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Polycrystal: two crystalline materials with different underlying lattice structures Λ+ and Λ−,Λ+ = αΛ−, α > 1. The lattice Λ+ (overlayer) lies on top of Λ− (underlayer) with flat interface.
Interface defects: Λ+ and Λ− have different densities, so near the interface many atoms have the“wrong” number of first neighbors (Fig 1a). Such atoms form line singularities corresponding to
edge dislocations. Dislocations can be reduced by compressing Λ+ near the interface (Fig 1c).
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Fig 1. Cross section of the interface. 1a: stress-free. 1b: real minimizer. 1c: defect-free.
Energy scaling: competition between Elastic Energy and Dislocation Energy (Fig 1b):
• Elastic Energy scales like R3 (volume of the body) for defect-free configurations.
• Dislocation Energy scales like R2 (area of the interface).

Semi-coherent interfaces: Λ+ = αΛ− with misfit α ≈ 1. Example: heterostructured nanowires.
Large interfaces: semi-coherent interfaces show the following behavior for large R :
• Dislocations are energetically preferred over elastic strain .
• A Periodic Network of Edge Dislocations nucleates at the interface.

Semi-Coherent Interfaces

Our analysis [1] builds on previous work done in [2] .
Lattice structures: cubic lattice Λ− with spacing b > 0, Λ+ := αΛ− with α := 1 + 1

n fixed. Here
b is independent of R > 0 diameter of the cross section.
Reference configuration:
• ΩR := SR × (−hR, hR ) cylinder with h > 0, SR := (−R/2, R/2)2 interface.
• Ω+

R := SR × (0, hR ) overlayer with lattice Λ+ not in equilibrium.
• Ω−

R := SR × (−hR, 0) underlayer with lattice Λ− already in equilibrium and assumed rigid.
Dislocations: we allow for nucleation of edge dislocations at the interface
• Dislocation lines: closed curves γ sitting on the grid G := ((bZ×R) ∪ (R× bZ) ∩ SR )) × {0}.
• Burgers vectors: b ∈ R3 belongs to the set of slip directions bZ{e1, e2}.The set of admissible dislocations is then
AD := {(Γ, B) : Γ = {γi} finite family of curves γi ⊂ G, B = {bi} respective Burgers vectors} .

Deformations: maps F : ΩR → M3×3 . Dislocations are line defects of F . For (Γ, B) ∈ ADadmissible strains are
AS(Γ, B) := {

F ∈ Lploc(ΩR ;M3×3) : F = I in Ω−
R , curl F = −

∑
i bi ⊗ γ̇i dH1⌞γi

}
.

Energy: assume W : M3×3 → [0, +∞), continuous, frame indifferent and such that
W (F ) ∼ dist2(F ; αSO(3)) ∧ (|F |p + 1) for some 1 < p < 2 .

• Eel
R := inf {∫Ω+

R
W (F (x)) dx : F ∈ Lploc(ΩR ) , F = I in Ω−

R , curl F = 0} (Elastic Energy)
• Epl

R := min {inf {∫Ω+
R

W (F (x)) dx : F ∈ AS(Γ, B)} : (Γ, B) ∈ AD
} (Dislocation Energy)

Semi-Discrete Model

Rigidity implies that
• Eel

R > 0 and Epl
R > 0 : matching the two phases always has a positive cost .

• Eel
R = R3 Eel1 : this shows that the elastic energy grows cubically Eel

R ∼ R3 .Characterizing the scaling of the dislocation energy Epl
R is more delicate. We showed that:

Theorem 1. There exists 0 < Epl < +∞ such that

Epl
R = R2 Epl + O(1) where O(1) → 0 as R → ∞ .

Corollary 1. Nucleation of Dislocations is energetically preferred for large interfaces.The optimal scaling for Epl
R is obtained by introducing a Periodic Network of Edge Dislocationsat the interface.

Scaling Properties of the Energies

Construction: let δ := b/(α − 1).1. Divide SR into q ≈ (R/δ)2 squares Qi with vertices in thelattice SR ∩ δZ2 and center xi .2. Above Qi define pyramids: C1
i (height δ/2), C2

i (height δ).3. Deformation v := x + u with displacement u := 0 in Ω−
R ,

u := (α − 1)x in Ω+
R ∖ ∪iC2

i , u := (α − 1)xi in C1
i andlinearly interpolate in C2

i ∖ C1
i .

Dislocations: v has constant jump (α − 1)xi across Qi. Jumpsinduce dislocation lines γij := Qi∩Qj with respective Burgersvectors bij := (α − 1)(xj − xi), for adjacent Qi and Qj . If wedefine Γ := {γij} and B := {bij} we have (Γ, B) ∈ AD and
v ∈ AS(Γ, B).
Proposition 1. Epl

R ≤ c R2 since ∫
C 2

i
W (∇v (x)) dx ≤ c δ3 .

v = x

v = αx

Fig 2. Double pyramids.
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Drawback: if v is as above, v (SR ) is union of squares of side
δ separated by strips of width b (Fig 3). Some lines of atomsin v (SR ) fall outside of SR , suggesting this model is not ap-propriate to describe heterostructured materials.
Alternative: ΩR,r := Ω−

R ∪Sr∪Ω+
r new reference configurationwith r := θR for θ ∈ (0, 1), enforcing v (Sr) = SR (Fig 1c). Theabove construction in ΩR,r with δ = b

θ−1−1 yields v (Sr) = SR .
Dislocation length: L ≈ 1

b r2(θ−2−1) = 1
b |SR ∖ Sr| as θ ≈ 1.

Dislocation energy: Epl
r ≈ σα,θ |SR ∖ Sr| with σα,θ := Epl

θ−2−1Dislocation energy is proportional to total dislocation length.
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Fig 3. Interface mismatch.
Guess: for r → ∞ and α → 1+, Epl

r is minimized by a periodic configuration of well separateddislocations. We then conjecture that limα→1+ σα,α−1 =: σ for some 0 < σ < ∞. We can interpret
bσ as the self energy of a single dislocation line per unit length.

Some considerations

Reference Configuration: ΩR,r := Ω−
R ∪ Sr ∪ Ω+

r with R > 0, θ ∈ [α−1, 1] and r := θR . Alsofix σ > 0 (see above discussion).
Deformations: maps v ∈ W 1,2(Ω+

r ;R3) satisfying boundary condition v (x) = θ−1 x on Sr .
Energy: assume W (F ) ≥ C dist2(F, αSO(3)) and W (αI) = 0. Define energies:
• Eel

R (θ) := inf {∫Ω+
r

W (∇v (x)) dx : v ∈ W 1,2(Ω+
r ;R3), v = θ−1x on Sr

} (Elastic Energy)
• Epl

R (θ) := σR2(1 − θ2) (proportional to mismatch area) (Dislocation Energy)
• Etot

R (θ) := Eel
R (θ) + Epl

R (θ) and Etot
R := infθ∈[α−1,1] Etot

R (θ) (Total Energy)
Note 1. If θ = 1 no dislocation energy is present. If θ = 1/α no elastic energy is stored.
Note 2. Etot

R sub-quadratic, that is Etot
R ≤ σR2(1 − α−2).

Energy scaling: Eel
R (1) ∼ R3 by Rigidity.Consider θR minimizing sequence, that is Etot

R = Etot
R (θR ) + o(1) where o(1) → 0 as R → +∞ .

Corollary 2. Nucleation of Dislocations is preferred: θR < 1 for large R .
Proposition 2. Eel1 (θR ) → 0 and θR → α−1 as R → +∞.Therefore we can linearize the Elastic Energy about αI (by Γ-convergence) and compute:
Theorem 2. (Taylor Expansion) There exists C > 0 (from linearized elasticity) such that

Etot
R = Eel

C (R ) + Epl
C (R ) + o(R )where o(R )/R → 0 as R → +∞ and

Eel
C (R ) := σ2

α3C
R Epl

C (R ) := σR2 (1 − 1
α2

)
− 2 σ2

α3C
R .

Continuum Model
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