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Abstract. We propose and analyze a simple variational model for dislocations
at semi-coherent interfaces. The energy functional describes the competition
between two terms: a surface energy induced by dislocations and a bulk elastic
energy, spent to decrease the amount of dislocations needed to compensate the
lattice misfit. We prove that, for minimizers, the former scales like the surface
area of the interface, the latter like its diameter.

The proposed continuum model is built on some explicit computations done in
the framework of the semi-discrete theory of dislocations. Even if we deal with
finite elasticity, linearized elasticity naturally emerges in our analysis since the
far field strain vanishes as the interface size increases.
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Introduction

Dislocations are line topological defects in the periodic structure of crystals. Their
motion represents the microscopic mechanism of plastic flow, while their presence at
grain boundaries decreases the energy induced by lattice misfits.
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In this paper we propose and analyze a variational model describing dislocations at semi-
coherent interfaces, focusing on flat two dimensional interfaces between two crystalline
materials with different underlying lattice structures Λ+ and Λ−. Specifically, we assume
that the lattice Λ+ (lying on top of Λ−) is a dilation with factor α > 1 of Λ−. We are
interested in semi-coherent interfaces, corresponding to small misfits α ≈ 1.

Since in the reference configuration (where both crystals are in equilibrium) the density
of the atoms of Λ+ is lower than that of Λ−, in the vicinity of the interface there are many
atoms having the “wrong” coordination number (namely, the wrong number of nearest
neighbors, see first picture in Figure 1). Such atoms form line singularities (relatively
closed paths lying on the interface), which correspond to edge dislocations. The crystal
can reduce the number of such dislocations through a compression strain acting on Λ+

near the interface, at the price of storing some far field elastic energy. A deformation that
coincides with x 7→ α−1x near the interface would provide a defect-free perfect match
between the crystal lattices (see third picture in Figure 1). In fact, the true deformed
configuration is the result of a balance (see middle picture in Figure 1) between the elastic
energy spent to match the crystal structures and the dislocation energy spent to release
the far field elastic energy, with the former scaling (for defect free configurations) like the
volume of the body and the latter like the surface area of the interface.

Figure 1. Left: A bulk stress-free configuration. Right: a defect-free
configuration. Center: a schematic picture of a true energy minimizer; the
density of atoms on the top and on the bottom of the interface is almost
the same, giving rise to a semi-coherent interface.

This is why the common perspective of the scientific community working on this problem
has been to understand which configurations of dislocations minimize the elastic stored
energy, and much effort has been devoted to describe those configurations for which the
dislocation energy contribution is predominant, and the far field elastic energy is negligible
([21], [11]). As a matter of fact, for large crystals, periodic patterns of edge dislocations
are observed at interfaces [8].

Here, we propose a simple variational model to analyze the competition between surface
and elastic energy. We show that, for large interfaces, the dislocation energy of minimizers
scales like the area of the interface, while the elastic far field energy like its diameter.
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The proposed model is not purely discrete; indeed it is a continuum model that stems
from some heuristic considerations and some rigorous computations done in the framework
of the so called semi-discrete theory of dislocations.

In single crystals, the energy induced by straight edge dislocations has a logarithmic
tail, which diverges as the ratio between the crystal size and the atomic distance tends to
+∞. The Γ-convergence analysis for these systems as the atomic distance tends to zero
has been recently done in [7], [5] showing that dipoles as well as isolated dislocations do
not contribute to decrease the elastic energy, so that in single crystals only the so called
geometrically necessary dislocations are good competitors in the energy minimization.

Quite different is the case of polycrystals treated in this paper, where dislocations
contribute to decrease the elastic energy. The first rigorous variational justification of dis-
location nucleation in heterostructured nanowires was obtained by Müller and Palombaro
[18] in the context of nonlinear elasticity. The model proposed in [18] was later generalized
to a discrete to continuum setting in [14, 15] (see also [2] for recent advancements in the
microscopic setting). A variational model for misfit dislocations in elastic thin films, in
connection with epitaxial growth, has been recently proposed in [9] (we refer the readers
interested in the mathematical theory of epitaxy to the lecture notes [16]). Finally, a
rigorous derivation of a small angle grain boundary has been obtained in the recent paper
[13].

In the first part of the paper we set and analyze the problem in the semi-discrete
framework, which provides the theoretical background for the proposed continuum model.
In the semi-discrete model, the reference configuration of the hyperelastic body is the
cylindrical region Ωr := Sr × (−hr, hr), where r, h > 0 and Sr := [−r/2, r/2]2. The
interface Sr×{0} separates the two regions of the body, Ω−

r := Sr×(−hr, 0) and Ω+
r := Sr×

(0, hr), with underlying crystal structures Λ− and Λ+ respectively. We will refer to Ω−
r and

Ω+
r as the underlayer and overlayer, respectively. We assume that the material equilibrium

is the identity I in Ω−
r (implying that the underlayer is already in equilibrium) and αI

in Ω+
r , where α > 1 measures the misfit between the two lattice parameters. Notice that

the identical deformation of Ωr, which corresponds to a dislocation-free configuration, is
not stress-free, since the overlayer is not in equilibrium. Furthermore, in order to simplify
the analysis, we assume that Ω−

r is rigid, so that only Ω+
r is subjected to deformations.

We assume that deformations try to minimize a stored elastic energy (in Ω+
r ), whose

density is described by a nonlinear frame indifferent function W : M3×3 → [0,+∞). In
classical finite elasticity, W acts on deformation gradients F := ∇v. In this model dis-
locations are introduced as line defects of the strain: more precisely, we allow the strain
field F to have a non vanishing curl, concentrated on dislocation lines on the interface Sr.
Therefore, the admissible strains are maps F ∈ Lp(Ωr;M3×3) (where 1 < p < 2 is fixed,
according to the growth assumptions on W , see (4)) that satisfy

(1) curlF =
∑
i

−bi ⊗ γ̇i dH1⌞γi

in the sense of measures and such that F = I in Ω−
r . Here {γi} is a finite collection of

closed curves, and bi ∈ R3 denotes the Burgers vector, which is constant on each γi. The
Burgers vector belongs to the set of slip directions, which is a given material property of
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the crystal. We assume that the slip directions are given by b{z1e1+z2e2, z1, z2 ∈ Z}, where
b > 0 represents the lattice spacing of Λ−, and that the dislocation curves γi have support
on the grid

[(
(bZ× R) ∪ (R× bZ)

)
∩ Sr

]
×{0}. Notice that this choice is consistent with

the cubic crystal structure, and that b is independent of r, i.e., independent of the size of
the body.

In Section 1 we study the asymptotic behaviour of minimizers of the elastic energy
functional with respect to all possible pairs of compatible (i.e., satisfying (1)) strains and
dislocations, refining the analysis first done in [18]. In Proposition 1.2 we show that,
as r → +∞, the elastic energy of minimizers per unit area of the interface tends to a
given surface energy density Eα. As a consequence, we show that there exists a critical
r∗ such that, for larger size of the interface, dislocations are energetically favorable (see
Theorem 1.5). The proof of these results is based on an explicit construction of an array
of dislocations (see Figure 2) and of admissible fields, which is optimal in the energy
scaling (see Proposition 1.6). While we could guess that the dislocation configuration is
somehow optimal, the strains that we consider as energy competitors are surely not, so
that our construction does not provide the sharp formula for the surface energy density
Eα, which depends on the specific form of the elastic energy density W . Indeed, the main

Figure 2. Left: The 3D crystal. Right: a 2D cross-section with the lattice
structure. Red squares: The 2D slice. Green: The lattice Λ+. Orange: The
lattice Λ−. Blue: Edge dislocations.

problem raised in this paper concerns the identification of the sharp energy density Eα and
of the corresponding optimal geometries for the dislocations net. Less ambitious is the
question about the optimal spacing between the dislocation lines. As already explained,
by scaling arguments the optimal geometry of dislocations should release the far field
elastic energy as much as possible. This consideration leads us to construct and analyze
a net of dislocations with spacing b

α−1
. One of the main goals of this paper is to show

that, for large interfaces, such density of dislocations is optimal in energy. In order to
prove this fact, we propose and analyze a simplified continuous model for dislocations at
semi-coherent interfaces, describing in particular heterogeneous nanowires.

Although we deal with a continuum model, our approach is built on the analysis devel-
oped in the first part of this paper, and it is consistent with the discrete analysis developed
in [14, 15]. In this model we work with actual gradient fields far from the interface, where
the curl of the strain is now a diffuse measure, in contrast with (1). Dislocation nucleation
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is taken into account by introducing a free parameter into the total energy and eventually
optimizing over it. Specifically, we assume that the underlayer occupies the cylindrical
region Ω−

R (which is fixed), while the reference configuration of the overlayer is Ω+
r , where

r = θR and θ ∈ (0, 1) is a free parameter in the total energy functional. The class of
admissible deformation maps is defined by

(2) ADMθ,R :=

{
v ∈ W 1,2(Ω+

r ;R3) : v(x) =
1

θ
x on Sr

}
.

In this way v(Sr) = SR for all v ∈ ADMθ,R, so that there is a perfect match between the
two layers at the interface. In view of the analysis performed in the semi-discrete setting,
the area of SR ∖ Sr divided by b can be interpreted as the total dislocation length. This
suggests to introduce the plastic energy defined by

Epl
R (θ) := σr2(θ−2 − 1) = σR2(1− θ2).

Here σ > 0 is a given material constant of the crystal, which multiplied by b represents
the energy cost of dislocations per unit length. In principle, σ could be derived starting
from the surface energy density Eα introduced in Proposition 1.2, yielding in the limit
of vanishing misfit σ = lim

α→1

Eα

α2 − 1
(see (20)). Alternatively, assuming isotropy, σ can be

expressed in terms of the Lamé moduli of the linearized elastic tensor corresponding to W
and of the (unknown) chemical core energy density γch induced by dislocations (see (22)
in Section 2). The latter contribution is implicitly taken into account by the nonlinear
energy density W in finite elasticity.

Based on the previous considerations, our goal is to study the total energy functional
defined by

Etot
α,R(θ, v) := Eel

α,R(θ, v) + Epl
R (θ) =

∫
Ω+

r

W (∇v(x)) dx+ σR2(1− θ2),

for v ∈ ADMθ,R. Set

Eel
α,R(θ) := inf

{
Eel

α,R(θ, v) : v ∈ ADMθ,R

}
, Etot

α,R(θ) := Eel
α,R(θ) + Epl

R (θ).

Notice that if θ = 1, then no dislocation energy is present, i.e., Etot
α,R(1) = Eel

α,R(1). Instead,
if θ = α−1 no elastic energy is stored (since v(x) := αx is admissible and W (αI) = 0).

The remaining and main part of the paper is devoted to the analysis of minimizers of
Etot

α,R, as R → +∞. In Theorem 3.7 we show that the optimal θR tends to α−1 from below,
corresponding to the average spacing b

α−1
between the dislocation lines. In particular, the

dislocation energy spent to release the bulk energy is predominant, but still θR ̸= α−1, so
that also a far field bulk energy is present (see Figure 1).

In order to compute the optimal θR, we perform a Taylor expansion (through a Γ-
convergence analysis) of the plastic and elastic part of the energy, proving in particular
that the first scales like R2, while the second like R. Prefactors in such energy expan-
sions are computed, depending only on α, σ and on the fourth-order tensor obtained by
linearizing W .
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In conclusion, the proposed functional provides a simple prototypical variational model
to describe the competition between the dislocation energy concentrated in the vicinity of
the interface between materials with different crystal structures, and the far field elastic
energy. This model fits into the class of free boundary problems, since the overlayer is
a variable in the minimization problem, though only through a scalar parameter repre-
senting its size. Our formulation is quite specific, dealing with two lattices where one is
a small dilation of the other. Therefore, it is meant to model semi-coherent interfaces
between two different lattices, for example in heterostructured nanowires. Nevertheless,
our approach seems flexible enough to be adapted to more general situations, to model
epitaxial crystal growth (where the surface energy of the free external boundary in contact
with air should be added to the energy functional), and to more general interfaces, such
as grain boundaries, where the misfit in the crystal structures is due to mutual rotations
between the grains instead of dilations of the lattice parameters.

1. A line defect model

1.1. Description of the model. We introduce a semi-discrete model for dislocations,
which are described as line defects of the strain.

Let Ω1 = S1× (−h, h) be the reference configuration of a cylindrical hyperelastic body.
Here h > 0 is a fixed height and S1 = {(x1, x2, 0) ∈ R3 : |x1| , |x2| < 1/2} is a square
of side one centered at the origin, separating parts of the body with underlying crystal
structures Λ− and Λ+ := αΛ−, with α > 1. For any given r > 0, we will consider scaled
versions of the body Ωr := rΩ1 and Sr := rS1.

Set Ω−
r := Sr×(−hr, 0) and Ω+

r := Sr×(0, hr). We assume that the material equilibrium
is the identity I in Ω−

r (which means that the material is already in equilibrium in Ω−
r )

and αI in Ω+
r . We are interested in small misfits, which generate so called semi-coherent

interfaces; therefore, we will deal with α ≈ 1. More specifically, we assume that the lattice
distances of Λ− and Λ+ are commensurable, and in particular that α := 1+ 1/n for some
given n ∈ N. Moreover, in order to simplify the analysis, we assume that Ω−

r is rigid,
namely, that the admissible deformations coincide with the identical deformation in Ω−

r .
According to the hypothesis of hyperelasticity, we assume that the crystal tries to mini-

mize a stored elastic energy (in Ω+
r ), whose density is described by a function W : M3×3 →

[0,+∞). We require that W is continuous and frame indifferent, i.e.,

(3) W (F ) = W (RF ) for every F ∈ M3×3, R ∈ SO(3) .

Moreover, there exist p ∈ (1, 2) and constants C1, C2 > 0 such that W satisfies the
following growth conditions:

(4) C1

(
dist2(F, αSO(3)) ∧ (|F |p + 1)

)
≤ W (F ) ≤ C2

(
dist2(F, αSO(3)) ∧ (|F |p + 1)

)
for every F ∈ M3×3. Here the condition p > 1 prevents the formation of cracks in the
body, while p < 2 guarantees that dislocations induce finite core energy, as explained
below.

In absence of dislocations, the deformed configuration of the body can be described by
a sufficiently smooth deformation v : Ω+

r → R3. The corresponding elastic energy is given
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x3

x2

x1
Γ

Ω−
r

Ω+
r

Sr

Figure 3. Reference configuration Ωr .

by

(5) Eel(v) :=

∫
Ω+

r

W (∇v) dx.

The field ∇v is referred to as the deformation strain.
We now explain how to introduce dislocations in the present model. As in [18], dislo-

cations are described by deformation strains whose curl is not free, but concentrated on
lines lying on the interface Sr between Ω−

r and Ω+
r .

Assume for the time being that the dislocation line γ ⊂ Sr is a Lipschitz, relatively
closed curve in Sr. The latter condition implies that Ωr ∖ γ is not simply connected.
Therefore, the strain is a map F ∈ Lp(Ωr;M3×3) that satisfies

(6) curlF = −bγ ⊗ γ̇ dH1⌞γ
in the sense of distributions and F = I in Ω−

r . The vector bγ ∈ R3 denotes the Burg-
ers vector, which is constant on γ, and together with the dislocation line γ, uniquely
characterizes the dislocation. From (6) one can deduce that in the vicinity of γ

(7) |F (x)| ∼ 1

dist(x, γ)
,

which implies that the L2 norm of F in a cylindrical neighborhood of γ diverges loga-
rithmically. This is exactly why we consider energy densities W which grow slower than
quadratic at infinity.

The Burgers vector belongs to the class of slip directions, which is a given material
property of the crystal. As a further simplification, we assume that the slip directions are
given by bZ{e1, e2}, where b > 0 represents the lattice spacing of the lower crystal Ω−

r .
If ω ⊂ Ωr ∖ γ is a simply connected region, then (6) implies that curlF = 0 in

D′(ω,M3×3) and therefore there exists v ∈ W 1,p(ω;R3) such that F = ∇v a.e. in ω.
Thus, any vector field F satisfying (6) is locally the gradient of a Sobolev map. In
particular, if Σ is a sufficiently smooth surface having γ as its boundary, then one can
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find v ∈ SBV loc(Ωr;R3) such that F = ∇v, v = x in Ω−
r and its distributional gradient

satisfies
Dv = ∇v dx+ bγ ⊗ ν dH2⌞Σ

where ν is the unit normal to Σ. That is, F = ∇v is the absolutely continuous part of the
distributional gradient of v. As customary (see [20]), we interpret F as the elastic part of
the deformation v, so that the elastic energy induced by v is given by

Eel(v) :=

∫
Ω+

r

W (F ) dx.

From now on we will assume that the dislocation curves have support in the grid (bZ ×
R) ∪ (R × bZ). Moreover, we will consider multiple dislocation curves. More precisely,
we denote by AD the class of all admissible pairs (Γ,B), where Γ is a finite collection of
admissible closed curves {γi}, and B = {bi}, {bi} ∈ b{z1e1 + z2e2 : z1, z2 ∈ Z}, is the
corresponding collection of Burgers vectors. Notice that each dislocation curve can be
decomposed into “minimal components”, i.e., we can always assume that γi = ∂Qi, where
Qi is a square of size b with sides contained in the grid (bZ × R) ∪ (R × bZ). Given an
admissible pair (Γ,B), we denote by b⊗ γ̇(x) the field that coincides with bi ⊗ γ̇i(x) if x
belongs to a single curve γi, and with bi ⊗ γ̇i(x) +bj ⊗ γ̇j(x) if x belongs to two different
curves γi and γj. The set of admissible deformation strains AS(Γ,B) associated with a
given admissible dislocation (Γ,B) is then defined by

(8) AS(Γ,B) :=
{
F ∈ Lp

loc(Ωr;M3×3) : F = I in Ω−
r , curlF = −b⊗ γ̇ dH1⌞Γ

}
,

where, abusing notation, we identify Γ with the union of the supports of γi. We define
the minimal energy induced by the pair (Γ,B) as

(9) Eα,r(Γ,B) := inf

{∫
Ω+

r

W (F (x)) dx : F ∈ AS(Γ,B)

}
and the minimal energy induced by the lattice misfit as

(10) Eα,r := min {Eα,r(Γ,B) : (Γ,B) ∈ AD} .

Notice that, by the growth assumptions (4) on W and by (7), the minimum problem in
(10) involves only dislocations with Burgers vectors in a bounded set (and thus in a finite
set), so that the existence of a minimizer is trivial. We denote by Eα,r(∅) the minimal
elastic energy induced by curl free strains. Notice that Eα,r(Γ,B) = Eα,r(∅) whenever
Γ ∩ Sr = ∅.

For the sake of computational simplicity, whenever it is convenient we will assume

(11) r(α− 1)

2b
∈ N.

Recalling that α = 1 +
1

n
, assumption (11) implies that r

2b
∈ N.
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1.2. Scaling properties of the energies. The next proposition, proved in [18, Propo-
sition 3.2], states that the quantities defined by (9) and (10) are strictly positive.

Proposition 1.1. For all r > 0 one has Eα,r > 0. Moreover, Eα,r(∅) = r3Eα,1(∅), with
Eα,1(∅) > 0.

Proposition 1.1 asserts that Eα,r(∅) grows cubically in r. We will show that the energy
(9) can grow quadratically in r by suitably introducing dislocations on Sr. In fact we will
introduce dislocations on the boundary of many (of the order of (r(α− 1)/b)2) squares.

Proposition 1.2. There exists 0 < Eα < +∞ such that

(12) lim
r→+∞

Eα,r

r2
= Eα.

Proof. For the sake of computational simplicity, we assume that (11) holds, so that r/2 ∈
bN (see Remark 1.3 to deal with the general case). We first show that the limit exists. Let
m, n ∈ N with n > m, and let j be the integer part of n

m
, R := nb, r := mb. Then, there

are j2 disjoint squares of size r in SR, so there are j2 disjoint sets equivalent to Ωr (up to
horizontal translations) in ΩR. By minimality, Eα,r is smaller than the energy stored in
each of such domains, so that

(13) Eα,r

r2
≤ Eα,R

r2j2
=

Eα,R

R2 + q(r)
,

where q(r) := −
[
(R
r
− j)2 + 2j(R

r
− j)

]
r2 = o(R2). Since this inequality holds true for all

r, R ∈ bN with r ≤ R, we deduce that

lim inf
n→+∞

Eα,bn

(bn)2
= lim sup

n→+∞

Eα,bn

(bn)2
= lim

n→+∞

Eα,bn

(bn)2
=: Eα.

In order to establish that Eα > 0, it suffices to use (13) with r = 1 and to recall that,
by Proposition 1.2, Eα,1 > 0.

Next we show that Eα < +∞. For this purpose, we will exhibit a sequence of defor-
mations and associated dislocations for which the energy grows at most quadratically in
r. The construction uses some ideas introduced in [17] and [18]. Let δ := b

(α−1)
= nb and

recall that by (11) we have r/δ ∈ N. Denote by Qi, i = 1, . . . , q, the squares of side δ
with vertices in the lattice Sr ∩ δZ2, and let xi be the center of each Qi. Since the side of
Sr is r, we have that q = (r/δ)2.

We will define a deformation v : Ωr → R3 such that v = x in Ω−
r , v = αx if x3 > δ and

the transition from x to αx is distributed into constant jumps across the squares Qi’s. In
this way the energy will be concentrated in a δ-neighbourhood of the interface Sr and the
contribution to the energy will come mostly from dislocations.

To this end, let C1
i and C2

i be the pyramids of base Qi and vertices xi + δ/2 e3 and
xi + δe3 respectively. Define a displacement u : Ωr → R3 such that

u(x) =

{
(α− 1)x if x ∈ Ω+

r ∖ ∪q
i=1C

2
i

0 if x ∈ Ω−
r .
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Qi Qj

u ≡ 0

u ≡ (α− 1)xju ≡ (α− 1)xi

xi xj

Figure 4. A loop winding around γij = Qi ∩Qj.

We complete the above definition by setting u := ui in C2
i , where ui is the unique solution

of the minimum problem

(14)
mδ,p,(α−1)I := min

{∫
C2

i

|∇v|p : v ∈ W 1,p
loc (R

3
+), v ≡ (α− 1)xi in C1

i ,

v(x) = (α− 1)x in R3
+ \ C2

i

}
,

where R3
+ := R3 ∩ {x3 > 0}. Notice that mδ,p,(α−1)I is independent of i and that u is well

defined; indeed if Qi and Qj are adjacent squares, i.e.,
Qj = Qi ∓ δes for some s ∈ {1, 2},

then
uj(x) = ui(x± δes)∓ (α− 1)δes for every x ∈ Qj × [0,+∞].

Moreover, in Proposition 1.6 we will show that 0 < mδ,p,(α−1)I < +∞ and
(15) mδ,p,(α−1)I = δ3(α− 1)p m1,p,I .

Set v = x + u. Notice that the deformation v has constant jump equal to (α − 1)xi

across Qi. Therefore, if Qi and Qj are adjacent and we set γij := Qi ∩ Qj, we have
that γij is a dislocation line with Burgers vector bij = (α − 1)(xj − xi) (see Figure 5).
By construction γi,j lies in the grid (bZ× R) ∪ (R× bZ). Moreover, since δ = b/(α − 1),
bij ∈ ±b{e1, e2}. Therefore, setting Γ := {γij} and B := {bij}, we have that (Γ,B) ∈ AD
and ∇v ∈ AS(Γ,B).

We are left to estimate from above the elastic energy of v. Recalling that W (αI) = 0,
the growth condition (4) and (15), we get∫

Ω+
r

W (∇v) =

q∑
i=1

∫
C2

i

W (∇v) ≤ C

q∑
i=1

∫
C2

i

(|∇v|p + 1)

≤ Cq
∣∣C2

i

∣∣+ qδ3(α− 1)pm1,p,I = qδ3 (C + (α− 1)pm1,p,I) .

Writing q = r2/δ2 and δ = b/(α− 1) yields

(16)
∫
Ω+

r

W (∇v) ≤ r2b
[
(α− 1)p−1m1,p,I + (α− 1)−1C

]
.

□
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v = x

v = αx

δ

C2
i

Ω+
R

Ω−
R

SR

Qi Qjbij

xi xjγij

C1
i

Figure 5. The double pyramid construction.

Remark 1.3. In the case when (11) does not hold, it suffices to observe that

Eα,[ r
2δ

]2δ ≤ Eα,r ≤ Eα,[ r
2δ

]2δ+2δ and lim
r→∞

([ r
2δ
]2δ)2

r2
= lim

r→∞

([ r
2δ
]2δ + 2δ)2

r2
= 1,

where [a] denotes the integer part of a. The above inequalities follow from the fact that if
r1 < r2, then the restriction to Ωr1 of any test function for Eα,r2 provides a test function
for Eα,r1 .

Remark 1.4. The proof of the asymptotic behavior of the energy described by Propo-
sition 1.2 strongly relies on the assumption made on the admissible dislocation lines. In
fact, local lower bounds of the energy can be easily obtained in a neighborhood of the
dislocation lines, as long as these are sufficiently regular and well separated.

As a corollary of Propositions 1.1 and 1.2 we obtain the following theorem, asserting
that nucleation of dislocations is energetically convenient for sufficiently large values of r.

Theorem 1.5. There exists a threshold r∗ such that, for every r > r∗,
Eα,r < Eα,r(∅).

1.3. Double pyramid construction. Fix δ > 0 and let C1 and C2 be the pyramids
with common base the square (−δ/2, δ/2)2×{0} and heights δ/2 and δ respectively. Note
that C1 ⊂ C2. Set S := C2 ∩ {δ/2 < x3 < δ} and T := (C2 ∖ C1) ∩ {0 < x3 < δ/2}. See
Figure 6 for a cross section of the construction in cylindrical coordinates.

Let A ∈ M3×3 with A ̸= 0, and consider the following minimization problem

(17) mδ,p,A := inf

{∫
C2

|∇v|p dx : v ∈ W 1,p
loc (R

3
+), v ≡ 0 in C1, v ≡ Ax in R3

+ \ C2

}
,

where R3
+ := R3 ∩ {x3 > 0}.

Proposition 1.6. The following facts hold true:
i) For every 1 < p < 2, there exists a minimizer of problem (17) and the minimal

value m1,p,A is streactly positive;
ii) m1,2,A = +∞;
iii) for all positive δ and λ we have mδ,p,λA = δ3λpm1,p,A.
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x3

x1
0 δ/2

δ

C2

C1

S
δ/2

T

Figure 6. Section φ = 0 of the double pyramid.

Proof. Property iii) holds because if v is a competitor for mδ,p,λA, then ṽ(x) := v(δx)/λδ
is a competitor for m1,p,A.

As far as i) is concerned, first remark that m1,p,A > 0. Indeed, arguing by contradiction
assume that m1,p,A = 0; Then, by the direct method of the calculus of variations, we would
have a minimizer v satisfying ∇v ≡ 0 in C2 and ∇v ≡ A in R3

+ \ C2, which provides a
contradiction since this is only possible when A = 0.

Now, we will prove that m1,p,A < +∞ by exhibiting an admissible deformation v with
finite energy. In order to simplify the computations, we will show it in the case when C1

and C2 are the cones with base the disk of diameter 1 and center the origin, and heights
1/2 and 1 respectively. The estimate in the case of two pyramids can be proved in the
same way, with minor changes.

Introduce the cylindrical coordinates x1 = ρ cosφ, x2 = ρ sinφ and x3 = z, with ρ > 0
and φ ∈ [0, 2π). Set v := 0 in C1 and v(x) := Ax in R3

+ \ C2. First we extend v to S.
To this end, for all φ̄ ∈ [0, 2π) we define v in the triangle Sφ̄ := S ∩ {φ = φ̄} by linear
interpolation of the values of v at the three vertices of Sφ̄. Notice that v is Lipschitz
continuous in S. Next, we extend v to T := C2 \ (S ∪ C1). For this purpose, for all
φ̄ ∈ [0, 2π) and z̄ ∈ (0, 1

2
) consider the segment Lφ̄,z̄ := T ∩{φ = φ̄}∩{z = z̄}, and define

v on Lφ̄,z̄ by linear interpolation of the values of v on the two extreme points of Lφ̄,z̄.
We will now estimate the Lp norm of ∇v in C2. Since v is piecewise Lipschitz in C2 \T ,

we only have to compute the energy in T . By construction we have that

(18) |∇v(x, y, z)| ≤ c

z
for all (x, y, z) ∈ T,

where c are suitable positive constant depending only on A. A straightforward compu-
tation yields m1,p,A ≤ C(p,A) with the constant C depending only on A and p, and
diverging as p → 2−. By the direct method of the calculus of variations we easily deduce
i).

Finally, let us prove ii), i.e., that m1,2,A = +∞. For every admissible function v and all
0 < ε < 1/2, by Jensen’s inequality we have∫

T∩{ε<z< 1
2
}
|∇v|2 dx ≥

∫
T∩{ε<z< 1

2
}

∣∣∣∣∂v∂ρ
∣∣∣∣2 dx ≥ c

∫ 1
2

ε

1

s

(∫
T∩{z=s}

∂v

∂ρ
dρ

)2

ds ≥ c log
1

ε
.



A VARIATIONAL MODEL FOR DISLOCATIONS AT SEMI-COHERENT INTERFACES 13

Taking the limit ε → 0 yields
∫
C2 |∇v|2 = +∞. □

2. Some considerations on the proposed model

In this section we discuss some features and limits of the semi-discrete model presented
in Section 1, in connection with modeling epitaxial growth, heterostructured nanowires
and grain boundaries. Such limits of the theory will be overcome in the continuous model
discussed an analyzed in details in the next section. In this respect, the semi-discrete
model is somehow meant as a theoretical background to derive material constants, and in
particular the energy per unit dislocation length and interface area, that will be involved
in the continuous model discussed in Section 3.

In the construction illustrated in the proof of Proposition 1.2, v(Sr) is the union of
disjoint squares of size δ, separated by strips of width b; dislocation lines lie in the middle
of such strips (see Fig. 8). Note that some lines of atoms (in the deformed configuration)
fall out of Sr (see Figure 7), suggesting that the chosen reference configuration is not
convenient to describe heterostructured nanowires, or epitaxial growth.

Figure 7. A 2D discrete cross section of the crystal, deformed according
to the construction made in the proof of Proposition 1.2.

In fact, this is not the physical configuration we are interested in modeling and ana-
lyzing. In order to prevent unphysical configurations like in Figure 7, where some lines
of atoms fall out of Sr, in the next section we will rather modify our point of view: We
will deal with a reference configuration ΩR,r := Ω−

R ∪ Sr ∪ Ω+
r with r := θR for some

0 < θ < 1 (see Figure 9), enforcing that v(Sr) = SR, thus describing a perfect match
between the two parts of the crystal as in Figure 1. The new parameter θ represents the
ratio between the size of Sr and that of its deformed counterpart v(Sr). Optimization
over θ corresponds to “getting rid” of unnecessary atoms at the interface and will yield
(see (54)) θ ≈ α−1 in the limit R → ∞.

In this context it is quite natural to measure the dislocation length in the deformed con-
figuration v(Ω+

r ). In the construction made in the proof of Proposition 1.2, the number of
dislocation straight-lines is of the order 2r

δ
, where δ = b

α−1
. Mimicking the same construc-

tion in the new reference configuration ΩR,r, in order to enforce v(Sr) = SR, now we have
to choose δ = b

θ−1−1
. The total length L of dislocations (in the deformed configuration)

is then of the order L = 2r2

b
(θ−2 − θ−1). The above formula can be obtained alternatively
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as follows. Let L̃ be the total length of dislocations in the reference configuration. Then,
bL̃ coincides with the total variation of µ, the curl of the deformation strain, which is a
measure concentrated on Sr. By a direct computation the total variation |µ|(Sr) is given
by r22 (θ−1 − 1). Therefore,

L = θ−1L̃ =
θ−1

b
r22

(
θ−1 − 1

)
=

2r2

b
(θ−2 − θ−1).

We are interested in small misfits θ−1 ≈ 1. Therefore, (θ−2− θ−1) ≈ 1
2
(θ−2− 1), so that

the total length of dislocations is of the order

L =
1

b
r2(θ−2 − 1) =

1

b
Area Gap,

where Area Gap, in a continuous modeling of the crystal, represents the difference between
the area of the base of the deformed configuration v(Ω+

r ) = SR of Ω+
r , and the area of the

base of the reference configuration, namely the area of Sr (see Figure 8 and Figure 9).

b

R = θ−1r

δ

Figure 8. The deformed configuration v(Sr). The total dislocation length
is given, in first approximation, by the area of the region in lighter color
divided by b.

We do not claim that our constructions are optimal in energy. Nevertheless, we believe
that, as r, R → ∞, the optimal configuration of dislocations exhibit some periodicity. As
a matter of fact, in Proposition 1.2 we have proved that
(19) Eα,r ≈ r2Eα = σα,θ Area Gap as r → +∞,

for
σα,θ :=

Eα

θ−2 − 1
.

In view of the considerations above, this reflects that the energy is proportional to the
total dislocation length. In particular, as r → ∞ and α → 1+, we expect that Eα,r

be minimized by a periodic configuration of more and more dilute and well separated
dislocations. Taking this into account, we expect that

(20) lim
α→1+

Eα

α2 − 1
= lim

α→1+
σα,α−1 =: σ,
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for some 0 < σ < ∞, where bσ represents the self energy of a single dislocation line per
unit length.

Let us compare the nonlinear energy induced by dislocations with the solid framework
of linearized elasticity. It is well known that the energy per unit (edge dislocation) length
in a single crystal of size r is given by b2 µ

4π(1−ν)
ln( r

b
) (see, e.g., [12, 19]), where µ is the

shear modulus and ν is the Poisson’s ratio. Based on the heuristic observation that the
periodicity of the lattice is restored on lines at the interface which are equidistant from
two consecutive edge dislocations, one could exploit this formula, with r replaced by the
average distance δ = b

α−1
between dislocations. Moreover, due to the fact that Ω−

R is
rigid, the stress and the corresponding energy are concentrated on half disks around each
dislocation (in fact, half cylinders around the dislocation lines). A purely dimensional
argument yields that the resulting strain is twice the one induced by the dislocations in
a purely elastic single crystal; the corresponding elastic energy density, being quadratic,
should be multiplied by 4, but it is concentrated on half domain (the half cylinders).
The resulting energy is then twice the energy induced by the dislocations in a purely
elastic crystal. These heuristic arguments lead us to consider the following energy per
unit dislocation length:

(21) γlin := b2
µ

2π(1− ν)
ln

(
1

α− 1

)
.

To such energy, a chemical core energy γch per unit dislocation length should be added.
Notice that this contribution is already present in our nonlinear formulation, and it is
stored in the region where |∇v| is large, and the energy density W (∇v) behaves like
|∇v|p. We deduce that, for small misfits,

(γlin + γch)
1

b
Area Gap ≈ Eα,r ≈ σ Area Gap,

which yields the following expression for σ:

(22) σ = b
µ

2π(1− ν)
ln

(
1

α− 1

)
+

1

b
γch.

Finally, we notice that σ(α2 − 1) is noting but the energy per unit surface area, so that
the total energy is given by

Eα,r ≈ r2(α2 − 1)

(
b

µ

2π(1− ν)
ln

(
1

α− 1

)
+

1

b
γch

)
.

3. A simplified continuous model for dislocations

Based on the analysis and the considerations on the semi-discrete model discussed in
Section 2, here we want to propose a simplified and more realistic model for dislocations
at interfaces. Instead of working with SBV functions with piece-wise constant jumps on
the interface, we allow only for regular jumps but we introduce a penalization to the
elastic energy, which represents the dislocation energy.



16 S. FANZON, M. PALOMBARO, AND M. PONSIGLIONE

3.1. The simplified energy functional. Fix α > 1, R > 0, θ ∈ [α−1, 1] and set r := θR.
Let Ω−

R := SR × (−hR, 0), where SR ⊂ R2 is the square of side length R centered at the
origin and h > 0 a fixed height. Define now the reference configuration (see Figure 9),

ΩR,r := Ω−
R ∪ Sr ∪ Ω+

r .

As in Section 1 we will suppose that Ω−
R is rigid and that Ω+

r is in equilibrium with αI.

x3

x2

x1

Ω−
R

Ω+
r

Sr

Figure 9. Reference configuration ΩR,r .

We assume that there exists an energy density W : M3×3 → [0,+∞) that is continuous,
C2 in a neighborhood of αSO(3) and frame indifferent (see (3)). Furthermore we suppose
that

(23) W (αI) = 0

and that for every F ∈ M3×3

(24) C1 dist2(F, αSO(3)) ≤ W (F )

for some constant C1 > 0. Here we assume that W grows more than quadratically, since
the energy density describes now only the bulk elastic energy stored in the crystal, i.e.,
the strain is actually curl-free, while the core dislocation energy is taken into account by
an additional plastic term, defined in (26) below. In fact one could also consider weaker
growth conditions away from the well (see [1]); however we will stick to (24) for simplicity.
The class of admissible deformation maps is defined by

(25) ADMθ,R :=

{
v ∈ W 1,2(Ω+

r ;R3) : v(x) =
1

θ
x on Sr

}
.

In this way v(Sr) = SR for all v ∈ ADMθ,R. A deformation v ∈ ADMθ,R stores an
elastic energy

Eel
α,R(θ, v) :=

∫
Ω+

r

W (∇v(x)) dx .
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To this energy we add a dislocation energy Epl
R (θ) proportional to the area of SR ∖ Sr,

representing the total dislocation length,

(26) Epl
R (θ) := σr2(θ−2 − 1) = σR2(1− θ2).

Here σ > 0 is a given constant, which in our model is a material property of the crystal,
representing (multiplied by b) the energy cost of dislocations per unit length. In principle,
σ could be derived starting from the semi-discrete model discussed in Section 1. Assuming
isotropic linearized elasticity, a possible choice is to set σ according to (20) (where the
Lamé coefficients are obtained from W by linearization), so that bσ represents the energy
induced by a single dislocation line per unit length. We are thus led to study the energy
functional

Etot
α,R(θ, v) := Eel

α,R(θ, v) + Epl
R (θ) =

∫
Ω+

r

W (∇v(x)) dx+ σR2(1− θ2).

We further define

(27) Eel
α,R(θ) := inf

{
Eel

α,R(θ, v) : v ∈ ADMθ,R

}
, Etot

α,R(θ) := Eel
α,R(θ) + Epl

R (θ).

As explained in the Introduction, the case θ = 1 corresponds to a dislocation free con-
figuration, i.e., Etot

α,R(1) = Eel
α,R(1). Instead, if θ = α−1 no elastic energy is stored,

since v(x) := αx is admissible and W (αI) = 0. In order to simplify notation we set
Eel

α (θ) := Eel
α, 1

θ

(θ), which corresponds to the minimum energy in the unit cylinder, i.e.,
with r = 1.

Proposition 3.1. The elastic energy Eel
α,R(θ) satisfies:

i) Eel
α,R(θ) = R3θ3Eel

α (θ);
ii) Eel

α (θ) > 0 if and only if θ > α−1.

Proof. Property i) follows by noticing that if v is in ADMθ,R, then ṽ(x) := v(Rθx)/Rθ
is in ADMθ, 1

θ
. For the second property, we have to prove that Eel

α (θ) = 0 if and only if
θ = α−1. We already pointed out that Eel

α (α
−1) = 0. Suppose that Eel

α (θ) = 0. Then
there exists a sequence vn ∈ H1(Ω+

1 ;R3) such that vn|S1
= θ−1 x and

(28)
∫
Ω+

1

W (∇vn) dx → 0 as n → ∞ .

The Rigidity Theorem 3.3, the growth assumption (24) and the compactness of SO(3) in
combination with (28) imply that there exists a fixed rotation R ∈ SO(3) such that (up
to subsequences) ∫

Ω+
1

|∇vn − αR|2 dx → 0 as n → ∞ .

Setting ζn := (1/
∣∣Ω+

1

∣∣) ∫
Ω+

1
(vn(x) − αRx), from the Poincaré inequality and the trace

theorem we deduce that

(29)
∫
S1

|vn − αRx− ζn|2 dx → 0 as n → ∞ .
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Since vn = θ−1x on S1, (29) yields

(30) (θ−1I − αR)x− ζn → 0 in L2(S1) ,

which implies ζn → 0, R = I and θ = α−1. □

In analogy with Theorem 1.5, we find that for R sufficiently large, configurations with
dislocations are energetically preferred.

Theorem 3.2. There exists a threshold R∗ such that, for every R > R∗

(31) inf
θ∈[α−1,1)

Etot
α,R(θ) < Etot

α,R(1) = Eel
α,R(1) .

Proof. The left hand side of (31) can grow at most quadratically in R, indeed

inf
θ∈[α−1,1)

Etot
α,R(θ) ≤ Etot

α,R(α
−1) = σR2

(
1− 1

α2

)
.

In contrast, by Proposition 3.1, the right hand side Etot
α,R(1) grows cubically in R. □

The minimal energy induced by the lattice misfit is given by

(32) Etot
α,R := inf

θ∈[α−1,1]
Etot

α,R(θ) .

One can show that Etot
α,R(·) is continuous, so that the infimum is in fact a minimum. Our

goal is to study the asymptotic behavior of Etot
α,R as R → ∞. In Theorem 3.7 we will write

Etot
α,R as an expansion in powers of R.

3.2. An overview of the Rigidity Estimate and Linearization. We recall the Rigid-
ity Estimate from [10]. In this section, U ⊂ R3 will be a Lipschitz bounded domain.

Theorem 3.3 (Rigidity Estimate, [10]). There exists a constant C > 0 depending only
on the domain U such that the following holds: For every v ∈ H1(U ;R3) there exists a
constant rotation R ∈ SO(3) such that

(33)
∫
U

|∇v(x)−R|2 dx ≤ C

∫
U

dist2(∇v(x);SO(3)) dx .

In order to compute the Taylor expansion of Etot
α,R defined in (32), we will linearize the

elastic energy as in [6]. Therefore, following [6], we will make further assumptions on W .
First, notice that by minimality the equilibrium αI is stress free, i.e.,

(34) ∂FW (αI) = 0 .

By frame indifference there exists a function V : M3×3
sym → [0,+∞], such that

(35) W (F ) = V

(
1

2

(
F TF − α2I

))
for every F ∈ M3×3

+ .

Here M3×3
sym is the set of 3 × 3 symmetric matrices, M3×3

+ is the subset of matrices with
positive determinant and F T is the transpose matrix of F .
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The regularity assumptions on W (see Subsection 3.1) imply that V (E) is of class C2

in a neighbourhood of E = 0. From (23), (34) and (35) it follows that V (0) = 0 and
∂EV (0) = 0. Moreover, by (24), there exist γ, δ > 0 such that

∂2
EV (E)[T, T ] ≥ γ |T |2 if |E| < δ and T ∈ M3×3

sym.

By Taylor expansion we find

(36) V (E) =
1

2
∂2
EV (0)[E,E] + o(|E|2) .

Let v ∈ W 1,∞(U ;R3) with ∇v ∈ M3×3
+ , and write v = αx + εu. Then from (35) it

follows

W (∇v) = V

(
αεe(u) +

ε2

2
C(u)

)
,

where e(u) := (∇u+∇uT )/2 and C(u) := ∇uT∇u. By (36) we get

(37) W (∇v) =
ε2

2
A[e(u), e(u)] + o(ε2)

where A := α2∂2
EV (0) is the stress tensor. Notice that (37) is uniform in x, since ∇v is

bounded. In particular

lim
ε→0

1

ε2

∫
U

W (αI + ε∇u) dx =
1

2

∫
U

A[e(u), e(u)] dx .

In [6] it is proved that the above convergence holds also for minimizers. Specifically, let
Σ ⊂ ∂U be closed and such that H2(Σ) > 0. Introduce the space

H1
x,Σ(U ;R3) :=

{
u ∈ H1(U ;R3) : u(x) = x on Σ

}
and, for u ∈ H1

x,Σ(U ;R3), define the functionals

Gε(u) :=
1

ε2

∫
U

W (αI + ε∇u) dx and G(u) :=
1

2

∫
U

A[e(u), e(u)] dx.

We can now recall [6, Theorem 2.1]:

Theorem 3.4 (Linearization). If {uε} ⊂ H1
x,Σ(U ;R3) is a minimizing sequence, i.e.,

inf
H1

x,Σ(U ;R3)
Gε = Gε(uε) + o(1)

then uε converges weakly to the unique solution u0 of

min
H1

x,Σ(U ;R3)
G .

Moreover we have

(38) inf
H1

x,Σ(U ;R3)
Gε → min

H1
x,Σ(U ;R3)

G as ε → 0 .
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3.3. Taylor expansion of the energy. We can now carry on our analysis. We say that
θR ∈ [α−1, 1] is a minimizing sequence for the energy Etot

α,R defined in (32) if
Etot

α,R = Etot
α,R(θR) + o(1)

where o(1) → 0 as R → +∞.

Proposition 3.5. Let θR be a minimizing sequence for Etot
α,R. Then

i) Eel
α (θR) → 0 as R → +∞;

ii) θR → α−1 as R → +∞.

Proof. By Proposition 3.1 we have (for R large enough)

R3θ3RE
el
α (θR) = Eel

α,R(θR) ≤ Etot
α,R(θR) ≤ Etot

α,R(α
−1) + 1 = σR2

(
1− 1

α2

)
+ 1 ,

which proves i), since θR ≥ α−1 > 0.
Let us now prove ii). From i) we know that there exists a sequence {vR} in H1(Ω+

1 ;R3)
such that vR = θ−1

R x on S1 and

(39)
∫
Ω+

1

W (∇vR) dx → 0 as R → +∞ .

Since vR = θ−1
R x on S1, the proof is concluded once we show that vR → αx in

H1(Ω+
1 ;R3). This can be shown following the lines of the proof of Proposition 3.1; the

details are left to the reader.
□

If v ∈ H1(Ω+
1 ;R3) is such that v = θ−1 x on S1, then we write

v = αx+

(
1

θ
− α

)
u

where u ∈ H1(Ω+
1 ;R3) is such that u = x on S1. If we set Σ = S1 we can apply Theorem

3.4 to the functional Eel
α (θ) to obtain the following Corollary.

Corollary 3.6. If θ → α−1 then

(40) 1

(θ−1 − α)2
Eel

α (θ) −→ Cel,

where

Cel := min

{
1

2

∫
Ω+

1

A[e(u), e(u)] dx : u ∈ H1(Ω+
1 ;R3), u = x on S1

}
.

From Proposition 3.5 we know that if {θR} is a minimizing sequence, than θR → α−1.
We can then linearize the elastic energy along the sequence θR:

Eel
α,R(θR) = R3θ3R Eel

α (θR) = R3θ3R(θ
−1
R − α)

2 1

(θ−1
R − α)

2 E
el
α (θR)

(40)
= R3θ3R(θ

−1
R − α)

2
(Cel + εR) = kel

RR
3θR (αθR − 1)2,
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where εR → 0 as R → +∞ and kel
R := Cel + εR. Since (by Korn’s inequality) Cel > 0,

kel
R > 0 for R sufficiently large (and in fact for all R). We are thus led to define the family

of polynomials
(41) P tot

k,R(θ) := P el
k,R(θ) + Epl

R (θ),

where k,R > 0 are positive parameters and P el
k,R(θ) := kR3θ(αθ − 1)2. In this way we

can write
(42) Etot

α,R(θR) = P tot
kelR ,R(θR) .

By optimizing P tot
k,R with respect to θ, we deduce the asymptotic behavior of Etot

α,R. Set

Eel(R) :=
σ2

α3Cel
R and Epl(R) := σR2

(
1− 1

α2

)
− 2

σ2

α3Cel
R .

Theorem 3.7. Let θR be a minimizing sequence for Etot
α,R. We have

(43) θR =
1

α

(
1 +

σ

αCel

1

R
+ o

( 1

R

))
,

where o(t)
t

→ 0 as t → 0. Moreover,

(44) Eel
α,R(θR) = Eel(R) + o(R), Epl

R (θR) = Epl(R) + o(R),

where o(R)
R

→ 0 as R → +∞. In particular, we have

Etot
α,R = Eel(R) + Epl(R) + o(R).

Proof. First we show that for every k > 0 and R large enough there exists a unique
minimizer θk,R of P tot

k,R in [α−1, 1], with θk,R → α−1 as R → +∞. To this purpose, we
compute the derivative of P tot

k,R with respect to θ

(P tot
k,R)

′(θ) = R2
{
(3α2kR)θ2 − 2(2αkR + σ)θ + kR

}
.

One can check that it vanishes at

(45) θ±(R) =
1

3α

{
2 +

c

R
± f(R)

}
,

where

(46) f(R) :=

√
1 +

4c

R
+

c2

R2
and c :=

σ

αk
.

Since f(R) > 1 we have θ+(R) > α−1. Moreover, f(R) → 1, and thus θ+(R) → α−1, as
R → +∞. Hence θ+(R) ∈ [α−1, 1] for R large enough. Also note that θ−(R) < α−1 for R
sufficiently large. The second derivative is given by

(P tot
k,R)

′′(θ) = R2
{
(6α2kR)θ − 2(2αkR + σ)

}
,

which can be checked to be nonnegative at θ+(R)

(P tot
k,R)

′′(θ+(R)) = 2αkR3f(R) ≥ 0 .

This proves that θk,R := θ+(R) is the unique minimizer of P tot
k,R in [α−1, 1], for R sufficiently

large. Moreover from (45) we conclude that θk,R → α−1 as R → +∞.
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Evaluating P el
k,R and Epl

R at θ = θk,R we find

(47) P el
k,R(θk,R) =

2

27α4k2
{2σ3 + 2αkσ2(3 + f(R))R+(

2α2k2σf
)
R2 + α3k3(1− f(R))R3},

(48) Epl
R (θk,R) = σR2(1− θ2k,R).

In order to show (43) and (44) we perform a Taylor expansion in (46) and (45). Using√
1 + x = 1 + x/2− x2/8 + x3/16 + o(x3) we compute

(49) f(R) = 1 + 2
( σ

αk

) 1

R
− 3

2

(
σ2

α2k2

)
1

R2
+ 3

(
σ3

α3k3

)
1

R3
+ o

(
1

R3

)
.

Plugging (49) into (45) and recalling that kel
R → Cel as R → +∞, we deduce (43).

Using (49) we can expand the terms in (47) to get

2αkσ2(3 + f(R))R = (8αkσ2)R + 4σ3 + o (R)(50) (
2α2k2σf

)
R2 = (2α2k2σ)R2 + (4αkσ2)R− 3σ3 + o (R)(51)

α3k3(1− f(R))R3 = −(2α2k2σ)R2 +
3

2
(αkσ2)R− 3σ3 + o (R)(52)

Recalling that kel
R → Cel as R → +∞, plugging (50)-(52) into (47) yields the first equation

in (44). Next we compute

(53) θ2k,R =
1

9α2

{
5 + 4f(R) + 2c(4 + f(R))

1

R
+

2c

R2

}
.

Plugging (49) into (53) gives

(54) θ2k,R =
1

α2

{
1 +

2c

R
+ o

(
1

R3

)}
.

The second relation in (44) follows by inserting (54) into (48), using again kel
R → Cel as

R → +∞.
□

Remark 3.8. The analysis developed in this section can be applied to different crystal
configurations. For instance, consider two concentric wires Nint and Next. Specifically, the
external wire can be represented by (S2R \SR)× (0, hR) and the internal by SθR× (0, hR)
with θ ∈ [α−1, 1]. Here h > 0 is a fixed height and αI is the equilibrium of Nint, with
α > 1. The external wire is already in equilibrium. The admissible deformations of Nint

are maps v : Nint → R3 such that v = θ−1x on the lateral boundary of Nint, so that it
matches the internal lateral boundary of Next. The total energy is given by the sum of an
elastic term and a plastic term, the latter proportional to the reference surface mismatch
between the lateral boundaries of the nanowires:

(55) Etot(v, θ) =

∫
W (∇v) dx+ σhR2(1− θ) .
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If θ = 1 the two wires coincide and the energy is entirely elastic. If θ = α−1 then the
elastic energy has minimum zero and Etot is purely dislocation energy. If θ ∈ (α−1, 1)
then none of the two contributions is zero and we are in a mixed case. For such physical
system we can carry on the same analysis as before, up to very minor changes.

4. Conclusions and perspectives

In this paper we have proposed a simple continuous model for dislocations at semi-
coherent interfaces. Our analysis seems flexible enough to describe different interfaces
and crystalline configurations. Here we discuss the main achievements of this paper,
possible extensions to other physical systems, and future perspectives.

In the first part of the paper we have analyzed a line tension model for dislocations
at semi-coherent interfaces, in the context of nonlinear elasticity. Within this model, we
have shown that there exists a critical size of the crystal such that dislocations become
energetically more favorable than purely elastic deformations. More precisely, we have
shown that the energy induced by dislocations scales like the surface area of the interface,
while the purely elastic energy scales like the volume of the crystal. This is compatible with
the experimental observation that dislocations form periodic networks at the interface.
In fact, the proof of Proposition 1.2 is based on the fact that, if a net of dislocations is
optimal on an interface Sr of size r, than cutting and pasting such a geometry on S4r one
constructs a good periodic energy competitor for a larger interface. A more challenging
question is whether the optimal geometry of dislocations is periodic in the microscopic
scale b. Although we have not given a rigorous proof of this fact, we have shown an
explicit construction of a periodic array of dislocations spaced at distance b

α−1
, that is

optimal in the scaling of the energy.
Then, we have proposed a simpler and more specific continuous model for dislocations,

describing, to some extent, dislocations at grain boundaries, in heterostructured wires
and in epitaxial crystal growth. In such a model the area of the reference configuration
of the overlayer is a free parameter, while in the deformed configuration there is a perfect
match between the underlayer and the overlayer.

The variational formulation is very basic, depending only on three parameters: the
diameter of the underlayer, the misfit between the lattice parameters, and the free bound-
ary, described by a single parameter: the area gap between the reference underlayer and
overlayer, tuning the amount of dislocations at the interface.

The proposed variational model is rich enough to describe the size effects already dis-
cussed, and allows us to refine the analysis of the energy minimizers. Indeed, we have
show that, in the limit R → +∞, the surface energy induced by dislocations is predom-
inant (scaling like R2), while the volume elastic energy represents a lower order term
(scaling like R). Since the elastic energy is vanishing, we can perform a linearization:
The asymptotic behaviour of the total energy functional is explicit, depending only on
the material parameters in the energy functional, and on the linearized elastic tensor.
The only unknown parameter in our formulation is σ, which roughly speaking (multiplied
by b) represents the energy per unit dislocation length (while σ(α2 − 1) represents the
energy per unit area of the interface). We have proposed some explicit formula for σ,
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depending only on the elastic tensor and on a core energy parameter γch, describing the
core (chemical) energy per unit dislocation length (see (22)).

Summarizing, this paper proposes a basic variational model describing the competition
between the plastic energy spent at interfaces, and the corresponding release of bulk
energy. In this variational formulation, the size of the interface of the overlayer is a
free parameter. In this respect, our model fits into the class of so called free boundary
problems.

The proposed energy is built upon some heuristic arguments, supported by formal
mathematical derivations based on the semi-discrete theory of dislocations.

While the paper focuses on a specific configuration, the method seems flexible to be
extended to several crystalline structures and to different physical contexts, such as grain
boundaries, where the misfit between the crystal lattices are described by rotations rather
than dilations (see [13]), and epitaxial growth, where the total energy should be completed
by adding the surface energy induced by the exterior boundary of the overlayer (see [16]).
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