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DERIVATION OF LINEARIZED POLYCRYSTALS FROM A
TWO-DIMENSIONAL SYSTEM OF EDGE DISLOCATIONS\ast 

SILVIO FANZON\dagger , MARIAPIA PALOMBARO\dagger , AND MARCELLO PONSIGLIONE\ddagger 

Abstract. In this paper we show the emergence of polycrystalline structures as a result of
elastic energy minimization. For this purpose, we consider a well-known variational model for two-
dimensional systems of edge dislocations, within the so-called core radius approach, and we derive the
\Gamma -limit of the elastic energy functional as the lattice space tends to zero. In the energy regime under
investigation, the symmetric and skew part of the strain become decoupled in the limit, the dislocation
measure being the curl of the skew part of the strain. The limit energy is given by the sum of a
plastic term, acting on the dislocation density, and an elastic term, which depends on the symmetric
strains. Minimizers under suitable boundary conditions are piecewise constant antisymmetric strain
fields, representing in our model a polycrystal whose grains are mutually rotated by infinitesimal
angles. In the energy regime under investigation, the symmetric and skew part of the strain become
decoupled in the limit, the dislocation measure being the curl of the skew part of the strain. The
limit energy is given by the sum of a plastic term, acting on the dislocation density, and an elastic
term, which depends on the symmetric strains. Minimizers under suitable boundary conditions are
piecewise constant antisymmetric strain fields, representing in our model a polycrystal whose grains
are mutually rotated by infinitesimal angles.
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1. Introduction. Many solids in nature exhibit a polycrystalline structure. A
single-phase polycrystal is formed by many individual crystal grains, having the same
underlying periodic atomic structure, but rotated with respect to each other. The
region separating two grains with different orientation is called grain boundary (Fig-
ure 1). Since the grains are mutually rotated, the periodic crystalline structure is
disrupted at grain boundaries. As a consequence, grain boundaries are regions where
dislocations occur, inducing high energy concentration. Polycrystalline structures,
which a priori may seem energetically not convenient, arise from the crystallization of
a melt. As the temperature decreases, crystallization starts from a number of points
within the melt. These single grains grow until they meet. Since their orientation is
generally different, the grains are not able to arrange in a single crystal, and grain
boundaries appear as local minimizers of the energy, in fact, as metastable config-
urations. After crystallization a grain growth phase occurs, and the solid tries to
minimize the energy by reducing the boundary area. This process happens by atomic
diffusion, and it is thermally activated [12, Chapter 5.7], [19].

The aim of this paper is to describe, and to some extent to predict, polycrystalline
structures by variational principles. To this end, we first introduce a well-known
variational semidiscrete model for edge dislocations. Then we derive by \Gamma -convergence,
as the lattice spacing tends to zero, a total energy functional depending on the strain
and on the dislocation density. Finally, we focus on the ground states of such energy,
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Fig. 1. Section of an iron-carbon alloy. The darker regions are single crystal grains separated
by grain boundaries represented by lighter lines (source [20], licensed under CC BY-NC-SA 2.0 UK).
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Fig. 2. Left and center: schematic picture of a SATGB. Two grains mutually rotated by an
angle \theta are joined together. The lattice misfit (green lines) is accommodated by an array of edge
dislocations spaced \delta apart (red dots) (pictures after [16]). The blue lines show the rotation between
the grains. Right: high-resolution transmission electron microscopy image of a SATGB in silicon
(from [8, section 7.2.2] with permission of the author).

neglecting the fundamental mechanisms driving the formation and evolution of grain
boundaries. The main feature of the model proposed in this paper is that grain
boundaries and the corresponding grain orientations are not introduced as internal
variables of the energy; in fact, they spontaneously arise as a result of the only energy
minimization under suitable boundary conditions.

Let us introduce our model by first discussing the case of two-dimensional small-
angle tilt grain boundaries (abbreviated to SATGB). The atomic structure of SATGBs
is well understood [12, Chapter 3.4], [17]. Indeed the lattice mismatch between two
grains mutually tilted by a small angle \theta is accommodated by a single array of edge
dislocations at the grain boundary, evenly spaced at distance \delta \approx \varepsilon /\theta , where \varepsilon repre-
sents the atomic lattice spacing. Hence, the number of dislocations at a SATGB is of
the order \theta /\varepsilon (Figure 2). The elastic energy of a SATGB is given by the celebrated
Read--Shockley formula introduced in [17]:

(1) Elastic Energy = E0\theta (A + | log \theta | ) ,

where E0 and A are positive constants depending only on the material.
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Fig. 3. Left: domain \Omega \times \BbbR with the edge dislocation (\gamma , \xi ). The green plane represents the extra
half-plane of atoms corresponding to \gamma . Right: the section \Omega of the crystal with the edge dislocation
(x, \xi ), x := \gamma \cap \Omega .

Recently in [14], starting from a nonlinear elastic energy, the authors proved
compactness properties and energy bounds in agreement with (1). In this paper we
focus on lower-energy regimes, deriving by \Gamma -convergence, as the lattice spacing \varepsilon \rightarrow 0
and the number of dislocations N\varepsilon \rightarrow \infty , a certain limit energy functional \scrF that can
be regarded as a linearized version of the Read--Shockley formula. We work in the
setting of linearized planar elasticity as introduced in [9], and in particular we require
good separation of the dislocation cores. Such good separation hypothesis will in turn
imply that the number of dislocations at grain boundaries is of the order

(2) N\varepsilon \ll 
\theta 

\varepsilon 
.

As a consequence, we cannot allow a number of dislocations sufficient to accommodate
small rotations \theta between grains, but rather we can have rotations by an infinitesimal
angle \theta \approx 0, that is, antisymmetric matrices. In this respect our analysis represents
the linearized counterpart of the Read--Shockley formula: grains are microrotated by
infinitesimal angles, and the corresponding ground states can be seen as linearized
polycrystals, whose energy is linear with respect to the number of dislocations at
grain boundaries.

We now briefly introduce the setting of our problem following [9]. In linearized
planar elasticity, the reference configuration is a bounded domain \Omega \subset \BbbR 2, repre-
senting a horizontal section of an infinite cylindrical crystal \Omega \times \BbbR . Following the
semidiscrete dislocation model [3, 6, 9], dislocations are introduced as point defects of
the strain \beta : \Omega \rightarrow \BbbM 2\times 2, where \BbbM 2\times 2 denotes the set of 2\times 2 real matrices. Specif-
ically, a family of straight dislocation lines \{ \gamma i\} Mi=1 orthogonal to the cross section \Omega 
is identified with the points xi := \gamma i \cap \Omega . We then require

(3) Curl\beta =

M\sum 
i=1

\xi i \delta xi

in the sense of distributions. Here \xi i \in \BbbR 2 is the Burgers vector associated to \gamma i; it
depends only on the underlying crystalline structure and not on the lattice spacing
\varepsilon . (Since we are working in linearized elasticity, the Burgers vector can be rescaled
by \varepsilon  - 1.) As \xi i and \gamma i are orthogonal, (\gamma i, \xi i) defines an edge dislocation (Figure 3).

Denote by \mu :=
\sum M

i=1 \xi i\delta xi
the dislocation measure and by Br(x) the ball of radius

r > 0 centered at x \in \BbbR 2. The linear elastic energy for the pair (\mu , \beta ) satisfying (3)



LINEARIZED POLYCRYSTALS 3959

is defined as

(4) E\varepsilon (\mu , \beta ) :=
1

2

\int 
\Omega \varepsilon (\mu )

\BbbC \beta : \beta dx ,

where \Omega \varepsilon (\mu ) := \Omega \smallsetminus \cup M
i=1B\varepsilon (xi) and \BbbC is a fourth-order stress tensor, which is assumed

to be positive definite on symmetric matrices. The energy induced by the dislocation
distribution \mu is obtained by minimizing (4) over the set of all strains satisfying (3).

Following [9], we make a technical hypothesis of good separation for the disloca-
tion cores by introducing a small scale \rho \varepsilon \gg \varepsilon , called hard-core radius: Any cluster
of dislocations on a scale \rho \varepsilon will be identified with a multiple dislocation \xi \delta x, where
\xi is the sum of the Burgers vectors corresponding to the dislocations in the cluster.
Specifically, we will consider integer multiples of Burgers vectors and require that
dislocation points are separated by at least 2\rho \varepsilon .

We now want to examine how the energy in (4) scales with \varepsilon . The energy con-
tribution of a single dislocation core is of order | log \varepsilon | (see Proposition 3.1). For a
system of N\varepsilon dislocations with N\varepsilon \rightarrow \infty as \varepsilon \rightarrow 0, the relevant energy regime is then

E\varepsilon \approx N\varepsilon | log \varepsilon | .

This scaling was already studied in [5] for N\varepsilon \leq C, where the authors do not assume
any separation between the dislocation cores. The critical regime N\varepsilon \approx | log \varepsilon | has
been considered for Ginzburg--Landau vortices in [13] and for edge dislocations in [9],
where the authors, assuming that the dislocations are well separated, characterize the
\Gamma -limit of E\varepsilon 

| log \varepsilon | 2 . Recently the critical regime without good separation assumption

was studied in [10], where the author performs a \Gamma -convergence analysis in the spirit
of [5].

Our analysis focuses on the energy regime corresponding to

| log \varepsilon | \ll N\varepsilon \ll 
1

\varepsilon 

(see section 2 for the precise assumptions on N\varepsilon ). We will see that such energy regime
will account for grain boundaries that are mutually rotated by infinitesimal angles
\theta \approx 0. To be more specific, one can split the contribution of E\varepsilon into

E\varepsilon (\mu , \beta ) = Einter
\varepsilon (\mu , \beta ) + Eself

\varepsilon (\mu , \beta ) ,

where Eself
\varepsilon is the self-energy concentrated in the hard-core region \cup iB\rho \varepsilon 

(xi), while
Einter

\varepsilon is the interaction energy computed outside the hard-core region. In Theorem
4.2 we will prove that the \Gamma -limit as \varepsilon \rightarrow 0 of the rescaled functionals E\varepsilon with respect
to the strains and the dislocation measures is of the form

(5) \scrF (\mu , S,A) =
1

2

\int 
\Omega 

\BbbC S : S dx+

\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | .

The first term of \scrF comes from the interaction energy. It represents the elastic energy
of the symmetric field S, which is the weak limit of the symmetric part of the strains
rescaled by

\sqrt{} 
N\varepsilon | log \varepsilon | . Instead, the antisymmetric part of the strain, rescaled by

N\varepsilon , weakly converges to an antisymmetric field A. Therefore, since N\varepsilon \gg | log \varepsilon | ,
the symmetric part of the strain is of lower order with respect to the antisymmetric
part. The second term of \scrF is the plastic energy, where the density \varphi is positively
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1-homogeneous, and it can be defined as the relaxation of a cell-problem formula (see
Proposition 3.1). The measure \mu in (5) is the weak-\ast limit of the dislocation measures
rescaled by N\varepsilon . Notice that A and \mu come from the same rescaling N\varepsilon , whereas
the symmetric part S is of lower order, namely,

\sqrt{} 
N\varepsilon | log \varepsilon | . As a consequence, the

compatibility condition (3) passes to the limit as

CurlA = \mu .

This implies that the elastic and plastic terms in \scrF are decoupled. Indeed this is
the main difference to the energy regime N\varepsilon \approx | log \varepsilon | studied in [9]. Specifically,
the macroscopic energy derived in [9] has the same structure as \scrF , but S, A, and \mu 
live on the same scale | log \varepsilon | . Therefore, the contributions of the elastic and plastic
energy are coupled by the relation \mu = Curl\beta , where \beta = S +A represents the whole
macroscopic strain.

In the second part of the paper we focus on the study of the \Gamma -limit \scrF . Precisely,
we impose soft boundary conditions and compute (Theorem 5.1) the corresponding
\Gamma -limit, which is given by

(6) \scrF gA(\mu , S,A) =
1

2

\int 
\Omega 

\BbbC S : S dx+

\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | +

\int 
\partial \Omega 

\varphi ((gA  - A) \cdot t) ds

for suitable antisymmetric boundary values gA. By imposing piecewise constant
boundary conditions gA and by reducing the problem to a minimization problem
in BV , we show that \scrF gA is minimized by strains that are locally constant and take
values in the set of antisymmetric matrices (Theorem 6.1). More specifically, a mini-
mizer is given by

(7) \^A =

k\sum 
i=1

Ai \chi \Omega i
,

where \{ \Omega i\} ki=1 is a Caccioppoli partition of \Omega and Ai are constant antisymmetric
matrices. In this context the sets \Omega i represent the grains of the polycrystal, while the
corresponding Ai represent their orientation. We call such configurations linearized
polycrystals. Such definition is motivated by the fact that antisymmetric matrices can
be considered as infinitesimal rotations, being the linearization about the identity of
the set of rotations. The linear energy corresponding to \^A in (7) can be interpreted
as a linearized version of the Read--Shockley formula in (1).

The paper is organized as follows. In section 2 we introduce the rigorous math-
ematical setting of the problem. In section 3 we recall some results from [9], which
will be useful for the \Gamma -convergence analysis of the rescaled energy E\varepsilon . The main \Gamma -
convergence result will be proved in section 4. In section 5 we will include Dirichlet-
type boundary conditions to the \Gamma -convergence analysis performed in the previous
section, obtaining the functional \scrF gA in (6). Finally, in section 6 we will show that
the plastic part of \scrF gA is minimized by linearized polycrystals by prescribing piecewise
constant boundary conditions on the antisymmetric part of the limit strain.

2. Setting of the problem. Let \Omega \subset \BbbR 2 be a bounded open domain with
Lipschitz boundary, representing a horizontal section of an infinite cylindrical crystal
\Omega \times \BbbR . Define the class of Burgers vectors as \scrS := \{ b1, . . . , bs\} . We will assume that
\scrS contains at least two linearly independent vectors so that Span\BbbR \scrS = \BbbR 2. We then
define the set of slip directions

\BbbS := Span\BbbZ \scrS ,
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which coincides with the set of Burgers vectors for multiple dislocations. An edge
dislocation is identified with a point x \in \Omega and a vector \xi \in \BbbS . Let \varepsilon > 0 be a
parameter representing the interatomic distance of the crystal, and denote by \{ N\varepsilon \} \subset 
\BbbN the number of dislocations present in the crystal at the scale \varepsilon . We will work in
the supercritical regime

(8) N\varepsilon \gg | log \varepsilon | ,

in which the interaction energy is dominant with respect to the self-energy. As in [9],
we assume good separation between dislocations by introducing a hard-core radius
\rho \varepsilon \rightarrow 0 satisfying

(i) lim\varepsilon \rightarrow 0 \rho \varepsilon /\varepsilon 
s = +\infty for every fixed 0 < s < 1;

(ii) lim\varepsilon \rightarrow 0N\varepsilon \rho 
2
\varepsilon = 0 .

Condition (i) implies that the hard-core region contains almost all the self-energy (see
Proposition 3.2), while (ii) guarantees that the area of the hard-core region tends to
zero. Conditions (i), (ii), and (8) are compatible if

\rho \varepsilon = \varepsilon t(\varepsilon ), N\varepsilon = \varepsilon  - t(\varepsilon )

for some positive t(\varepsilon ) converging to zero slowly enough (for instance, such that
t(\varepsilon )| log \varepsilon | \ll log(| log \varepsilon | )). The class of admissible dislocations is defined by

\scrA \scrD \varepsilon (\Omega ) :=
\Bigl\{ 
\mu \in \scrM (\Omega ;\BbbR 2) : \mu =

M\sum 
i=1

\xi i\delta xi
, M \in \BbbN , \xi i \in \BbbS ,

B\rho \varepsilon 
(xi) \subset \Omega , | xj  - xk| \geq 2\rho \varepsilon , for every i and j \not = k

\Bigr\} 
,

where \scrM (\Omega ;\BbbR 2) denotes the space of \BbbR 2 valued Radon measures on \Omega . For r > 0

and \mu =
\sum M

i=1 \xi i\delta xi
\in \scrA \scrD \varepsilon (\Omega ), define

\Omega r(\mu ) := \Omega \setminus \cup M
i=1Br(xi) .

The class of admissible strains associated to \mu =
\sum M

i=1 \xi i\delta xi
\in \scrA \scrD \varepsilon (\Omega ) is given by

(9)

\scrA \scrS \varepsilon (\mu ) :=
\Bigl\{ 
\beta \in L2(\Omega ;\BbbM 2\times 2) : \beta \equiv 0 in \Omega \setminus \Omega \varepsilon (\mu ) , Curl\beta = 0 in \Omega \varepsilon (\mu ) ,\int 
\partial B\varepsilon (xi)

\beta \cdot t ds = \xi i ,

\int 
\Omega \varepsilon (\mu )

\beta skew dx = 0 , for every i = 1, . . . ,M
\Bigr\} 
.

The first condition in (9) is not restrictive, and it is introduced so that the strains are
defined on the common domain \Omega instead of \Omega \varepsilon (\mu ). The second and third conditions
replace (3). The identity Curl\beta = 0 is intended in the sense of distributions with

(10) Curl\beta := (\partial 1\beta 12  - \partial 2\beta 11, \partial 1\beta 22  - \partial 2\beta 21) .

The integrand \beta \cdot t is intended in the sense of traces since \beta \in H(Curl,\Omega \varepsilon (\mu )) (see [4,
p. 204]), and t is the unit tangent vector to \partial B\varepsilon (xi), obtained by t := J\nu , where

(11) J :=

\biggl( 
0  - 1
1 0

\biggr) 
and \nu is the outer normal to B\varepsilon (x). Finally, F

skew := (F  - FT )/2. The last condition
in (9) is not restrictive and will guarantee the uniqueness of the minimizing strain.
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The linear elastic energy associated to an admissible pair (\mu , \beta ) with \mu \in \scrA \scrD \varepsilon (\Omega )
and \beta \in \scrA \scrS \varepsilon (\mu ) is defined by

(12) E\varepsilon (\mu , \beta ) :=

\int 
\Omega \varepsilon (\mu )

W (\beta ) dx =

\int 
\Omega 

W (\beta ) dx ,

where

W (F ) :=
1

2
\BbbC F : F

is the strain energy density and \BbbC is the elasticity tensor satisfying

(13) c - 1| F sym| 2 \leq W (F ) \leq c| F sym| 2 for every F \in \BbbM 2\times 2

for some given constant c > 0. We remark that (13) is equivalent to

(14)
1

2
\BbbC F : F =

1

2
\BbbC F sym : F sym

since the elasticity tensor satisfies the symmetry properties \BbbC ijkl = \BbbC klij = \BbbC ijlk =
\BbbC jikl (see [2]). Notice that for any fixed \mu \in \scrA \scrD \varepsilon (\Omega ) the energy E\varepsilon (\mu , \beta ) admits
a unique minimizer due to the last condition in (9). As already discussed in the
introduction, the relevant scaling for the asymptotic study of E\varepsilon is given by N\varepsilon | log \varepsilon | .
Therefore, we introduce the scaled energy functional defined on the space \scrM (\Omega ;\BbbR 2)\times 
L2(\Omega ;\BbbM 2\times 2) as

(15) \scrF \varepsilon (\mu , \beta ) :=

\left\{   
1

N\varepsilon | log \varepsilon | 
E\varepsilon (\mu , \beta ) if \mu \in \scrA \scrD \varepsilon (\Omega ) , \beta \in \scrA \scrS \varepsilon (\mu ) ,

+\infty otherwise.

3. Preliminaries. In the present section we recall some results and notation
from [9], which will be needed in the \Gamma -convergence analysis.

3.1. Cell formula for the self-energy. In this section we rigorously define
the density function \varphi : \BbbR 2 \rightarrow [0,+\infty ) appearing in the \Gamma -limit \scrF introduced in (5).
Following [9, section 4], for every \xi \in \BbbR 2 and 0 < r1 < r2, we define the space

\scrA \scrS r1,r2(\xi ) :=

\Biggl\{ 
\beta \in L2(Br2 \setminus Br1 ;\BbbM 2\times 2) : Curl\beta = 0,

\int 
\partial Br1

\beta \cdot t ds = \xi 

\Biggr\} 
,

where Br is the ball of radius r centered at the origin. Let C\varepsilon := B1 \setminus B\varepsilon with
0 < \varepsilon < 1, and introduce \psi \varepsilon : \BbbR 2 \rightarrow \BbbR through the cell problem

(16) \psi \varepsilon (\xi ) :=
1

| log \varepsilon | 
min

\biggl\{ \int 
C\varepsilon 

W (\beta ) dx : \beta \in \scrA \scrS \varepsilon ,1(\xi )

\biggr\} 
.

The existence of the minimum in (16) is a consequence of the classical Korn inequality
and of (14). The following result holds (see [9, Corollary 6]).

Proposition 3.1. Let \varepsilon > 0 and \psi \varepsilon defined as in (16). Then for every \xi \in \BbbR 2

we have
lim
\varepsilon \rightarrow 0

\psi \varepsilon (\xi ) = \psi (\xi ) ,

where \psi : \BbbR 2 \rightarrow [0,\infty ) is defined by

(17) \psi (\xi ) := lim
\varepsilon \rightarrow 0

1

| log \varepsilon | 

\int 
C\varepsilon 

W (\beta 0(\xi )) dx
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and \beta 0(\xi ) : \BbbR 2 \rightarrow \BbbM 2\times 2 is a distributional solution to\Biggl\{ 
Div\BbbC \beta 0(\xi ) = 0 in \BbbR 2,

Curl\beta 0(\xi ) = \xi \delta 0 in \BbbR 2.

Moreover, there exists a constant c > 0 such that for every \xi \in \BbbR 2

(18) c - 1| \xi | 2 \leq \psi (\xi ) \leq c| \xi | 2 .

We now want to formalize that the self-energy \psi (\xi ) is indeed concentrated in
the hard-core region B\rho \varepsilon 

\setminus B\varepsilon of the dislocation \xi \delta 0. To this end, define the maps
\=\psi \varepsilon , \~\psi \varepsilon : \BbbR 2 \rightarrow \BbbR 

\=\psi \varepsilon (\xi ) :=
1

| log \varepsilon | 
min

\Biggl\{ \int 
B\rho \varepsilon \setminus B\varepsilon 

W (\beta ) dx : \beta \in \scrA \scrS \varepsilon ,\rho \varepsilon 
(\xi )

\Biggr\} 
(19)

\~\psi \varepsilon (\xi ) :=
1

| log \varepsilon | 
min

\Biggl\{ \int 
B\rho \varepsilon \setminus B\varepsilon 

W (\beta ) dx : \beta \in \scrA \scrS \varepsilon ,\rho \varepsilon 
(\xi ), \beta \cdot t = \^\beta \cdot t on \partial B\varepsilon \cup \partial B\rho \varepsilon 

\Biggr\} (20)

for \xi \in \BbbR 2, where \^\beta \in \scrA \scrS \varepsilon ,\rho \varepsilon 
(\xi ) in (20) is a given strain such that

(21) | \^\beta (x)| \leq K
| \xi | 
| x| 

for some positive constant K. By (13), it is immediate to see that problems (19)--(20)
are well-posed. The following result holds (see [9, Remark 7, Proposition 8]).

Proposition 3.2. We have \=\psi \varepsilon (\xi ) = \psi \varepsilon (\xi )(1 + o(\varepsilon )) and \~\psi \varepsilon (\xi ) = \psi \varepsilon (\xi )(1 + o(\varepsilon ))
with o(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0 uniformly with respect to \xi \in \BbbR 2. In particular

lim
\varepsilon \rightarrow 0

\=\psi \varepsilon (\xi ) = lim
\varepsilon \rightarrow 0

\~\psi \varepsilon (\xi ) = \psi (\xi )

pointwise, where \psi is the self-energy defined in (17).

Now, we can define the density \varphi : \BbbR 2 \rightarrow [0,+\infty ) as the relaxation of the self-
energy \psi ,

(22) \varphi (\xi ) := inf

\Biggl\{ 
N\sum 

k=1

\lambda k\psi (\xi k) :

N\sum 
k=1

\lambda k\xi k = \xi , N \in \BbbN , \lambda k \geq 0, \xi k \in \BbbS 

\Biggr\} 
.

The properties of \varphi are summarized in the following proposition.

Proposition 3.3. The function \varphi defined in (22) is convex and positively 1-
homogeneous. Moreover, there exists a constant c > 0 such that

c - 1| \xi | \leq \varphi (\xi ) \leq c| \xi | 

for every \xi \in \BbbR 2. In particular, the infimum in (22) is actually a minimum.

3.2. Korn-type inequality. Next we recall the generalized Korn inequality
proved in [9, Theorem 11].

Theorem 3.4. There exists a constant C > 0, depending only on \Omega , with the
following property: For every \beta \in L1(\Omega ;\BbbM 2\times 2) with Curl\beta \in \scrM (\Omega ;\BbbR 2) we have\int 

\Omega 

| \beta  - A| 2 dx \leq C

\biggl( \int 
\Omega 

| \beta sym| 2 dx+ | Curl\beta | (\Omega )2
\biggr) 
,

where A is the constant 2\times 2 antisymmetric matrix defined by A := 1
| \Omega | 
\int 
\Omega 
\beta skew dx.
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3.3. Remarks on the distributional Curl. Here we recall some facts on the
distributional Curl of admissible strains (see [9, Remark 1]). Let \mu \in \scrA \scrD \varepsilon (\Omega ), \mu =\sum M

i=1 \xi i \delta xi , and \beta \in \scrA \scrS \varepsilon (\mu ). Recalling (10), we can define the scalar distribution
curl\beta (i) as

(23) \langle curl\beta (i), \varphi \rangle =  - 
\int 
\Omega 

\beta (i) \cdot J\nabla \varphi dx for \varphi \in C\infty 
c (\Omega ) ,

where J is as in (11) and \beta (i) denotes the ith row of \beta . If \beta (i) \in L2(\Omega ;\BbbR 2), then
(23) implies that curl\beta (i) is well defined also for \varphi \in H1

0 (\Omega ) and acts continuously on
it, i.e., Curl\beta \in H - 1(\Omega ;\BbbR 2) for every \beta \in \scrA \scrS \varepsilon (\mu ), where H

 - 1(\Omega ;\BbbR 2) is the dual of
H1

0 (\Omega ;\BbbR 2). Notice that the circulation condition\int 
\partial B\varepsilon (xi)

\beta \cdot t ds = \xi i for every i = 1, . . . ,M

can be written as

\langle Curl\beta , \varphi \rangle =
\int 
\Omega 

\varphi d\mu 

for every \varphi \in C0(\Omega ) \cap H1
0 (\Omega ) such that \varphi \equiv ci in B\varepsilon (xi) for all xi \in supp\mu .

4. \Gamma -convergence analysis. In this section we will study, by means of \Gamma -
convergence, the behavior as \varepsilon \rightarrow 0 of the functionals \scrF \varepsilon : \scrM (\Omega ;\BbbR 2)\times L2(\Omega ;\BbbM 2\times 2) \rightarrow 
\BbbR defined in (15) in the energy regime N\varepsilon \gg | log \varepsilon | . In Theorem 4.2 we will prove
that the \Gamma -limit for the sequence \scrF \varepsilon is given by \scrF : (\scrM (\Omega ;\BbbR 2) \cap H - 1(\Omega ;\BbbR 2)) \times 
L2(\Omega ;\BbbM 2\times 2

sym)\times L2(\Omega ;\BbbM 2\times 2
skew) \rightarrow \BbbR defined as

(24) \scrF (\mu , S,A) :=

\left\{   
\int 
\Omega 

W (S) dx+

\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | if CurlA = \mu ,

+\infty otherwise ,

where \varphi is the energy density introduced in (22). Here \BbbM 2\times 2
sym and \BbbM 2\times 2

skew denote
the space of 2 \times 2 symmetric and antisymmetric matrices, respectively. In the next
definition we introduce the topology under which the \Gamma -convergence result holds.

Definition 4.1. We say that the family (also referred to as sequence in the fol-
lowing) (\mu \varepsilon , \beta \varepsilon ) \in \scrM (\Omega ;\BbbR 2) \times L2(\Omega ;\BbbM 2\times 2) is converging to a triplet (\mu , S,A) \in 
\scrM (\Omega ;\BbbR 2)\times L2(\Omega ;\BbbM 2\times 2

sym)\times L2(\Omega ;\BbbM 2\times 2
skew) if

\mu \varepsilon 

N\varepsilon 

\ast 
\rightharpoonup \mu in \scrM (\Omega ;\BbbR 2)(25)

\beta sym
\varepsilon \sqrt{} 

N\varepsilon | log \varepsilon | 
\rightharpoonup S and

\beta skew
\varepsilon 

N\varepsilon 
\rightharpoonup A weakly in L2(\Omega ;\BbbM 2\times 2) .(26)

Theorem 4.2. The following \Gamma -convergence result holds true.
(i) (Compactness) Let \varepsilon n \rightarrow 0, and assume that (\mu n, \beta n) \in \scrM (\Omega ;\BbbR 2) \times 

L2(\Omega ;\BbbM 2\times 2) is such that supn \scrF \varepsilon n(\mu n, \beta n) \leq E for some positive constant
E. Then there exists

(\mu , S,A) \in (\scrM (\Omega ;\BbbR 2) \cap H - 1(\Omega ;\BbbR 2))\times L2(\Omega ;\BbbM 2\times 2
sym)\times L2(\Omega ;\BbbM 2\times 2

skew)

with CurlA = \mu such that up to subsequences (not relabeled), (\mu n, \beta n) con-
verges to (\mu , S,A) in the sense of Definition 4.1.
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(ii) (\Gamma -convergence) As \varepsilon \rightarrow 0, the functionals \scrF \varepsilon defined in (15) \Gamma -converge with
respect to the convergence of Definition 4.1 to the functional \scrF defined in
(24).

Remark 4.3. Since A is antisymmetric, there exist u \in L2(\Omega ) such that

(27) A =

\biggl( 
0 u
 - u 0

\biggr) 
.

Notice that CurlA = Du. Therefore, CurlA \in \scrM (\Omega ;\BbbR 2) implies that u \in BV (\Omega )
and curl \mu = 0. In particular, curl CurlA = 0. We also notice that, since the
gradient of any vector-field is curl-free, it follows that any symmetric strain \scrE satisfies
curl Curl \scrE = 0, giving back the well-known Saint-Venant compatibility condition in
defect-free linearized elasticity.

4.1. Compactness and \Gamma -liminf inequality. In this section we prove the com-
pactness and \Gamma -liminf statements in Theorem 4.2. The proofs are similar to those in
[9, Theorem 12]; therefore, we will only recall the main strategy and highlight the dif-
ferences, which are due to the fact that in our setting \beta sym

n and \beta skew
n live on different

scales.

Proof of compactness. Let (\mu n, \beta n) \in \scrM (\Omega ;\BbbR 2)\times L2(\Omega ;\BbbM 2\times 2) be such that

(28) sup
n

\scrF \varepsilon n(\mu n, \beta n) \leq C .

Then \mu n :=
\sum Mn

i=1 \xi n,i\delta xn,i
\in \scrA \scrD \varepsilon n(\Omega ). First we show that, for sufficiently large n,

(29)
1

N\varepsilon n

| \mu n| (\Omega ) =
1

N\varepsilon n

Mn\sum 
i=1

| \xi n,i| \leq C

for some constant C > 0. Since the function y \mapsto \rightarrow \beta n(xn,i+y) belongs to\scrA \scrS \varepsilon n,\rho \varepsilon n
(\xi n,i),

by (28) and a change of variable we obtain

C \geq \scrF \varepsilon n(\mu n, \beta n)\geq 
1

N\varepsilon n | log \varepsilon n| 

Mn\sum 
i=1

\int 
B\rho \varepsilon n

(xn,i)\setminus B\varepsilon n (xn,i)

W (\beta n) dx\geq 
1

N\varepsilon n

Mn\sum 
i=1

\=\psi \varepsilon n(\xi n,i) ,

where \=\psi \varepsilon is defined in (19). Let \psi be the self-energy in (17), and set c := 1
2 min| \xi | =1 \psi (\xi ).

Notice that c > 0 by (18). By Proposition 3.2, \=\psi \varepsilon \rightarrow \psi pointwise as \varepsilon \rightarrow 0; therefore,
for sufficiently large n, we have \=\psi \varepsilon n(\xi ) \geq c for every \xi \in \BbbR 2 with | \xi | = 1. Hence,

1

N\varepsilon n

Mn\sum 
i=1

\=\psi \varepsilon n(\xi n,i) =
1

N\varepsilon n

Mn\sum 
i=1

| \xi n,i| 2 \=\psi \varepsilon n

\biggl( 
\xi n,i
| \xi n,i| 

\biggr) 
\geq c

N\varepsilon n

Mn\sum 
i=1

| \xi n,i| 2 \geq c

N\varepsilon n

Mn\sum 
i=1

| \xi n,i| 

since the vectors \xi n,i are bounded away from zero. By combining the above estimates,
we obtain (29) and (25).

Compactness for \beta sym
n /

\sqrt{} 
N\varepsilon n | log \varepsilon n| in L2(\Omega ;\BbbM 2\times 2) readily follows from (28),

(12), and (13) since

(30) CN\varepsilon n | log \varepsilon n| \geq CE\varepsilon n(\mu n, \beta n) \geq C

\int 
\Omega 

| \beta sym
n | 2 dx .

We will now prove compactness for \beta skew
n /N\varepsilon n in L2(\Omega ;\BbbM 2\times 2). Since the bounds

(29)--(30) hold, the idea is to apply the generalized Korn inequality of Theorem 3.4
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to obtain a uniform upper bound for \beta skew
n /N\varepsilon n in L2(\Omega ;\BbbM 2\times 2). In principle, in

order to do that, we need to control | Curl\beta n| (\Omega ) in terms of | \mu n| (\Omega ). However,
instead of controlling | Curl\beta n| (\Omega ), following [9], it is possible to make use of the
circulation condition for \beta n and of the classical Korn inequality to define new strains
\~\beta n : \Omega \rightarrow \BbbM 2\times 2 such that

\~\beta n = \beta n in \Omega \varepsilon n(\mu n)(31) \int 
\Omega 

| \~\beta sym
n | 2 dx \leq C

\int 
\Omega 

| \beta sym
n | 2 dx(32)

| Curl \~\beta n| (\Omega ) = | \mu n| (\Omega ) .(33)

Now we apply the generalized Korn inequality of Theorem 3.4 to \~\beta n and obtain\int 
\Omega 

| \~\beta n - \~An| 2 dx \leq C

\biggl( \int 
\Omega 

| \~\beta sym
n | 2 dx+ (| \mu n| (\Omega ))2

\biggr) 
\leq C

\bigl( 
N\varepsilon n | log \varepsilon n| +N2

\varepsilon n

\bigr) 
\leq CN2

\varepsilon n ,

where \~An := 1
| \Omega | 
\int 
\Omega 
\~\beta skew
n \in \BbbM 2\times 2

skew and the last two inequalities follow from (32), (30),

(29), and (8). Now recall that by hypothesis the average of \beta n is a symmetric matrix
and \beta n \equiv 0 in \Omega \setminus \Omega \varepsilon n(\mu n). Therefore, by also recalling (31), we have\int 

\Omega \varepsilon n (\mu n)

| \beta n| 2 dx \leq 
\int 
\Omega \varepsilon n (\mu n)

| \beta n  - \~An| 2 dx \leq 
\int 
\Omega 

| \~\beta n  - \~An| 2 dx \leq CN2
\varepsilon n .

The above estimate yields the desired compactness property for \beta skew
n /N\varepsilon n in

L2(\Omega ;\BbbM 2\times 2) since (30) also holds.
Finally, we show that CurlA = \mu . Let \varphi \in C1

0 (\Omega ) and \varphi n \in H1
0 (\Omega ) be a sequence

converging to \varphi uniformly and strongly in H1
0 (\Omega ) and such that \varphi n \equiv \varphi (xn,i) in

B\varepsilon n(xn,i) for every xn,i in supp\mu n. By the remarks in section 3.3, we then have

1

N\varepsilon n

\int 
\Omega 

\varphi n d\mu n =
1

N\varepsilon n

\langle Curl\beta n, \varphi n\rangle =
1

N\varepsilon n

\int 
\Omega 

\beta nJ\nabla \varphi n dx .

Hence, by invoking (8), (25), and (26), we can pass to the limit in the above identity
to obtain CurlA = \mu . Moreover, since A \in L2(\Omega ;\BbbM 2\times 2), by definition \mu = CurlA \in 
H - 1(\Omega ;\BbbR 2).

Proof of \Gamma -liminf inequality. Let \mu \varepsilon \in \scrA \scrD \varepsilon (\Omega ), \beta \varepsilon \in \scrA \scrS \varepsilon (\mu \varepsilon ), and (\mu , S,A) be
as in the hypothesis of Theorem 4.2. We have to show that

(34) lim inf
\varepsilon \rightarrow 0

\scrF \varepsilon (\mu \varepsilon , \beta \varepsilon ) \geq \scrF (\mu , S,A) .

To show (34), we follow [9] and decompose the energy in

1

N\varepsilon | log \varepsilon | 

\int 
\Omega 

W (\beta \varepsilon ) dx =
1

N\varepsilon | log \varepsilon | 

\int 
\Omega \rho \varepsilon (\mu \varepsilon )

W (\beta \varepsilon ) dx+
1

N\varepsilon | log \varepsilon | 

\int 
\Omega \setminus \Omega \rho \varepsilon (\mu \varepsilon )

W (\beta \varepsilon ) dx .

We then study the two contributions separately. Recall that \mu \varepsilon =
\sum M\varepsilon 

i=1 \xi \varepsilon ,i\delta x\varepsilon ,i
. By

hypothesis \mu \varepsilon /N\varepsilon 
\ast 
\rightharpoonup \mu . Hence, | \mu \varepsilon | (\Omega )/N\varepsilon is uniformly bounded, and M\varepsilon \leq CN\varepsilon 

for some uniform constant C > 0. Moreover, N\varepsilon \rho 
2
\varepsilon \rightarrow 0 by hypothesis; therefore,

\chi \Omega \rho \varepsilon 
\rightarrow 1 strongly in L1(\Omega ). By hypothesis \beta sym

\varepsilon /
\sqrt{} 
N\varepsilon | log \varepsilon | \rightharpoonup S. Hence, also



LINEARIZED POLYCRYSTALS 3967

\beta sym
\varepsilon 

\chi \Omega \rho \varepsilon 
/
\sqrt{} 
N\varepsilon | log \varepsilon | \rightharpoonup S. By invoking (14) and the weak lower semicontinuity of

the energy, we get

(35) lim inf
\varepsilon \rightarrow 0

1

N\varepsilon | log \varepsilon | 

\int 
\Omega \rho \varepsilon (\mu \varepsilon )

W (\beta \varepsilon ) dx \geq 
\int 
\Omega 

W (S) dx .

Let us consider the second integral in the energy decomposition. By Proposition 3.2,

(36)
1

| log \varepsilon | 

\int 
\Omega \setminus \Omega \rho \varepsilon (\mu \varepsilon )

W (\beta \varepsilon ) dx \geq 
M\varepsilon \sum 
i=1

\=\psi \varepsilon (\xi \varepsilon ,i) = (1 + o(\varepsilon ))

M\varepsilon \sum 
i=1

\psi (\xi \varepsilon ,i) ,

where o(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0. By the properties of \varphi (Proposition 3.3), Reshetnyak's

lower semicontinuity theorem ([1, Theorem 2.38]), and the assumption \mu \varepsilon /N\varepsilon 
\ast 
\rightharpoonup \mu ,

we obtain

(37) lim inf
\varepsilon \rightarrow 0

1

N\varepsilon 

M\varepsilon \sum 
i=1

\psi (\xi \varepsilon ,i) \geq lim inf
\varepsilon \rightarrow 0

1

N\varepsilon 

M\varepsilon \sum 
i=1

\varphi (\xi \varepsilon ,i) \geq 
\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | .

From (35), (36), and (37) and from the energy decomposition, we infer (34).

4.2. \Gamma -limsup inequality. In this section we prove the \Gamma -limsup inequality of
Theorem 4.2. Even though the strategy of the proof is similar [9, Theorem 12], in
our case we need finer estimates due to the fact that S and A live on different scales.
Before proceeding with the proof, we need the following technical lemma to construct
the recovery sequence for the measure \mu . Let us first introduce some notation. For
a sequence of atomic vector valued measures of the form \nu \varepsilon :=

\sum M\varepsilon 

i=1 \alpha \varepsilon ,i\delta x\varepsilon ,i
and a

sequence r\varepsilon \rightarrow 0, we define the corresponding diffused measures

(38) \~\nu r\varepsilon \varepsilon :=
1

\pi r2\varepsilon 

M\varepsilon \sum 
i=1

\alpha \varepsilon ,i \scrH 2 Br\varepsilon (x\varepsilon ,i) , \^\nu r\varepsilon \varepsilon :=
1

2\pi r\varepsilon 

M\varepsilon \sum 
i=1

\alpha \varepsilon ,i \scrH 1 \partial Br\varepsilon (x\varepsilon ,i) .

For x\varepsilon ,i \in supp \nu \varepsilon , define the functions \~K
\alpha \varepsilon ,i

\varepsilon ,i , \^K
\alpha \varepsilon ,i

\varepsilon ,i : Br\varepsilon (x\varepsilon ,i) \rightarrow \BbbM 2\times 2 as

(39) \~K
\alpha \varepsilon ,i

\varepsilon ,i (x) :=
1

2\pi r2\varepsilon 
\alpha \varepsilon ,i \otimes J(x - x\varepsilon ,i) , \^K

\alpha \varepsilon ,i

\varepsilon ,i (x) :=
1

2\pi 
\alpha \varepsilon ,i \otimes J

x - x\varepsilon ,i
| x - x\varepsilon ,i| 2

,

where J is the counterclockwise rotation of \pi /2. Finally, define \~K\nu \varepsilon 
\varepsilon , \^K\nu \varepsilon 

\varepsilon : \Omega \rightarrow \BbbM 2\times 2

as

(40) \~K\nu \varepsilon 
\varepsilon :=

M\varepsilon \sum 
i=1

\~K
\alpha \varepsilon ,i

\varepsilon ,i
\chi 
Br\varepsilon (x\varepsilon ,i) ,

\^K\nu \varepsilon 
\varepsilon :=

M\varepsilon \sum 
i=1

\^K
\alpha \varepsilon ,i

\varepsilon ,i
\chi 
Br\varepsilon (x\varepsilon ,i) .

It is easy to show that

(41) Curl \~K\nu \varepsilon 
\varepsilon = \~\nu r\varepsilon \varepsilon  - \^\nu r\varepsilon \varepsilon , Curl \^K\nu \varepsilon 

\varepsilon = \nu \varepsilon  - \^\nu r\varepsilon \varepsilon .

The following easy lemma will be used in some density argument in the construc-
tion of the recovery sequence.

Lemma 4.4. Let n \in \BbbN , and set
(42)

Sn :=

\Biggl\{ 
\xi :=

M\sum 
k=1

\lambda k\xi k with M \in \BbbN , \xi k \in \BbbS , \lambda k > 0 such that zj :=
n2\lambda j\sum 
\lambda k

\in \BbbN for all j

\Biggr\} 
.

The union of such sets is dense in \BbbR 2.
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\Omega 

2r\varepsilon 
r\varepsilon 

Fig. 4. Approximating \mu = \xi dx with the 2r\varepsilon -periodic atomic measure \eta \varepsilon . The red dots represent
Dirac masses \xi \delta x\varepsilon ,i in the support of \eta \varepsilon .

Lemma 4.5. Let conditions (i), (ii), and (8) of section 2 hold true. Then we have
the following:

(A) Let n \in \BbbN , \xi \in Sn defined as in (42), and let \mu := \xi dx. Set \Lambda :=
\sum M

k=1 \lambda k,

r\varepsilon := 1
2
\surd 
\Lambda N\varepsilon 

. Then there exists a sequence \eta \varepsilon =
\sum M

k=1 \xi k\eta 
k
\varepsilon with \eta k\varepsilon =\sum Mk

\varepsilon 

l=1 \delta x\varepsilon ,l
such that \eta \varepsilon \in \scrA \scrD \varepsilon (\Omega ) and

| \eta k\varepsilon | 
N\varepsilon 

\ast 
\rightharpoonup \lambda k dx in \scrM (\Omega ;\BbbR ) ,

\eta \varepsilon 
N\varepsilon 

\ast 
\rightharpoonup \mu in \scrM (\Omega ;\BbbR 2)(43) \bigm\| \bigm\| \bigm\| \bigm\| \~\eta r\varepsilon \varepsilon N\varepsilon 

 - \mu 

\bigm\| \bigm\| \bigm\| \bigm\| 
H - 1(\Omega ;\BbbR 2)

\leq nC\surd 
N\varepsilon 

(44)

for some constant C independent of n, where the measure \~\eta r\varepsilon \varepsilon is defined ac-
cording to (38).

(B) Let \mu , r\varepsilon as in (A), let g \in C0(\Omega ;\BbbR 2), and set \sigma := g(x) dx. Then there
exists a sequence \eta \varepsilon satisfying all the properties in (A) and a sequence \sigma \varepsilon =\sum H\varepsilon 

l=1 \zeta \varepsilon ,l\delta y\varepsilon ,l
with \zeta \varepsilon ,l \in \BbbS such that supp(\sigma \varepsilon ) \cap supp(\eta \varepsilon ) = \emptyset , \eta \varepsilon + \sigma \varepsilon \in 

\scrA \scrD \varepsilon (\Omega ), and

\sigma \varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

\ast 
\rightharpoonup \sigma in \scrM (\Omega ;\BbbR 2) ,

\~\sigma \varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

\rightarrow \sigma in H - 1(\Omega ;\BbbR 2),

(45)

where the measures \~\sigma r\varepsilon 
\varepsilon are defined according to (38).

In particular there exists a constant C > 0 such that

(46) H\varepsilon \leq C
\sqrt{} 
N\varepsilon | log \varepsilon | , M\varepsilon \leq CN\varepsilon ,

where M\varepsilon :=
\sum M

k=1M
k
\varepsilon .

Proof.
Step 1. Proof of (A), the case M = 1, and \mu = \xi dx with \xi \in \BbbS . We cover \BbbR 2

with squares of side length 2r\varepsilon . Divide each of them in four squares of side length
r\varepsilon , and plug a mass \xi \delta x\varepsilon ,i at the center of one of such r\varepsilon -squares, obtaining in this
way a measure \nu \varepsilon on \BbbR 2, which is 2r\varepsilon periodic. We notice that we leave some free
space just in order to accomplish also point (B). Then we define \eta \varepsilon as the restriction
of \nu \varepsilon on all the 2r\varepsilon -squares contained in \Omega (see Figure 4). Notice that \eta \varepsilon \in \scrA \scrD \varepsilon (\Omega )
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since r\varepsilon \gg 2\rho \varepsilon by condition (ii) in section 2. Also, the density of 1
N\varepsilon 

\~\eta r\varepsilon \varepsilon  - \mu has zero

average on each 2r\varepsilon -square so that it converges to zero weakly in L2(\Omega ;\BbbR 2) and (43)
is verified.

Let v\varepsilon : \BbbR 2 \rightarrow \BbbR 2 be the 2r\varepsilon -periodic solution to \Delta v\varepsilon =
1
N\varepsilon 

\~\nu r\varepsilon \varepsilon  - \mu . By construc-
tion it is easy to see that
(47)\bigm\| \bigm\| \bigm\| \bigm\| 1

N\varepsilon 
\~\nu r\varepsilon \varepsilon  - \mu 

\bigm\| \bigm\| \bigm\| \bigm\| 
H - 1(\Omega )

\leq \| v\varepsilon \| H1(\Omega ;\BbbR 2) \leq Cr\varepsilon ,

\bigm\| \bigm\| \bigm\| \bigm\| 1

N\varepsilon 
\~\eta r\varepsilon \varepsilon  - 1

N\varepsilon 
\~\nu r\varepsilon \varepsilon 

\bigm\| \bigm\| \bigm\| \bigm\| 
H - 1(\Omega ;\BbbR 2)

\leq Cr\varepsilon .

These last estimates clearly imply (44).
Step 2. Proof of (A), the general case \xi \in Sn. Cover \BbbR 2 with squares of side

length 2nr\varepsilon , and divide each of them in four squares of side length nr\varepsilon . As in Step
1, pick one of these nr\varepsilon -squares in all 2nr\varepsilon -squares in a periodic manner. Finally,
divide each of these selected nr\varepsilon -squares in n2 squares of side length r\varepsilon . Now, plug
at the centers of each of these n2 squares a mass \xi k \delta x\varepsilon ,i

with 1 \leq k \leq M in such
a way that the resulting measure \nu \varepsilon is 2nr\varepsilon -periodic and on each 2nr\varepsilon -square there
are exactly zk masses with weight \xi k, where zk is defined in (42). Then, defining \eta \varepsilon 
as the restriction of \nu \varepsilon on the union of all 2nr\varepsilon -squares contained in \Omega and arguing
as in the proof of Step 1, we have that (43) holds true, while (47) holds true with C
replaced by nC so that (44) follows.

Step 3. Proof of (B). We have at disposal CN\varepsilon squares of side length nr\varepsilon , left
free from the constructions in Step 2. Clearly, we can plug masses with weights in \BbbS at
the center of c

\sqrt{} 
N\varepsilon | log \varepsilon | of such free squares in such a way that (45) holds true.

We are now ready to prove the \Gamma -limsup inequality of Theorem 4.2.

Proof of \Gamma -limsup inequality of Theorem 4.2. Let

(\mu , S,A) \in (\scrM (\Omega ;\BbbR 2) \cap H - 1(\Omega ;\BbbR 2))\times L2(\Omega ;\BbbM 2\times 2
sym)\times L2(\Omega ;\BbbM 2\times 2

skew)

with CurlA = \mu . We will construct a recovery sequence in three steps.
Step 1. The case \mu = \xi dx with S \in C1(\Omega ;\BbbM 2\times 2

sym). In this step we assume

that \mu := \xi dx, A \in L2(\Omega ;\BbbM 2\times 2
skew) with CurlA = \mu and S \in C1(\Omega ;\BbbM 2\times 2

sym). We
will construct a recovery sequence \mu \varepsilon \in \scrA \scrD \varepsilon (\Omega ), \beta \varepsilon \in \scrA \scrS \varepsilon (\mu \varepsilon ) such that (\mu \varepsilon , \beta \varepsilon )
converges to (\mu , S,A) in the sense of Definition 4.1 and

(48) lim sup
\varepsilon \rightarrow 0

1

N\varepsilon | log \varepsilon | 

\int 
\Omega 

W (\beta \varepsilon ) dx \leq 
\int 
\Omega 

(W (S) + \varphi (\xi )) dx .

By Proposition 3.3, there exist \lambda k \geq 0, \xi k \in \BbbS , M \in \BbbN such that \xi =
\sum M

k=1 \lambda k\xi k
and

(49) \varphi (\xi ) =

M\sum 
k=1

\lambda k\psi (\xi k) ,

where \varphi is the self-energy defined in (22). By standard density arguments in \Gamma -
convergence, we will assume without loss of generality that \xi \in Sn is as in (42) for
some n \in \BbbN .

Set \sigma := CurlS. Since S \in C1(\Omega ;\BbbM 2\times 2
sym), \sigma = g(x) dx for some continuous

function g : \Omega \rightarrow \BbbR 2. Let \eta \varepsilon :=
\sum M\varepsilon 

i=1 \xi \varepsilon ,i\delta x\varepsilon ,i
, \sigma \varepsilon :=

\sum H\varepsilon 

i=1 \zeta \varepsilon ,i\delta y\varepsilon ,i
and r\varepsilon := C/

\surd 
N\varepsilon 

be the sequences given by Lemma 4.5 (B). Set \mu \varepsilon := \eta \varepsilon + \sigma \varepsilon . By (43), (45), and the
hypothesis N\varepsilon \gg | log \varepsilon | , \mu \varepsilon is a recovery sequence for \mu .
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Let \~\eta r\varepsilon \varepsilon , \^\eta 
r\varepsilon 
\varepsilon , \~\sigma 

r\varepsilon 
\varepsilon , \^\sigma 

r\varepsilon 
\varepsilon be defined according to (38). Notice that \^K

\xi \varepsilon ,i
\varepsilon ,i \in \scrA \scrS \varepsilon ,\rho \varepsilon 

(\xi \varepsilon ,i)

and it satisfies (21). Therefore, by Proposition 3.2, there exist strains \^A\varepsilon ,i such that

(i) \^A\varepsilon ,i \in \scrA \scrS \varepsilon ,\rho \varepsilon 
(\xi \varepsilon ,i),

(ii) \^A\varepsilon ,i \cdot t = \^K
\xi \varepsilon ,i
\varepsilon ,i \cdot t on \partial B\varepsilon (x\varepsilon ,i) \cup \partial B\rho \varepsilon (x\varepsilon ,i),

and

(50)
1

| log \varepsilon | 

\int 
B\rho \varepsilon (x\varepsilon ,i)\setminus B\varepsilon (x\varepsilon ,i)

W ( \^A\varepsilon ,i) dx = \psi (\xi \varepsilon ,i)(1 + o(\varepsilon )).

Now extend \^A\varepsilon ,i to be \^K
\xi \varepsilon ,i
\varepsilon ,i in Br\varepsilon (x\varepsilon ,i)\setminus B\rho \varepsilon 

(x\varepsilon ,i) and zero in \Omega \setminus (Br\varepsilon (x\varepsilon ,i)\setminus B\varepsilon (x\varepsilon ,i)).
Set

(51) \^S\varepsilon :=

H\varepsilon \sum 
l=1

\^K\zeta \varepsilon ,i
\varepsilon 

\chi 
Br\varepsilon (y\varepsilon ,i)\setminus B\varepsilon (y\varepsilon ,i) ,

\^A\varepsilon :=

M\varepsilon \sum 
i=1

\^A\varepsilon ,i .

Hence, recalling definition (38) we have

(52) Curl \^S\varepsilon =  - \^\sigma r\varepsilon 
\varepsilon + \^\sigma \varepsilon 

\varepsilon , Curl \^A\varepsilon =  - \^\eta r\varepsilon \varepsilon + \^\eta \varepsilon \varepsilon .

Define Q\varepsilon := J \nabla u\varepsilon , R\varepsilon := J \nabla v\varepsilon , where u\varepsilon , v\varepsilon solve

(53)

\Biggl\{ 
\Delta u\varepsilon = \~\sigma r\varepsilon 

\varepsilon  - 
\sqrt{} 
N\varepsilon | log \varepsilon | \sigma in \Omega ,

u\varepsilon 

\partial \nu = Cu,\varepsilon on \partial \Omega ;

\Biggl\{ 
\Delta v\varepsilon = \~\eta r\varepsilon \varepsilon  - N\varepsilon \mu in \Omega 
v\varepsilon 
\partial \nu = Cv,\varepsilon on \partial \Omega ,

where the constants Cu,\varepsilon , Cv,\varepsilon satisfy the compatibility condition\int 
\partial \Omega 

Cu,\varepsilon ds =

\int 
\Omega 

\~\sigma r\varepsilon 
\varepsilon  - 

\sqrt{} 
N\varepsilon | log \varepsilon | dx,

\int 
\partial \Omega 

Cv,\varepsilon ds =

\int 
\Omega 

\~\eta r\varepsilon \varepsilon  - N\varepsilon \mu dx.

In this way,

(54) CurlQ\varepsilon = \~\sigma r\varepsilon 
\varepsilon  - 

\sqrt{} 
N\varepsilon | log \varepsilon | \sigma , CurlR\varepsilon = \~\eta r\varepsilon \varepsilon  - N\varepsilon \mu .

Notice that by construction 1\surd 
N\varepsilon | log \varepsilon | 

(| Cu,\varepsilon | + | Cv,\varepsilon | ) \rightarrow 0 as \varepsilon \rightarrow 0. Therefore, using

also (44), (45), and standard elliptic estimates, we have

(55)
Q\varepsilon \sqrt{} 

N\varepsilon | log \varepsilon | 
\rightarrow 0,

R\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

\rightarrow 0 in L2(\Omega ;\BbbM 2\times 2) .

Also notice that

(56)
Q\varepsilon +R\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

\cdot t\rightarrow 0 in H - 1/2(\partial \Omega ;\BbbR 2) \cap L1(\partial \Omega ;\BbbR 2) .

We can now define the candidate recovery sequence as

(57) \mu \varepsilon = \eta \varepsilon + \sigma \varepsilon , \beta \varepsilon := (S\varepsilon +A\varepsilon )\chi \Omega \varepsilon (\mu \varepsilon ) ,

where

S\varepsilon :=
\sqrt{} 
N\varepsilon | log \varepsilon | S + \^S\varepsilon  - \~K\sigma \varepsilon 

\varepsilon +Q\varepsilon (58)

A\varepsilon := N\varepsilon A+ \^A\varepsilon  - \~K\eta \varepsilon 
\varepsilon +R\varepsilon .(59)
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By definition and (41), (52), and (54), it is immediate to check that

CurlS\varepsilon = \^\sigma \varepsilon 
\varepsilon , CurlA\varepsilon = \^\eta \varepsilon \varepsilon in \Omega .

Recalling that \mu \varepsilon = \eta \varepsilon + \sigma \varepsilon , we deduce that

Curl\beta \varepsilon = \^\eta \varepsilon \varepsilon + \^\sigma \varepsilon 
\varepsilon = \^\mu \varepsilon 

\varepsilon in \Omega , Curl\beta \varepsilon \Omega \varepsilon (\mu \varepsilon ) = 0.

Moreover, the circulation condition
\int 
\partial B\varepsilon (x)

\beta \varepsilon \cdot t ds = \mu \varepsilon (x) is satisfied for every point

x \in supp\mu \varepsilon . Hence, \beta \varepsilon \in \scrA \scrS \varepsilon (\mu \varepsilon ).
In order for (\mu \varepsilon , \beta \varepsilon ) to be the desired recovery sequence, we need to prove that

\beta sym
\varepsilon \sqrt{} 

N\varepsilon | log \varepsilon | 
\rightharpoonup S weakly in L2(\Omega ;\BbbM 2\times 2)(60)

\beta skew
\varepsilon 

N\varepsilon 
\rightharpoonup A weakly in L2(\Omega ;\BbbM 2\times 2)(61)

lim
\varepsilon \rightarrow 0

1

N\varepsilon | log \varepsilon | 

\int 
\Omega 

W (\beta \varepsilon ) dx =

\int 
\Omega 

(W (S) + \varphi (\xi )) dx .(62)

In view of (55)--(59), in order to prove (60), (61) we have to show that

\^A\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

\rightharpoonup 0 in L2(\Omega ;\BbbM 2\times 2)(63)

\^S\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

,
\~K\sigma \varepsilon 
\varepsilon \sqrt{} 

N\varepsilon | log \varepsilon | 
,

\~K\eta \varepsilon 
\varepsilon \sqrt{} 

N\varepsilon | log \varepsilon | 
\rightarrow 0 in L2(\Omega ;\BbbM 2\times 2) .(64)

We have

(65)

\int 
\Omega \rho \varepsilon (\mu \varepsilon )

| \^A\varepsilon | 2

N\varepsilon | log \varepsilon | 
dx \leq C

N\varepsilon | log \varepsilon | 

M\varepsilon \sum 
i=1

\int 
Br\varepsilon (x\varepsilon ,i)\setminus B\rho \varepsilon (x\varepsilon ,i)

| x - x\varepsilon ,i|  - 2 dx

\leq C
M\varepsilon (log r\varepsilon  - log \rho \varepsilon )

N\varepsilon | log \varepsilon | 
\leq C

log r\varepsilon  - log \rho \varepsilon 
| log \varepsilon | 

\rightarrow 0

as \varepsilon \rightarrow 0, where the last inequality follows from (46). Moreover, by (65), (43), (50),
(49), and the definition of \mu k

\varepsilon given by Lemma 4.5, we have
(66)

lim
\varepsilon \rightarrow 0

1

N\varepsilon | log \varepsilon | 

\int 
\Omega 

W ( \^A\varepsilon ) dx = lim
\varepsilon \rightarrow 0

1

N\varepsilon 

M\varepsilon \sum 
i=1

\psi (\xi \varepsilon ,i)(1 + o(\varepsilon ))

= lim
\varepsilon \rightarrow 0

1

N\varepsilon 

M\sum 
k=1

| \eta k\varepsilon | (\Omega )\psi (\xi k)(1 + o(\varepsilon )) = | \Omega | 
M\sum 
k=1

\lambda k\psi (\xi k) =

\int 
\Omega 

\varphi (\xi ) dx .

From (13), (65), and (66), we conclude that \^A\varepsilon /
\sqrt{} 
N\varepsilon | log \varepsilon | is bounded in L2(\Omega ;\BbbM 2\times 2)

and its energy is concentrated in the hard-core region. We easily deduce that (63)
holds true.

We pass to the proof of (64). One can readily see that\int 
\Omega 

| \~K\sigma \varepsilon 
\varepsilon | 2

N\varepsilon | log \varepsilon | 
dx \leq C

N\varepsilon | log \varepsilon | 

M\varepsilon \sum 
i=1

1

r4\varepsilon 

\int 
Br\varepsilon (x\varepsilon ,i)

| x - x\varepsilon ,i| 2 dx = C
M\varepsilon 

N\varepsilon | log \varepsilon | 
\rightarrow 0
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as \varepsilon \rightarrow 0 by (46). The statement for \~K\eta \varepsilon 
\varepsilon can be proved in a similar way. Finally,

since H\varepsilon \ll N\varepsilon by (46) and (8), we have\int 
\Omega 

| \^S\varepsilon | 2

N\varepsilon | log \varepsilon | 
dx \leq C

H\varepsilon (log r\varepsilon  - log \varepsilon )

N\varepsilon | log \varepsilon | 
\rightarrow 0 ,

which concludes the proof of (64).
We are left to prove (62). By the symmetries of the elasticity tensor \BbbC (see (14))

and definition (57), we have

W (\beta \varepsilon )

N\varepsilon | log \varepsilon | 
=W

\Biggl( 
S +

\^S\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

 - 
\~K\sigma \varepsilon 
\varepsilon \sqrt{} 

N\varepsilon | log \varepsilon | 
+

Q\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

+
\^A\varepsilon \sqrt{} 

N\varepsilon | log \varepsilon | 
 - 

\~K\eta \varepsilon 
\varepsilon \sqrt{} 

N\varepsilon | log \varepsilon | 
+

R\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

\Biggr) 
.

From (64) and (55), we get

lim
\varepsilon \rightarrow 0

1

N\varepsilon | log \varepsilon | 

\int 
\Omega 

W (\beta \varepsilon ) dx = lim
\varepsilon \rightarrow 0

\int 
\Omega 

W

\Biggl( 
S +

\^A\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

\Biggr) 
dx .

By recalling (63), (66), and (63) and by the H\"older inequality we deduce (62).

Step 2. The case \mu =
\sum L

l=1
\chi \Omega l

\xi l dx and S \in C1(\Omega ;\BbbM 2\times 2
sym). In this step we assume

that S \in C1(\Omega ;\BbbM 2\times 2
sym) and A \in L2(\Omega ;\BbbM 2\times 2

skew) with \mu := CurlA locally constant, i.e.,

\mu =
\sum L

l=1
\chi \Omega l

\xi l dx with \xi l \in \BbbR 2 and with \Omega l \subset \Omega , which are Lipschitz pairwise
disjoint domains such that | \Omega \setminus \cup L

l=1\Omega l| = 0. We will construct the recovery sequence
by combining the previous step with classical localization arguments of \Gamma -convergence.

Let Sl := S \Omega l, Al := A \Omega l, \mu l := \mu \Omega l = \xi l dx. Denote by (\mu l,\varepsilon , \beta l,\varepsilon ) the
recovery sequence for (\mu l, Sl, Al) given by Step 1. We can now define \mu \varepsilon \in \scrM (\Omega ;\BbbR 2)
and \beta \varepsilon : \Omega \rightarrow \BbbM 2\times 2 as

\beta \varepsilon :=

L\sum 
l=1

\chi \Omega l
\beta l,\varepsilon , \mu \varepsilon :=

L\sum 
l=1

\mu l,\varepsilon .

By construction \mu \varepsilon \in \scrA \scrD \varepsilon (\Omega ), and \beta \varepsilon satisfies the circulation condition on every
\partial B\varepsilon (x\varepsilon ) with x\varepsilon \in supp\mu \varepsilon . Also notice that on each set \Omega l belonging to the partition
of \Omega , we have

Curl\beta \varepsilon \Omega l(\mu \varepsilon ) = 0 .

However Curl\beta \varepsilon could concentrate on the intersection region between two elements
of the partition \{ \Omega l\} Ll=1. To overcome this problem, it is sufficient to notice that by
construction\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Curl\beta \varepsilon \Omega \varepsilon (\mu \varepsilon )\sqrt{} 

N\varepsilon | log \varepsilon | 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
H - 1(\Omega ;\BbbR 2)

\leq 
L\sum 

l=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \beta l,\varepsilon  - 
\sqrt{} 
N\varepsilon | log \varepsilon | S  - N\varepsilon A\sqrt{} 
N\varepsilon | log \varepsilon | 

\cdot t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
H - 1/2(\partial \Omega l;\BbbR 2)

=

L\sum 
l=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Ql,\varepsilon +Rl,\varepsilon \sqrt{} 
N\varepsilon | log \varepsilon | 

\cdot t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
H - 1/2(\partial \Omega l;\BbbR 2)

,
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where Ql,\varepsilon , Rl,\varepsilon are defined according to (53) with \Omega replaced by \Omega l. Therefore, by
(56),

Curl\beta \varepsilon \Omega \varepsilon (\mu \varepsilon )\sqrt{} 
N\varepsilon | log \varepsilon | 

\rightarrow 0 strongly in H - 1(\Omega ;\BbbR 2) .

Hence, we can add a vanishing perturbation to \beta \varepsilon (on the scale
\sqrt{} 
N\varepsilon | log \varepsilon | ) in order

to obtain the desired recovery sequence in \scrA \scrS \varepsilon (\mu \varepsilon ).
Step 3. The general case. Let (\mu , S,A) be in the domain of the \Gamma -limit \scrF . In

view of Step 2 and by standard density arguments of \Gamma -convergence, it is sufficient to
find sequences (\mu n, Sn, An) such that \mu n is locally constant as in Step 2,

(67) Sn \in C1(\Omega ;\BbbM 2\times 2
sym) , An \in L2(\Omega ;\BbbM 2\times 2

skew) with CurlAn = \mu n,

and such that
(68)

Sn \rightarrow S, An \rightarrow A in L2(\Omega ;\BbbM 2\times 2) , \mu n
\ast 
\rightharpoonup \mu in \scrM (\Omega ;\BbbR 2) , | \mu n| (\Omega ) \rightarrow | \mu | (\Omega ),

where S and A are the symmetric and antisymmetric part of \beta , respectively. In fact,
we have to show that (68) implies

(69) lim
n\rightarrow \infty 

\scrF (\mu n, \beta n) = \scrF (\mu , S,A) .

Since Sn \rightarrow S strongly in L2(\Omega ;\BbbM 2\times 2),

lim
n\rightarrow \infty 

\int 
\Omega 

W (Sn) dx =

\int 
\Omega 

W (S) dx .

Also, | \mu n| (\Omega ) \rightarrow | \mu | (\Omega ) implies

lim
n\rightarrow \infty 

\int 
\Omega 

\varphi 

\biggl( 
d\mu n

d| \mu n| 

\biggr) 
d| \mu n| =

\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | 

by Reshetnyak's Theorem ([1, Theorem 2.39]) so that (69) is proved.
Let us then proceed to the construction of the sequences Sn, An, and \mu n satisfying

properties (67)--(68). Clearly, we can approximate S in L2(\Omega ;\BbbM 2\times 2
sym) with a sequence

Sn \in C1(\Omega ;\BbbM 2\times 2
sym). Then, by Remark (4.3), writing A as in (27) we have that u is in

BV (\Omega )\cap L2(\Omega ). Therefore, by standard density results in BV we can find a sequence
of piecewise affine functions un with

un \rightarrow u in L2(\Omega ), Dun
\ast 
\rightharpoonup Du = \mu , | Dun| (\Omega ) \rightarrow | Du| (\Omega ) = | \mu | (\Omega ).

Setting \mu n := Dun and An, as in (27) with u replaced by un, it is readily seen that \mu n

is piecewise constant and that (67) and (68) hold true, and this concludes the proof
of the \Gamma -limsup inequality.

Remark 4.6. Recalling (56) and inspecting the density arguments in Step 3 above,
we notice that we can provide a recovery sequence \beta \varepsilon for the limit strain \beta = S + A
such that

(70)
\beta \varepsilon 
N\varepsilon 

\cdot t\rightarrow A \cdot t in H - 1/2(\partial \Omega ;\BbbR 2) \cap L1(\partial \Omega ;\BbbR 2).
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5. Relaxed Dirichlet-type boundary conditions. The aim of this section is
to add a Dirichlet-type boundary condition to the \Gamma -convergence statement of Theo-
rem 4.2. Fix a boundary condition

(71) gA \in L2(\Omega ;\BbbM 2\times 2
skew) : Curl gA \in H - 1(\Omega ;\BbbR 2) \cap \scrM (\Omega ;\BbbR 2).

The rescaled energy functionals \scrF gA
\varepsilon : \scrM (\Omega ;\BbbR 2)\times L2(\Omega ;\BbbM 2\times 2) \rightarrow \BbbR , taking into

account the boundary conditions, are defined by

(72) \scrF gA
\varepsilon (\mu , \beta ) :=

1

N\varepsilon | log \varepsilon | 
E\varepsilon (\mu , \beta ) +

\int 
\partial \Omega 

\varphi 
\Bigl( \Bigl( 
gA  - \beta 

N\varepsilon 

\Bigr) 
\cdot t
\Bigr) 
ds

if \mu \in \scrA \scrD \varepsilon (\Omega ) , \beta \in \scrA \scrS \varepsilon (\mu ), and +\infty otherwise, while the candidate \Gamma -limit is the
functional

(73) \scrF gA : (H - 1(\Omega ;\BbbR 2) \cap \scrM (\Omega ;\BbbR 2))\times L2(\Omega ;\BbbM 2\times 2
sym)\times L2(\Omega ;\BbbM 2\times 2

skew) \rightarrow \BbbR 

with

(74) \scrF gA(\mu , S,A) :=

\int 
\Omega 

W (S) dx+

\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | +

\int 
\partial \Omega 

\varphi ((gA  - A) \cdot t) ds

if CurlA = \mu and \scrF gA(\mu , S,A) := \infty otherwise. Here ds coincides with \scrH 1 \partial \Omega ,
while t is the unit tangent to \partial \Omega defined as the \pi /2 counterclockwise rotation of the
outer normal \nu to \Omega . The boundary terms appearing in the definition of \scrF gA

\varepsilon and
\scrF gA are intended in the sense of traces of BV functions (see [1]). Indeed, since A and
gA are antisymmetric, there exist u, a \in L2(\Omega ) such that

A =

\biggl( 
0 u
 - u 0

\biggr) 
, gA =

\biggl( 
0 a
 - a 0

\biggr) 
.

Notice that CurlA = Du and Curl gA = Da in the sense of distributions. Therefore,
as already observed in Remark 4.3, conditions CurlA,Curl gA \in \scrM (\Omega ;\BbbR 2) imply that
a, u \in BV (\Omega ). Hence, a and u admit traces on \partial \Omega that belong to L1(\partial \Omega ;\BbbR 2). By
noting that \int 

\partial \Omega 

\varphi ((gA  - A) \cdot t) ds =
\int 
\partial \Omega 

\varphi ((u - a)\nu ) ds ,

where \nu is the inner normal to \Omega , we conclude that the definition of \scrF gA is well-posed,
as is the definition of \scrF gA

\varepsilon .
We are now ready to state the \Gamma -convergence result with boundary conditions.

Theorem 5.1. The following \Gamma -convergence statement holds with respect to the
convergence of Definition 4.1.

(i) (Compactness) Let \varepsilon n \rightarrow 0, and assume that (\mu n, \beta n) \in \scrM (\Omega ;\BbbR 2) \times 
L2(\Omega ;\BbbM 2\times 2) is such that supn \scrF gA

\varepsilon n (\mu n, \beta n) \leq C for some C > 0. Then
there exists

(\mu , S,A) \in (H - 1(\Omega ;\BbbR 2) \cap \scrM (\Omega ;\BbbR 2))\times L2(\Omega ;\BbbM 2\times 2
sym)\times L2(\Omega ;\BbbM 2\times 2

skew)

with CurlA = \mu such that up to subsequences (not relabeled), (\mu n, \beta n) con-
verges to (\mu , S,A) in the sense of Definition 4.1.

(ii) (\Gamma -convergence) As \varepsilon \rightarrow 0 the energy functionals \scrF gA
\varepsilon defined in (72) \Gamma -

converge with respect to the convergence of Definition 4.1 to \scrF gA defined in
(74).
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The compactness statement readily follows from the compactness of Theorem 4.2
since \scrF gA

\varepsilon (\mu , \beta ) \geq \scrF \varepsilon (\mu , \beta ). Let us proceed with the proof of the \Gamma -convergence result.

Proof of \Gamma -lim sup inequality of Theorem 5.1. Let (\mu , S,A) be given in the do-
main of the \Gamma -limit \scrF gA . We will construct a recovery sequence in two steps, relying
on Theorem 4.2.

Step 1. Approximation of the boundary values. For \delta > 0 fixed, set \omega \delta := \{ x \in 
\Omega : dist(x, \partial \Omega ) > \delta \} so that \omega \delta \subset \subset \Omega , and assume without loss of generality that w\delta 

is Lipschitz. Define S\delta \in L2(\Omega ;\BbbM 2\times 2
sym) and A\delta \in L2(\Omega ;\BbbM 2\times 2

skew) as

A\delta :=

\Biggl\{ 
A in \omega \delta ,

gA in \Omega \setminus \omega \delta ,
S\delta :=

\Biggl\{ 
S in \omega \delta ,

0 in \Omega \setminus \omega \delta .

Further, let \mu \delta \in \scrM (\Omega ;\BbbR 2) be such that

\mu \delta := \mu \omega \delta +Curl gA (\Omega \setminus \omega \delta ) + (gA  - A) \cdot t \scrH 1 \partial \omega \delta .

Notice that
CurlA\delta = \mu \delta and \mu \delta \in H - 1(\Omega ;\BbbR 2) ;

therefore, (\mu \delta , S\delta , A\delta ) belongs to the domain of the functional \scrF . Also note that

(75)

S\delta \rightarrow S , A\delta \rightarrow A in L2(\Omega ;\BbbM 2\times 2) ,

\mu \delta 
\ast 
\rightharpoonup \mu in \scrM (\Omega ;\BbbR 2) , | \mu \delta | (\Omega ) \rightarrow | \mu | (\Omega ) +

\int 
\partial \Omega 

| (gA  - A) \cdot t| ds

as \delta \rightarrow 0. Therefore, by Reshetnyak's Theorem (see [1, Theorem 2.39]), we have

(76) lim
\delta \rightarrow 0

\scrF (\mu \delta , S\delta , A\delta ) = \scrF gA(\mu , S,A) .

It will now be sufficient to construct dislocation measures \mu \delta ,\varepsilon and strains \beta \delta ,\varepsilon such
that (\mu \delta ,\varepsilon , \beta \delta ,\varepsilon ) converges to (\mu \delta , S\delta , A\delta ) in the sense of Definition 4.1 and that

lim
\varepsilon \rightarrow 0

\scrF gA
\varepsilon (\mu \delta ,\varepsilon , \beta \delta ,\varepsilon ) = \scrF (\mu \delta , S\delta , A\delta ) .

By taking a diagonal sequence (\mu \delta \varepsilon ,\varepsilon , \beta \delta \varepsilon ,\varepsilon ) and using (75), (76), the thesis will follow.
Step 2. Recovery sequence for strains satisfying the boundary condition. Let us

now proceed to construct the sequence (\mu g\varepsilon 
\delta ,\varepsilon , \beta 

g\varepsilon 
\delta ,\varepsilon ) as stated in the previous step. From

Theorem 4.2, there exists a sequence (\mu \delta ,\varepsilon , \beta \delta ,\varepsilon ) converging to (\mu , S,A) in the sense
of Definition 4.1 and such that

(77) lim
\varepsilon \rightarrow 0

\scrF \varepsilon (\mu \delta ,\varepsilon , \beta \delta ,\varepsilon ) = \scrF (\mu , S,A) .

Moreover (see Remark 4.6), we can assume that \beta \varepsilon satisfies (70), from which (77)
easily follows.

Proof of \Gamma -lim inf inequality of Theorem 5.1. Let (\mu , S,A) be in the domain of
the \Gamma -limit \scrF gA . Assume that (\mu \varepsilon , \beta \varepsilon ) converges to (\mu , S,A) in the sense of Definition
4.1. By combining an extension argument with the \Gamma -lim inf inequality in Theorem
4.2 we will show that

\scrF gA(\mu , S,A) \leq lim inf
\varepsilon \rightarrow 0

\scrF gA
\varepsilon (\mu \varepsilon , \beta \varepsilon ) .
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Fix \delta > 0, and define U\delta := \{ x \in \BbbR 2 : dist(x,\Omega ) < \delta \} . By standard reflexion
arguments one can extend gA to \~gA \in L2(U\delta ;\BbbM 2\times 2

skew) in such a way that \~\mu A := Curl \~gA
is a measure on U\delta satisfying | \~\mu A| (\partial \Omega ) = 0. Recall the functions \~\beta \varepsilon defined in the
proof of compactness in section 4.1 (with \varepsilon n replaced by \varepsilon ), and set

\^\beta \varepsilon :=

\Biggl\{ 
\~\beta \varepsilon in \Omega ,

N\varepsilon \~gA in U\delta \setminus \Omega ,
\^\beta :=

\Biggl\{ 
A in \Omega ,

\~gA in U\delta \setminus \Omega .

By construction we have
\^\beta \varepsilon 

N\varepsilon 
\rightharpoonup \^\beta in L1(U\delta ) so that

\^\mu \varepsilon :=
Curl \^\beta \varepsilon 
N\varepsilon 

\ast 
\rightharpoonup \mu + ((gA  - A) \cdot t)\scrH 1 \partial \Omega + Curl \~gA (U\delta \setminus \Omega ) .

Recalling (33), (36), and (37), we conclude

lim inf
\varepsilon \rightarrow 0

\scrF gA
\varepsilon (\mu \varepsilon , \beta \varepsilon ) \geq lim inf

\varepsilon \rightarrow 0

1\sqrt{} 
N\varepsilon | log \varepsilon | 

\int 
\Omega 

W (\beta sym
\varepsilon ) dx

+ lim inf
\varepsilon \rightarrow 0

1

N\varepsilon 

\int 
\Omega 

\varphi 

\biggl( 
d\mu \varepsilon 

d| \mu \varepsilon | 

\biggr) 
d| \mu \varepsilon | +

\int 
\partial \Omega 

\varphi 
\Bigl( \Bigl( 
gA  - \beta \varepsilon 

N\varepsilon 

\Bigr) 
\cdot t
\Bigr) 
ds

\geq 
\int 
\Omega 

W (S) dx+ lim inf
\varepsilon \rightarrow 0

\int 
U\delta 

\varphi 

\biggl( 
d\^\mu \varepsilon 

d| \^\mu \varepsilon | 

\biggr) 
d| \^\mu \varepsilon |  - 

\int 
U\delta \setminus \Omega 

\varphi 

\biggl( 
dCurl \~gA
d| Curl \~gA| 

\biggr) 
d| Curl \~gA| 

\geq 
\int 
\Omega 

W (S) dx+

\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | +

\int 
\partial \Omega 

\varphi ((gA  - A) \cdot t) ds = \scrF gA
\varepsilon (\mu , S,A).

6. Linearized polycrystals as minimizers of the \Gamma -limit. Let \Omega \subset \BbbR 2

be a bounded domain with Lipschitz continuous boundary. Let k \in \BbbN be fixed,
and let \{ Ui\} ki=1 be a Caccioppoli partition of \Omega (see [1, section 4.4]). Moreover,
fix m1, . . . ,mk \in \BbbR + with mi < mi+1, and define the piecewise constant function
a \in BV (\Omega ) as

(78) a :=

k\sum 
i=1

mi\chi Ui .

In particular, (78) implies that a \in L\infty (\Omega ) and Da \in \scrM (\Omega ;\BbbR 2). We can now define
the piecewise constant boundary condition gA \in L\infty (\Omega ;\BbbM 2\times 2

skew) as

(79) gA :=

\biggl( 
0 a
 - a 0

\biggr) 
.

Notice that gA \in L2(\Omega ;\BbbM 2\times 2
skew) and Curl gA = Da; hence, Curl gA \in H - 1(\Omega ;\BbbR 2) \cap 

\scrM (\Omega ;\BbbR 2). In this way gA is an admissible boundary condition for \scrF gA , as required
in (71).

We wish to minimize the \Gamma -limit (74) with boundary condition gA prescribed by
(78)--(79). Since the elastic energy and plastic energy are decoupled in \scrF gA and there
is no boundary condition fixed on the elastic part of the strain S, we have

inf \scrF gA(CurlA,S,A) = inf \scrF gA(CurlA, 0, A) .
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Therefore, it is sufficient to study

(80)

inf

\Biggl\{ \int 
\Omega 

\varphi (CurlA) +

\int 
\partial \Omega 

\varphi ((gA  - A) \cdot t) ds : A \in L2(\Omega ;\BbbM 2\times 2
skew),

CurlA \in H - 1(\Omega ;\BbbR 2) \cap \scrM (\Omega ;\BbbR 2)

\Biggr\} 
,

where \varphi : \BbbR 2 \rightarrow [0,\infty ) is the density defined in (22) and

(81)

\int 
\Omega 

\varphi (\mu ) :=

\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | 

is the anisotropic \varphi -total variation for a measure \mu \in \scrM (\Omega ;\BbbR 2). Note that (81) is
well-posed since \varphi satisfies the properties given in Proposition 3.3.

For A \in L2(\Omega ;\BbbM 2\times 2
skew), we have that

(82) A =

\biggl( 
0 u
 - u 0

\biggr) 
for some u \in L2(\Omega ). Moreover, CurlA = Du; therefore, condition CurlA \in \scrM (\Omega ;\BbbR 2)
implies u \in BV (\Omega ). We claim that (80) is equivalent to the following minimization
problem:

(83) inf

\biggl\{ \int 
\Omega 

\varphi (Du) +

\int 
\partial \Omega 

\varphi ((u - a)\nu ) ds : u \in BV (\Omega )

\biggr\} 
.

Indeed, we already showed that if A is a competitor for (80), then the function u, given
by (82), belongs to BV (\Omega ), and it is a competitor for (83). Conversely, assume that
u \in BV (\Omega ), and define A through (82). Since u \in BV (\Omega ), CurlA = Du \in \scrM (\Omega ;\BbbR 2).
Moreover, recall that the immersion BV (\Omega ) \lhook \rightarrow L2(\Omega ) is continuous; therefore, u \in 
L2(\Omega ), which implies A \in L2(\Omega ;\BbbM 2\times 2) so that CurlA \in H - 1(\Omega ;\BbbR 2). This shows
that (80) and (83) are equivalent.

The main result of this section states that, given the piecewise constant boundary
condition a defined in (78), there exists a piecewise constant minimizer \~u to (83). In
our model the function \~u corresponds to a linearized polycrystal.

Theorem 6.1. There exists a locally constant minimizer \~u \in BV (\Omega ) to (83), i.e.,

\~u =

k\sum 
i=1

mi\chi \Omega i
,

where \{ \Omega i\} ki=1 is a Caccioppoli partition of \Omega and the values mi are the ones of (78).

The proof of this theorem relies on the anisotropic coarea formula. For the reader's
convenience we briefly recall it here. For E \subset \Omega of finite perimeter, the anisotropic
\varphi -perimeter of E in \Omega is defined as

Per\varphi (E,\Omega ) :=

\int 
\Omega 

\varphi (D\chi E) .

Since \varphi satisfies the properties of Proposition 3.3, the anisotropic coarea formula holds
true for every u \in BV (\Omega ):

(84)

\int 
\Omega 

\varphi (Du) =

\int \infty 

 - \infty 
Per\varphi (Et,\Omega ) dt ,

where Et is the level set Et := \{ x \in \Omega : u(x) > t\} , defined for every t \in \BbbR .



3978 S. FANZON, M. PALOMBARO, AND M. PONSIGLIONE

Proof of Theorem 6.1.
Step 1. Equivalent minimization problem. We start by rewriting (83) as a bound-

ary value problem in BV . Let \Omega \prime := \{ x \in \BbbR 2 : dist(x,\Omega ) < 1\} so that \Omega \subset \subset \Omega \prime .
Consider a piecewise constant extension \~a \in BV (\Omega \prime ) of the function a \in BV (\Omega )
defined in (78); that is,

\~a =

k\sum 
i=1

mi \chi U \prime 
i
,

where \{ U \prime 
i\} ki=1 is a Caccioppoli partition of \Omega \prime , agreeing with \{ Ui\} ki=1 on \Omega . This is

possible since the extension can be chosen such that | D\~a| (\partial \Omega ) = 0; that is, we are
not creating any jump on \partial \Omega . Consider the new minimization problem

(85) I := inf

\biggl\{ \int 
\Omega \prime 
\varphi (Du) : u \in BV (\Omega \prime ), u = \~a a.e. in \Omega \prime \setminus \Omega 

\biggr\} 
.

Finding a solution to (85) is equivalent to finding a solution to (83). Indeed, if
u \in BV (\Omega \prime ) is such that u = \~a in \Omega \prime \setminus \Omega , then

(86) Du = Du \Omega + (u\Omega  - a\Omega ) \nu \scrH 1 \partial \Omega +D\~a (\Omega \prime \setminus \Omega ) ,

where u\Omega , a\Omega \in L1(\partial \Omega ) are the traces of u and a on \partial \Omega . Notice that we can use a\Omega in
(86) because the extension \~a is such that | D\~a| (\partial \Omega ) = 0; hence, we have \~a+\partial \Omega = \~a - \partial \Omega =
a\Omega \scrH n - 1-a.e. in \partial \Omega .

Step 2. Existence of a minimizer for (85). Let uj \in BV (\Omega \prime ) be a minimizing
sequence for (85), that is, uj = \~a a.e. on \Omega \prime \setminus \Omega and

(87) lim
j\rightarrow \infty 

\int 
\Omega \prime 
\varphi (Duj) = I .

By standard truncation arguments we can assume that \| uj\| \infty \leq maxi | mi| . In partic-
ular, from (87), we deduce that supj \| uj\| BV (\Omega \prime ) <\infty . By compactness in BV , there

exists \~u \in BV (\Omega \prime ) such that, up to subsequences, uj \rightarrow \~u in L1(\Omega \prime ) and Duj
\ast 
\rightharpoonup D\~u

weakly in \scrM (\Omega \prime ;\BbbR 2). Since uj = \~a a.e. on \Omega \prime \setminus \Omega , the strong convergence in L1

implies that (up to subsequences) uj \rightarrow \~u a.e. in \Omega \prime so that \~u = \~a a.e. in \Omega \prime \setminus \Omega .
From Reshetnyak's lower semicontinuity theorem we conclude that\int 

\Omega \prime 
\varphi (D\~u) \leq lim inf

j\rightarrow \infty 

\int 
\Omega \prime 
\varphi (Duj) = I

so that \~u is a minimizer for (85).
Step 3. Existence of a piecewise constant minimizer for (83). Let u be a minimizer

for (85). By a standard truncation argument we can assume that m1 \leq u \leq mk a.e.
on \Omega \prime . Formula (84) then reads

(88)

\int 
\Omega \prime 
\varphi (Du) =

k - 1\sum 
i=1

\int mi+1

mi

Per\varphi (Et,\Omega 
\prime ) dt ,

where Et := \{ x \in \Omega \prime : u(x) > t\} for t \in \BbbR . By the mean value theorem, for every
i = 1, . . . , k  - 1, there exists ti \in (mi,mi+1) such that

(89)

\int mi+1

mi

Per\varphi (Et,\Omega 
\prime ) dt \geq (mi+1  - mi) Per\varphi (Eti ,\Omega 

\prime ) .



LINEARIZED POLYCRYSTALS 3979

We define the piecewise constant function

\~u(x) := mi if x \in Eti - 1
\smallsetminus Eti

for i = 1, . . . , k, where we have set Et0 := \Omega \prime and we notice that Etk = \emptyset set the-
oretically. Since the sets Et have finite perimeter in \Omega \prime , we have that \~u \in BV (\Omega \prime ).
Moreover, by construction, \~u = \~a on \Omega \prime \setminus \Omega so that \~u is a piecewise constant competitor
for (85). It is immediate to compute that

D\~u =

k - 1\sum 
i=1

(mi+1  - mi) \nu Eti
\scrH 1 \partial \ast Eti

so that

(90)

\int 
\Omega \prime 
\varphi (D\~u) =

k - 1\sum 
i=1

(mi+1  - mi)

\int 
\partial \ast Eti

\varphi (\nu Eti
) d\scrH 1

=

k - 1\sum 
i=1

(mi+1  - mi) Per\varphi (Eti ,\Omega 
\prime ) .

By minimality of u and (88)--(90) we conclude that \~u is a locally constant minimizer
for (85). Hence, \~u| \Omega is a locally constant minimizer for (83).

7. Conclusions and perspectives. The aim of this paper is to describe poly-
crystalline structures from a variational point of view. Grain boundaries and the
corresponding grain orientations are not introduced as internal variables of the en-
ergy, but they spontaneously arise as a result of energy minimization, under suitable
boundary conditions.

We work under the hypothesis of linear planar elasticity as in [9] with the reference
configuration \Omega \subset \BbbR 2 representing a section of an infinite cylindrical crystal. The
elastic energy functional depends on the lattice spacing \varepsilon of the crystal, and we allow
N\varepsilon edge dislocations in the reference configuration with N\varepsilon \rightarrow \infty as \varepsilon \rightarrow 0. Each
dislocation contributes by a factor | log \varepsilon | to the elastic energy so that the natural
rescaling for the energy functional is N\varepsilon | log \varepsilon | . We work in the energy regime

| log \varepsilon | \ll N\varepsilon \ll 
1

\varepsilon 
,

which accounts for grain boundaries that are mutually rotated by an infinitesimal
angle \theta \approx 0. After rescaling the elastic energy of such system of dislocations and
sending the lattice spacing \varepsilon to zero, in Theorem 4.2 we derive by \Gamma -convergence a
macroscopic energy functional of the form

\scrF (\mu , S,A) =
1

2

\int 
\Omega 

\BbbC S : S dx+

\int 
\Omega 

\varphi 

\biggl( 
d\mu 

d| \mu | 

\biggr) 
d| \mu | ,

where \BbbC is the linear elasticity tensor and \varphi is a positively 1-homogeneous density
function, defined through a suitable cell-problem. The elastic energy is computed on
S, which represents the elastic part of the macroscopic strain. The plastic energy
depends only on the dislocation measure \mu , which is coupled to the plastic part A
of the macroscopic strain through the relation \mu = CurlA. As a consequence, \mu is
a curl-free vector Radon measure. The contributions of elastic energy and plastic
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energy are decoupled in the \Gamma -limit \scrF due to the fact that S and A live on different
scales:

\sqrt{} 
N\varepsilon | log \varepsilon | and N\varepsilon , respectively.

Once the \Gamma -limit \scrF is obtained, we impose a piecewise constant Dirichlet boundary
condition on A and minimize \scrF under such constraint. In Theorem 6.1 we prove that
\scrF admits piecewise constant minimizers of the form

\^A =

k\sum 
i=1

Ai \chi \Omega i
,

where the Ai's are antisymmetric matrices and \{ \Omega i\} is a Caccioppoli partition of \Omega .
We interpret \^A as a linearized polycrystal with \Omega i representing a single grain having
orientation Ai. This interpretation is motivated by the fact that antisymmetric ma-
trices can be considered as infinitesimal rotations. The (linear) energy corresponding
to \^A can be seen as a linearized version of the Read--Shockley formula for small angle
tilt grain boundaries, i.e.,

(91) E = E0 \theta (1 + | log \theta | ) ,

where E0 > 0 is a constant depending only on the material and \theta is the angle formed by
two grains. Indeed, the Read--Shockley formula is obtained in [17] by computing the
elastic energy for an evenly spaced array of 1/\varepsilon dislocations at the grain boundaries.
Our energy regime accounts only for N\varepsilon \ll 1/\varepsilon dislocations; therefore, we do not
have enough dislocations to create true rotations between grains. Nevertheless, we
still observe polycrystalline structures, but the rotation angles between grains are
infinitesimal.

Recently, Lauteri and Luckhaus [14] proved some compactness properties and
energy bounds in agreement with the Read--Shockley formula. It would be desirable
to understand if our \Gamma -limit can be deduced from their model as the angle \theta between
grains tends to zero. Moreover, it would be interesting to push our \Gamma -convergence

analysis to energy regimes of order | log \varepsilon | 
\varepsilon , corresponding toN\varepsilon \approx 1

\varepsilon . In this regime true
rotations should emerge, and the Read--Shockley formula could be possibly derived
by \Gamma -convergence. At present, our technical assumption on good separation between
dislocations is not compatible with such an energy regime.

Another natural question is whether the minimizer \^A is unique or at least if all the
minimizers are piecewise constant. We suspect that, by enforcing piecewise constant
boundary conditions, generically all minimizers are piecewise constant.

A further problem is to deduce our \Gamma -limit \scrF by starting from a nonlinear energy
computed on small deformations v = x + \varepsilon u in the energy regime N\varepsilon \gg | log \varepsilon | . A
similar analysis was already performed in [15] (see also [18, 11]), where the authors
derive the \Gamma -limit obtained in [9] starting from a nonlinear energy under the assump-
tion that N\varepsilon \approx | log \varepsilon | . It seems possible to adapt the techniques used in [15] to our
case. This problem is currently under investigation by the authors.

Finally, a further step forward in our analysis is the following: In this paper
the formation of polycrystalline structures is driven by relaxed boundary conditions
as usual for minimization problems in BV spaces. It would be interesting to deal
with true boundary conditions, which we expect to lead to the same \Gamma -limit F gA

defined in (73). Moreover, it would be interesting to replace boundary conditions by
forcing terms. For instance, bulk forces in competition with surface energies at grain
boundaries should result in polycrystals exhibiting some intrinsic length scale. This
is the case of semicoherent interfaces, separated by periodic nets of dislocations (see
[7]).
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