \sigma R^2(1 - \theta^2).$

The energy functional: $E_R^{tot}(\theta) := E_R^{el}(\theta) + E_R^{pl}(\theta)$

$$E_{R}^{tot} := \min_{\theta} \left(E_{R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$

Energy competition:

- $\theta = 1 \implies$ no dislocation energy
- $\theta = \alpha^{-1} \implies$ no elastic energy ($v := \alpha x$ admissible and $W(\alpha I) = 0$).

The asymptotic behaviour of E_R^{tot}

Let $heta_R$ be the minimizer of E_R^{tot} , then as $R o \infty$

 $E_R^{tot}(\theta_R)
ightarrow 0$ and $\theta_R
ightarrow lpha^{-1} \Longrightarrow$ Linearization

Set

$$\mathcal{E}^{el}(R) := rac{\sigma^2}{lpha^3 \mathcal{C}^{el}} \, R \,, \qquad \mathcal{E}^{pl}(R) := \sigma R^2 \left(1 - rac{1}{lpha^2}\right) - 2 rac{\sigma^2}{lpha^3 \mathcal{C}^{el}} R \,.$$

Theorem (F., Palombaro, Ponsiglione (2015))

The following expansion of the total energy holds true (as $R o +\infty$)

$$E_R^{el}(\theta_R) = \mathcal{E}^{el}(R) + O(R), \qquad E_R^{pl}(\theta_R) = \mathcal{E}^{pl}(R) + O(R)$$

and in particular

$$E_R^{tot} = \mathcal{E}^{el}(R) + \mathcal{E}^{pl}(R) + o(R).$$

For large R dislocations are energetically more favorable, the spacing tends to $\delta = \frac{b}{\alpha-1}$ and the far field stress is relieved.

G. Dal Maso, M. Negri and D. Percivale (2002).

Conclusions and perspectives

Conclusions:

- A basic variational model describing the competition between the plastic energy spent at interfaces, and the corresponding release of bulk energy.
- The size of the overlayer is a free parameter \implies free boundary problem, but only through the scalar parameter θ .

Perspectives:

• Grain boundaries, the misfit between the crystal lattices are described by rotations rather than dilations.

W. T. Read and W. Shockley (1950) - J.P. Hirth and B. Carnahan (1992)

Optimal geometry for the dislocation net (square vs hexagonal)
 M. Koslowski and M. Ortiz (2004)

