A Variational Model for Dislocations at Semi-Coherent Interfaces

Silvio Fanzon Department of Mathematics, University of Sussex, UK

Joint work with M. Palombaro and M. Ponsiglione

UNIVERSITY OF SUSSEX

Semi-Coherent Interfaces

Polycrystal: two crystalline materials with different underlying lattice structures Λ^+ and Λ^- , $\Lambda^+ = \alpha \Lambda^-$, $\alpha > 1$. The lattice Λ^+ (overlayer) lies on top of Λ^- (underlayer) with flat interface. **Interface defects:** Λ^+ and Λ^- have different densities, so near the interface many atoms have the "wrong" number of first neighbors (Fig 1a). Such atoms form *line singularities* corresponding to *edge dislocations*. Dislocations can be reduced by compressing Λ^+ near the interface (Fig 1c).

- 1	
 $\Lambda +$	
<u> </u>	
/ \	

Periodic Network of Edge Dislocations

Construction: let $\delta := b/(\alpha - 1)$.

- 1. Divide S_R into $q \approx (R/\delta)^2$ squares Q_i with vertices in the lattice $S_R \cap \delta \mathbb{Z}^2$ and center x_i .
- 2. Above Q_i define pyramids: C_i^1 (height $\delta/2$), C_i^2 (height δ). 3. Deformation v := x + u with displacement u := 0 in Ω_R^- , $u := (\alpha - 1)x$ in $\Omega_R^+ \smallsetminus \cup_i C_i^2$, $u := (\alpha - 1)x_i$ in C_i^1 and linearly interpolate in $C_i^2 \smallsetminus C_i^1$.

Dislocations: v has constant jump $(\alpha - 1)x_i$ across Q_i . Jumps induce dislocation lines $\gamma_{ij} := Q_i \cap Q_j$ with respective Burgers vectors $\mathbf{b}_{ij} := (\alpha - 1)(x_j - x_i)$, for adjacent Q_i and Q_j . If we define $\Gamma := {\gamma_{ij}}$ and $\mathbf{B} := {\mathbf{b}_{ij}}$ we have $(\Gamma, \mathbf{B}) \in \mathcal{AD}$ and

Fig 1. Cross section of the interface. 1a: stress-free. 1b: real minimizer. 1c: defect-free.

Energy scaling: competition between *Elastic Energy* and *Dislocation Energy* (Fig 1b):

- *Elastic Energy* scales like R^3 (volume of the body) for defect-free configurations.
- Dislocation Energy scales like R^2 (area of the interface).

Semi-coherent interfaces: $\Lambda^+ = \alpha \Lambda^-$ with misfit $\alpha \approx 1$. Example: heterostructured nanowires. **Large interfaces**: semi-coherent interfaces show the following behavior for large *R*:

- Dislocations are energetically preferred over elastic strain .
- A Periodic Network of Edge Dislocations nucleates at the interface.

Semi-Discrete Model

Our analysis [1] builds on previous work done in [2].

Lattice structures: cubic lattice Λ^- with spacing b > 0, $\Lambda^+ := \alpha \Lambda^-$ with $\alpha := 1 + \frac{1}{n}$ fixed. Here *b* is independent of R > 0 diameter of the cross section.

Reference configuration:

- $\Omega_R := S_R \times (-hR, hR)$ cylinder with h > 0, $S_R := (-R/2, R/2)^2$ interface.
- $\Omega_R^+ := S_R \times (0, hR)$ overlayer with lattice Λ^+ not in equilibrium.

• $\Omega_R^- := S_R \times (-hR, 0)$ underlayer with lattice Λ^- already in equilibrium and assumed rigid.

Dislocations: we allow for nucleation of *edge dislocations* at the interface

• *Dislocation lines*: closed curves γ sitting on the grid $\mathcal{G} := ((b\mathbb{Z} \times \mathbb{R}) \cup (\mathbb{R} \times b\mathbb{Z}) \cap S_R)) \times \{0\}.$

 $v \in \mathcal{AS}(\Gamma, \mathbf{B}).$ **Proposition 1.** $E_R^{pl} \leq c R^2$ since $\int_{C_i^2} W(\nabla v(x)) dx \leq c \delta^3$.

Fig 2. Double pyramids.

Some considerations

Drawback: if v is as above, $v(S_R)$ is union of squares of side δ separated by strips of width b (Fig 3). Some lines of atoms in $v(S_R)$ fall outside of S_R , suggesting this model is not appropriate to describe heterostructured materials.

Alternative: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ new reference configuration with $r := \theta R$ for $\theta \in (0, 1)$, enforcing $v(S_r) = S_R$ (Fig 1c). The above construction in $\Omega_{R,r}$ with $\delta = \frac{b}{\theta^{-1}-1}$ yields $v(S_r) = S_R$. Dislocation length: $L \approx \frac{1}{b}r^2(\theta^{-2}-1) = \frac{1}{b}|S_R \smallsetminus S_r|$ as $\theta \approx 1$. Dislocation energy: $E_r^{pl} \approx \sigma_{\alpha,\theta} |S_R \smallsetminus S_r|$ with $\sigma_{\alpha,\theta} := \frac{E^{pl}}{\theta^{-2}-1}$ Dislocation energy is proportional to total dislocation length.

Fig 3. Interface mismatch.

Guess: for $r \to \infty$ and $\alpha \to 1^+$, E_r^{pl} is minimized by a periodic configuration of well separated dislocations. We then conjecture that $\lim_{\alpha \to 1^+} \sigma_{\alpha,\alpha^{-1}} =: \sigma$ for some $0 < \sigma < \infty$. We can interpret $b\sigma$ as the self energy of a single dislocation line per unit length.

Continuum Model

Reference Configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$ with R > 0, $\theta \in [\alpha^{-1}, 1]$ and $r := \theta R$. Also fix $\sigma > 0$ (see above discussion).

• Burgers vectors: $\mathbf{b} \in \mathbb{R}^3$ belongs to the set of slip directions $b\mathbb{Z}\{e_1, e_2\}$. The set of admissible dislocations is then

 $\mathcal{AD} := \{(\Gamma, \mathbf{B}) : \Gamma = \{\gamma_i\} \text{ finite family of curves } \gamma_i \subset \mathcal{G}, \mathbf{B} = \{\mathbf{b}_i\} \text{ respective Burgers vectors} \}$. **Deformations:** maps $F : \Omega_R \to \mathbb{M}^{3 \times 3}$. Dislocations are line defects of F. For $(\Gamma, \mathbf{B}) \in \mathcal{AD}$ admissible strains are

 $\mathcal{AS}(\Gamma, \mathbf{B}) := \left\{ F \in L^p_{\text{loc}}(\Omega_R; \mathbb{M}^{3 \times 3}) \colon F = I \text{ in } \Omega_R^-, \text{ curl } F = -\sum_i \mathbf{b}_i \otimes \dot{\gamma}_i \, d\mathcal{H}^1 \llcorner \gamma_i \right\} \,.$

Energy: assume $W: \mathbb{M}^{3 \times 3} \rightarrow [0, +\infty)$, continuous, frame indifferent and such that

 $W(F) \sim \text{dist}^2(F; \alpha SO(3)) \wedge (|F|^p + 1)$ for some 1 .

• $E_R^{el} := \inf \left\{ \int_{\Omega_R^+} W(F(x)) \, dx : F \in L_{\text{loc}}^p(\Omega_R), F = I \text{ in } \Omega_R^-, \text{ curl } F = 0 \right\}$ (Elastic Energy) • $E_R^{pl} := \min \left\{ \inf \left\{ \int_{\Omega_R^+} W(F(x)) \, dx : F \in \mathcal{AS}(\Gamma, \mathbf{B}) \right\} : (\Gamma, \mathbf{B}) \in \mathcal{AD} \right\}$ (Dislocation Energy)

Scaling Properties of the Energies

Rigidity implies that

• $E_R^{el} > 0$ and $E_R^{pl} > 0$: matching the two phases always has a positive cost.

• $E_R^{el} = R^3 E_1^{el}$: this shows that the elastic energy grows cubically $E_R^{el} \sim R^3$.

Characterizing the scaling of the dislocation energy E_R^{pl} is more delicate. We showed that: **Theorem 1.** There exists $0 < E^{pl} < +\infty$ such that

 $E_R^{pl} = R^2 E^{pl} + O(1)$ where $O(1) \rightarrow 0$ as $R \rightarrow \infty$.

Deformations: maps $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$ satisfying boundary condition $v(x) = \theta^{-1}x$ on S_r . **Energy:** assume $W(F) \ge C$ dist²(*F*, $\alpha SO(3)$) and $W(\alpha I) = 0$. Define energies: • $E_R^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v(x)) \, dx : v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3), v = \theta^{-1}x \text{ on } S_r \right\}$ (Elastic Energy) • $E_R^{pl}(\theta) := \sigma R^2 (1 - \theta^2)$ (proportional to mismatch area) (Dislocation Energy) • $E_R^{tot}(\theta) := E_R^{el}(\theta) + E_R^{pl}(\theta)$ and $E_R^{tot} := \inf_{\theta \in [\alpha^{-1}, 1]} E_R^{tot}(\theta)$ (Total Energy) **Note 1.** If $\theta = 1$ no dislocation energy is present. If $\theta = 1/\alpha$ no elastic energy is stored. Note 2. E_R^{tot} sub-quadratic, that is $E_R^{tot} \leq \sigma R^2 (1 - \alpha^{-2})$. **Energy scaling:** $E_R^{el}(1) \sim R^3$ by Rigidity. Consider θ_R minimizing sequence, that is $E_R^{tot} = E_R^{tot}(\theta_R) + o(1)$ where $o(1) \to 0$ as $R \to +\infty$. **Corollary 2.** Nucleation of Dislocations is preferred: $\theta_R < 1$ for large *R*. **Proposition 2.** $E_1^{el}(\theta_R) \to 0$ and $\theta_R \to \alpha^{-1}$ as $R \to +\infty$. Therefore we can linearize the Elastic Energy about αI (by Γ -convergence) and compute: **Theorem 2.** (Taylor Expansion) There exists C > 0 (from linearized elasticity) such that

$$E_R^{tot} = E_C^{el}(R) + E_C^{pl}(R) + o(R)$$

where $o(R)/R \rightarrow 0$ as $R \rightarrow +\infty$ and

 $E_C^{el}(R) := \frac{\sigma^2}{\alpha^3 C} R$

$$E_C^{pl}(R) := \sigma R^2 \left(1 - \frac{1}{\alpha^2} \right) - 2 \frac{\sigma^2}{\alpha^3 C} R.$$

Bibliography

[1] S. Fanzon, M. Palombaro, and M. Ponsiglione. "A Variational Model for Dislocations at Semi-

[2] S. Müller and M. Palombaro. "Derivation of a rod theory for biphase materials with dislocations"

at the interface". In: Calc. Var. Partial Differential Equations 48.3-4 (2013), pp. 315–335.