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Frank-Wolfe Algorithm 1

Consider the minimization problem

min
x2C

F (x)

I F : RN
! R is regular convex function

I C ⇢ RN convex set

Frank-Wolfe Algorithm: Given an iterate x
n, compute x

n+1 in two steps:

I Insertion step: Solve the linearized problem around x
n as

bx 2 argmin
x2C

hrF (xn), xi

I Line search step: Obtain x
n+1 by interpolating

x
n+1 = x

n + s
⇤(bx � x

n)

for a suitably chosen step-size s
⇤



Frank-Wolfe bibliographical notes 2

I Convergence rate of Frank-Wolfe is typically sublinear

I It can be improved to linear under strong convexity assumptions on F and
di↵erent interpolation steps 1 2.

I The algorithm has been generalized to infinite dimensional spaces called
Generalized Conditional Gradient methods 3

I Classical algorithms in infinite dimensional optimization are particular
instances of GCG 4 5

1Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Jaggi, M. (2013)
2On the Global Linear Convergence of Frank-Wolfe Optimization Variants Lacoste-Julien, S.

and Jaggi, M. (2015)
3Approximate methods in optimization problems Demyanov, V. F. and Rubinov A. M. (1970)
4An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

Daubechies, I., Defrise, M. and De Mol, C. (2004)
5Iterated hard shrinkage for minimization problems with sparsity constraints Bredies, K.

Lorenz, D. (2006)



GCG in the Space of Measures 3

BLASSO Problem:

min
u2M(⌦)

G (u) := F (Ku) + kukM(⌦)

I Unknown: M(⌦) with ⌦ ⇢ Rd bounded
I Data: Y Hilbert space
I Measurement: K : M(⌦) ! Y linear, weak*-to-strong continuous
I Data fidelity: F : Y ! [0,1) strictly convex and smooth

GCG Algorithm

Given u
n compute next iterate u

n+1 in two steps:

I Insertion step: Solve the partially linearized problem around u
n as

bu 2 argmax
kukC

hp
n, ui , p

n := �K⇤rF (Kun) 2 C (⌦)

I Line search step: un+1 is obtained interpolating

u
n+1 = u

n + s
⇤(bu � u

n) , s
⇤ suitable step-size



Sparse Iterations 4

Key observation: iterate u
n can be constructed as a combination of Dirac deltas

u
n =

knX

i=1

ci �xi , ci 2 R , xi 2 ⌦

Why? Key Lemma: Let p 2 C (⌦). Then 9 x̂ 2 ⌦, c 2 R s.t.

x̂ 2 argmax
x2⌦

|p(x)| and c �x̂ 2 argmax
kukC

hu, pi

Therefore
Insertion Step () Maximizing |p

n
|

For later: Dirac deltas ±�x are extremal points of the set

{u 2 M(⌦) : kuk  1}



Convergence result 5

Remark: Next iterate u
n+1 can be obtained by

u
n+1 = u

n + s
⇤(bu � u

n) , s
⇤ suitable step-size

where
bu = c �x̂ , x̂ 2 argmax

x2⌦
|p

n(x)|

Theorem (Bredies, Pikkarainen (2013))

GCG Algorithm generates a sparse sequence

u
n =

KnX

i=1

ci �xi

such that

I u
n ⇤
* u with u minimizer of G ,

I The rate of convergence is sublinear, i.e.

G (un)� min
u2M(⌦)

G (u) . 1

n

Inverse problems in the space of measures K. Bredies, H.K. Pikkarainen. ESAIM:COCV (2013)



Remarks on BLASSO 6

I GCG for BLASSO exploits sparsity of the problem
(iterates are linear combinations of Dirac deltas)

I GCG allows to design a discretization-free algorithm

Faster convergence

Line Search Step can be replaced by a Coe�cients Optimization Step: solve

(c⇤1 , . . . , c
⇤
kn+1) 2 argmin

ci�0
G

 
knX

i=1

ci �xi + ck+1 �x̂

!

and set the next iterate to

u
n+1 :=

knX

i=1

c
⇤
i �xi + c

⇤
k+1 �x̂

Important: Coe�cient optimization ; Linear rate of convergence in experiments



GCG methods in Banach spaces 7

Question: Is it possible prove linear convergence in some cases?

Abstract Problem:

min
u2X

G (u) := F (Ku) + R(u)

I Unknown: X separable Banach space with predual X⇤

I Data: Y Hilbert space

I Measurement: K : X ! Y linear, weak*-to-strong continuous

I Data Fidelity: F : Y ! R smooth, strictly convex

I Regularizer: R : X ! [0,1] convex, 1-homogeneous and coercive

Remark: Above assumptions guarantee existence of minimizer

Asymptotic linear convergence of Fully-Corrective Generalized Conditional Gradient Methods
K. Bredies, M. Carioni, S. Fanzon, D. Walter. Mathematical Programming (2023)



Sparsity: Extremal points 8

Extremal Points: Given a set B we say that u 2 B is an extremal point if

u = �u1 + (1� �)u2 for � 2 (0, 1) ) u = u1 = u2

The set of extremal points of B is denoted by Ext(B)

u1u2

u3

u4 u5

u6B
u = 1

2u1 +
1
2u6

Key Lemma

Define unit ball of the regularizer B := {u 2 X : R(u)  1}. Let p 2 X⇤. Then

argmax
u2B

hu, pi = argmax
u2Ext(B)

hu, pi

In the insertion step we add an extremal point of B ; Sparse iterates



Fully-Corrective GCG algorithm 9

Assume the n-th iterate is sparse

u
n =

kX

i=1

ciui , ci 2 R, ui 2 Ext(B)

We compute u
n+1 in the following way:

I Insertion step: Compute dual variable p
n := �K⇤rF (Kun) 2 X⇤. Find

bu 2 argmax
u2B

hp
n, ui s.t. bu 2 Ext(B)

I Coe�cients Optimization: Set uk+1 := bu. Solve finite-dimensional problem

(c⇤1 , . . . , c
⇤
k+1) 2 argmin

ci�0

"
F

 
k+1X

i=1

ciKui

!
+

k+1X

i=1

ci

#

Next iterate is

u
n+1 :=

k+1X

i=1

c
⇤
i ui



Why sparse solutions? 10

Motivations:

I The complexity of the Insertion Step problem

max
u2B

hp
n, ui

can be substantially reduced by looking at solutions in Ext(B)

I We obtain a discretization-free algorithm in Banach space

I Sparse solutions are preferred in certain applications

I Recent Representer Theorems show that, under suitable assumptions, the
minimization problem considered

min
u2X

G (u) := F (Au) + R(u)

admits sparse solutions, i.e., finite linear combinations of points in Ext(B) 6

6Sparsity of solutions for variational inverse problems with finite dimensional data
K. Bredies, M. Carioni. Calc. Var. PDE (2020)



Applications 11

Some classes of examples:

I The regularizer R could be a norm or semi-norm

I For X = M(⌦) and R(µ) = kµk we recover GCG for BLASSO, since

Ext({µ 2 M(⌦) : kµk  1}) = {±�x : x 2 ⌦}

I R = gauge function of M ⇢ X weak* compact and convex:

R(u) := inf{⇢ � 0 : u 2 ⇢M}

(dictionary learning, matrix completion)



Convergence rates 12

Global convergence: we first establish a basic convergence result for the FC-GCG

Theorem (Global convergence)

Consider the iterate generated by FC-GCG Algorithm:

u
n =

knX

i=1

ci ui , ci � 0, ui 2 Ext(B)

We have

I u
n ⇤
* u with u minimizer of G ,

I The convergence rate is sublinear, i.e.,

G (un)�min
u2X

G (u) 
C

n



Linear convergence 13

Goal: Find additional assumptions under which linear convergence holds

Let ū be a minimizer of G . Define the associated dual variable

p̄ := �K⇤rF (Kū) 2 X⇤

Sparsity Assumptions:

(F1) F is strongly convex

(F2) There exists A = {ūi}
N
i=1 ⇢ Ext(B) such that

argmax
v2B

hp̄, vi = A = {ūi}
N
i=1

(F3) The set {Kūi}i ⇢ Y is linearly independent in Y

Theorem. (F1) + (F2) + (F3) =) the minimizer ū 2 X is unique and sparse:

ū =
NX

i=1

c̄i ūi , c̄i > 0 , ūi 2 A



Linear convergence 14

Growth Assumptions: There exists a “distance” function

g : Ext(B)⇥ Ext(B) ! [0,1)

such that

(F4) g-Quadratic growth of p̄ around ūi

1� hp̄, ui & g(u, ūi )
2 for every i , u ⇠ ūi

(F5) g-Lipschitz growth of K around ūi

kK (u � ūi )kY . g(u, ūi ) for every i , u ⇠ ūi

Theorem (Linear convergence)

Assume (F1)–(F5). Let u
n
be generated by FC-GCG. Then u

n
converges linearly

G (un)�min
u2X

G (u) . C⇣n , 9 ⇣ 2 [1/2, 1)



Proof Idea: Lifting to the space of measures 15

Proof Strategy: Lift the problem and algorithm to the space

M(Ext(B))

Definition

We say that µ 2 M
+(Ext(B)) represents u 2 X if

hp, ui =

Z

Ext(B)
hp, vi dµ(v) , 8p 2 X⇤

When µ represents u we denote

u = I(µ)

Example: For all u 2 Ext(B) we have

I(�u) = u



Question: How do we lift to M(Ext(B))?

Proposition

If u 2 dom(R) there exists µ 2 M
+(Ext(B)) s.t.

R(u) = kµkM , u = I(µ)

Proposition

There exists K : M(Ext(B)) ! Y linear and weak*-to-strong continuous s.t.

Kµ = Ku whenever I(µ) = u

Lifted variational problem:

min
µ2M+(B)

Ĝ (µ) := F (Kµ) + kµkM



min
u2X

G (u) := F (Ku) + R(u) (original problem) (OP)

min
µ2M+(Ext(B))

Ĝ (µ) := F (Kµ) + kµkM (lifted problem) (LP)

Theorem

(OP) and (LP) are equivalent. In particular

µ̄ 2 M
+(Ext(B)) solves (LP) =) ū := I(µ̄) solves (OP)

Proving convergence:

1 Formulate FC-GCG Algorithm for (LP)

2 Prove linear convergence rate for such Algorithm

3 Obtain linear convergence rate for original Algorithm, since

µn =
X

i

ci �ui ; u
n := I(µn) =

X

i

ci ui and Ĝ (µn) = G (un)



Example 1: Linear convergence for BLASSO 18

BLASSO Problem: X = M(⌦) with ⌦ ⇢ Rd bounded

min
u2M(⌦)

G (u) := F (Ku) + kukM(⌦)

Extremal points: For the unit ball B = {kukM(⌦)  1} we have

Ext(B) = {±�x : x 2 ⌦} , B = {kukM(⌦)  1}

Dual variable: Let ū be a minimizer of G . The dual variable is

p̄ = �K⇤rF (K µ̄) 2 C (⌦)

Sparsity Assumptions:

(B1) F is strongly convex = (F1)

(B2) There exist A := {xi}
N
i=1 ⇢ ⌦ such that = (F2)

argmax
x2⌦

|p̄(x)| = {xi}
N
i=1 = A

(B3) The set {K�xi}i ⇢ Y is linearly independent in Y = (F3)



Theorem: (B1) + (B2) + (B3) =) minimizer ū of G is unique and sparse:

ū =
NX

i=1

c̄i �xi , c̄i > 0 , xi 2 A

Growth Assumptions: Suppose that p̄ 2 C
2(⌦)

(B4) Non-degenerate curvature of r2
p̄ at xi =) (F4)

�sign(p̄(xi )) h⇠,r
2
p̄(xi )⇠i & |⇠|2 for all i , and ⇠ 2 Rd

(B4) Lipschitz growth of K around �xi =) (F5)

kK (�x � �xi )kY . |x � xi | for all i , x ⇠ xi

Theorem: Define g : Ext(B)⇥ Ext(B) ! [0,1) by

g(s1�x1 , s2�x2) := |s1 � s2|+ |x1 � x2|

Then (B1)-(B5) imply (F1)-(F5) wrt g , and FC-GCG converges linearly



Numerical Experiment: Sparse source identification 20

Bibliographical Note: Similar assumptions for BLASSO were made in

I K. Pieper, D. Walter. ESAIM: COCV (2021)

I A. Flinth, F. De Gournay, P. Weiss. Mathematical Programming (2021)

Setting of Experiment: ⌦ = (0, 1)2 spatial domain, (0,T ) time domain

Unknown: X = M(⌦) space of initial temperature distributions

Data: Y = L
2(⌦) space of final temperature measurements at time T

Operator: K : M(⌦) ! L
2(⌦) maps u to y(T ) where y : [0, 1]⇥ ⌦ ! R solves

8
><

>:

@ty ��y = 0 in (0,T )⇥ ⌦

y = 0 in (0,T )⇥ @⌦

y(0) = u in ⌦



Problem: Given a final temperature distribution yd 2 L
2(⌦) find initial source

û 2 argmin
u2M(⌦)

ky(T )� ydk
2
L2(⌦) + kukM(⌦)

Numerical Data: yd corresponding to sparse source u
†+ noise

u
† := 25�x1 � 10�x2 , x1 = (0.75, 0.75) , x2 = (0.25, 0.25)
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iteration number

G
(u

n
)
�

m
in
G
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BLASSO
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Residual at iteration k Number of Diracs at iteration k

Remarks:
I FC-GCG is substantially faster then BLASSO
I FC-GCG correctly identifies 2 sources

(Actually 3, but two of them are on adjacent grid points)



Example 2: Undersampled dynamic MRI 22

Task: Imaging via Magnetic Resonance

Mathematical Model: For the forward process

I u : [0, 1]2 ! R gray-scale image,

I F denotes Fourier transform

I y Fourier data acquired by machine

y = Fu
Image u

F



Example 2: Undersampled dynamic MRI 23

Inverse Problem: Given MRI data y , reconstruct u s.t.

Fu = y

Ideal World: Easy! Just take

u = F�1
y

Reconstruction uData y

F�1



Example 2: Undersampled dynamic MRI 24

Reality: Things are not that straightforward:

I Measurement process is inherently noisy

I Limited sampling in k-space, to limit scan time

Issue: Plain inversion leads to poor reconstructions

Reconstruction u
Undersampled noisy data y

F�1



Example 2: Undersampled dynamic MRI 25

Motion: Represents even bigger challenge to accurate reconstructions

I High resolution imaging

I Imaging moving organs

Dynamic inverse prob: Reconstruct movie ut from undersampled data series yt

F(ut) = yt for all t 2 [0, 1]

Original movie Bad Reconstruction

Solution: We need regularization for dynamic inverse problems



Example 2: Undersampled dynamic MRI 25

Motion: Represents even bigger challenge to accurate reconstructions
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Dynamic inverse prob: Reconstruct movie ut from undersampled data series yt

F(ut) = yt for all t 2 [0, 1]

Original movie Bad Reconstruction

Solution: We need regularization for dynamic inverse problems



Dynamic inverse problems 26

Our setting:

I Unknown: curve of measures t 7! ⇢t 2 M(⌦), with ⌦ ⇢ Rd bounded

I Data: curve t 7! ft 2 Ht with {Ht}t family of Hilbert spaces

I Measurements: linear continuous operators K⇤
t : M(⌦) ! Ht

Inverse Problem: Given ft 2 Ht , find a curve t 7! ⇢t 2 M(⌦) s.t.

K
⇤
t ⇢t = ft for a.e. t 2 (0, 1) (P)

Assumptions: very weak time-regularity for {Ht}t and K
⇤
t

Proposal: Regularize (P) with an Optimal Transport Energy acting on ⇢t

An optimal transport approach for solving dynamic inverse problems in spaces of measures
K. Bredies, S. Fanzon. ESAIM: M2AN (2020)



Optimal Transport - Static Formulation 27

⌦ ⇢ Rd bounded domain, ⇢0, ⇢1 2 P(⌦), T : ⌦ ! ⌦ measurable displacement

⌦

⇢0
⇢1 = T#⇢0

T

Goal: move ⇢0 to ⇢1 in the cheapest way, with cost of moving mass from x to y

c(x , y) := |x � y |
2

Optimal Transport: a transport plan T̂ solving

T̂ 2 argmin

⇢Z

⌦
|T (x)� x |

2
d⇢0(x) : T : ⌦ ! ⌦, T#⇢0 = ⇢1

�



Optimal Transport - Dynamic Formulation 28

Idea: introduce a time variable t 2 [0, 1] and consider the density evolution

I time dependent probability measures

t 7! ⇢t 2 P(⌦) for t 2 [0, 1]

I ⇢t is advected by the velocity field

vt(x) : [0, 1]⇥ ⌦ ! Rd

⇢0 ⇢1⇢1/2

⌦

v0 v1/2

Dynamic model: (⇢t , vt) solves the continuity equation with initial conditions

(
@t⇢t + div(⇢tvt) = 0

Initial data ⇢0, final data ⇢1
(CE-IC)



Benamou-Brenier Formula 29

Theorem (Benamou-Brenier ’00)

min
(⇢t ,vt)

solving (CE-IC)

Z 1

0

Z

⌦
|vt(x)|

2 ⇢t(x)dx dt = min
T : ⌦!⌦
T#⇢0=⇢1

Z

⌦
|T (x)� x |

2 ⇢0(x) dx

Advantages of Dynamic Formulation:

1 By introducing the momentum mt := ⇢tvt we have

Z 1

0

Z

⌦
|vt(x)|

2 ⇢t(x) dx dt =

Z 1

0

Z

⌦

|mt(x)|2

⇢t(x)
dx dt

which is convex in (⇢t ,mt)

2 The continuity equation becomes linear

@t⇢t + divmt = 0

3 We know the full trajectory ⇢t and can recover the velocity field vt from mt



Optimal transport regularization 30

Recall: We want to regularize the inverse problem

K
⇤
t ⇢t = ft for a.e. t 2 (0, 1)

Setting: Time-space X := (0, 1)⇥ ⌦, measures M := M(X )⇥M(X ;Rd)

Regularization: Minimize in (⇢,m) 2 M the functional

G↵,�(⇢,m) :=
1

2

Z 1

0
kK

⇤
t ⇢t � ftk

2
Ht

dt + J↵,�(⇢,m)

Optimal Transport Regularizer:

J↵,�(⇢,m) :=
↵

2

Z 1

0

Z

⌦

����
dm

d⇢

����
2

d⇢(t, x)

| {z }
Optimal Transport Regularizer

+� k⇢kM(X )| {z }
TV Regularizer

s.t. @t⇢t + divmt = 0 (Continuity Equation - No IC)



Existence and Sparsity 31

Theorem: (Assumptions on ft , K⇤
t , Ht) The functional G↵,� admits minimizer

⇢ = dt ⌦ ⇢t , m = v⇢ , v : X ! Rd

with v measurable velocity field and t 7! ⇢t 2 M
+(⌦) narrowly continuous.

Moreover we have stability for vanishing noise level and ↵,� ! 0

Sparsity: In order to apply FC-GCG we need Extremal Points of J↵,�

Atoms: pairs (⇢� ,m�) 2 M with � 2 H
1([0, 1];⌦),

⇢� := a� dt ⌦ ��(t) , m� := �̇(t) ⇢� , a� :=

✓
�

2

Z 1

0
|�̇(t)|2 dt + ↵

◆�1

Theorem: Define unit ball C↵,� := {J↵,�  1}. The extremal points are

Ext(C↵,�) = { atoms } [ (0, 0)

On the extremal points of the ball of the Benamou-Brenier energy.

K. Bredies, M. Carioni, S. Fanzon, F. Romero. Bull. London Math. Soc. (2021)



FC-GCG Method 32

Goal: Find numerical solutions to the minimization problem for G↵,� by FC-GCG

Key Step: Find a descent direction around (⇢̃, m̃) by solving

min
(⇢,m)2C↵,�

�

Z 1

0
h⇢t ,wti dt , wt := �Kt(K

⇤
t ⇢̃t � ft) 2 C (⌦) (D)

Theorem

Problem (D) admits a solution which is either an atom or (0, 0).

Therefore (D) can be cast in H
1([0, 1];⌦), and is hence numerically feasible

A generalized conditional gradient method for dynamic inverse problems with

optimal transport regularization.

K. Bredies, M. Carioni, S. Fanzon, F. Romero. Found. of Comp. Math. (2021)



FC-GCG Algorithm 33

Let t 7! ft be given data. Initialize ⇢0 := 0. Assume given iterate

⇢n =
kX

i=1

ci ⇢�i

I Insertion Step: Set wn
t := �Kt(K⇤

t ⇢
n
t � ft) 2 C (⌦) and find

b� 2 argmin
�2H1

�a�

Z 1

0
w

n
t (�(t)) dt

I Coe�cients Optimization: Set �k+1 := b�. Solve the quadratic problem

(c⇤1 , . . . , c
⇤
k+1) 2 argmin

cj�0
G↵,�

 
k+1X

i=1

ci ��i

!

The next iterate is

⇢n+1 :=
k+1X

i=1

c
⇤
i ⇢�i



Experiment: Tracking particles from Undersampled MRI 34

I ⌦ := [0, 1]2 image frame
I Fourier transform F : M(⌦) ! C

1(R2;C)
I t 7! �t 2 M

+(R2) frequencies sampling measure, Ht := L
2
�t
(R2;C)

I Mt : C1(R2;C) ! Ht sampling operator
I K

⇤
t : M(⌦) ! Ht undersampled Fourier transform with time-dependent mask

K
⇤
t := Mt � F

Note: At fixed t the inverse problem K
⇤
t ⇢ = ft is heavily ill-posed:

�t = H
1

L , L line =) K
⇤
t �x̂ = K

⇤
t �x̂+�L? for � 2 R, L

?
? L

; Static methods cannot resolve location of x̂

Time-discrete sampling: T + 1 times samples, ti := i/T for i = 0, . . . ,T
I At ti sample ni 2 N frequencies {Si,1, . . . , Si,ni} ⇢ R2

I Sampling measure �ti =
Pni

k=1 �Si,k . Then Hti = Cni and

K
⇤
ti ⇢ =

✓Z

R2

exp(�2⇡ix · Si,k) d⇢(x)

◆ni

k=1

2 Cni



Experiment: Dynamic Spikes Tracking 35

I Li line through the origin with angle i⇡
4 , i 2 N

I T = 50 time sample, ni = 15 frequencies sampled on Li

I Ground Truth: ⇢̃t = ��1(t) + ��2(t) + ��3(t) as depicted (color=position in time)

I Synthetic Data: fti := K
⇤
ti ⇢̃ti + 60% Gaussian Noise

I Data Visualization: By plotting the initial dual variable w
0
ti := Kti fti 2 C (⌦)
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t (x), 60% noise



Reconstructions 36

↵ = � = 0.1 ↵ = � = 0.3

I Low reg. ↵,� = 0.1 ; many low-energy artefacts around main trajectories

I High reg. ↵,� = 0.3 ; improved reconstruction



Convergence Plot 37

Note! Proven sublinear rate of convergence but empirical linear rate

Linear convergence: proof is work in progress
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