Motivation: Motion-Aware Reconstruction
Motion on sub-acquisition time-scales ~~» artefacts in
reconstructed images
Example: Heart-lung imaging, High-resolution imaging
Workarounds: anaesthetics, breath-holding, gating
Drawbacks: assumes periodicity, low-resolution

Objectives:
e Robust reconstruction method via Dynamic OT
e Enforce sparse time-continuous reconstructions

e Numerical Algorithm based on extremal points No regularization

Dynamic Inverse Problem

e Data: time dependent curve t — f; € H; with {H:}+ family of Hilbert spaces
e Unknown: curve of measures t — p; € M(Q), with Q ¢ R? bounded

e Forward operators: linear continuous operators K;: M(Q) — H;

Inverse Problem: given t — f¢, find a curve of measures t — pr € M(Q) s

Kfps = f; forae. te(0,1). (1)

Assumptions: very weak time-reqularity for {H;}+ and K¥

Example. (K, Ht) can model Fourier transform with time-varying mask

Dynamic Optimal Transport

Static OT: transport a probability measure pg into p1 while minimizing a cost
T € argmin [/ | T (x) —x|2 dpo(x): T:Q — Q, Txpg = p1]»
()

Benamou-Brenier. The optimal transport T can be computed by solving

min —/ /|vt dpt x) s.t. Otpt+ div(vipt) =0 (2)
(pr,v1)

e t+— pr unknown mass trajectory s.t. p;—g = pg and p;—1 = p1
o v1(x):[0,1] x Q — RY velocity field advecting the mass p;

Note. Introducing the momentum m; := v¢p; problem (2) becomes convex and the
continuity equation linear
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Future Research. The theory in [4] works also with unbalanced optimal transport reqgularizers:

dm|’>  |dyl|’ . .
I(p, m, y) .:/X d_p i d_p dp(t, x) + 0(||p||M(X) st. dyp+divim)=p in X (6

The extremal points of (f) are curves t — h(t)d,y), where the weight h can vanish [1]. We could
then develop numerical methods for dynamic inverse problems reqularized via unbalanced OT
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Variational Regularization

Time-space domain X := (0, 1) x ), measures M := M(X) x M(X; RY)
Continuity equatton solutions

D :={(p,m) € M : dtp + div(m) =0 in X}
Convex optimal transport regularizer over M, based on (2)

Ja,p(p, M) = /'

a > 0 promotes sparsity, whtle B > 0 penalizes speed
o Joplpm <oo = p=dt®pt, m=vpwithv: X — RY measurable and
t— pt € MT(Q) narrowly continuous

dp(t, x) + O(HpHM + Xpl(p, m)

OT Regularization: Let (t— f;) € L,ZL/. We reqularize (1) via

1

1
| 2
oo Ta,plp, m) := 5/0 |K? pt — fe||}; dt+Jq,plp, m) (3)

Theorem. ([4]) If (t — f¢) € L%, problem (3) admits a solution.

Sparsity
Definition. An atom in M is of the form (py, my) with y € H' := H'([0,1]; Q

1
/ (1) dt + a
0

Theorem. ([3]) The extremal points of C, g := {Jq g < 1} are atoms or (0, 0).
For finite dimensional data 7, g at (3) admits a sparse minimizer of the form

p = Z "4 cipy, with N € N, c;>0and y; € H

py =aydt® 5y(t)r my = y(t)py, ay:=

Generalized Conditional Gradient Method

Find numerical solutions to (3) by GCGM applied to 7, g with linearized fidelity.

The key step consists in finding a descent direction around (p, m) by solving

1
min —/ <pt, Wt> dt, Wt .= —Kt(K;kpt — ft) S C(Q) (4)
(o.m)ECqp 0

Theorem. ([2]) Problem (4) admits a solution which is either an atom or (0, 0).

Therefore (@) can be casted in H', and is hence numerically feasible (see (5))

Numerical Algorithm

Let (t— ft) € LZH be given data. Initialize V=0

1. Insertion: Given p" = Y N . ¢; py, set wl := —Ky(K#p? — f;) and find

1
;e argmin—ay [ wivt)dt, "= b oniapy 6
yeH! 0

2. Coefficients Optimization: Solve the quadratic problem

(cj); € argmin Ta’lg(p”H/z, m"+1/2),

CJZO

Theorem. ([2]) The sequence (p”, m") generated by Algorithm converges weak”

to a solution of (3). The convergence rate is of order O(1/n)
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Undersampled Fourier Measurements
e 0O:=]0, 1]2 image frame, t — ot € M+(R2) frequencies sampling measure
e Fourier transform §: M(Q) — C®(RZ; C)
o Hi:=L5(R%C)and K;j: M(Q) — Hy defined by Kjp := Fp
Note. K corresponds to the Fourier transform undersampled according to o;
Time-discrete sampling: Fix T times samples, t; ;= i/ fori=0,..., T
e At each time t; sample n; € N frequencies {S;4,...,Sin,} C R?
o Define t+— o0y so that oy, = ) |, 0s, . In this case Ht, = C" and

n;

K;';p = (/ exp(—2mix - S; k) dp(x) e C"
R? k=1

Experiment: Dynamic Spikes Tracking

e [ =50, nj =15 freq. sampled on lines L; through the origin with angle
e Ground Truth: pr =0 vi(t) 5)/2( t) + 5)/3( ) as depicted (color=position in the)

e Synthetic Data: fy, := K¢ pt, + 60% Gaussian Noise

= Kif1, € C(Q)
w?(x), 60% noise

.

e Data Visualization: By plotting the initial dual variable Wt
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Warning! At each t; the inverse problem K{p = f is heavily ill-posed: indeed K{ 0z = K{'0q ;51
for A € R, where Sit € R? is orthogonal to L; ~ Static methods cannot resolve location of %

Reconstructions

Reconstruction Reconstruction
1.0

Intensity: weight c;

d corresponding to atom 9,

0.6

elowreg. a=pB=01~
surge of low-energy
artefacts around main
trajectortes

e High req. a=p=0.3 ~
improved reconstruction

X
0.4

intensities
intensities

0.2

Iterate number

Note! Proven sublinear rate of convergence but empirical linear rate
As expected, higher reqularization results in faster convergence




