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Motion on sub-acquisition time-scales  artefacts inreconstructed images
Example: Heart-lung imaging , High-resolution imaging
Workarounds: anaesthetics, breath-holding, gating
Drawbacks: assumes periodicity, low-resolution
Objectives:
• Robust reconstruction method via Dynamic OT
• Enforce sparse time-continuous reconstructions
• Numerical Algorithm based on extremal points No regularization

Ground truth

Motivation: Motion-Aware Reconstruction

• Data: time dependent curve t 7→ ft ∈ Ht with {Ht}t family of Hilbert spaces
• Unknown: curve of measures t 7→ ρt ∈ M(Ω), with Ω ⊂ Rd bounded
• Forward operators: linear continuous operators K ∗

t : M(Ω) → Ht

Inverse Problem: given t 7→ ft , find a curve of measures t 7→ ρt ∈ M(Ω) s.t.
K ∗

t ρt = ft for a.e. t ∈ (0, 1) . (1)
Assumptions: very weak time-regularity for {Ht}t and K ∗

t
Example. (K ∗

t , Ht) can model Fourier transform with time-varying mask

Dynamic Inverse Problem

Static OT: transport a probability measure ρ0 into ρ1 while minimizing a cost
T ∈ arg min{∫Ω |T (x) − x|2 dρ0(x) : T : Ω → Ω, T#ρ0 = ρ1}

Benamou-Brenier. The optimal transport T can be computed by solving
min(ρt,vt) 12

∫ 1
0
∫

Ω |vt(x)|2 dρt(x) s.t. ∂tρt + div(vtρt) = 0 (2)
• t 7→ ρt unknown mass trajectory s.t. ρt=0 = ρ0 and ρt=1 = ρ1
• vt(x) : [0, 1] × Ω → Rd velocity field advecting the mass ρt

Note. Introducing the momentum mt := vtρt problem (2) becomes convex and thecontinuity equation linear

Dynamic Optimal Transport
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• Time-space domain X := (0, 1) × Ω, measures M := M(X ) × M(X ;Rd)
• Continuity equation solutions

D := {(ρ, m) ∈ M : ∂tρ + div(m) = 0 in X}
• Convex optimal transport regularizer over M, based on (2)

Jα,β(ρ, m) := β2
∫

X

∣∣∣∣dm
dρ

∣∣∣∣2 dρ(t, x) + α
∥∥ρ
∥∥

M(X ) + χD (ρ, m)
• α > 0 promotes sparsity, while β > 0 penalizes speed
• Jα,β(ρ, m) < ∞ =⇒ ρ = dt ⊗ ρt , m = vρ with v : X → Rd measurable and

t 7→ ρt ∈ M+(Ω) narrowly continuous
OT Regularization: Let (t 7→ ft) ∈ L2

H . We regularize (1) via
min(ρ,m)∈M

Tα,β(ρ, m) := 12
∫ 1

0
∥∥K ∗

t ρt − ft
∥∥2

Ht
dt + Jα,β(ρ, m) (3)

Theorem. ([4]) If (t 7→ ft) ∈ L2
H , problem (3) admits a solution.

Variational Regularization

Definition. An atom in M is of the form (ργ, mγ) with γ ∈ H1 := H1([0, 1]; Ω),
ργ := aγ dt ⊗ δγ(t) , mγ := γ̇(t) ργ , aγ := (β2

∫ 1
0 |γ̇(t)|2 dt + α

)−1

Theorem. ([3]) The extremal points of Cα,β := {Jα,β ≤ 1} are atoms or (0, 0).For finite dimensional data Tα,β at (3) admits a sparse minimizer of the form
ρ = ∑N

i=1 ciργi with N ∈ N, ci > 0 and γi ∈ H1

Sparsity

Find numerical solutions to (3) by GCGM applied to Tα,β with linearized fidelity.The key step consists in finding a descent direction around (ρ̃, m̃) by solving
min(ρ,m)∈Cα,β

−
∫ 1

0 〈ρt, wt〉 dt , wt := −Kt(K ∗
t ρ̃t − ft) ∈ C (Ω) (4)

Theorem. ([2]) Problem (4) admits a solution which is either an atom or (0, 0).Therefore (4) can be casted in H1, and is hence numerically feasible (see (5))

Generalized Conditional Gradient Method

Let (t 7→ ft) ∈ L2
H be given data. Initialize ρ0 := 0

1. Insertion: Given ρn = ∑N
i=1 ci ργi, set wn

t := −Kt(K ∗
t ρ̃n

t − ft) and find
γ∗ ∈ arg min

γ∈H1 −aγ

∫ 1
0 wt(γ(t)) dt , ρn+1/2 := ρn + cN+1ργ∗ (5)

2. Coefficients Optimization: Solve the quadratic problem
(c∗

j )j ∈ arg min
cj≥0 Tα,β(ρn+1/2, mn+1/2) , ρn+1 := N+1∑

i=1 c∗
i ργi

Theorem. ([2]) The sequence (ρn, mn) generated by Algorithm converges weak*to a solution of (3). The convergence rate is of order O(1/n)

Numerical Algorithm

• Ω := [0, 1]2 image frame, t 7→ σt ∈ M+(R2) frequencies sampling measure
• Fourier transform F : M(Ω) → C∞(R2;C)
• Ht := L2

σt(R2;C) and K ∗
t : M(Ω) → Ht defined by K ∗

t ρ := Fρ
Note. K ∗

t corresponds to the Fourier transform undersampled according to σt
Time-discrete sampling: Fix T times samples, ti := i/T for i = 0, . . . , T
• At each time ti sample ni ∈ N frequencies {Si,1, . . . , Si,ni} ⊂ R2
• Define t 7→ σt so that σti = ∑ni

k=1 δSi,k . In this case Hti = Cni and
K ∗

tiρ = (∫
R2 exp(−2πix · Si,k ) dρ(x))ni

k=1 ∈ Cni

Undersampled Fourier Measurements

• T = 50, ni = 15 freq. sampled on lines Li through the origin with angle iπ4• Ground Truth: ρ̃t = δγ1(t) + δγ2(t) + δγ3(t) as depicted (color=position in time)
• Synthetic Data: fti := K ∗

ti
ρ̃ti + 60% Gaussian Noise

• Data Visualization: By plotting the initial dual variable w0
ti

:= Ktifti ∈ C (Ω)
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Warning! At each ti the inverse problem K ∗
tiρ = fti is heavily ill-posed: indeed K ∗

tiδx̂ = K ∗
tiδx̂+λS⊥

ifor λ ∈ R, where S⊥
i ∈ R2 is orthogonal to Li  Static methods cannot resolve location of x̂

Experiment: Dynamic Spikes Tracking
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Intensity: weight cicorresponding to atom δγi

• Low reg. α = β = 0.1  surge of low-energyartefacts around maintrajectories
• High reg. α = β = 0.3  improved reconstruction

Reconstructions
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Note! Proven sublinear rate of convergence but empirical linear rateAs expected, higher regularization results in faster convergence

Convergence Plot

Future Research. The theory in [4] works also with unbalanced optimal transport regularizers:
J(ρ, m, µ) := ∫

X

∣∣∣∣dm
dρ

∣∣∣∣2 + ∣∣∣∣dµ
dρ

∣∣∣∣2 dρ(t, x) + α
∥∥ρ
∥∥

M(X ) s.t. ∂tρ + div(m) = µ in X (6)
The extremal points of (6) are curves t 7→ h(t)δγ(t), where the weight h can vanish [1]. We couldthen develop numerical methods for dynamic inverse problems regularized via unbalanced OT

Future Research. The theory in [4] works also with unbalanced optimal transport regularizers:
J(ρ, m, µ) := ∫

X

∣∣∣∣dm
dρ

∣∣∣∣2 + ∣∣∣∣dµ
dρ

∣∣∣∣2 dρ(t, x) + α
∥∥ρ
∥∥

M(X ) s.t. ∂tρ + div(m) = µ in X (6)
The extremal points of (6) are curves t 7→ h(t)δγ(t), where the weight h can vanish [1]. We couldthen develop numerical methods for dynamic inverse problems regularized via unbalanced OT

KB, SF are funded by FWF/CDG Grant PIR 27and FWF Grant P 29192. MC is funded by theRoyal Society Fellowship NIF-R1-192048
KB, SF are funded by FWF/CDG Grant PIR 27and FWF Grant P 29192. MC is funded by theRoyal Society Fellowship NIF-R1-192048


