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-
Nucleation of an edge dislocation

Dislocations: topological defects in the otherwise periodic structure of a crystal.
Edge dislocation: Burgers vector is orthogonal to dislocation line.
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Semi-coherent interface: two crystalline materials joined at a flat interface:

Semi-coherent interfaces

® Underlayer: cubic lattice A~ with spacing b > 0,

e Qverlayer: lattice AT = aA™,

Experimentally observed phenomena:

lying on top of A~, with o ~ 1 dilation.

® interface mismatch accommodated by two non-parallel sets of edge

dislocations with spacing § = 2=

b
a—1

® far field stress is completely relieved
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Our goal

« > 1 is the dilation and R is the size of the interface.

Goal: define a continuum model that captures the main features of the above
phenomena:

® T a threshold R* such that nucleation of dislocations is energetically more
favorable for R > R*

® as R — oo the far field stress is relieved

. . . b
® the dislocation spacing tends to 6 = p—
o —
Plan:
® start from the analysis of a semi-discrete model where dislocations are line
defects

® the analysis will motivate the definition of a simplified (dislocation density)
continuum model.
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Semi-discrete line defect model

The body: Qg :=Qf USgp U Q’,; with R > 0,
* QF overlayer (equilibrium af)
® Qg underlayer (in equilibrium and rigid)

Dislocation curves: relatively closed curves on G C Sg.
G = (bZ x R) U (R x bZ) with b lattice spacing of Q.

Admissible dislocations: ([,B) € AD if I = {v},
B = {b;} finite collection of v; C G and b; € b(Z @ Z)
corresponding Burgers vector.

Admissible strains: fix 1 < p <2. F € LP(Qg; M3*3) s.t.

F=1in Qg and curlF=-b@ydH'\T
is an admissible strain for (I', B). We write F € AS(T", B).
Energy density: W(F) ~ dist(F,aSO(3))? A (|F|P + 1)

Dislocation Energy: he energy induced by the dislocation (I, B) is

Eor(T,B) = inf{
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Scaling properties of the energy

Energies induced by the misfit:
® E, (D) :=inf {.fsﬁ W(F(x))dx : curl F = O} (Elastic energy)
R
e £, r:=min{E,r(I,B): (I',B) € AD} (Plastic energy)

Theorem (F., Palombaro, Ponsiglione (2015))

The dislocation-free elastic energy scales like R3: we have E, 1(0) > 0 and
Eoc,R(@) = R3 Ea,l(@) .

The minimal energy induced by the lattice misfit scales like R?: there exists
0 < E, < +o0o such that

. E(x,R
lim

=E,.
R—+o00 R2 “

In particular, for large R dislocations are energetically favorable.

S. Miiller and M. Palombaro (2008) - G. Lazzaroni, M. Palombaro and A. Schlémerkemper (2015)

Silvio Fanzon (University of Sussex, UK) Dislocations at Semi-Coherent interfaces Levico Terme, 6-10 Feb 2017 6/12



Upper bound construction

Construction: define a square array of edge dislocations with spacing § := rbl
1. Divide Sg into (R/5)? squares of side &
2. Above Q; define pyramids C} (height §/2) and C? (height J)
3. Deformation v defined as in the pictures.
Induced dislocations: if Q; and Q; adjacent then
® ;i := Q; N Q; admissible dislocation curve (6 = nbas a=1+1/n)
® bj ;= (o —1)(xj — x;) = £bes Burgers vector (for some s = 1,2).
R2

Energy: in every pyramid it is bounded by ¢ = c¢(a, b, p). Therefore E, g < ¢
since W(al) =0.

Qf C? C2
Xj X
meset AT,
| Qp vV=x x+ (a—1)x Q by Q
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Some comments on the semi-discrete model
Deformed configuration: v(Sg) with v as in the upper bound construction
ab . aR
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Limitations of the considered model:

1. v(Sg) does not match Sg = not appropriate for semi-coherent interfaces;
2. v induces the expected dislocation geometry with spacing ﬁ. However its
energy is only optimal in the scaling.
What we do now:

1. consider a smaller overlayer Q";R with 6 € [a~1,1] and enforce a perfect

match between the underlayer and the deformed overlayer;
introduce a simplified continuum (dislocation density) model to better
describe true minimizers.
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-
Hypothesis for the continuum model
R=071r
HEEN,
HEN
HEEN
HEEN

The body: set r := R with 6 € [a!,1] and Qr, :=Qr US, UQ/.
Upper bound construction: with § = a~! and § = ﬁ = perfect match

1
Dislocation Length ~ 3 Area Gap

We proved that as r — oo
E.,~ r’E, = o Area Gap = E,, x Dislocation Length

Hypothesis for continuum model: dislocation energy assumed proportional to
the total dislocation length. We then optimize over 6.
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N
The continuum model

The body: Qg, := Qp US, UQ}. Here r := R with
0 € a"11].

Admissible deformations: v € W12(Q;R3) enforcing
v(x) = x/0 on S, = v(S,) = Sg (interface match).

Energy density: W(F) ~ dist(F,aSO(3))?
Elastic: E£5/(0) := inf{ Jor W(Vv) dx: v =x/6 on 5,}
Plastic: EF/(0) := o Area Gap = oR?(1 — 62).

The energy functional: Ef?*(6) := EZ/(6) + EZ'(6)

ER" = mein (EE’(@) + E,g/(e))

Energy competition:
® § =1 = no dislocation energy
® ) =a! = no elastic energy (v := ax admissible and W(al) = 0).
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|
The asymptotic behaviour of E5*

Let O be the minimizer of EL?, then as R — oo
EF'(0r) -0 and 0r — a~! = Linearization

Set
o2

1 o?
el o / P2

Theorem (F., Palombaro, Ponsiglione (2015))

The following expansion of the total energy holds true (as R — +o00)
EF(0r) = €9(R)+ O(R),  EE(6r) = EP(R) + O(R)

and in particular
Eft = £°(R) + EP/(R) + o(R).

For large R dislocations are energetically more favorable, the spacing tends to
0= ﬁ and the far field stress is relieved.

G . Dal Maso, M. Negri and D. Percivale (2002).
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-
Conclusions and perspectives

Conclusions:
® A basic variational model describing the competition between the plastic
energy spent at interfaces, and the corresponding release of bulk energy.
® The size of the overlayer is a free parameter = free boundary problem, but
only through the scalar parameter 6.

Perspectives:

® Grain boundaries, the misfit between the crystal lattices are described by
rotations rather than dilations.
W. T. Read and W. Shockley (1950) - J.P. Hirth and B. Carnahan (1992)

e Optimal geometry for the dislocation net (square vs hexagonal)
M. Koslowski and M. Ortiz (2004)
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