A Variational Model for Dislocations at Semi-Coherent Interfaces

Silvio Fanzon
Department of Mathematics, University of Sussex, UK

Joint work with M. Palombaro and M. Ponsiglione

Semi-Coherent Interfaces

Polycrystal: two crystalline materials with different underlying lattice structures Λ^{+}and Λ^{-}, $\Lambda^{+}=\alpha \Lambda^{-}, \alpha>1$. The lattice Λ^{+}(overlayer) lies on top of Λ^{-}(underlayer) with flat interface. Interface defects: Λ^{+}and Λ^{-}have different densities, so near the interface many atoms have the "wrong" number of first neighbors (Fig 1a). Such atoms form line singularities corresponding to edge dislocations. Dislocations can be reduced by compressing \wedge^{+}near the interface (Fig 1c).

Fig 1. Cross section of the interface. 1a: stress-free. 1b: real minimizer. 1c: defect-free
Energy scaling: competition between Elastic Energy and Dislocation Energy (Fig 1b): - Elastic Energy scales like R^{3} (volume of the body) for defect-free configurations.

- Dislocation Energy scales like R^{2} (area of the interface).

Semi-coherent interfaces: $\Lambda^{+}=\alpha \Lambda^{-}$with misfit $\alpha \approx 1$. Example: heterostructured nanowires. Large interfaces: semi-coherent interfaces show the following behavior for large R :

- Dislocations are energetically preferred over elastic strain .
- A Periodic Network of Edge Dislocations nucleates at the interface.

Semi-Discrete Model

Our analysis [1] builds on previous work done in [2].
Lattice structures: cubic lattice Λ^{-}with spacing $b>0, \Lambda^{+}:=\alpha \Lambda^{-}$with $\alpha:=1+\frac{1}{n}$ fixed. Here b is independent of $R>0$ diameter of the cross section.
Reference configuration:

- $\Omega_{R}:=S_{R} \times(-h R, h R)$ cylinder with $h>0, S_{R}:=(-R / 2, R / 2)^{2}$ interface.
- $\Omega_{R}^{+}:=S_{R} \times(0, h R)$ overlayer with lattice \wedge^{+}not in equilibrium.
- $\Omega_{R}^{-}:=S_{R} \times(-h R, 0)$ underlayer with lattice Λ^{-}already in equilibrium and assumed rigid.

Dislocations: we allow for nucleation of edge dislocations at the interface

- Dislocation lines: closed curves γ sitting on the grid $\left.\mathcal{G}:=\left((b \mathbb{Z} \times \mathbb{R}) \cup(\mathbb{R} \times b \mathbb{Z}) \cap S_{R}\right)\right) \times\{0\}$.
- Burgers vectors: $\mathbf{b} \in \mathbb{R}^{3}$ belongs to the set of slip directions $b \mathbb{Z}\left\{e_{1}, e_{2}\right\}$.

The set of admissible dislocations is then
$\mathcal{A D}:=\left\{(\Gamma, \mathbf{B}): \Gamma=\left\{\gamma_{i}\right\}\right.$ finite family of curves $\gamma_{i} \subset \mathcal{G}, \mathbf{B}=\left\{\mathbf{b}_{i}\right\}$ respective Burgers vectors $\}$.
Deformations: maps $F: \Omega_{R} \rightarrow \mathbb{M}^{3 \times 3}$. Dislocations are line defects of F. For $(\Gamma, B) \in \mathcal{A D}$ admissible strains are
$\mathcal{A S}(\Gamma, \mathrm{B}):=\left\{F \in L_{\mathrm{loc}}^{p}\left(\Omega_{R} ; \mathbb{M}^{3 \times 3}\right): F=I\right.$ in $\Omega_{R}^{-}, \operatorname{curl} F=-\sum_{i} \mathbf{b}_{i} \otimes \dot{\gamma}_{i} d \mathcal{H}^{1}\left\llcorner\gamma_{i}\right\}$
Energy: assume $W: \mathbb{M}^{3 \times 3} \rightarrow[0,+\infty)$, continuous, frame indifferent and such that

$$
W(F) \sim \operatorname{dist}^{2}(F ; \alpha S O(3)) \wedge\left(|F|^{p}+1\right) \quad \text { for some } \quad 1<p<2
$$

- $E_{R}^{e l}:=\inf \left\{\int_{\Omega_{R}^{+}} W(F(x)) d x: F \in L_{\mathrm{loc}}^{p}\left(\Omega_{R}\right), F=l\right.$ in $\Omega_{R^{-}}$, curl $\left.F=0\right\}$
(Elastic Energy)
- $E_{R}^{p l}:=\min \left\{\inf \left\{\int_{\Omega_{R}^{+}} W(F(x)) d x: F \in \mathcal{A S}(\Gamma, B)\right\}:(\Gamma, \mathbf{B}) \in \mathcal{A D}\right\} \quad$ (Dislocation Energy)

Scaling Properties of the Energies

Rigidity implies that

- $E_{R}^{e l}>0$ and $E_{R}^{p l}>0$: matching the two phases always has a positive cost
- $E_{R}^{e l}=R^{3} E_{1}^{e l}$: this shows that the elastic energy grows cubically $E_{R}^{e l} \sim R^{3}$.

Characterizing the scaling of the dislocation energy $E_{R}^{p l}$ is more delicate. We showed that:
Theorem 1. There exists $0<E^{p l}<+\infty$ such that

$$
E_{R}^{p l}=R^{2} E^{p l}+O(1) \quad \text { where } \quad O(1) \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty
$$

Corollary 1. Nucleation of Dislocations is energetically preferred for large interfaces. The optimal scaling for $E_{R}^{p l}$ is obtained by introducing a Periodic Network of Edge Dislocations at the interface.

Periodic Network of Edge Dislocations

Construction: let $\delta:=b /(\alpha-1)$.

1. Divide S_{R} into $q \approx(R / \delta)^{2}$ squares Q_{i} with vertices in the lattice $S_{R} \cap \delta \mathbb{Z}^{2}$ and center x_{i}.
2. Above Q_{i} define pyramids: C_{i}^{1} (height $\delta / 2$), C_{i}^{2} (height δ). 3. Deformation $v:=x+u$ with displacement $u:=0$ in Ω_{R}^{-}, $u:=(\alpha-1) x$ in $\Omega_{R}^{+} \backslash \cup_{i} C_{i}^{2}, u:=(\alpha-1) x_{i}$ in C_{i}^{1} and linearly interpolate in $C_{i}^{2} \backslash C_{i}^{1}$.
Dislocations: v has constant jump $(\alpha-1) x_{i}$ across Q_{i}. Jumps induce dislocation lines $\gamma_{i j}:=Q_{i} \cap Q_{j}$ with respective Burgers vectors $\mathbf{b}_{i j}:=(\alpha-1)\left(x_{j}-x_{i}\right)$, for adjacent Q_{i} and Q_{j}. If we define $\Gamma:=\left\{\gamma_{i j}\right\}$ and $B:=\left\{\mathbf{b}_{i j}\right\}$ we have $(\Gamma, B) \in \mathcal{A D}$ and $v \in \mathcal{A S}(\Gamma, \mathrm{~B})$.
Proposition 1. $E_{R}^{p l} \leq c R^{2}$ since $\int_{C_{i}^{2}} W(\nabla v(x)) d x \leq c \delta^{3}$.

Fig 2. Double pyramids.

Some considerations

Drawback: if v is as above, $v\left(S_{R}\right)$ is union of squares of side δ separated by strips of width b (Fig 3). Some lines of atoms in $v\left(S_{R}\right)$ fall outside of S_{R}, suggesting this model is not appropriate to describe heterostructured materials.
Alternative: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$new reference configuration with $r:=\theta R$ for $\theta \in(0,1)$, enforcing $v\left(S_{r}\right)=S_{R}($ Fig 1c). The above construction in $\Omega_{R, r}$ with $\delta=\frac{b}{\theta^{-1}-1}$ yields $v\left(S_{r}\right)=S_{R}$. Dislocation length: $L \approx \frac{1}{b} r^{2}\left(\theta^{-2}-1\right)=\frac{1}{b}\left|S_{R} \backslash S_{r}\right|$ as $\theta \approx 1$. Dislocation energy: $E_{r}^{p l} \approx \sigma_{\alpha, \theta}\left|S_{R} \backslash S_{r}\right|$ with $\sigma_{\alpha, \theta}:=\frac{E^{p l}}{\theta^{-2}-1}$ Dislocation energy is proportional to total dislocation length.

Fig 3. Interface mismatch. Guess: for $r \rightarrow \infty$ and $\alpha \rightarrow 1^{+}, E_{r}^{p l}$ is minimized by a periodic configuration of well separated dislocations. We then conjecture that $\lim _{\alpha \rightarrow 1^{+}} \sigma_{\alpha, \alpha^{-1}}=: \sigma$ for some $0<\sigma<\infty$. We can interpret $b \sigma$ as the self energy of a single dislocation line per unit length.

Continuum Model

Reference Configuration: $\Omega_{R, r}:=\Omega_{R}^{-} \cup S_{r} \cup \Omega_{r}^{+}$with $R>0, \theta \in\left[\alpha^{-1}, 1\right]$ and $r:=\theta R$. Also fix $\sigma>0$ (see above discussion).
Deformations: maps $v \in W^{1,2}\left(\Omega_{r}^{+} ; \mathbb{R}^{3}\right)$ satisfying boundary condition $v(x)=\theta^{-1} x$ on S_{r}
Energy: assume $W(F) \geq C \operatorname{dist}^{2}(F, \alpha S O(3))$ and $W(\alpha I)=0$. Define energies:

- $E_{R}^{e l}(\theta):=\inf \left\{\int_{\Omega_{r}^{+}} W(\nabla v(x)) d x: v \in W^{1,2}\left(\Omega_{r}^{+} ; \mathbb{R}^{3}\right), v=\theta^{-1} x\right.$ on $\left.S_{r}\right\}$
(Elastic Energy)
- $E_{R}^{p l}(\theta):=\sigma R^{2}\left(1-\theta^{2}\right)$ (proportional to mismatch area)
(Dislocation Energy)
- $E_{R}^{\text {tot }}(\theta):=E_{R}^{e l}(\theta)+E_{R}^{p l}(\theta)$ and $E_{R}^{\text {tot }}:=\inf _{\theta \in\left[\alpha^{-1}, 1\right]} E_{R}^{\text {tot }}(\theta)$
(Total Energy)
Note 1. If $\theta=1$ no dislocation energy is present. If $\theta=1 / \alpha$ no elastic energy is stored.
Note 2. $E_{R}^{\text {tot }}$ sub-quadratic, that is $E_{R}^{\text {tot }} \leq \sigma R^{2}\left(1-\alpha^{-2}\right)$.
Energy scaling: $E_{R}^{e l}(1) \sim R^{3}$ by Rigidity.
Consider θ_{R} minimizing sequence, that is $E_{R}^{\text {tot }}=E_{R}^{\text {tot }}\left(\theta_{R}\right)+o(1)$ where $o(1) \rightarrow 0$ as $R \rightarrow+\infty$. Corollary 2. Nucleation of Dislocations is preferred: $\theta_{R}<1$ for large R.
Proposition 2. $E_{1}^{e l}\left(\theta_{R}\right) \rightarrow 0$ and $\theta_{R} \rightarrow \alpha^{-1}$ as $R \rightarrow+\infty$.
Therefore we can linearize the Elastic Energy about $\alpha /$ (by Γ-convergence) and compute:
Theorem 2. (Taylor Expansion) There exists $C>0$ (from linearized elasticity) such that

$$
E_{R}^{t o t}=E_{C}^{e l}(R)+E_{C}^{p l}(R)+o(R)
$$

where $o(R) / R \rightarrow 0$ as $R \rightarrow+\infty$ and

$$
E_{C}^{e l}(R):=\frac{\sigma^{2}}{\alpha^{3} C} R \quad E_{C}^{p l}(R):=\sigma R^{2}\left(1-\frac{1}{\alpha^{2}}\right)-2 \frac{\sigma^{2}}{\alpha^{3} C} R .
$$

Bibliography

[1] S. Fanzon, M. Palombaro, and M. Ponsiglione. "A Variational Model for Dislocations at Semicoherent Interfaces". In: Journal of Nonlinear Science 27.5 (2017), pp. 1435-1461.
[2] S. Müller and M. Palombaro. "Derivation of a rod theory for biphase materials with dislocaions at the interface". In: Calc. Var. Partial Differential Equations 48.3-4 (2013), pp. 315-335.

