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A B S T R A C T

Two natural ways of modelling Formula 1 race outcomes are a probabilistic approach, based on the exponential
distribution, and econometric modelling of the ranks. Both approaches lead to exactly soluble race-winning
probabilities. Equating race-winning probabilities leads to a set of equivalent parametrisations. This time-rank
duality is attractive theoretically and leads to quicker ways of dis-entangling driver and car level effects.
1. Introduction

Modelling Formula (1) races is an interesting econometric problem
(Bell et al., 2016; van Kesteren and Bergkamp, 2023) of significant
wider interest (Maurya, 2021). It is of interest to separate out driver-
level and car-level effects. Previously, such an analysis has only been
possible over longer time periods (Bell et al., 2016; Eichenberger
and Stadelmann, 2009; van Kesteren and Bergkamp, 2023). Here, we
present a solution that requires only one season of previous data.

Formula (1) races are most easily modelled assuming car finishing
times are independently and exponentially distributed random vari-
ables. Under this assumption race-winning probabilities can be written
down in closed from. This tractability also enables relatively easy
model calibration via bookmakers’ odds. However, this approach is
at odds with much of the publicly-available race data. Final race-
finishing times are typically unavailable as lapped cars do not typically
finish the full race distance. In contrast, the most convenient way of
modelling publicly-available race data is regression modelling of the
final finishing position (Eichenberger and Stadelmann, 2009). Thus, in
this paper, we combine both modes of analysis — an approach we term
time-rank duality.

The layout of this paper is as follows. Section 2 outlines a probabilis-
tic approach to modelling race-finishing times and model calibration
via bookmakers’ odds. Section 3 establishes theoretical duality be-
tween this probabilistic approach and regression modelling of the
final rank. Firstly, we show that a regression model for ranks can
be used to estimate race-winning probabilities and then to an equiv-
alent exponential-distribution parameterisation using the method in
Section 2. Secondly, we show that, under the simplifying assumption
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of homoscedasticity, regression parameters can be reverse-engineered
from a set of race-winning probabilities e.g. those corresponding to
a given exponential-distribution parameterisation or a set of book-
makers’ odds. Section 4 discusses empirical regression modelling of
historical results. Section 5 combines both approaches to enable quicker
identification of individual driver-level effects. Section 6 concludes. A
mathematical appendix is contained at the end of the paper.

2. Probabilistic approach to modelling finishing times

Models based around the exponential distribution are amongst the
most convenient ways to model Formula (1) races. This is due to its
tractability alongside its usage in classical applied probability models.
A related formulation based on the Weibull distribution is explored
in Appendix. Whilst its non-constant hazard function may be more
physically realistic, the Weibull distribution may be more cumbersome
in applications due to its additional shape parameter.

Suppose, for the sake of simplicity, that a race consists of 𝑛 cars
whose finishing times 𝑇1, 𝑇2,… , 𝑇𝑛 are independent exponential dis-
tributions with parameters 𝜆1, 𝜆2,… , 𝜆𝑛. Independence is a common
simplifying assumption in sports models (Scarf et al., 2019) but may be
difficult to justify empirically. A standard result in probability theory
(Grimmett and Stirzaker, 2020) gives:

Proposition 1.

i. If 𝑇1, 𝑇2,… , 𝑇𝑛 are independent and exponentially distributed with
parameters 𝜆1, 𝜆2,… , 𝜆𝑛 then
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Table 1
Results of the model applied to betting data for the 2023 Qatar Grand Prix.
Source: www.bet365.com

Team Car Bookmakers Implied �̂�
odds win

probability

Mercedes Lewis Hamilton 25/1 0.031655049 0.0081037902
Mercedes George Russel 25/1 0.031655049 0.0081037902
Red Bull Max Verstappen 2/9 0.673389233 0.1723897481
Red Bull Sergio Perez 12/1 0.063310099 0.0162075831
Ferrari Charles Leclerc 25/1 0.031655049 0.0081037902
Ferrari Carlos Sainz 28/1 0.028380389 0.0072654675
Mclaren Lando Norris 12/1 0.063310099 0.0162075831
Mclaren Oscar Piastri 16/1 0.048413605 0.0123940343
Alpine Estaban Ocon 500/1 0.001642777 0.0004205564
Alpine Pierre Gasly 500/1 0.001642777 0.0004205564
Aston Martin Fernando Alonso 80/1 0.01016088 0.0026012171
Aston Martin Lance Stroll 500/1 0.001642777 0.0004205564
Haas Kevin Magnussen 500/1 0.001642777 0.0004205564
Haas Nico Hulkenburg 500/1 0.001642777 0.0004205564
Alfa Tauri Yuki Tsunoda 500/1 0.001642777 0.0004205564
Alfa Tauri Daniel Riccardo 500/1 0.001642777 0.0004205564
Alfa Romeo Valterri Bottas 500/1 0.001642777 0.0004205564
Alfa Romeo Zhou Guanyu 500/1 0.001642777 0.0004205564
Williams Alex Albon 500/1 0.001642777 0.0004205564
Williams Logan Sergant 500/1 0.001642777 0.0004205564

min
{

𝑇1, 𝑇2,… , 𝑇𝑛
}

∼ exp

( 𝑛
∑

𝑖=1
𝜆𝑖

)

.

ii. If 𝑋 and 𝑌 are independent exponential distributions with parame-
ters 𝜆𝑋 and 𝜆𝑌 then

𝑃𝑟(𝑋≤𝑌 ) =
𝜆𝑋

𝜆𝑋 + 𝜆𝑌
.

iii. Consider the Formula (1) race with independent and exponentially
distributed finishing times as outlined above. Then

𝑃𝑟(Car 𝑗 wins) =
𝜆𝑗

∑𝑛
𝑖=1 𝜆𝑖

.

Proposition 1 shows that given a sequence of win probabilities
1, 𝑝2,… , 𝑝𝑛, calculated e.g. from bookmakers’ odds, we can estimate
he parameters 𝜆𝑖. This can be done by minimising the Residual Sum
f Squares (RSS):

SS ∶=
𝑛
∑

𝑖=1

(

𝜆𝑖
𝜆1 +⋯ + 𝜆𝑛

− 𝑝𝑖

)2
. (1)

The minimisation in (1) can be done numerically. Results of the proce-
dure applied to bookmakers’ data are shown in Table 1. The R code
and data to reproduce these results is openly available on GitHub.1
In Table 1 odds can be converted to probabilities as follows. The win
probability corresponding to odds of 25/1 for Lewis Hamilton victory
can be calculated via
1 − 𝑝
𝑝

= 25; 𝑝 = 1
26

.

in probabilities for the remaining drivers are calculated similarly, and
hen renormalised (S̆trumbelj, 2014) so that they sum to 1. These renor-
alised win probabilities are given in the fourth column of Table 1.
stimated �̂� values from the minimisation in (1) are in the fifth column.

3. Econometric modelling of the final race ranking

Empirical Formula (1) data are most commonly listed in terms of
the rank rather than the strict finishing times. The analysis of historical

1 R codes and data files are made available on the third authors’ GitHub
age.
2

Table 2
Implied regression parameters corresponding to betting data for the 2023 Qatar Grand
Prix (�̂� = 3.879374).
Source: www.bet365.com.

Team Car Bookmakers Implied �̂�𝑖
odds win

probability

Mercedes Lewis Hamilton 25/1 0.031655049 8.704026
Mercedes George Russel 25/1 0.031655049 8.704026
Red Bull Max Verstappen 2/9 0.673389233 −0.242969
Red Bull Sergio Perez 12/1 0.063310099 7.426002
Ferrari Charles Leclerc 25/1 0.031655049 8.704026
Ferrari Carlos Sainz 28/1 0.028380389 8.890783
Mclaren Lando Norris 12/1 0.063310099 7.426002
Mclaren Oscar Piastri 16/1 0.048413605 7.941444
Alpine Estaban Ocon 500/1 0.001642777 12.904103
Alpine Pierre Gasly 500/1 0.001642777 12.904103
Aston Martin Fernando Alonso 80/1 0.01016088 10.501519
Aston Martin Lance Stroll 500/1 0.001642777 12.904103
Haas Kevin Magnussen 500/1 0.001642777 12.904103
Haas Nico Hulkenburg 500/1 0.001642777 12.904103
Alfa Tauri Yuki Tsunoda 500/1 0.001642777 12.904103
Alfa Tauri Daniel Riccardo 500/1 0.001642777 12.904103
Alfa Romeo Valterri Bottas 500/1 0.001642777 12.904103
Alfa Romeo Zhou Guanyu 500/1 0.001642777 12.904103
Williams Alex Albon 500/1 0.001642777 12.904103
Williams Logan Sergant 500/1 0.001642777 12.904103

race data is therefore most easily accomplished by regression modelling
of the final rank obtained (Eichenberger and Stadelmann, 2009). This
implicitly assumes a Gaussian model for sporting outcomes (Scarf et al.,
2019).

Consider two related problems. Firstly, suppose that there are 𝑛 cars
in the race and the final ranking 𝑟𝑖 of car 𝑖 can be approximated by a
normal distribution: 𝑟𝑖∼𝑁(𝜇𝑖, 𝜎2𝑖 ). The approximate probability that car
𝑖 wins the race is given by

𝑝𝑖 = 𝑃𝑟(𝑟𝑖≤1.5) = 𝛷
(

1.5 − 𝜇𝑖
𝜎𝑖

)

, (2)

where 𝛷(⋅) denotes the standard normal CDF. Secondly, suppose we
re given a sequence of win probabilities 𝑝1, 𝑝2,… , 𝑝𝑛 for Cars 1, 2,… , 𝑛.
nder the simplifying assumption of 𝜎2𝑖 = 𝜎2, equivalent to the classical
ormal linear regression model (Fry and Burke, 2022), from Eq. (2) set

(

1.5 − 𝜇𝑖
𝜎

)

= 𝑝𝑖; 𝜇𝑖 = 1.5 − 𝜎𝛷−1(𝑝𝑖). (3)

ince the sum of the ranks is equal to 𝑛(𝑛+1)
2 summing Eq. (3) over 𝑖

ives

𝑛(𝑛 + 1)
2

= 1.5𝑛 − 𝜎
𝑛
∑

𝑖=1
𝛷−1(𝑝𝑖); 𝜎 =

𝑛 − 𝑛2

2
∑𝑛

𝑖=1 𝛷−1(𝑝𝑖)
. (4)

Combining Eqs. (3)–(4) therefore gives the estimated 𝜇𝑖 values corre-
sponding to the given win probabilities 𝑝𝑖. Table 2 applies this approach
to estimate a set of �̂�𝑖 and �̂�2 regression parameters for the bookmakers’
data in Table 1.

4. Regression modelling of historical results

In this section we calibrate the model to historical results (observed
race rankings) from the 2022 season which was the last fully-completed
season at the time of writing. This follows a similar approach to
modelling historical results in Fry et al. (2021). Following Eichenberger
and Stadelmann (2009) we regress the finishing position against the
dummy variables corresponding to each of the constructors. We then
use stepwise regression (Fry and Burke, 2022) to automatically choose
the best model. We constrain all models fitted to include a dummy
variable indicating the teams’ second (less-favoured) driver. Forwards
and stepwise regression choose the same model indicated below in
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Table 3
Stepwise regression results obtained (constrained to include driver order term). 𝑅2

alue = 0.3914.
Coefficient Estimate Std. Error 𝑡-value 𝑝-value

(Intercept) 13.8420 0.3794 36.484 0.000
Second driver 0.2160 0.4056 0.533 0.5946
Red Bull −9.6500 0.7170 −13.459 0.000
Mercedes −8.2700 0.7170 −11.534 0.000
Ferrari −7.6900 0.7170 −10.725 0.000
Mclaren −3.5500 0.7170 −4.951 0.000
Alpine −3.5500 0.7170 −4.951 0.000
Aston Martin −1.7900 0.7170 −2.496 0.0129

Table 3. In contrast, backward selection suggests a more complex
model. However, an 𝐹 -test, not reported, is non-significant suggesting
the simpler model in Table 3 should suffice. Negative and significant
parameters in Table 3 indicate more successful constructors with lower
expected final finishing positions.

5. Distilling driver-level effects

From the regression output in Table 3 a 95% confidence interval for
the second driver term is

Second driver confidence interval = (−0.581, 1.013). (5)

he upper value of 1.013 produced in (5) is physically meaningful.
uppose race orderings are completely determined by the level of the
ar. In this case positions 1–2 would be occupied by the best car,
ositions 3–4 by drivers of the second best car, positions 5–6 by drivers
f the third best car etc. A difference in the average ranking greater
han 1 indicates that the quality of the leading driver is sufficient to be
ble to out-perform the next best car on the grid.

Thus combining Eq. (5) with implied regression parameters in Ta-
le 2 a difference between two drivers of the same team bigger than
.013 implies an extraordinary level of performance beyond the qual-
ty of the car. Comparing drivers in this way suggests two drivers
ax Verstappen (Red Bull) and Fernando Alonso (Aston Martin) out-

erform their respective cars. Past academic research has previously
ighlighted Verstappen’s level of performance as historically significant
van Kesteren and Bergkamp, 2023).

. Conclusions

It is interesting to separate out driver-level and car-level effects in
ormula (1) racing. Previously, such an analysis has only been possible
ver longer time periods (Bell et al., 2016; Eichenberger and Stadel-
ann, 2009; van Kesteren and Bergkamp, 2023). Here, we present a

olution that requires only one season’s worth of previous data. We
ombine a probabilistic approach based on the exponential distribution
ith econometric modelling of the ranks (Eichenberger and Stadel-
ann, 2009). Both approaches enable the race-winning probabilities

o be exactly solved analytically. Equating race-winning probabilities
eans that both approaches can be seen as equivalent to each other.
esults suggest that of the current crop of drivers Max Verstappen
nd Fernando Alonso out-perform the level of the car that they drive.
esults match previous suggestions that Verstappen’s performance level

s historically significant (van Kesteren and Bergkamp, 2023). Future
ork will adjust the above models to account for cars that fail to finish

aces. Substantial interest in the analytical modelling of sports remains
Singh et al., 2023).
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ppendix. Mathematical proofs

In Proposition 2 we consider race times to be independent Weibull
istributions with common shape parameter 𝑘. This is a small technical
xtension of Proposition 1, where finishing times are exponential. We
resent the proof for Proposition 2 below, noting that Proposition 1 is
he special case of 𝑘 = 1 in Proposition 2.

roposition 2.

i. If 𝑇1,… , 𝑇𝑛 are independent and Weibull distributed with parameters
(𝜆1, 𝑘),… , (𝜆𝑛, 𝑘) then

min
{

𝑇1, 𝑇2,… , 𝑇𝑛
}

∼Weibull
( 𝑛
∑

𝑖=1
𝜆𝑖, 𝑘

)

.

ii. If 𝑋 ∼ Weibull(𝜆𝑋 , 𝑘) and 𝑌 ∼ Weibull(𝜆𝑌 , 𝑘) and 𝑋 and 𝑌 are
independent then

𝑃𝑟(𝑋≤𝑌 ) =
𝜆𝑋

𝜆𝑋 + 𝜆𝑌
.

iii. Consider the Formula (1) race with independent and Weibull dis-
tributed finishing times as outlined above. Then

𝑃𝑟(Car 𝑗 wins) =
𝜆𝑗

∑𝑛
𝑖=1 𝜆𝑖

.

Proof of Proposition 2.

i. 𝑃𝑟(𝑇𝑖≥𝑥) = 𝑒−𝜆𝑖𝑥𝑘 . Since all the 𝑇𝑖 are independent

𝑃𝑟(𝑇1≥𝑥,… , 𝑇𝑛≥𝑥) = 𝑒−𝜆1𝑥
𝑘
… 𝑒−𝜆𝑛𝑥

𝑘
.

This gives

𝑃𝑟(min{𝑇1,… , 𝑇𝑛} ≤ 𝑥) = 1 − 𝑒−
(
∑𝑛

𝑖=1 𝜆𝑖
)

𝑥𝑘 .

ii. Since 𝑓𝑋 (𝑥) = 𝑘𝜆𝑋𝑥𝑘−1𝑒−𝜆𝑋𝑥𝑘 and 𝑓𝑌 (𝑦) = 𝑘𝜆𝑌 𝑦𝑘−1𝑒−𝜆𝑌 𝑦
𝑘

𝑃𝑟(𝑋≤𝑌 ) = ∫

∞

0 ∫

𝑦

0
𝑘2𝜆𝑋𝜆𝑌 𝑥

𝑘−1𝑦𝑘−1𝑒−𝜆𝑋𝑥𝑘𝑒−𝜆𝑌 𝑦
𝑘
𝑑𝑥𝑑𝑦

= ∫

∞

0
𝑘𝜆𝑌 𝑦

𝑘−1𝑒−𝜆𝑌 𝑦
𝑘
[

−𝑒−𝜆𝑋𝑥𝑘
]𝑦

0
𝑑𝑦

= ∫

∞

0
𝑘𝜆𝑌 𝑦

𝑘−1𝑒−𝜆𝑌 𝑦
𝑘
𝑑𝑦 − ∫

∞

0
𝑘𝜆𝑌 𝑦

𝑘−1𝑒−(𝜆𝑋+𝜆𝑌 )𝑦𝑘𝑑𝑦

= 1 −
𝑘𝜆𝑌

𝑘(𝜆𝑋 + 𝜆𝑌 )
=

𝜆𝑋
𝜆𝑋 + 𝜆𝑌

.

iii. For the sake of argument suppose 𝑗 = 1. Then

𝑃𝑟(Car 1 wins) = 𝑃𝑟(𝑇1≤min
{

𝑇2, 𝑇3,… , 𝑇𝑛
}

).

Now 𝑇1 and min
{

𝑇2, 𝑇3,… , 𝑇𝑛
}

are independent with

𝑇1∼Weibull(𝜆1, 𝑘); min
{

𝑇2, 𝑇3,… , 𝑇𝑛
}

∼ Weibull
(

∑

𝑖≥2
𝜆𝑖, 𝑘

)

.

Hence the result follows from part ii. □
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