Linearised Polycrystals

from a

2D System of Edge Dislocations

Silvio Fanzon
in collaboration with
M. Palombaro and M. Ponsiglione

Graz, 31st January 2018

UNIVERSITY
OF SUSSEX

Classical Elasticity: ideal crystals

Reference configuration: $\Omega \subset \mathbb{R}^{3}$ open bounded Deformations: regular maps $v: \Omega \rightarrow \mathbb{R}^{3}$
Deformation strain: $\beta:=\nabla v: \Omega \rightarrow \mathbb{M}^{3 \times 3}$
Displacement: map $u: \Omega \rightarrow \mathbb{R}^{3}$ s.t. $v=x+u$ Nonlinear Elasticity: the energy associated to a deformation strain β is

$$
E(\beta):=\int_{\Omega} W(\beta) d x
$$

where $W(F) \sim \operatorname{dist}(F, S O(3))^{2}$ (so $W(I)=0$). Linear Elasticity: let $v=x+\varepsilon u$ with $\varepsilon \approx 0$. Then $\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \int_{\Omega} W(\beta) d x=\frac{1}{2} \int_{\Omega} \mathbb{C} \nabla^{\text {sym }} u: \nabla^{\text {sym }} u d x$, where $\mathbb{C}=\partial^{2} W(I)$ and $\nabla^{\text {sym }} u:=\left(\nabla u+\nabla u^{T}\right) / 2$.

Edge dislocations

Dislocations: topological defects in the otherwise periodic structure of a crystal. Edge dislocation: pair (γ, ξ) of dislocation line and Burgers vector, with $\xi \perp \gamma$.

Adding dislocations: the semi-discrete model

Dislocation lines: Lipschitz curves $\gamma \subset \Omega$ such that $\Omega \backslash \gamma$ is not simply connected

Burgers vector: $\xi \in \mathcal{S}$ set of slip directions
Strain generating $(\gamma, \xi): \operatorname{map} \beta: \Omega \rightarrow \mathbb{M}^{3 \times 3}$ s.t.

$$
\text { Curl } \beta=-\xi \otimes \dot{\gamma} \mathcal{H}^{1}\left\llcorner\gamma \Longrightarrow \int_{C} \beta \cdot t d \mathcal{H}^{1}=\xi\right.
$$

Geometric interpretation: if D encloses γ, there exists a deformation $v \in \operatorname{SBV}\left(\Omega ; \mathbb{R}^{3}\right)$ s.t.

$$
D v=\nabla v d x+\xi \otimes n \mathcal{H}^{2}\llcorner D, \quad \beta=\nabla v .
$$

In particular:

- $D=$ slip region,
- v has constant jump ξ across D,
- the absolutely continuous part of $D v$ is β.

Regularise the problem: Core Radius Approach

Let β generate (γ, ξ). Consider $\varepsilon>0$ and

$$
I_{\varepsilon}(\gamma):=\left\{x \in \mathbb{R}^{3}: \operatorname{dist}(x, \gamma)<\varepsilon\right\} .
$$

Then we have

$$
|\beta(x)| \sim \frac{1}{\operatorname{dist}(x, \gamma)} \text { in } I_{\varepsilon}(\gamma) \Longrightarrow \beta \notin L^{2}\left(I_{\varepsilon}(\gamma)\right) .
$$

CRA: new ref. conf. $\Omega_{\varepsilon}(\gamma):=\Omega \backslash I_{\varepsilon}(\gamma)$.
New Strains: maps $\beta \in L^{2}\left(\Omega_{\varepsilon}(\gamma) ; \mathbb{M}^{3 \times 3}\right)$ s.t.

$$
\operatorname{Curl} \beta\left\llcorner\Omega_{\varepsilon}(\gamma)=0, \quad \int_{C} \beta \cdot t d \mathcal{H}^{1}=\xi .\right.
$$

Elastic energy associated to β is

$$
E_{\varepsilon}(\beta):=\int_{\Omega_{\varepsilon}(\gamma)} W(\beta) d x
$$

\lceil-convergence

Let \mathcal{X} be a metric space and $F_{n}: \mathcal{X} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$.

Definition (Γ-convergence)

We say that $F_{n} \Gamma$-converges to $F: \mathcal{X} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ as $n \rightarrow \infty$ if:

- (Γ-liminf inequality) for every $x \in \mathcal{X}$ and every $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow x$,

$$
F(x) \leq \liminf _{n \rightarrow \infty} F_{n}\left(x_{n}\right),
$$

- (Γ-limsup inequality) for every $x \in \mathcal{X}$ there exists a recovery sequence $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow x$ and

$$
F(x)=\lim _{n \rightarrow \infty} F_{n}\left(x_{n}\right) .
$$

Theorem (Fundamental Theorem of Γ-convergence)

If $F_{n} \xrightarrow{\Gamma} F$ and $\left\{x_{n}\right\}$ are (almost) minimisers of F_{n} at each fixed n,

- F admits minimum in \mathcal{X} and $\inf _{\mathcal{X}} F_{n} \rightarrow \min _{\mathcal{X}} F$
- if $x_{n} \rightarrow x$ then $F(x)=\min _{\mathcal{X}} F$.

「-convergence: basic example

Let $\mathcal{X}=\mathbb{R}$ and define $F_{n}(x):=x^{2}+\cos (n x)$.

We have that $F_{n} \xrightarrow{\ulcorner } F:=x^{2}-1$ as $n \rightarrow \infty$.

Motivation: polycrystals

Polycrystal: formed by many grains, having the same lattice structure, mutually rotated \Longrightarrow interface misfit at grain boundaries.

Goal: to obtain polycrystalline structures as minimisers of some energy functional.
Fanzon, Palombaro, Ponsiglione. Derivation of Linearized Polycrystals from a Two-Dimensional System of
Edge Dislocations. SIMA (2019)

Structure of Tilt Grain Boundaries

Tilt boundary: small angle rotation θ between grains \Longrightarrow edge dislocations. Boundary structure: periodic array of edge dislocations with spacing $\delta=\varepsilon / \theta$.

Plan of the paper

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon>0$ is the lattice spacing and

$$
N_{\varepsilon} \rightarrow+\infty \quad \text { as } \quad \varepsilon \rightarrow 0 \text {. }
$$

Plan: let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

- We compute \mathcal{F}, the Γ-limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \rightarrow 0$,
- we show that under suitable boundary conditions \mathcal{F} is minimised by polycrystals.

Linearised polycrystals: our energy regime will imply

$$
N_{\varepsilon} \ll \frac{1}{\varepsilon}
$$

\Longrightarrow we have less dislocations than tilt grain boundaries. However we still obtain polycrystalline minimisers, but with grains rotated by an infinitesimal angle $\theta \approx 0$.

Setting: linear planar elasticity

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded. Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε. Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$.

Setting: linear planar elasticity

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded. Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε. Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$. Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathcal{S} .
$$

Setting: linear planar elasticity

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded. Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε. Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$. Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathcal{S} .
$$

Core radius approach: $\Omega_{\varepsilon}(\mu):=\Omega \backslash \cup B_{\varepsilon}\left(x_{i}\right)$.

Setting: linear planar elasticity

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded. Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε. Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$. Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathcal{S} .
$$

Core radius approach: $\Omega_{\varepsilon}(\mu):=\Omega \backslash \cup B_{\varepsilon}\left(x_{i}\right)$.
Strains: inducing μ are maps $\beta: \Omega_{\varepsilon}(\mu) \rightarrow \mathbb{M}^{2 \times 2}$ st.
 $\beta=0$ in $\cup B_{\varepsilon}\left(x_{i}\right)$ and

$$
\operatorname{Curl} \beta\left\llcorner\Omega_{\varepsilon}(\mu)=0, \quad \int_{\partial B_{\varepsilon}\left(x_{i}\right)} \beta \cdot t d s=\xi_{i} .\right.
$$

Setting: linear planar elasticity

Reference configuration: $\Omega \subset \mathbb{R}^{2}$ open bounded. Dislocation lines: points $x_{0} \in \Omega$ separated by 2ε. Burgers vectors: finite set $\mathcal{S}:=\left\{b_{1}, \ldots, b_{s}\right\} \subset \mathbb{R}^{2}$. Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathcal{S} .
$$

Core radius approach: $\Omega_{\varepsilon}(\mu):=\Omega \backslash \cup B_{\varepsilon}\left(x_{i}\right)$.
Strains: inducing μ are maps $\beta: \Omega_{\varepsilon}(\mu) \rightarrow \mathbb{M}^{2 \times 2}$ s.t.
 $\beta=0$ in $\cup B_{\varepsilon}\left(x_{i}\right)$ and

$$
\operatorname{Curl} \beta\left\llcorner\Omega_{\varepsilon}(\mu)=0, \quad \int_{\partial B_{\varepsilon}\left(x_{i}\right)} \beta \cdot t d s=\xi_{i} .\right.
$$

Linear Energy: $\mathbb{C} F: F \sim\left|F^{\text {sym }}\right|^{2}$, then

$$
E_{\varepsilon}(\mu, \beta):=\int_{\Omega} \mathbb{C} \beta: \beta d x=\int_{\Omega} \mathbb{C} \beta^{\text {sym }}: \beta^{\text {sym }} d x
$$

Self-energy of a single dislocation core

Let β generate $\xi \delta_{0}$, that is "Curl $\beta=\xi \delta_{0}$ "

$$
\begin{aligned}
\int_{B_{1} \backslash B_{\varepsilon}}|\beta|^{2} d x & \geq \int_{\varepsilon}^{1} \int_{\partial B_{\rho}}|\beta \cdot t|^{2} d s d \rho \geq \text { (Jensen) } \\
& \geq \frac{1}{2 \pi} \int_{\varepsilon}^{1} \frac{1}{\rho}\left|\int_{\partial B_{\rho}} \beta \cdot t d s\right|^{2} d \rho=\frac{|\xi|^{2}}{2 \pi}|\log \varepsilon|
\end{aligned}
$$

The reverse inequality can be obtained by computing the energy of

$$
\beta(x):=\frac{1}{2 \pi} \xi \otimes J \frac{x}{|x|^{2}}, \quad J:=\text { clock-wise rotation of } \frac{\pi}{2} .
$$

Self-energy of a single dislocation core

Let β generate $\xi \delta_{0}$, that is "Curl $\beta=\xi \delta_{0}$ "

$$
\begin{aligned}
\int_{B_{1} \backslash B_{\varepsilon}}|\beta|^{2} d x & \geq \int_{\varepsilon}^{1} \int_{\partial B_{\rho}}|\beta \cdot t|^{2} d s d \rho \geq \text { (Jensen) } \\
& \geq \frac{1}{2 \pi} \int_{\varepsilon}^{1} \frac{1}{\rho}\left|\int_{\partial B_{\rho}} \beta \cdot t d s\right|^{2} d \rho=\frac{|\xi|^{2}}{2 \pi}|\log \varepsilon|
\end{aligned}
$$

The reverse inequality can be obtained by computing the energy of

$$
\beta(x):=\frac{1}{2 \pi} \xi \otimes J \frac{x}{|x|^{2}}, \quad J:=\text { clock-wise rotation of } \frac{\pi}{2} .
$$

Remark: let $s \in(0,1)$, then

$$
\int_{B_{\varepsilon^{s} \backslash B_{\varepsilon}}}|\beta|^{2} d x \geq(1-s) \frac{|\xi|^{2}}{2 \pi}|\log \varepsilon| .
$$

Self-energy: is of order $|\log \varepsilon|$ and concentrated in a small region around B_{ε}.

The Hard Core assumption

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$ with $\rho_{\varepsilon} \rightarrow 0$.
Clusters of dislocations at scale ρ_{ε} are identified with a single multiple dislocation.

The Hard Core assumption

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$ with $\rho_{\varepsilon} \rightarrow 0$.
Clusters of dislocations at scale ρ_{ε} are identified with a single multiple dislocation.

Admissible dislocations: finite sums of Dirac masses

$$
\mu:=\sum_{i=1}^{N} \xi_{i} \delta_{x_{i}}, \quad \xi_{i} \in \mathbb{S}
$$

with $\mathbb{S}:=\operatorname{Span}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$
\left|x_{i}-x_{j}\right|>2 \rho_{\varepsilon}, \quad \operatorname{dist}\left(x_{k}, \partial \Omega\right)>\rho_{\varepsilon}
$$

Note: dislocations separation is a technical assumption for energy estimates. Hypothesis on HC Radius: as $\varepsilon \rightarrow 0$
$\rightarrow \rho_{\varepsilon} / \varepsilon^{s} \rightarrow \infty, \forall s \in(0,1)$,
(HC region contains almost all the self-energy)

- $N_{\varepsilon} \rho_{\varepsilon}^{2} \rightarrow 0$.
(Measure of HC region vanishes)

Energy regimes

Energy scaling: each dislocation accounts for $|\log \varepsilon| \Longrightarrow$ relevant scaling is

$$
E_{\varepsilon} \approx N_{\varepsilon}|\log \varepsilon| .
$$

Rescaled energy functionals:

$$
\mathcal{F}_{\varepsilon}(\mu, \beta):=\frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega_{\varepsilon}(\mu)} \mathbb{C} \beta^{\text {sym }}: \beta^{\text {sym }} d x
$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

- $N_{\varepsilon} \ll|\log \varepsilon| \sim$ Dilute dislocations
- $N_{\varepsilon} \approx|\log \varepsilon| \sim$ Critical regime

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.
J. Eur. Math. Soc. (JEMS) (2010)

- $N_{\varepsilon} \gg|\log \varepsilon| \sim$ Super-critical regime

Fanzon, Palombaro, Ponsiglione. Derivation of Linearized Polycrystals from a Two-Dimensional System of Edge Dislocations. SIMA (2019)

Behaviour of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \rightarrow 0$ (Heuristic)

Let (μ, β) with $\mu=\sum_{i=1}^{N_{\varepsilon}} \xi_{i} \delta_{x_{i}}$ be such that "Curl $\beta=\mu$ ".
Energy decomposition: let $\mathrm{HC}_{\varepsilon}(\mu):=\cup_{i}=1$

$$
E_{\varepsilon}(\mu, \beta)=\int_{\Omega \backslash \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C} \beta: \beta d x+\int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C} \beta: \beta d x=E_{\varepsilon}^{\text {interaction }}+E_{\varepsilon}^{\text {self }}
$$

Idea: rescaling by $N_{\varepsilon}|\log \varepsilon|$, we have $E_{\varepsilon}^{\text {interaction }} \rightarrow E^{\text {elastic }}$ and $E_{\varepsilon}^{\text {self }} \rightarrow E^{\text {plastic }}$.

「-convergence result for $N_{\varepsilon} \gg|\log \varepsilon|$

Theorem (Fanzon, Palombaro, Ponsiglione '19)

Compactness: consider $\left(\mu_{\varepsilon}, \beta_{\varepsilon}\right)$ s.t. "Curl $\beta_{\varepsilon}=\mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}\left(\mu_{\varepsilon}, \beta_{\varepsilon}\right) \leq C \Longrightarrow$
$-\frac{\beta_{\varepsilon}^{\text {sym }}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \frac{\beta_{\varepsilon}^{\text {skew }}}{N_{\varepsilon}} \rightharpoonup A$ in $L^{2}\left(\Omega ; \mathbb{M}^{2 \times 2}\right)$,

- $\frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{*} \mu$ in $\mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right)$,
- Curl $A=\mu$ and $\mu \in H^{-1}\left(\Omega ; \mathbb{R}^{2}\right)\left(\Longrightarrow A \in B V\left(\Omega ; \mathbb{M}_{\text {skew }}^{2 \times 2}\right)\right)$.
Γ-convergence: the functionals $\mathcal{F}_{\varepsilon} \Gamma$-converge to

$$
\mathcal{F}(\mu, S, A):=\int_{\Omega} \mathbb{C} S: S d x+\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu|, \quad \text { with Curl } A=\mu
$$

Remark:

- S and A live on two different scales with $S \ll A \Longrightarrow$ terms in \mathcal{F} decoupled.
- In the critical regime $N_{\varepsilon} \approx|\log \varepsilon|$ we have $S \approx A$ and $\operatorname{Curl}(S+A)=\mu$.

The relaxation formula for φ

Self-energy for a single dislocation core $\xi \delta_{0}$ is

$$
\psi(\xi):=\lim _{\varepsilon \rightarrow 0} \min _{\beta}\left\{\frac{1}{|\log \varepsilon|} \int_{B_{1} \backslash B_{\varepsilon}} \mathbb{C} \beta: \beta d x: \text { "Curl } \beta=\xi \delta_{0} "\right\} .
$$

Plastic density: the map $\varphi: \mathbb{R}^{2} \rightarrow[0, \infty)$ defined as the relaxation of ψ

$$
\varphi(\xi):=\min \left\{\sum_{i=1}^{M} \lambda_{i} \psi\left(\xi_{i}\right): \xi=\sum_{i=1}^{M} \lambda_{i} \xi_{i}, M \in \mathbb{N}, \lambda_{i} \geq 0, \xi_{i} \in \mathbb{S}\right\} .
$$

Note: since the energy is quadratic, in the Γ-limit we have φ instead of ψ.
Properties: φ is convex and positively 1-homogeneous. Moreover $\exists c>0$ s.t.

$$
c^{-1}|\xi| \leq \varphi(\xi) \leq c|\xi|, \quad \forall \xi \in \mathbb{R}^{2} .
$$

Ideas for compactness: measures

Let ($\mu_{\varepsilon}, \beta_{\varepsilon}$) with $\mu_{\varepsilon}=\sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon, i} \delta_{x_{\varepsilon}, i}$ and "Curl $\beta_{\varepsilon}=\mu_{\varepsilon}$ ". Assume that

$$
\sup \mathcal{F}_{\varepsilon}\left(\mu_{\varepsilon}, \beta_{\varepsilon}\right) \leq C
$$

We show that

$$
\begin{gather*}
\frac{\left|\mu_{\varepsilon}\right|(\Omega)}{N_{\varepsilon}}=\frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}}\left|\xi_{\varepsilon, i}\right| \leq C \Longrightarrow \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu . \tag{1}\\
C \geq \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}\left(x_{\varepsilon, i}\right)} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x \\
\left(\rho_{\varepsilon} \gg \varepsilon\right) \gtrsim \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \psi\left(\xi_{\varepsilon, i}\right) \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \varphi\left(\xi_{\varepsilon, i}\right)=\frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}}\left|\xi_{\varepsilon, i}\right| \varphi\left(\frac{\xi_{\varepsilon, i}}{\left|\xi_{\varepsilon, i}\right|}\right) \\
\left(c:=\min _{|\xi|=1} \varphi(\xi)>0\right) \geq \frac{c}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}}\left|\xi_{\varepsilon, i}\right|=\frac{c}{N_{\varepsilon}}\left|\mu_{\varepsilon}\right|(\Omega) \Longrightarrow \text { (1) }
\end{gather*}
$$

Ideas for compactness: strains

Symmetric Part: recalling that $\mathbb{C} F: F \geq C\left|F^{\text {sym }}\right|^{2}$, we have

$$
N_{\varepsilon}|\log \varepsilon| \geq C \int_{\Omega} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x \geq C \int_{\Omega}\left|\beta_{\varepsilon}^{\text {sym }}\right|^{2} d x \Longrightarrow \frac{\beta_{\varepsilon}^{\text {sym }}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S
$$

Skew Part: we use a Generalised Korn inequality: there exists $C>0$ s.t. for every $\beta \in L^{1}\left(\Omega ; \mathbb{M}^{2 \times 2}\right)$ with Curl $\beta \in \mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\int_{\Omega}\left|\beta^{\text {skew }}\right|^{2} d x \leq C\left(\int_{\Omega}\left|\beta^{\text {sym }}\right|^{2} d x+|\operatorname{Curl} \beta|(\Omega)^{2}\right) \tag{2}
\end{equation*}
$$

Since "Curl $\beta_{\varepsilon}=\mu_{\varepsilon}$ ", by (2) and assumption $N_{\varepsilon} \gg|\log \varepsilon|$ we get

$$
\begin{aligned}
\int_{\Omega}\left|\beta_{\varepsilon}^{\text {skew }}\right|^{2} d x & \leq C\left(\int_{\Omega}\left|\beta_{\varepsilon}^{\text {sym }}\right|^{2} d x+\left|\mu_{\varepsilon}\right|(\Omega)^{2}\right) \\
& \leq C\left(N_{\varepsilon}|\log \varepsilon|+N_{\varepsilon}^{2}\right) \leq C N_{\varepsilon}^{2} \Longrightarrow \frac{\beta_{\varepsilon}^{\text {skew }}}{N_{\varepsilon}} \rightharpoonup A .
\end{aligned}
$$

Garroni, Leoni, Ponsiglione. J. Eur. Math. Soc. (JEMS) (2010)

Ideas for Г-liminf

Assume that $\left(\mu_{\varepsilon}, \beta_{\varepsilon}\right)$ is such that $\mu_{\varepsilon}=\sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon, i} \delta_{x_{\varepsilon, i}}$, "Curl $\beta_{\varepsilon}=\mu_{\varepsilon}$ " and

$$
\frac{\beta_{\varepsilon}^{\text {sym }}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text {skew }}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu, \quad \text { with } \operatorname{Curl} A=\mu
$$

We have to show

$$
\liminf _{\varepsilon \rightarrow 0} \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x \geq \int_{\Omega} \mathbb{C} S: S d x+\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu|
$$

Idea: split the energy $E_{\varepsilon}\left(\mu_{\varepsilon}, \beta_{\varepsilon}\right)=E_{\varepsilon}^{\text {interaction }}+E_{\varepsilon}^{\text {self }}$ and use lower semicontinuity:

$$
\liminf _{\varepsilon \rightarrow 0} \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega \backslash H C_{\varepsilon}} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x \geq \int_{\Omega} \mathbb{C} S: S d x \quad\left(N_{\varepsilon} \rho_{\varepsilon}^{2} \rightarrow 0 \Longrightarrow\left|H C_{\varepsilon}\right| \rightarrow 0\right)
$$

$$
\liminf _{\varepsilon \rightarrow 0} \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{H C_{\varepsilon}} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x=\liminf _{\varepsilon \rightarrow 0} \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}\left(x_{\varepsilon, i}\right)}} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x
$$

$$
\gtrsim \liminf _{\varepsilon \rightarrow 0} \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \varphi\left(\xi_{\varepsilon, i}\right)=\liminf _{\varepsilon \rightarrow 0} \frac{1}{N_{\varepsilon}} \int_{\Omega} \varphi\left(\frac{d \mu_{\varepsilon}}{d\left|\mu_{\varepsilon}\right|}\right) d\left|\mu_{\varepsilon}\right| \geq \int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu|
$$

by Reshetnyak's lower semicontinuity Theorem, since φ is 1-homogeneous.

Ideas for Г-limsup

Consider (μ, S, A) with S symmetric, A skew and Curl $A=\mu$. We have to construct a recovery sequence ($\mu_{\varepsilon}, \beta_{\varepsilon}$) with "Curl $\beta_{\varepsilon}=\mu_{\varepsilon}$ " s.t.

$$
\begin{gather*}
\frac{\beta_{\varepsilon}^{\text {sym }}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text {skew }}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{*} \mu, \tag{3}\\
\lim _{\varepsilon \rightarrow 0} \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x=\int_{\Omega} \mathbb{C} S: S d x+\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu| . \tag{4}
\end{gather*}
$$

For simplicity assume $\mu=\xi d x$ with $\varphi(\xi)=\psi(\xi)$. The general is more technical. Recovery measures:

- divide Ω in $\approx N_{\varepsilon}$ squares of side $2 r_{\varepsilon}=C / \sqrt{N_{\varepsilon}}$
- the recovery sequence is $\mu_{\varepsilon}=\sum_{i=1}^{M_{\varepsilon}} \xi \delta_{\varepsilon, i}$.

Ideas for Г-limsup

Consider (μ, S, A) with S symmetric, A skew and Curl $A=\mu$. We have to construct a recovery sequence ($\mu_{\varepsilon}, \beta_{\varepsilon}$) with "Curl $\beta_{\varepsilon}=\mu_{\varepsilon}$ " s.t.

$$
\begin{gather*}
\frac{\beta_{\varepsilon}^{\text {sym }}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text {skew }}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \tag{3}\\
\lim _{\varepsilon \rightarrow 0} \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon}: \beta_{\varepsilon} d x=\int_{\Omega} \mathbb{C} S: S d x+\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu| . \tag{4}
\end{gather*}
$$

For simplicity assume $\mu=\xi d x$ with $\varphi(\xi)=\psi(\xi)$. The general is more technical. Recovery measures:

- divide Ω in $\approx N_{\varepsilon}$ squares of side $2 r_{\varepsilon}=C / \sqrt{N_{\varepsilon}}$
- the recovery sequence is $\mu_{\varepsilon}=\sum_{i=1}^{M_{\varepsilon}} \xi \delta_{\varepsilon, i}$.

Recovery strains: let K_{ε} be the solution to the cellproblem about each $x_{\varepsilon, i}$. Then $K_{\varepsilon} / \sqrt{N_{\varepsilon}|\log \varepsilon|} \rightharpoonup 0$ and

$$
\beta_{\varepsilon}=\sqrt{N_{\varepsilon}|\log \varepsilon|} S+N_{\varepsilon} A+K_{\varepsilon}+O\left(\sqrt{N_{\varepsilon}|\log \varepsilon|}\right)
$$

satisfies (3), (4) and "Curl $\beta_{\varepsilon}=\mu_{\varepsilon}$ ".

Adding boundary conditions

Dirichlet type BC: at level $\varepsilon>0$ fix a boundary condition $g_{\varepsilon}: \Omega \rightarrow \mathbb{M}^{2 \times 2}$ s.t.

$$
\frac{g_{\varepsilon}^{\text {sym }}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S}, \quad \frac{g_{\varepsilon}^{\text {skew }}}{N_{\varepsilon}} \rightharpoonup g_{A}
$$

Dislocations and strains: (μ, β) such that "Curl $\beta=\mu$ " and

$$
\mu(\Omega)=\int_{\partial \Omega} g_{\varepsilon} \cdot t d s, \quad \beta \cdot t=g_{\varepsilon} \cdot t \text { on } \partial \Omega .
$$

Theorem (Fanzon, Palombaro, Ponsiglione '19)

The energy functionals $\mathcal{F}_{\varepsilon}$ are equi-coercive and they Γ-converge to

$$
\mathcal{F}_{\mathrm{BC}}(\mu, S, A):=\int_{\Omega} \mathbb{C} S: S d x+\int_{\Omega} \varphi\left(\frac{d \mu}{d|\mu|}\right) d|\mu|+\int_{\partial \Omega} \varphi\left(\left(g_{A}-A\right) \cdot t\right) d s
$$

with Curl $A=\mu$ and $\mu \in \mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right) \cap H^{-1}\left(\Omega ; \mathbb{R}^{2}\right)$.
Remark: $\beta^{\text {sym }} \ll \beta^{\text {skew }} \Longrightarrow B C$ pass to the limit only for A.

Minimising $\mathcal{F}_{\mathrm{BC}}$ with piecewise constant BC

Remark: there are no $B C$ on $S \Longrightarrow$ we can neglect elastic energy.
Piecewise constant BC: Fix a piecewise constant BC

$$
g_{A}:=\left(\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right), \quad a:=\sum_{k=1}^{M} m_{k} \chi_{U_{k}},
$$

with $m_{k}<m_{k+1}$ and $\left\{U_{k}\right\}_{k=1}^{M}$ Caccioppoli partition of Ω.

Problem

Minimise

$$
\mathcal{F}_{\mathrm{BC}}(\operatorname{Curl} A, 0, A)=\int_{\Omega} \varphi\left(\frac{d \operatorname{Curl} A}{d|\operatorname{Curl} A|}\right) d|\operatorname{Curl} A|+\int_{\partial \Omega} \varphi\left(\left(g_{A}-A\right) \cdot t\right) d s
$$

with Curl $A \in \mathcal{M}\left(\Omega ; \mathbb{R}^{2}\right) \cap H^{-1}\left(\Omega ; \mathbb{R}^{2}\right)$.

Polycrystals as energy minimisers

Theorem (Fanzon, Palombaro, Ponsiglione '19)

Given a piecewise constant boundary condition g_{A}, there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}($ Curl $A, 0, A)$

$$
A=\sum_{k=1}^{M} A_{k} \chi_{E_{k}},
$$

with $A_{k} \in \mathbb{M}_{\text {skew }}^{2 \times 2}$ and $\left\{E_{k}\right\}_{k=1}^{M}$ Caccioppoli partition of Ω. We interpret A as a linearised polycrystal.

Proof Strategy: We are minimising an anisotropic total variation functional. By Coarea formula we select the levels with minimal perimeter, definying the Caccioppoli partition.
Open Question: Are all minimisers piecewise constant? Uniqueness?
Essential: that the boundary condition is piecewise affine on the whole $\partial \Omega$.

Conclusions and Perspectives

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Open Questions:

- Uniqueness of piecewise constant minimisers?
- Dynamics for linearised polycrystals?

Taylor. Bull. Amer. Math. Soc. (1978).
Chambolle, Morini, Ponsiglione. Comm. Pure Appl. Math (2017).

- Γ-convergence analysis starting from a non-linear energy?

Namely, considering small deformations $v=x+\varepsilon u$. Now the Burgers vectors are $\varepsilon \xi$ and the equivalent rescaling is $\varepsilon^{2} N_{\varepsilon}|\log \varepsilon|$.
Müller, Scardia, Zeppieri. Indiana University Mathematics Journal (2014).

Thank You!

