Linearised Polycrystals from a 2D System of Edge Dislocations

Silvio Fanzon

in collaboration with M. Palombaro and M. Ponsiglione

Graz, 31st January 2018

Classical Elasticity: ideal crystals

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded Deformations: regular maps $v: \Omega \to \mathbb{R}^3$ Deformation strain: $\beta := \nabla v: \Omega \to \mathbb{M}^{3 \times 3}$ Displacement: map $u: \Omega \to \mathbb{R}^3$ s.t. v = x + uNonlinear Elasticity: the energy associated to a deformation strain β is

$$E(\beta):=\int_{\Omega}W(\beta)\,dx\,,$$

where $W(F) \sim \text{dist}(F, SO(3))^2$ (so W(I) = 0). Linear Elasticity: let $v = x + \varepsilon u$ with $\varepsilon \approx 0$. Then

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \int_{\Omega} W(\beta) \, dx = \frac{1}{2} \int_{\Omega} \mathbb{C} \nabla^{\text{sym}} u : \nabla^{\text{sym}} u \, dx \, ,$$

where $\mathbb{C} = \partial^2 W(I)$ and $\nabla^{\text{sym}} u := (\nabla u + \nabla u^T)/2$.

Edge dislocations

Dislocations: topological defects in the otherwise periodic structure of a crystal. **Edge dislocation:** pair (γ, ξ) of dislocation line and Burgers vector, with $\xi \perp \gamma$.

Adding dislocations: the semi-discrete model

Dislocation lines: Lipschitz curves $\gamma \subset \Omega$ such that $\Omega \setminus \gamma$ is not simply connected

Burgers vector: $\xi \in S$ set of slip directions

Strain generating (γ, ξ) : map $\beta \colon \Omega \to \mathbb{M}^{3 \times 3}$ s.t.

$$\operatorname{Curl}\beta = -\xi \otimes \dot{\gamma} \,\mathcal{H}^1 \, \sqsubseteq \, \gamma \implies \int_C \beta \cdot t \, d\mathcal{H}^1 = \xi \,.$$

Geometric interpretation: if *D* encloses γ , there exists a deformation $v \in SBV(\Omega; \mathbb{R}^3)$ s.t.

 $D\mathbf{v} = \nabla \mathbf{v} \, d\mathbf{x} + \boldsymbol{\xi} \otimes \mathbf{n} \, \mathcal{H}^2 \, \boldsymbol{\sqsubseteq} \, \mathbf{D} \,, \quad \beta = \nabla \mathbf{v} \,.$

In particular:

▶ D = slip region,

- \triangleright v has constant jump ξ across D,
- the absolutely continuous part of Dv is β .

Regularise the problem: Core Radius Approach

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim rac{1}{\operatorname{dist}(x,\gamma)} ext{ in } I_{\varepsilon}(\gamma) \implies \beta \notin L^2(I_{\varepsilon}(\gamma)).$$

CRA: new ref. conf. $\Omega_{\varepsilon}(\gamma) := \Omega \setminus I_{\varepsilon}(\gamma)$. **New Strains:** maps $\beta \in L^2(\Omega_{\varepsilon}(\gamma); \mathbb{M}^{3\times 3})$ s.t.

$$\operatorname{Curl} \beta \bigsqcup \Omega_{\varepsilon}(\gamma) = 0, \quad \int_{C} \beta \cdot t \, d\mathcal{H}^{1} = \xi.$$

Elastic energy associated to β is

$$E_{\varepsilon}(eta) := \int_{\Omega_{\varepsilon}(\gamma)} W(eta) \, dx \, .$$

Γ-convergence

Let \mathcal{X} be a metric space and $F_n: \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$.

Definition (Γ -convergence)

We say that F_n Γ -converges to $F \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$ as $n \to \infty$ if:

• (Γ -liminf inequality) for every $x \in \mathcal{X}$ and every $\{x_n\}$ such that $x_n \to x$,

 $F(x) \leq \liminf_{n\to\infty} F_n(x_n),$

(Γ-limsup inequality) for every x ∈ X there exists a recovery sequence {x_n} such that x_n → x and

 $F(x) = \lim_{n \to \infty} F_n(x_n).$

Theorem (Fundamental Theorem of Γ -convergence)

If $F_n \xrightarrow{\Gamma} F$ and $\{x_n\}$ are (almost) minimisers of F_n at each fixed n,

• *F* admits minimum in \mathcal{X} and $\inf_{\mathcal{X}} F_n \to \min_{\mathcal{X}} F$

• if $x_n \to x$ then $F(x) = \min_{\mathcal{X}} F$.

Γ-convergence: basic example

Let $\mathcal{X} = \mathbb{R}$ and define $F_n(x) := x^2 + \cos(nx)$.

We have that $F_n \xrightarrow{\Gamma} F := x^2 - 1$ as $n \to \infty$.

Silvio Fanzon, University of Sussex

Motivation: polycrystals

Polycrystal: formed by many grains, having the **same** lattice structure, mutually rotated \implies interface misfit at **grain boundaries**.

Goal: to obtain polycrystalline structures as minimisers of some energy functional. Fanzon, Palombaro, Ponsiglione. *Derivation of Linearized Polycrystals from a Two-Dimensional System of*

Edge Dislocations. SIMA (2019)

Structure of Tilt Grain Boundaries

Tilt boundary: small angle rotation θ between grains \implies edge dislocations. Boundary structure: periodic array of edge dislocations with spacing $\delta = \varepsilon/\theta$.

Porter, Easterling. CRC Press (2009) - Gottstein. Springer (2013)

8/25

Plan of the paper

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon > 0$ is the lattice spacing and

 $N_{arepsilon}
ightarrow +\infty$ as arepsilon
ightarrow 0 .

Plan: let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

• We compute \mathcal{F} , the Γ -limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$,

we show that under suitable boundary conditions *F* is minimised by polycrystals.

Linearised polycrystals: our energy regime will imply

$$\mathsf{N}_arepsilon \ll rac{1}{arepsilon}$$

 \implies we have less dislocations than tilt grain boundaries. However we still obtain polycrystalline minimisers, but with grains rotated by an infinitesimal angle $\theta \approx 0$.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded. **Dislocation lines:** points $x_0 \in \Omega$ separated by 2ε . **Burgers vectors:** finite set $\mathcal{S} := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded. **Dislocation lines:** points $x_0 \in \Omega$ separated by 2ε . **Burgers vectors:** finite set $S := \{b_1, \ldots, b_s\} \subset \mathbb{R}^2$. **Admissible dislocations:** finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded. Dislocation lines: points $x_0 \in \Omega$ separated by 2ε . Burgers vectors: finite set $S := \{b_1, \ldots, b_s\} \subset \mathbb{R}^2$. Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^N \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded. **Dislocation lines:** points $x_0 \in \Omega$ separated by 2ε . **Burgers vectors:** finite set $S := \{b_1, \ldots, b_s\} \subset \mathbb{R}^2$. **Admissible dislocations:** finite sums of Dirac masses

$$\mu := \sum_{i=1}^N \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \bigcup B_{\varepsilon}(x_i)$. **Strains:** inducing μ are maps $\beta : \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$ s.t. $\beta = 0$ in $\bigcup B_{\varepsilon}(x_i)$ and

$$\operatorname{Curl} \beta \bigsqcup \Omega_{\varepsilon}(\mu) = 0, \quad \int_{\partial B_{\varepsilon}(x_i)} \beta \cdot t \, ds = \xi_i.$$

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded. **Dislocation lines:** points $x_0 \in \Omega$ separated by 2ε . **Burgers vectors:** finite set $S := \{b_1, \ldots, b_s\} \subset \mathbb{R}^2$. **Admissible dislocations:** finite sums of Dirac masses

$$\mu := \sum_{i=1}^N \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \bigcup B_{\varepsilon}(x_i)$. **Strains:** inducing μ are maps $\beta : \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$ s.t. $\beta = 0$ in $\bigcup B_{\varepsilon}(x_i)$ and

$$\operatorname{Curl} \beta \, \sqsubseteq \, \Omega_{\varepsilon}(\mu) = 0 \,, \quad \int_{\partial B_{\varepsilon}(x_i)} \beta \cdot t \, ds = \xi_i \,.$$

Linear Energy: $\mathbb{C}F : F \sim |F^{\text{sym}}|^2$, then

$$E_{\varepsilon}(\mu,\beta) := \int_{\Omega} \mathbb{C}\beta : \beta \, dx = \int_{\Omega} \mathbb{C}\beta^{\mathrm{sym}} : \beta^{\mathrm{sym}} \, dx \, .$$

Self-energy of a single dislocation core

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathsf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot t|^2 \, d\mathsf{s} \, d\rho \geq (\mathsf{Jensen}) \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \bigg| \int_{\partial B_{\rho}} \beta \cdot t \, d\mathsf{s} \bigg|^2 \, d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \xi \otimes J \frac{x}{|x|^2}, \quad J := \text{clock-wise rotation of } \frac{\pi}{2}$$

- On

Self-energy of a single dislocation core

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, dx &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot t|^2 \, ds \, d\rho \geq \text{(Jensen)} \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \left| \int_{\partial B_{\rho}} \beta \cdot t \, ds \right|^2 d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \xi \otimes J \frac{x}{|x|^2}, \quad J := \text{clock-wise rotation of } \frac{\pi}{2}$$

Remark: let $s \in (0, 1)$, then

$$\int_{B_{\varepsilon^s}\setminus B_{\varepsilon}} |\beta|^2 \, dx \geq (1-s)\frac{|\xi|^2}{2\pi} |\log \varepsilon| \, .$$

Self-energy: is of order $|\log \varepsilon|$ and concentrated in a small region around B_{ε} .

The Hard Core assumption

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$ with $\rho_{\varepsilon} \rightarrow 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

The Hard Core assumption

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$ with $\rho_{\varepsilon} \rightarrow 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathbf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $\mathbb{S} := \operatorname{\mathsf{Span}}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

Note: dislocations separation is a technical assumption for energy estimates.

Hypothesis on HC Radius: as $\varepsilon \rightarrow 0$

*ρ*_ε/ε^s → ∞, ∀s ∈ (0,1), (HC region contains almost all the self-energy)
 *N*_ερ²_ε → 0. (Measure of HC region vanishes)

Energy regimes

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

 $E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$.

Rescaled energy functionals:

$$\mathcal{F}_{arepsilon}(\mu,eta):=rac{1}{oldsymbol{N}_arepsilon|\logarepsilon|}\int_{\Omega_arepsilon(\mu)}\mathbb{C}eta^{\mathrm{sym}}:eta^{\mathrm{sym}}\,dx\,.$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

- ▶ $N_{\varepsilon} \ll |\log \varepsilon| \rightsquigarrow$ Dilute dislocations
- $N_{\varepsilon} \approx |\log \varepsilon| \rightsquigarrow$ Critical regime

Garroni, Leoni, Ponsiglione. *Gradient theory for plasticity via homogenization of discrete dislocations*. J. Eur. Math. Soc. (JEMS) (2010)

•
$$N_{\varepsilon} \gg |\log \varepsilon| \rightsquigarrow$$
 Super-critical regime

Fanzon, Palombaro, Ponsiglione. Derivation of Linearized Polycrystals from a Two-Dimensional System of Edge Dislocations. SIMA (2019)

Behaviour of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$ (Heuristic)

Let (μ, β) with $\mu = \sum_{i=1}^{N_{\varepsilon}} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Energy decomposition: let $HC_{\varepsilon}(\mu) := \cup_{i=1}^{N_{\varepsilon}} B_{\rho_{\varepsilon}}(x_i)$ be the HC region

$$E_{\varepsilon}(\mu,\beta) = \int_{\Omega \setminus \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx + \int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx = E_{\varepsilon}^{\mathrm{interaction}} + E_{\varepsilon}^{\mathrm{self}}$$

Idea: rescaling by $N_{\varepsilon} |\log \varepsilon|$, we have $E_{\varepsilon}^{\mathrm{interaction}} \to E^{\mathrm{elastic}}$ and $E_{\varepsilon}^{\mathrm{self}} \to E^{\mathrm{plastic}}$.

$\mathsf{\Gamma}\mathsf{-convergence\ result\ for\ } N_{\varepsilon} \gg |\log \varepsilon|$

Theorem (Fanzon, Palombaro, Ponsiglione '19)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

$$\begin{array}{l} \bullet \quad \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon} |\log \varepsilon|}} \rightharpoonup S , \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \quad in \ L^{2}(\Omega; \mathbb{M}^{2 \times 2}), \\ \bullet \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \quad in \ \mathcal{M}(\Omega; \mathbb{R}^{2}), \end{array}$$

• Curl
$$A = \mu$$
 and $\mu \in H^{-1}(\Omega; \mathbb{R}^2)$ ($\implies A \in BV(\Omega; \mathbb{M}^{2 \times 2}_{skew})$).

Γ-convergence: the functionals $\mathcal{F}_{\varepsilon}$ **Γ**-converge to

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi\left(\frac{d\mu}{d|\mu|}\right) \, d|\mu| \,, \quad \text{with } \operatorname{Curl} A = \mu \, d\mu$$

Remark:

- ▶ S and A live on two different scales with $S \ll A \implies$ terms in \mathcal{F} decoupled.
- ▶ In the critical regime $N_{\varepsilon} \approx |\log \varepsilon|$ we have $S \approx A$ and $Curl(S + A) = \mu$.

The relaxation formula for φ

Self-energy for a single dislocation core $\xi \delta_0$ is

$$\psi(\xi) := \lim_{\varepsilon o 0} \min_{\beta} \left\{ \frac{1}{|\log \varepsilon|} \int_{B_1 \setminus B_\varepsilon} \mathbb{C}\beta : \beta \, dx : \text{ "Curl } \beta = \xi \delta_0 \text{"}
ight\} \,.$$

Plastic density: the map $\varphi \colon \mathbb{R}^2 \to [0,\infty)$ defined as the relaxation of ψ

$$arphi(\xi):=\min\left\{\sum_{i=1}^M\lambda_i\psi(\xi_i):\ \xi=\sum_{i=1}^M\lambda_i\xi_i,\ M\in\mathbb{N},\ \lambda_i\geq0,\ \xi_i\in\mathbb{S}
ight\}$$

Note: since the energy is quadratic, in the Γ -limit we have φ instead of ψ . **Properties:** φ is convex and positively 1-homogeneous. Moreover $\exists c > 0$ s.t.

$$c^{-1} \left| \xi
ight| \leq arphi(\xi) \leq c \left| \xi
ight|, \hspace{0.5cm} orall \, \xi \in \mathbb{R}^2 \, .$$

Ideas for compactness: measures

Let $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{x_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that $\sup_{\varepsilon} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C.$

We show that

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu.$$
(1)

$$C \geq \frac{1}{N_{\varepsilon}|\log\varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log\varepsilon|} \int_{B_{\rho\varepsilon}(x_{\varepsilon,i})} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx$$
$$(\rho_{\varepsilon} \gg \varepsilon) \gtrsim \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \psi(\xi_{\varepsilon,i}) \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \varphi(\xi_{\varepsilon,i}) = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| \varphi\left(\frac{\xi_{\varepsilon,i}}{|\xi_{\varepsilon,i}|}\right)$$
$$\left(c := \min_{|\xi|=1} \varphi(\xi) > 0\right) \geq \frac{c}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| = \frac{c}{N_{\varepsilon}} |\mu_{\varepsilon}|(\Omega) \implies (1)$$

Silvio Fanzon, University of Sussex

Ideas for compactness: strains

Symmetric Part: recalling that $\mathbb{C}F : F \ge C|F^{\text{sym}}|^2$, we have

$$|\mathsf{N}_{\varepsilon}|\log arepsilon| \geq C \int_{\Omega} \mathbb{C}eta_{arepsilon} : eta_{arepsilon} \, dx \geq C \int_{\Omega} |eta_{arepsilon}^{\mathrm{sym}}|^2 \, dx \implies rac{eta_{arepsilon}^{\mathrm{sym}}}{\sqrt{N_{arepsilon}|\log arepsilon|}} o S \, .$$

Skew Part: we use a Generalised Korn inequality: there exists C > 0 s.t. for every $\beta \in L^1(\Omega; \mathbb{M}^{2\times 2})$ with Curl $\beta \in \mathcal{M}(\Omega; \mathbb{R}^2)$,

$$\int_{\Omega} |\beta^{\text{skew}}|^2 \, dx \le C \left(\int_{\Omega} |\beta^{\text{sym}}|^2 \, dx + |\operatorname{Curl}\beta|(\Omega)^2 \right) \,. \tag{2}$$

Since "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ", by (2) and assumption $N_{\varepsilon} \gg |\log \varepsilon|$ we get

$$\begin{split} \int_{\Omega} |\beta_{\varepsilon}^{\mathrm{skew}}|^2 \, dx &\leq C \left(\int_{\Omega} |\beta_{\varepsilon}^{\mathrm{sym}}|^2 \, dx + |\mu_{\varepsilon}|(\Omega)^2 \right) \\ &\leq C \left(N_{\varepsilon} |\log \varepsilon| + N_{\varepsilon}^2 \right) \leq C N_{\varepsilon}^2 \implies \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \end{split}$$

Garroni, Leoni, Ponsiglione. J. Eur. Math. Soc. (JEMS) (2010)

Silvio Fanzon, University of Sussex

Linearised Polycrystals

Ideas for **Γ**-liminf

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log\varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\twoheadrightarrow} \mu\,, \quad \text{with } \operatorname{Curl} A = \mu\,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx \geq \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi\left(\frac{d\mu}{d|\mu|}\right) \, d|\mu| \, .$$

Idea: split the energy $E_{\varepsilon}(\mu_{\varepsilon},\beta_{\varepsilon}) = E_{\varepsilon}^{\text{interaction}} + E_{\varepsilon}^{\text{self}}$ and use lower semicontinuity:

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega \setminus HC_{\varepsilon}} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \ dx \ge \int_{\Omega} \mathbb{C}S : S \ dx \quad (N_{\varepsilon}\rho_{\varepsilon}^2 \to 0 \implies |HC_{\varepsilon}| \to 0)$$

$$\begin{split} & \liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{HC_{\varepsilon}} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx \\ & \gtrsim \liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \varphi(\xi_{\varepsilon,i}) = \liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}} \int_{\Omega} \varphi\left(\frac{d\mu_{\varepsilon}}{d|\mu_{\varepsilon}|}\right) \, d|\mu_{\varepsilon}| \ge \int_{\Omega} \varphi\left(\frac{d\mu}{d|\mu|}\right) \, d|\mu| \end{split}$$

by Reshetnyak's lower semicontinuity Theorem, since φ is 1-homogeneous.

Silvio Fanzon, University of Sussex

Ideas for **F**-limsup

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log\varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu,$$
(3)

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx = \int_{\Omega} \mathbb{C}S : S dx + \int_{\Omega} \varphi\left(\frac{d\mu}{d|\mu|}\right) d|\mu|.$$
(4)

For simplicity assume $\mu = \xi \, dx$ with $\varphi(\xi) = \psi(\xi)$. The general is more technical.

Recovery measures:

- divide Ω in $\approx N_{\varepsilon}$ squares of side $2r_{\varepsilon} = C/\sqrt{N_{\varepsilon}}$
- the recovery sequence is $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi \delta_{\varepsilon,i}$.

Ideas for **F**-limsup

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log\varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\longrightarrow} \mu,$$
(3)

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx = \int_{\Omega} \mathbb{C}S : S dx + \int_{\Omega} \varphi\left(\frac{d\mu}{d|\mu|}\right) d|\mu|.$$
(4)

For simplicity assume $\mu = \xi \, dx$ with $\varphi(\xi) = \psi(\xi)$. The general is more technical.

Recovery measures:

- divide Ω in $\approx N_{\varepsilon}$ squares of side $2r_{\varepsilon} = C/\sqrt{N_{\varepsilon}}$
- the recovery sequence is $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi \delta_{\varepsilon,i}$.

Recovery strains: let K_{ε} be the solution to the cellproblem about each $x_{\varepsilon,i}$. Then $K_{\varepsilon}/\sqrt{N_{\varepsilon}|\log \varepsilon|} \rightarrow 0$ and

$$\beta_{\varepsilon} = \sqrt{N_{\varepsilon} |\log \varepsilon|} S + N_{\varepsilon} A + \frac{K_{\varepsilon}}{K_{\varepsilon}} + O(\sqrt{N_{\varepsilon} |\log \varepsilon|})$$

satisfies (3), (4) and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ".

Adding boundary conditions

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} \colon \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$\frac{g_{\varepsilon}^{\rm sym}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S} \,, \qquad \frac{g_{\varepsilon}^{\rm skew}}{N_{\varepsilon}} \rightharpoonup g_{A} \,.$$

Dislocations and strains: (μ, β) such that " Curl $\beta = \mu$ " and

$$\mu(\Omega) = \int_{\partial\Omega} g_{\varepsilon} \cdot t \, ds \,, \qquad \beta \cdot t = g_{\varepsilon} \cdot t \quad \text{on} \quad \partial\Omega \,.$$

Theorem (Fanzon, Palombaro, Ponsiglione '19)

The energy functionals $\mathcal{F}_{\varepsilon}$ are equi-coercive and they Γ -converge to

$$\mathcal{F}_{\mathrm{BC}}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi\left(\frac{d\mu}{d|\mu|}\right) \, d|\mu| + \int_{\partial\Omega} \varphi((g_A - A) \cdot t) \, ds \,,$$

with $\operatorname{Curl} A = \mu$ and $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2)$.

Remark: $\beta^{\text{sym}} \ll \beta^{\text{skew}} \implies$ BC pass to the limit only for A.

Silvio Fanzon, University of Sussex

Minimising \mathcal{F}_{BC} with piecewise constant BC

Remark: there are no BC on $S \implies$ we can neglect elastic energy. **Piecewise constant BC:** Fix a piecewise constant BC

$$g_A := egin{pmatrix} 0 & a \ -a & 0 \end{pmatrix}, \quad a := \sum_{k=1}^M m_k \, \chi_{U_k} \, ,$$

with $m_k < m_{k+1}$ and $\{U_k\}_{k=1}^M$ Caccioppoli partition of Ω .

Problem

Minimise

$$\mathcal{F}_{\mathrm{BC}}(\operatorname{Curl} A, 0, A) = \int_{\Omega} \varphi\left(\frac{d \operatorname{Curl} A}{d |\operatorname{Curl} A|}\right) d|\operatorname{Curl} A| + \int_{\partial \Omega} \varphi((g_A - A) \cdot t) ds,$$

with $\operatorname{Curl} A \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2).$

Polycrystals as energy minimisers

Theorem (Fanzon, Palombaro, Ponsiglione '19)

Given a piecewise constant boundary condition g_A , there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\operatorname{Curl} A, 0, A)$

$$A = \sum_{k=1}^{M} A_k \chi_{E_k}$$

with $A_k \in \mathbb{M}^{2\times 2}_{skew}$ and $\{E_k\}_{k=1}^M$ Caccioppoli partition of Ω . We interpret A as a linearised polycrystal.

Proof Strategy: We are minimising an anisotropic total variation functional. By Coarea formula we select the levels with minimal perimeter, definying the Caccioppoli partition.

Open Question: Are all minimisers piecewise constant? Uniqueness?

Essential: that the boundary condition is piecewise affine on the whole $\partial \Omega$.

Conclusions and Perspectives

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Open Questions:

- Uniqueness of piecewise constant minimisers?
- Dynamics for linearised polycrystals? Taylor. Bull. Amer. Math. Soc. (1978). Chambolle, Morini, Ponsiglione. Comm. Pure Appl. Math (2017).

 Γ-convergence analysis starting from a non-linear energy? Namely, considering small deformations v = x + εu. Now the Burgers vectors are εξ and the equivalent rescaling is ε²N_ε | log ε|.
 Müller, Scardia, Zeppieri. Indiana University Mathematics Journal (2014). Thank You!