Numbers Sequences and Series

Revision Guide

Dr. Silvio Fanzon

6 Dec 2024

Table of contents

Re	vision Guide	3
	Recommended revision strategy	3 3
1	Preliminaries	4
•	1.1 Set Theory	-
	1.2 Eequivalence Relations	
	1.3 Order relations	6
	1.4 Induction	7
	1.5 Absolute value	8
2	Real Numbers	9
-	2.1 Fields	9
	2.2 Fields	9
	2.3 Ordered fields	10
	2.4 Supremum and infimum	11
	2.5 Axioms of Real Numbers	
	2.6 Inductive sets	
3	Properties of R	13
	3.1 Revisiting Sup and Inf	
	3.2 Cardinality	14
4	Complex Numbers	16
	4.1 The complex plane	17
	4.2 Polar coordinates	18
	4.3 Exponential form	19
	4.4 Fundamental Theorem of Algebra	20
	4.5 Solving polynomial equations	21
	4.6 Roots of unity	22
	4.7 Roots in $\mathbb C$	23
5	Sequences in R	24
5	5.1 Divergent sequences	-
	5.2 Bounded sequences	_
	5.3 Algebra of limits	
	5.4 Limit Tests	
	5.5 Monotone sequences	30
		30
6		
0	Sequences in C 6.1 Algebra of limits in C	32
	č	32
	6.2 Convergence to zero \ldots	33
		• •
	6.4 Convergence of real and imaginary part	35
7	Series	36
	7.1 Geometric series	38
	7.2 Algebra of Limits for Series	39
	7.3 Non-negative series	39
	7.4 General series	43
	7.5 Conditional convergence	44
Lie	ense	47
	Reuse	47
	Citation	

Revision Guide

Revision Guide for the Exam of the module Numbers Sequences and Series 400297 2024/25 at the University of Hull. If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-NSS-Notes

Recommended revision strategy

Make sure you are very comfortable with:

- 1. The Definitions, Theorems, Proofs, and Examples contained in this **Revision Guide**
- 2. The Tutorial and Homework questions
- 3. The 2023/24 Exam Paper questions.
- 4. The Checklist below

Checklist

You should be comfortable with the following topics/taks:

Preliminaries

- Prove that $\sqrt{p} \notin \mathbb{Q}$ for *p* a prime number
- Compute infinite union / intersection
- Show that a binary relation is of equivalence / order / total order
- Characterize the equivalence classes of a given equivalence relation
- Prove statements by induction (such as Bernoulli's inequality)
- Compute the absolute value of a real number
- Understand how to apply triangle inequality

Real Numbers

- Determine if a given set with binary operation is a field
- Prove uniqueness of neutral element / inverse
- Computing Sup / Max and Inf / Min of a given set
- Prove that a given set is inductive
- Remember that \mathbb{N} , \mathbb{Z} are not fields, \mathbb{Q} is an ordered field, \mathbb{R} is a complete ordered field
- State the axiom of completeness

Properties of \mathbb{R}

- Know how to use the Archimedean property
- Characterization of sup / inf in terms of ε
- Sup / Inf and Max / Min of intervals
- Determine if a given set is finite / countable / uncountable
- Remember that \mathbb{N} , \mathbb{Z} , \mathbb{Q} are countable
- Remember that \mathbb{R} and the irrationals are uncountable

Complex Numbers

- Sum, multiplication, division, conjugate of complex numbers
- Computing the inverse of a complex number
- · Find modulus and argument of a complex number

- · Compute Cartesian, Trigonometric and Exponential form of a complex number
- · Complex exponential and its properties
- Computing powers of complex numbers
- Solving degree 2 polynomial equations in C
- Long division of polynomials
- Solving higher degree polynomial equations in C
- Finding the roots of unity
- Finding the n-th roots of a complex number

Sequences in \mathbb{R}

- Use the definition of convergence to prove convergence of a given real sequence
- · Prove that a given sequence is bounded
- Remember that convergent sequences are bounded
- · Use the Algebra of Limits to prove convergence / divergence of a given sequence
- Use the Squeeze Theorem to prove convergence of a given sequence
- Use the Geometric Sequence Test to prove convergence / divergence of a given sequence
- Use the Ratio Test to prove convergence / divergence of a given sequence
- Prove that a sequence is monotone increasing / decreasing
- Know the statement of the Monotone Convergence Theorem
- Memorize the 4 Special Limits, and know how to apply them to study convergence / divergence of a given sequence

Sequences in \mathbb{C}

- Use the definition of convergence to prove convergence of a given complex sequence
- Prove that a complex sequence is bounded
- Use the Algebra of Limits to prove convergence / divergence of a given sequence
- Use the Geometric Sequence Test / Ratio Test to prove convergence / divergence of a given complex sequence
- · Determine convergence of real and imaginary part of a given complex sequence

Series

- Compute the partial sums of a given series
- Compute the sum of a telescopic series
- Apply the Necessary Condition for Convergence to prove that a given series is divergent
- Use the Geometric Series test to determine convergence / divergence of a given geometric series
- · Compute the sum of a given (convergent) geometric series
- · Determine convergence / divergence of non-negative series by using the Cauchy Condensation Test, Comparison Test, Limit Comparison Test and Ratio Test
- Study convergence / divergence of p-series
- · Prove that a given series converges absolutely
- Prove that a complex series converges / diverges by using the Ratio Test for general series
- Prove that a series converges conditionally
- Use the Dirichlet / Alternate Convergence / Abel's tests to study the convergence of a given series

1 Preliminaries

Theorem 1.1

The number $\sqrt{2}$ does not belong to Q.

Proof

Aassume by contradiction that

(1.1)

1. Therefore, there exist $m \in \mathbb{Z}$, $n \in \mathbb{N}$, $n \neq 0$, such that

$$\frac{m}{n} = \sqrt{2} \,.$$

 $\sqrt{2} \in \mathbb{O}$.

- 2. Withouth loss of generality, we can assume that *m* and *n* have no common factors.
- 3. Square the equation to get

$$\frac{m^2}{n^2} = 2 \quad \Longrightarrow \quad m^2 = 2n^2 \,. \tag{1.2}$$

Therefore the integer m^2 is an even number.

4. Since m^2 is an even number, it follows that also *m* is an even number. Then there exists $p \in \mathbb{N}$ such that

$$m = 2p. \tag{1.3}$$

5. Substitute (1.3) in (1.2) to get

$$m^2 = 2n^2 \implies (2p)^2 = 2n^2 \implies 4p^2 = 2n^2$$

Dividing both terms by 2, we obtain

$$n^2 = 2p^2 \,. \tag{1.4}$$

Now, observe that:

- Equation (1.4) says that n^2 is even. The argument in Step 4 guarantees that also *n* is even.
- Therefore *n* and *m* are both even, meaning they have 2 as common factor.
- But Step 2 says that *n* and *m* have no common factors. **Contradiction**

The **contradiction** stems from assumption (1.1). Thus, (1.1) is false, ending the proof.

1.1 Set Theory

Definition 1.2

Let A be a set.

- 1. We write $x \in A$ if the element x belongs to the set A.
- 2. We write $x \notin A$ if the element *x* does not belong to the set *A*.

Definition 1.3

Given two sets *A* and *B*, we say that *A* is **contained** in *B*, in symbols

 $A \subseteq B$,

if all the elements of A are also contained in B. Two sets A and B are **equal**, in symbols

A=B,

if they contain the same elements.

Remark 1.4

The inclusion $A \subseteq B$ is equivalent to the implication:

$$x \in A \implies x \in B$$

for all $x \in A$. The symbol \implies reads **implies**, and denotes the fact that the first condition implies the second.

Definition 1.5: Union and Intersection

For two sets A and B we define their **union** as the set

$$A \cup B := \{x : x \in A \text{ or } x \in B\}.$$

The **intersection** of *A* and *B* is defined by

$$A \cap B := \{x : x \in A \text{ and } x \in B\}.$$

We denote the **empty set** by the symbol \emptyset . Two sets are **disjoint** if

 $A \cap B = \emptyset.$

Proposition 1.6

Let A and B be sets. Then

Α

$$= B \iff A \subseteq B \text{ and } B \subseteq A.$$

Definition 1.7: Infinite union and intersection

Let Ω be a set, and $A_n \subseteq \Omega$ a family of subsets, where $n \in \mathbb{N}$.

1. The **infinte union** of the A_n is the set

 $\bigcup_{n \in \mathbb{N}} A_n := \{ x \in \Omega : x \in A_n \text{ for at least one } n \in \mathbb{N} \}.$

2. The **infinte intersection** of the A_n is the set

$$\bigcap_{n \in \mathbb{N}} A_n := \{ x \in \Omega : x \in A_n \text{ for all } n \in \mathbb{N} \}.$$

Example 1.8

Question. Define $\Omega := \mathbb{N}$ and a family A_n by

$$A_n = \{n, n+1, n+2, n+3, ...\}, \quad n \in \mathbb{N}.$$

1. Prove that

$$\bigcup_{n \in \mathbb{N}} A_n = \mathbb{N} \,. \tag{1.5}$$

2. Prove that

$$\bigcap_{n \in \mathbb{N}} A_n = \emptyset \,. \tag{1.6}$$

Solution.

1. Assume that $m \in \bigcup_n A_n$. Then $m \in A_n$ for at least one $n \in \mathbb{N}$. Since $A_n \subseteq \mathbb{N}$, we conclude that $m \in \mathbb{N}$. This shows

$$\bigcup_{n\in\mathbb{N}}A_n\subseteq\mathbb{N}$$

Conversely, suppose that $m \in \mathbb{N}$. By definition $m \in A_m$. Hence there exists at least one index n, n = m in this case, such that $m \in A_n$. Then by definition $m \in \bigcup_{n \in \mathbb{N}} A_n$, showing that

$$\mathbb{N}\subseteq \bigcup_{n\in\mathbb{N}}A_n$$

This proves (1.5).

2. Suppose that (1.6) is false, i.e.,

$$\bigcap_{n\in\mathbb{N}}A_n\neq\emptyset$$

This means there exists some $m \in \mathbb{N}$ such that $m \in \bigcap_{n \in \mathbb{N}} A_n$. Hence, by definition, $m \in A_n$ for all $n \in \mathbb{N}$. However $m \notin A_{m+1}$, yielding a contradiction. Thus (1.6) holds.

Definition 1.9: Complement

Let $A, B \subseteq \Omega$. The **complement** of *A* with respect to *B* is the set of elements of *B* which do not belong to *A*, that is

 $B \setminus A := \{x \in \Omega : x \in B \text{ and } x \notin A\}.$

In particular, the complement of *A* with respect to Ω is denoted by

 $A^c := \Omega \setminus A := \{ x \in \Omega : x \notin A \}.$

Example 1.10

Question. Suppose $A, B \subseteq \Omega$. Prove that

$$A \subseteq B \iff B^c \subseteq A^c$$

Solution. Let us prove the above claim:

• First implication \implies :

Suppose that $A \subseteq B$. We need to show that $B^c \subseteq A^c$. Hence, assume $x \in B^c$. By definition this means that $x \notin B$. Now notice that we cannot have that $x \in A$. Indeed, assume $x \in A$. By assumption we have $A \subseteq B$, hence $x \in B$. But we had assumed $x \in B$, contradiction. Therefore it must be that $x \notin A$. Thus $B^c \subseteq A^c$.

• Second implication ← : Note that, for any set,

$$(A^c)^c = A.$$

Hence, by the first implication,

$$B^c \subseteq A^c \implies (A^c)^c \subseteq (B^c)^c \implies A \subseteq B.$$

Proposition 1.11: De Morgan's Laws

Suppose $A, B \subseteq \Omega$. Then

$$(A \cap B)^c = A^c \cup B^c$$
, $(A \cup B)^c = A^c \cap B^c$.

Definition 1.12

Let Ω be a set. The **power set** of Ω is

$$\mathscr{P}(\Omega) := \{A : A \subseteq \Omega\}.$$

Example 1.13

Question. Compute the power set of

$$\Omega = \{x, y, z\}$$

Solution. $\mathscr{P}(\Omega)$ has $2^3 = 8$, and

 $\begin{aligned} \mathscr{P}(\Omega) &= \{ \varnothing, \{x\}, \{y\}, \{z\}, \{x, y\} \\ & \{x, z\}, \{y, z\}, \{x, y, z\} \}. \end{aligned}$

Definition 1.14: Product of sets

Let A, B be sets. The **product** of A and B is the set of pairs

 $A \times B \, := \, \{(a,b) \, : \, a \in A, \, b \in B\} \, .$

1.2 Eequivalence Relations

Definition 1.15: Binary relation

Suppose A is a set. A **binary relation** R on A is a subset

$$R \subseteq A \times A$$

Definition 1.16: Equivalence relation

A binary relation R is called an **equivalence relation** if it satisfies the following properties:

1. **Reflexive**: For each $x \in A$ one has

 $(x,x)\in R$,

2. Symmetric: We have

$$(x, y) \in R \implies (y, x) \in R$$

3. Transitive: We have

$$(x, y) \in R, (y, z) \in R \implies (x, z) \in R$$

If $(x, y) \in R$ we write

 $x \sim y$

and we say that *x* and *y* are **equivalent**.

Definition 1.17: Equivalence classes

Suppose *R* is an **equivalence relation** on *A*. The **equivalence class** of an element $x \in A$ is the set

$$[x] := \{ y \in A : y \sim x \}.$$

The set of equivalence classes of elements of A with respect to the equivalence relation R is denoted by

 $A/R := A/\sim := \{ [x] : x \in A \}.$

Proposition 1.18: Well-posedness of Definition 1.17

Let \sim be an equivalence relation on *A*. Then

- 1. For each $x \in A$ we have $[x] \neq \emptyset$.
- 2. For all $x, y \in A$ it holds

 $x \sim y \quad \Longleftrightarrow \quad [x] = [y].$

Example 1.19: Equality is an equivalence relation

Question. The equality defines a **binary relation** on $\mathbb{Q} \times \mathbb{Q}$, via

 $R := \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : x = y\}.$

- 1. Prove that *R* is an **equivalence relation**.
- 2. Prove that $[x] = \{x\}$ and compute \mathbb{Q}/R .

Solution.

- 1. We need to check that *R* satisfies the 3 properties of an equivalence relation:
 - Reflexive: It holds, since x = x for all $x \in \mathbb{Q}$,
 - Symmetric: Again x = y if and only if y = x,
 - Transitive: If x = y and y = z then x = z.

Therefore, *R* is an equivalence relation.

2. The class of equivalence of $x \in \mathbb{Q}$ is given by

 $[x] = \{x\},\$

that is, this relation is quite trivial, given that each element of \mathbb{Q} can only be related to itself. The quotient space is then

 $\mathbb{Q}/R = \{[x] : x \in \mathbb{Q}\} = \{\{x\} : x \in \mathbb{Q}\}.$

Example 1.20

Question. Let *R* be the binary relation on the set \mathbb{Q} of rational numbers defined by

 $x \sim y \iff x - y \in \mathbb{Z}$.

- 1. Prove that R is an equivalence relation on \mathbb{Q} .
- 2. Compute [x] for each $x \in \mathbb{Q}$.
- 3. Compute \mathbb{Q}/R .

Solution.

- 1. We have:
 - Reflexive: Let $x \in \mathbb{Q}$. Then x x = 0 and $0 \in \mathbb{Z}$. Thus $x \sim x$.
 - Symmetric: If $x \sim y$ then $x y \in \mathbb{Z}$. But then also

$$-(x-y) = y - x \in \mathbb{Z}$$

and so $y \sim x$.

• Transitive: Suppose $x \sim y$ and $y \sim z$. Then

$$x - y \in \mathbb{Z}$$
 and $y - z \in \mathbb{Z}$.

Thus, we have

$$x - z = (x - y) + (y - z) \in \mathbb{Z}$$

showing that $x \sim z$.

Thus, we have shown that R is an equivalence relation on \mathbb{Q} .

2. Note that

 $x \sim y \quad \iff \quad \exists n \in \mathbb{Z} \text{ s.t. } y = x + n.$

Therefore the equivalence classes with respect to \sim are

$$[x] = \{x + n : n \in \mathbb{Z}\}.$$

Each equivalence class has exactly one element in $[0, 1) \cap \mathbb{Q}$, meaning that:

 $\forall x \in \mathbb{Q}, \exists q \in \mathbb{Q} \text{ s.t. } 0 \leq q < 1 \text{ and } q \in [x].$ (1.7)

Indeed: take $x \in \mathbb{Q}$ arbitrary. Then $x \in [n, n+1)$ for some $n \in \mathbb{Z}$. Setting q := x - n we obtain that

$$x=q+n, \qquad q\in [0,1),$$

proving (1.7). In particular (1.7) implies that for each $x \in \mathbb{Q}$ there exists $q \in [0, 1) \cap \mathbb{Q}$ such that

- [x] = [q].
- 3. From Point 2 we conclude that

$$\mathbb{Q}/R = \{ [x] : x \in \mathbb{Q} \} = \{ q \in \mathbb{Q} : 0 \le q < 1 \}.$$

1.3 Order relations

Definition 1.21: Partial order

A binary relation *R* on *A* is called a **partial order** if it satisfies the following properties:

1. **Reflexive**: For each $x \in A$ one has

2. Antisymmetric: We have

 $(x, y) \in R$ and $(y, x) \in R \implies x = y$

3. Transitive: We have

 $(x, y) \in R, (y, z) \in R \implies (x, z) \in R$

Definition 1.22: Total order

A binary relation *R* on *A* is called a **total order relation** if it satisfies the following properties:

- 1. **Partial order**: *R* is a partial order on *A*.
- 2. **Total**: For each $x, y \in A$ we have

 $(x, y) \in R$ or $(y, x) \in R$.

Example 1.23: Set inclusion is a partial order but not total order

Question. Let Ω be a non-empty set and consider its **power set**

$$\mathscr{P}(\Omega) = \{A : A \subseteq \Omega\}.$$

The inclusion defines **binary relation** on $\mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$, via

$$R := \{ (A, B) \in \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) : A \subseteq B \}.$$

- 1. Prove that *R* is an **order relation**.
- 2. Prove that *R* is **not a total order**.

Solution.

- 1. Check that *R* is a partial order relation on $\mathscr{P}(\Omega)$:
 - Reflexive: It holds, since $A \subseteq A$ for all $A \in \mathcal{P}(\Omega)$.
 - Antisymmetric: If $A \subseteq B$ and $B \subseteq A$, then A = B.
 - Transitive: If $A \subseteq B$ and $B \subseteq C$, then, by definition of inclusion, $A \subseteq C$.
- 2. In general, *R* is **not** a total order. For example consider

 $\Omega = \{x, y\}.$

Thus

$$\mathscr{P}(\Omega) = \{ \emptyset, \{x\}, \{y\}, \{x, y\} \}$$

If we pick $A = \{x\}$ and $B = \{y\}$ then $A \cap B = \emptyset$, meaning that

 $A \not\subseteq B$, $B \not\subseteq A$.

This shows R is not a total order.

Example 1.24: Inequality is a total order

Question. Consider the binary relation

$$R := \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : x \le y\}$$

Prove that *R* is a **total order relation**. **Solution.** We need to check that:

- 1. Reflexive: It holds, since $x \le x$ for all $x \in \mathbb{Q}$,
- 2. Antisymmetric: If $x \le y$ and $y \le x$ then x = y.

3. Transitive: If $x \le y$ and $y \le z$ then $x \le z$.

Finally, we halso have that *R* is a **total order** on \mathbb{Q} , since for all $x, y \in \mathbb{Q}$ we have

 $x \le y$ or $y \le x$.

1.4 Induction

Axiom 1.25: Principle of Inducion

Let $\alpha(n)$ be a statement which depends on $n \in \mathbb{N}$. Suppose that

- 1. $\alpha(1)$ is true, and
- 2. Whenever $\alpha(n)$ is true, then $\alpha(n + 1)$ is true.

Then $\alpha(n)$ is true for all $n \in \mathbb{N}$.

Example 1.26: Formula for summing first *n* natural numbers

Question. Prove by induction that the following formula holds for all $n \in \mathbb{N}$:

$$1 + 2 + 3 + \dots + (n - 1) + n = \frac{n(n + 1)}{2}.$$
 (1.8)

Solution. Define

$$S(n) = 1 + 2 + \dots + n$$

This way the formula at (1.8) is equivalent to

$$S(n) = \frac{n(n+1)}{2}, \quad \forall n \in \mathbb{N}$$

- 1. It is immediate to check that (1.8) holds for n = 1.
- 2. Suppose (1.8) holds for n = k. Then

$$S(k + 1) = 1 + \dots + k + (k + 1)$$

= $S(k) + (k + 1)$
= $\frac{k(k + 1)}{2} + (k + 1)$
= $\frac{k(k + 1) + 2(k + 1)}{2}$
= $\frac{(k + 1)(k + 2)}{2}$

where in the first equality we used that (1.8) holds for n = k. We have proven that

$$S(k+1) = \frac{(k+1)(k+2)}{2}$$
.

The RHS in the above expression is exactly the RHS of (1.8) computed at n = k + 1. Therefore, we have shown that formula (1.8) holds for n = k + 1.

By the Principle of Induction, we conclude that (1.8) holds for all $n \in \mathbb{N}$.

Example 1.27: Bernoulli's inequality

Question. Let $x \in \mathbb{R}$ with x > -1. Bernoulli's inequality states that

$$(1+x)^n \ge 1+nx, \quad \forall n \in \mathbb{N}.$$
 (1.9)

Prove Bernoulli's inequality by induction.

Solution. Let $x \in \mathbb{R}, x > -1$. We prove the statement by induction:

- Base case: (1.9) holds with equality when n = 1.
- Induction hypothesis: Let $k \in \mathbb{N}$ and suppose that (1.9) holds for n = k, i.e.,

$$(1+x)^{\kappa} \ge 1+kx.$$

Then

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

$$\ge (1+kx)(1+x)$$

$$= 1+kx+x+kx^2$$

$$\ge 1+(k+1)x,$$

where we used that $kx^2 \ge 0$. Then (1.9) holds for n = k + 1.

By induction we conclude (1.9).

1.5 Absolute value

Definition 1.28: Absolute value

Let $x \in \mathbb{R}$. The **absolute value** of x is

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Proposition 1.29: Properties of absolute value

For all $x \in \mathbb{R}$ they hold:

1. $|x| \ge 0$. 2. |x| = 0 if and only if x = 0. 3. |x| = |-x|.

Lemma 1.30

Let $x, y \in \mathbb{R}$. Then

$$|x| \le y \iff -y \le x \le y$$

Corollary 1.31

Let $x, y \in \mathbb{R}$. Then

$$|x| < y \iff -y < x < y$$

Theorem 1.32: Triangle inequality

For every $x, y \in \mathbb{R}$ we have

 $||x| - |y|| \le |x + y| \le |x| + |y|.$

Proposition 1.33

For any $x, y \in \mathbb{R}$ it holds

$$||x| - |y|| \le |x - y| \le |x| + |y|.$$
(1.11)

Moreover for any $x, y, z \in \mathbb{R}$ it holds

$$|x - y| \le |x - z| + |z - y|$$
.

(1.10)

2 Real Numbers

2.1 Fields

Definition 2.1: Binary operation

A binary operation on a set K is a function

 $\circ : K \times K \to K$

which maps the ordered pair (x, y) into $x \circ y$.

Definition 2.2: Properties of binary operations

Let *K* be a set and \circ : $K \times K \to K$ be a binary operation on *K*. We say that:

1. • is commutative if

$$x \circ y = y \circ x, \quad \forall x, y \in K$$

2. • is associative if

 $(x \circ y) \circ z = x \circ (y \circ z), \quad \forall x, y, z \in K$

3. An element $e \in K$ is called **neutral element** of \circ if

 $x \circ e = e \circ x = x$, $\forall x \in K$

4. Let *e* be a neutral element of \circ and let $x \in K$. An element $y \in K$ is called an **inverse** of *x* with respect to \circ if

 $x \circ y = y \circ x = e.$

Example 2.3

Question. Let $K = \{0, 1\}$ be a set with binary operation \circ defined by the table

$$\begin{array}{c|cccc}
\circ & 0 & 1 \\
\hline
0 & 1 & 1 \\
1 & 0 & 0
\end{array}$$

1. Is • commutative? Justify your answer.

2. Is • associative? Justify your answer.

Solution.

1. The operation • is not commutative, since

 $0 \circ 1 = 1 \neq 0 = 1 \circ 0.$

2. The operation • is not associative, since

$$(0\circ 1)\circ 1=1\circ 1=0$$

while

 $0\circ(1\circ 1)=0\circ 0=1\,,$

so that

$(0 \circ 1) \circ 1 \neq 0 \circ (1 \circ 1).$

2.2 Fields

Definition 2.4: Field

Let *K* be a set with binary operations of **addition**

$$+ : K \times K \to K, \quad (x, y) \mapsto x + y$$

and multiplication

$$\cdot : K \times K \to K, \quad (x, y) \mapsto x \cdot y = xy.$$

We call the triple $(K, +, \cdot)$ a **field** if:

- 1. The addition + satisfies: $\forall x, y, z \in K$
 - (A1) Commutativity and Associativity:

$$x + y = y + x$$

$$(x+y) + z = x + (y+z)$$

• (A2) Additive Identity: There exists a neutral element in *K* for +, which we call 0. It holds:

$$x + 0 = 0 + x = x$$

• (A₃) **Additive Inverse**: There exists an **inverse** of *x* with respect to +. We call this element the **additive inverse** of *x* and denote it by -x. It holds

$$x + (-x) = (-x) + x = 0$$

- 2. The multiplication \cdot satisifes: $\forall x, y, z \in K$
 - (M1) Commutativity and Associativity:

$$x \cdot y = y \cdot x$$

 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

• (M₂) **Multiplicative Identity**: There exists a **neutral element** in *K* for ·, which we call 1. It holds:

$$x \cdot 1 = 1 \cdot x = x$$

• (M₃) **Multiplicative Inverse**: If $x \neq 0$ there exists an **inverse** of *x* with respect to \cdot . We call this element the **multiplicative inverse** of *x* and denote it by x^{-1} . It holds

$$x \cdot x^{-1} = x^{-1} \cdot x = 1$$

3. The operations + and \cdot are related by

• (AM) **Distributive Property**: $\forall x, y, z \in K$

 $x \cdot (y+z) = (x \cdot y) + (y \cdot z).$

Theorem 2.5

Let K with + and \cdot defined by

+	0	1			0	
	0		_	0	0	0
1	1	0		1	0	1

Then $(K, +, \cdot)$ is a field.

Definition 2.6: Subtraction and division

Let $(K, +, \cdot)$ be a field. We define:

1. **Subtraction** as the operation – defined by

 $x - y := x + (-y), \quad \forall x, y \in K,$

where -y is the additive inverse of y.

2. Division as the operation / defined by

 $x/y := x \cdot y^{-1}, \quad \forall x, y \in K, \ y \neq 0,$

where y^{-1} is the multiplicative inverse of *y*.

Proposition 2.7: Uniqueness of neutral elements and inverses

Let $(K, +, \cdot)$ be a field. Then

- 1. There is a unique element in *K* with the property of 0.
- 2. There is a unique element in K with the property of 1.
- 3. For all $x \in K$ there is a unique additive inverse -x.
- 4. For all $x \in K$, $x \neq 0$, there is a unique multiplicative inverse x^{-1} .

Proof

1. Suppose that $0 \in K$ and $\tilde{0} \in K$ are both neutral element of +, that is, they both satisfy (A2). Then

 $0 + \tilde{0} = 0$

since $\tilde{0}$ is a neutral element for +. Moreover

$$\tilde{0} + 0 = \tilde{0}$$

since 0 is a neutral element for +. By commutativity of +, see property (A1), we have

 $0 = 0 + \tilde{0} = \tilde{0} + 0 = \tilde{0}$,

showing that $0 = \tilde{0}$. Hence the neutral element for + is unique. 2. Exercise.

3. Let $x \in K$ and suppose that $y, \tilde{y} \in K$ are both additive inverses of x, that is, they both satisfy (A3). Therefore

x + y = 0

since y is an additive inverse of x and

 $x+\tilde{y}=0$

since \tilde{y} is an additive inverse of *x*. Therefore we can use commutativity and associativity and of +, see property (A1), and

the fact that 0 is the neutral element of +, to infer

 $y = y + 0 = y + (x + \tilde{y})$ = $(y + x) + \tilde{y} = (x + y) + \tilde{y}$ = $0 + \tilde{y} = \tilde{y}$,

concluding that $y = \tilde{y}$. Thus there is a unique additive inverse of *x*, and

 $y = \tilde{y} = -x$,

with -x the element from property (A₃). 4. Exercise.

Theorem 2.8

Consider the sets $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ with the usual operations + and $\cdot.$ We have:

- $(\mathbb{N}, +, \cdot)$ is not a field.
- $(\mathbb{Z}, +, \cdot)$ is not a field.
- $(\mathbb{Q}, +, \cdot)$ is a field.

2.3 Ordered fields

Definition 2.9

Let *K* be a set with binary operations + and \cdot , and with an order relation \leq . We call $(K, +, \cdot, \leq)$ an **ordered field** if:

- 1. $(K, +, \cdot)$ is a field
- 2. There \leq is of **total order** on K: $\forall x, y, z \in K$
 - (O1) Reflexivity:

$$x \le x$$

• (O₂) Antisymmetry:

 $x \le y$ and $y \le x \implies x = y$

• (O₃) Transitivity:

 $x \le y$ and $y \le z \implies x = z$

• (O₄) Total order:

 $x \le y$ or $y \le x$

- 3. The operations + and \cdot , and the total order \leq , are related by the following properties: $\forall x, y, z \in K$
 - (AM) **Distributive**: Relates addition and multiplication via

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

• (AO) Relates addition and order with the requirement:

$$x \le y \implies x+z \le y+z$$

• (MO) Relates multiplication and order with the requirement:

 $x \ge 0, \ y \ge 0 \implies x \cdot y \ge 0$

Theorem 2.10

 $(\mathbb{Q}, +, \cdot, \leq)$ is an **ordered field**.

2.4 Supremum and infimum

In the following we assume that $(K, +, \cdot, \leq)$ is an ordered field.

Definition 2.11: Upper bound and bounded above

Let $A \subseteq K$:

1. We say that $b \in K$ is an **upper bound** for A if

 $a \leq b$, $\forall a \in A$.

2. We say that A is **bounded above** if there exists and upper bound $b \in K$ for A.

Definition 2.12: Supremum

Let $A \subseteq K$. A number $s \in K$ is called **least upper bound** or **supremum** of *A* if:

1. *s* is an upper bound for *A*,

2. *s* is the smallest upper bound of *A*, that is,

If $b \in K$ is upper bound for A then $s \leq b$.

If it exists, the supremum is denoted by

 $s := \sup A$.

Remark 2.13

Note that if a set $A \subseteq K$ in **NOT** bounded above, then the supremum does not exist, as there are no upper bounds of *A*.

Proposition 2.14: Uniqueness of the supremum

Let $A \subseteq K$. If sup *A* exists, then it is unique.

Definition 2.15: Maximum

Let $A \subseteq K$. A number $M \in K$ is called the **maximum** of A if:

 $M \in A$ and $a \leq M$, $\forall a \in A$.

If it exists, we denote the maximum by

 $M = \max A$.

Proposition 2.16: Relationship between Max and Sup

Let $A \subseteq K$. If the maximum of A exists, then also the supremum exists, and

 $\sup A = \max A.$

Definition 2.17: Lower bound, bounded below, infimum, minimum

Let $A \subseteq K$:

1. We say that $l \in K$ is a **lower bound** for A if

 $l \leq a$, $\forall a \in A$.

- 2. We say that A is **bounded below** if there exists a lower bound $l \in K$ for A.
- 3. We say that $i \in K$ is the **greatest lower bound** or **infimum** of A if:
 - *i* is a lower bound for *A*,
 - *i* is the largest lower bound of *A*, that is,

If $l \in K$ is a lower bound for A then $l \leq i$.

If it exists, the infimum is denoted by

 $i = \inf A$.

4. We say that $m \in K$ is the **minimum** of A if:

 $m \in A$ and $m \leq a, \forall a \in A$.

If it exists, we denote the minimum by

 $m = \min A$.

Proposition 2.18

Let $A \subseteq K$:

- 1. If inf *A* exists, then it is unique.
- 2. If the minimum of A exists, then also the infimum exists, and

 $\inf A = \min A$.

Proposition 2.19

Let $A \subseteq K$. If inf A and sup A exist, then

 $\inf A \le a \le \sup A, \quad \forall \, a \in A.$

Proposition 2.20: Relationship between sup and inf

Let $A \subseteq K$. Define

$$-A := \{-a : a \in A\}.$$

They hold

1. If $\sup A$ exists, then $\inf A$ exists and

 $\inf(-A) = -\sup A.$

2. If $\inf A$ exists, then $\sup A$ exists and

 $\sup(-A) = -\inf A.$

2.5 Axioms of Real Numbers

Definition 2.21: Completeness

Let $(K, +, \cdot, \leq)$ be an ordered field. We say that *K* is **complete** if the following property holds:

• (AC) For every $A \subseteq K$ non-empty and bounded above

 $\sup A \in K$.

Theorem 2.22

 \mathbbm{Q} is not complete. In particular, there exists a set $A\subseteq \mathbbm{Q}$ such that

- *A* is non-empty,
- A is bounded above,
- $\sup A$ does not exist in \mathbb{Q} .

One of such sets is, for example,

 $A = \{q \in \mathbb{Q} \ : \ q \ge 0 \,, \ q^2 < 2 \}.$

Proposition 2.23

Let $(K, +, \cdot, \leq)$ be a complete ordered field. Suppose that $A \subseteq K$ is non-empty and bounded below. Then

 $\inf A\in K\,.$

Definition 2.24: System of Real Numbers \mathbb{R}

A system of Real Numbers is a set \mathbb{R} with two operations + and \cdot , and a total order relation \leq , such that

- $(\mathbb{R}, +, \cdot, \leq)$ is an ordered field
- ${\mathbb R}$ sastisfies the Axiom of Completeness

2.6 Inductive sets

Definition 2.25: Inductive set

Let $S \subseteq \mathbb{R}$. We say that *S* is an inductive set if they are satisfied:

- $1 \in S$,
- If $x \in S$, then $(x + 1) \in S$.

Example 2.26

Question. Prove the following:

- 1. \mathbb{R} is an inductive set.
- 2. The set $A = \{0, 1\}$ is not an inductive set.

Solution.

- We have that 1 ∈ ℝ by axiom (M2). Moreover (x + 1) ∈ ℝ for every x ∈ ℝ, by definition of sum +.
- 2. We have $1 \in A$, but $(1 + 1) \notin A$, since $1 + 1 \neq 0$.

Proposition 2.27

Let \mathcal{M} be a collection of inductive subsets of \mathbb{R} . Then

$$S := \bigcap_{M \in \mathscr{M}} M$$

is an inductive subset of $\mathbb R.$

Definition 2.28: Set of Natural Numbers

Let $\mathcal M$ be the collection of **all** inductive subsets of $\mathbb R$. We define the set of natural numbers in $\mathbb R$ as

$$\mathbb{N} \, := \bigcap_{M \in \mathscr{M}} \, M$$

Proposition 2.29: $\mathbb{N}_{\mathbb{R}}$ is the smallest inductive subset of \mathbb{R}

Let $C\subseteq \mathbb{R}$ be an inductive subset. Then

 $\mathbb{N}\subseteq C$.

In other words, $\mathbb N$ is the smallest inductive set in $\mathbb R.$

Theorem 2.30

Let $x \in \mathbb{N}$. Then

 $x \ge 1$.

3 Properties of **R**

Theorem 3.1: Archimedean Property

Let $x \in \mathbb{R}$ be given. Then:

1. There exists $n \in \mathbb{N}$ such that

n > x.

2. Suppose in addition that x > 0. There exists $n \in \mathbb{N}$ such that

 $\frac{1}{n} < x \, .$

Theorem 3.2: Archimedean Property (Alternative formulation)

Let $x, y \in \mathbb{R}$, with 0 < x < y. There exists $n \in \mathbb{N}$ such that

nx > y.

Theorem 3.3: Nested Interval Property

For each $n \in \mathbb{N}$ assume given a closed interval

$$I_n := [a_n, b_n] = \{ x \in \mathbb{R} : a_n \le x \le b_n \}.$$

Suppose that the intervals are nested, that is,

$$I_n \supset I_{n+1}\,, \quad \forall \, n \in \mathbb{N}\,.$$

Then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$
(3.1)

Example 3.4

Question. Consider the open intervals

$$I_n := \left(0, \frac{1}{n}\right)$$

These are clearly nested

$$I_n \supset I_{n+1}$$
, $\forall n \in \mathbb{N}$.

Prove that

$$\bigcap_{n=1}^{\infty} I_n = \emptyset.$$
(3.2)

Solution. Suppose by contradiction that the intersection is nonempty. Then there exists $x \in \mathbb{N}$ such that

 $x \in I_n$, $\forall n \in \mathbb{N}$.

By definition of I_n the above reads

$$0 < x < \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$
(3.3)

Since x > 0, by the Archimedean Property in Theorem 3.1 Point 2, there exists $n_0 \in \mathbb{N}$ such that

$$0 < \frac{1}{n_0} < x$$

The above contradicts (3.3). Therefore (3.2) holds.

3.1 Revisiting Sup and Inf

Proposition 3.5: Characterization of Supremum

Let $A \subseteq \mathbb{R}$ be a non-empty set. Suppose that $s \in \mathbb{R}$ is an upper bound for *A*. They are equivalent:

s = sup A
 For every ε > 0 there exists x ∈ A such that

 $s - \varepsilon < x$.

Proposition 3.6: Characterization of Infimum

Let $A \subseteq \mathbb{R}$ be a non-empty set. Suppose that $i \in \mathbb{R}$ is a lower bound for *A*. They are equivalent:

i = inf *A* For every ε ∈ ℝ, with ε > 0, there exists x ∈ A such that

$$x < i + \varepsilon$$
.

Proposition 3.7

Let $a, b \in \mathbb{R}$ with a < b. Let

$$A := (a, b) = \{ x \in \mathbb{R} : a < x < b \}.$$

1. We have that

$$\inf A = a$$
, $\sup A = b$.

2. $\min A$ and $\max A$ do not exist.

Corollary 3.8

Let $a, b \in \mathbb{R}$ with a < b. Let

$$A := [a, b] = \{ x \in \mathbb{R} : a \le x < b \}.$$

Then

$$\min A = \inf A = a$$
, $\sup A = b$,

max A does not exist.

Proposition 3.9

Define the set

$$A := \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

(1

Then

 $\inf A = 0$, $\sup A = \max A = 1$.

Proof

Part 1. We have

$$\frac{1}{n} \le 1, \quad \forall n \in \mathbb{N}.$$

Therefore 1 is an upper bound for *A*. Since $1 \in A$, by definition of maximum we conclude that

$$\max A = 1.$$

Since the maximum exists, we conclude that also the supremum exists, and

$$\sup A = \max A = 1.$$

Part 2. We have

$$\frac{1}{n} > 0, \quad \forall n \in \mathbb{N}$$

showing that 0 is a lower bound for *A*. Suppose by contradiction that 0 is not the infimum. Therefore 0 is not the largest lower bound. Then there exists $\varepsilon \in \mathbb{R}$ such that:

• ε is a lower bound for *A*, that is,

$$\varepsilon \le \frac{1}{n}, \quad \forall n \in \mathbb{N},$$
(3.4)

• ε is larger than 0:

 $0 < \varepsilon$.

As $\varepsilon > 0$, by the Archimedean Property there exists $n_0 \in \mathbb{N}$ such that

$$0 < \frac{1}{n_0} < \varepsilon \, .$$

This contradicts (3.4). Thus 0 is the largest lower bound of A, that is, $0 = \inf A$.

Part 3. We have that min A does not exist. Indeed suppose by contradiction that min A exists. Then

 $\min A = \inf A.$

As $\inf A = 0$ by Part 2, we conclude $\min A = 0$. As $\min A \in A$, we obtain $0 \in A$, which is a contradiction.

3.2 Cardinality

Definition 3.10: Bijective function

```
Let X, Y be sets and f : X \rightarrow Y be a function. We say that:
```

1. *f* is **injective** if it holds:

$$f(x) = f(y) \implies x = y.$$

2. *f* is **surjective** if it holds:

$$\forall y \in Y, \exists x \in X \text{ s.t. } f(x) = y.$$

3. *f* is **bijective** if it is both **injective** and **surjective**.

Definition 3.11: Cardinality, Finite, Countable, Uncountable

Let *X* be a set. The **cardinality** of *X* is the number of elements in *X*. We denote the cardinality of *X* by

$$|X| := #$$
 of elements in X

Further, we say that:

1. X is **finite** if there exists a natural number $n \in \mathbb{N}$ and a bijection

$$f: \{1, 2, \dots, n\} \to X$$

In particular

 $|X|=n\,.$

2. *X* is **countable** if there exists a bijection

$$f: \mathbb{N} \to X$$

In this case we denote the cardinality of X by

 $|X| = |\mathbb{N}|.$

3. *X* is **uncountable** if *X* is neither finite, nor countable.

Proposition 3.12

Let *X* be a countable set and $A \subseteq X$. Then either *A* is finite or countable.

Example 3.13

Question. Prove that $X = \{a, b, c\}$ is finite. **Solution.** Set $Y = \{1, 2, 3\}$. The function $f : X \to Y$ defined by

$$f(1) = a$$
, $f(2) = b$, $f(3) = c$,

is bijective. Therefore *X* is finite, with |X| = 3.

Example 3.14

Question. Prove that the set of natural numbers \mathbb{N} is countable. **Solution.** The function $f : X \to \mathbb{N}$ defined by

$$f(n) := n$$

is bijective. Therefore $X = \mathbb{N}$ is countable.

Example 3.15

Question. Let *X* be the set of even numbers

$$X = \{2n : n \in \mathbb{N}\}.$$

Prove that *X* is countable. **Solution.** Define the map $f : \mathbb{N} \to X$ by

f(n) := 2n.

We have that:

1. f is injective, because

 $f(m) = f(k) \implies 2m = 2k \quad m = k$.

2. *f* is surjective: Suppose that $m \in X$. By definition of *X*, there exists $n \in \mathbb{N}$ such that m = 2n. Therefore, f(n) = m.

We have shown that f is bijective. Thus, X is countable.

Example 3.16

Question. Prove that the set of integers \mathbb{Z} is countable. **Solution.** Define $f : \mathbb{N} \to \mathbb{Z}$ by

$$f(n) := \begin{cases} \frac{n}{2} & \text{if } n \text{ even} \\ -\frac{n+1}{2} & \text{if } n \text{ odd} \end{cases}$$

For example

$$\begin{aligned} f(0) &= 0, \quad f(1) = -1, \quad f(2) = 1, \quad f(3) = -2, \\ f(4) &= 2, \quad f(5) = -3, \quad f(6) = 3, \quad f(7) = -4. \end{aligned}$$

We have:

1. *f* is injective: Indeed, suppose that $m \neq n$. If *n* and *m* are both even or both odd we have, respectively

$$f(m) = \frac{m}{2} \neq \frac{n}{2} = f(n)$$

$$f(m) = -\frac{m+1}{2} \neq -\frac{n+1}{2} = f(n)$$

If instead m is even and n is odd, we get

$$f(m) = \frac{m}{2} \neq -\frac{n+1}{2} = f(n)$$

since the LHS is positive and the RHS is negative. The case when m is odd and n even is similar.

2. *f* is surjective: Let $z \in \mathbb{Z}$. If $z \ge 0$, then m := 2z belongs to \mathbb{N} , is even, and

$$f(m)=f(2z)=z\,.$$

If instead z < 0, then m := -2z - 1 belongs to \mathbb{N} , is odd, and

$$f(m) = f(-2z - 1) = z$$

Therefore f is bijective, showing that \mathbb{Z} is countable.

Proposition 3.17

Let the set A_n be countable for all $n \in \mathbb{N}$. Define

$$A = \bigcup_{n \in \mathbb{N}} A_n \,.$$

Then A is countable.

Theorem 3.18: Q is countable

The set of rational numbers Q is countable.

Theorem 3.19: ℝ is uncountable

The set of Real Numbers $\mathbb R$ is **uncountable**.

Theorem 3.20

The set of irrational numbers

$$\mathscr{I} := \mathbb{R} \setminus \mathbb{Q}$$

is uncountable.

Proof

We know that $\mathbb R$ in uncountable and $\mathbb Q$ is countable. Suppose by contradiction that $\mathcal I$ is countable. Then

 $\mathbb{Q}\cup\mathcal{I}$

is countable by Proposition 3.17, being union of countable sets. Since by definition

$$\mathbb{R}=\mathbb{Q}\cup\mathcal{I}$$

we conclude that ${\mathbb R}$ is countable. Contradiction.

4 Complex Numbers

Definition 4.1: Complex Numbers

The set of complex numbers $\mathbb C$ is defined as

$$\mathbb{C} := \mathbb{R} + i\mathbb{R} := \{x + iy : x, y \in \mathbb{R}\}$$

For a complex number

 $z = x + iy \in \mathbb{C}$

we say that

• *x* is the **real part** of *z*, and denote it by

 $x = \operatorname{Re}(z)$

• *y* is the **imaginary part** of *z*, and denote it by

$$y = \operatorname{Im}(z)$$

We say that

- If $\operatorname{Re} z = 0$ then z is a **purely imaginary** number.
- If $\operatorname{Im} z = 0$ then z is a **real** number.

Definition 4.2: Addition and multiplication in \mathbb{C}

Let $z_1, z_2 \in \mathbb{C}$, so that

$$z_1 = x_1 + iy_1$$
, $z_2 = x_2 + iy_2$,

for some $x_1, x_2, y_1, y_2 \in \mathbb{R}$:

1. The sum of z_1 and z_2 is

$$z_1 + z_2 := (x_1 + x_2) + i(y_1 + y_2)$$
.

2. The multiplication of z_1 and z_2 is

$$z_1 \cdot z_2 := (x_1 \cdot x_2 - y_1 \cdot y_2) + i(x_1 \cdot y_2 + x_2 \cdot y_1) ,$$

Example 4.3

Question. Compute *zw*, where

$$z = -2 + 3i$$
, $w = 1 - i$.

Solution. Using the definition we compute

$$z \cdot w = (-2 + 3i) \cdot (1 - i)$$

= (-2 - (-3)) + (2 + 3)i
= 1 + 5i.

Alternatively, we can proceed formally: We just need to recall that i^2 has to be replaced with -1:

$$z \cdot w = (-2 + 3i) \cdot (1 - i)$$

= -2 + 2i + 3i - 3i²
= (-2 + 3) + (2 + 3)i
= 1 + 5i.

Proposition 4.4: Additive inverse in C

The neutral element of addition in $\mathbb C$ is the number

$$0 := 0 + 0i$$
.

For any $z = x + iy \in \mathbb{C}$, the unique additive inverse is given by

-z := -x - iy.

Proposition 4.5: Multiplicative inverse in C

The neutral element of multiplication in \mathbb{C} is the number

$$1 := 1 + 0i$$
.

For any $z = x + iy \in \mathbb{C}$, the unique multiplicative inverse is given by

$$z^{-1} := \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}.$$

Proof

It is immediate to check that 1 is the neutral element of multiplication in \mathbb{C} . For the remaining part of the statement, set

$$w := \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$$

We need to check that $z \cdot w = 1$

$$z \cdot w = (x + iy) \cdot \left(\frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2}\right)$$
$$= \left(\frac{x^2}{x^2 + y^2} - \frac{y \cdot (-y)}{x^2 + y^2}\right) + i\left(\frac{x \cdot (-y)}{x^2 + y^2} + \frac{xy}{x^2 + y^2}\right)$$
$$= 1,$$

so indeed $z^{-1} = w$.

Example 4.6

Question. Let z = 3 + 2i. Compute z^{-1} . **Solution.** By the formula in Propostion 4.5 we immediately get

$$z^{-1} = \frac{3}{3^2 + 2^2} + \frac{-2}{3^2 + 2^2}i = \frac{3}{13} - \frac{2}{13}i.$$

Alternatively, we can proceed formally:

$$(3+2i)^{-1} = \frac{1}{3+2i}$$
$$= \frac{1}{3+2i} \frac{3-2i}{3-2i}$$
$$= \frac{3-2i}{3^2+2^2}$$
$$= \frac{3}{13} - \frac{2}{13}i,$$

and obtain the same result.

Theorem 4.7

 $(\mathbb{C}, +, \cdot)$ is a field.

Example 4.8

Question. Let w = 1 + i and z = 3 - i. Compute $\frac{w}{z}$. **Solution.** We compute w/z using the two options we have:

1. Using the formula for the inverse from Proposition 4.5 we compute

$$z^{-1} = \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$$
$$= \frac{3}{3^2 + 1^2} - i \frac{-1}{3^2 + 1^2}$$
$$= \frac{3}{10} + \frac{1}{10}i$$

and therefore

$$\frac{w}{z} = w \cdot z^{-1}$$

$$= (1+i) \left(\frac{3}{10} + \frac{1}{10}i\right)$$

$$= \left(\frac{3}{10} - \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{3}{10}\right)i$$

$$= \frac{2}{10} + \frac{4}{10}i$$

$$= \frac{1}{5} + \frac{2}{5}i$$

2. We proceed formally, using the multiplication by 1 trick. We have

$$\frac{w}{z} = \frac{1+i}{3-i}$$

= $\frac{1+i}{3-i}\frac{3+i}{3+i}$
= $\frac{3-1+(3+1)i}{3^2+1^2}$
= $\frac{2}{10} + \frac{4}{10}i$
= $\frac{1}{5} + \frac{2}{5}i$

Definition 4.9: Complex conjugate

Let z = x + iy. We call the **complex conjugate** of *z*, denoted by \overline{z} , the complex number

Theorem 4.10 For all $z_1, z_2 \in \mathbb{C}$ it holds: • $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ • $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

4.1 The complex plane

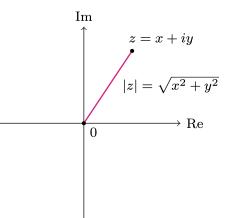


Figure 4.1: A point $z = x + iy \in \mathbb{C}$ can be represented on the complex plane by the point of coordinates (x, y). The distance between z and 0 is given by $|z| = \sqrt{z^2 + y^2}$.

Definition 4.11: Modulus

The **modulus** of a complex number z = x + iy is defined by

$$|z| := \sqrt{x^2 + y^2}$$

Definition 4.12: Distance in \mathbb{C}

Given $z_1, z_2 \in \mathbb{C}$, we define the **distance** between z_1 and z_2 as the quantity

 $|z_1 - z_2|$.

Theorem 4.13

Given $z_1, z_2 \in \mathbb{C}$, we have

$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

Example 4.14

Question. Compute the distance between

$$z = 2 - 4i$$
, $w = -5 + i$.

 $\bar{z} = x - iy$.

Solution. The distance is

$$|z - w| = |(2 - 4i) - (-5 + i)|$$

= |7 - 5i|
= $\sqrt{7^2 + (-5)^2}$
= $\sqrt{74}$

Theorem 4.15

Let $z, z_1, z_2 \in \mathbb{C}$. Then

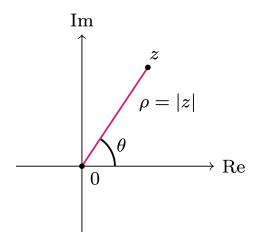
1. $|z_1 \cdot z_2| = |z_1| |z_2|$ 2. $|z^n| = |z|^n$ for all $n \in \mathbb{N}$ 3. $z \cdot \bar{z} = |z|^2$

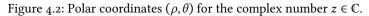
Theorem 4.16: Triangle inequality in C

For all $x, y, z \in \mathbb{C}$,

- 1. $|x + y| \le |x| + |y|$
- 2. $|x z| \le |x y| + |y z|$

4.2 Polar coordinates





Definition 4.17: Argument

Let $z \in \mathbb{C}$. The angle θ between the line connecting the origin and z and the positive real axis is called the **argument** of z, and is denoted by

 $\theta := \arg(z)$.

Example 4.18

We have the following arguments:

$$\arg(1) = 0 \qquad \qquad \arg(i) = \frac{\pi}{2}$$
$$\arg(-1) = \pi \qquad \qquad \arg(-i) = -\frac{\pi}{2}$$
$$\arg(1+i) = \frac{1}{4}\pi \qquad \qquad \arg(-1-i) = -\frac{3}{4}\pi$$

Theorem 4.19: Polar coordinates

Let
$$z \in \mathbb{C}$$
 with $z = x + iy$ and $z \neq 0$. Then

$$x = \rho \cos(\theta), \quad y = \rho \sin(\theta),$$

where

$$\rho := |z| = \sqrt{x^2 + y^2}, \quad \theta := \arg(z).$$

Definition 4.20: Trigonometric form

Let $z \in \mathbb{C}$. The trigonometric form of z is

$$z = |z| \left[\cos(\theta) + i\sin(\theta)\right]$$

where $\theta = \arg(z)$.

Example 4.21

Question. Suppose that $z \in \mathbb{C}$ has polar coordinates

$$\rho = \sqrt{8}, \quad \theta = \frac{3}{4}\pi$$

Therefore, the trigonometric form of z is

$$z = \sqrt{8} \left[\cos\left(\frac{3}{4}\pi\right) + i\sin\left(\frac{3}{4}\pi\right) \right].$$

Write *z* in cartesian form. **Solution.** We have

$$x = \rho \cos(\theta) = \sqrt{8} \cos\left(\frac{3}{4}\pi\right) = -\sqrt{8} \cdot \frac{\sqrt{2}}{2} = -2$$
$$y = \rho \sin(\theta) = \sqrt{8} \sin\left(\frac{3}{4}\pi\right) = \sqrt{8} \cdot \frac{\sqrt{2}}{2} = 2.$$

Therefore, the cartesian form of z is

$$z = x + iy = -2 + 2i.$$

Corollary 4.22: Computing arg(z)

Let $z \in \mathbb{C}$ with z = x + iy and $z \neq 0$. Then

$$\arg(z) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{if } x > 0\\ \arctan\left(\frac{y}{x}\right) + \pi & \text{if } x < 0 \text{ and } y \ge 0\\ \arctan\left(\frac{y}{x}\right) - \pi & \text{if } x < 0 \text{ and } y < 0\\ \frac{\pi}{2} & \text{if } x = 0 \text{ and } y > 0\\ -\frac{\pi}{2} & \text{if } x = 0 \text{ and } y < 0 \end{cases}$$

where arctan is the inverse of tan.

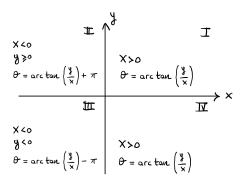


Figure 4.3: The definition of arg(z) depends on the position of z in the complex plane.

Example 4.23

Question. Compute the arguments of the complex numbers

z = 3 + 4i, $\bar{z} = 3 - 4i$, $-\bar{z} = -3 + 4i$, -z = -3 - 4i.

Solution. Using the formula for arg in Corollary 4.22 we have

$$\arg(3+4i) = \arctan\left(\frac{4}{3}\right)$$
$$\arg(3-4i) = \arctan\left(-\frac{4}{3}\right) = -\arctan\left(\frac{4}{3}\right)$$
$$\arg(-3+4i) = \arctan\left(-\frac{4}{3}\right) + \pi = -\arctan\left(\frac{4}{3}\right) + \pi$$
$$\arg(-3-4i) = \arctan\left(\frac{4}{3}\right) - \pi$$

4.3 Exponential form

Theorem 4.24: Euler's identity

For all $\theta \in \mathbb{R}$ it holds

 $e^{i\theta} = \cos(\theta) + i\sin(\theta).$

Theorem 4.25

For all $\theta \in \mathbb{R}$ it holds

 $\left|e^{i\theta}\right|=1$.

Theorem 4.26

Let $z \in \mathbb{C}$ with z = x + iy and $z \neq 0$. Then

 $z = \rho e^{i\theta}$,

where

$$ho := |z| = \sqrt{x^2 + y^2}, \qquad heta := \arg(z).$$

Definition 4.27: Exponential form

The **exponential form** of a complex number $z \in \mathbb{C}$ is

 $z = \rho e^{i\theta} = |z| e^{i \arg(z)}.$

Example 4.28

Question. Write the number

$$z = -2 + 2i$$

in exponential form.

Solution. From Example 4.21 we know that z = -2 + 2i can be written in trigonometric form as

$$z = \sqrt{8} \left[\cos\left(\frac{3}{4}\pi\right) + i\sin\left(\frac{3}{4}\pi\right) \right]$$

By Euler's identity we hence obtain the exponential form

$$z=\sqrt{8}e^{i\frac{3}{4}\pi}$$

Remark 4.29: Periodicity of exponential

For all $k \in \mathbb{Z}$ we have

$$e^{i\theta} = e^{i(\theta + 2\pi k)}, \qquad (4.1)$$

meaning that the complex exponential is 2π -periodic.

Proposition 4.30

Let $z, z_1, z_2 \in \mathbb{C}$ and suppose that

$$z=
ho e^{i heta}$$
 , $z_1=
ho_1 e^{i heta_1}$, $z_2=
ho_2 e^{i heta_2}$.

We have

$$z_1 \cdot z_2 = \rho_1 \rho_2 e^{i(\theta_1 + \theta_2)}, \quad z^n = \rho^n e^{in\theta},$$

for all $n \in \mathbb{N}$.

Example 4.31

Question. Compute $(-2 + 2i)^4$. **Solution.** We have two possibilities:

1. Use the binomial theorem:

$$(-2+2i)^4 = (-2)^4 + \binom{4}{1}(-2)^3 \cdot 2i + \binom{4}{2}(-2)^2 \cdot (2i)^2 + \binom{4}{3}(-2) \cdot (2i)^3 + (2i)^4$$

= 16 - 4 \cdot 8 \cdot 2i - 6 \cdot 4 \cdot 4 + 4 \cdot 2 \cdot 8i + 16
= 16 - 64i - 96 + 64i + 16 = -64.

2. A much simpler calculation is possible by using the exponential form: We know that

$$-2 + 2i = \sqrt{8}e^{i\frac{3}{4}\pi}$$

by Example 4.28. Hence

$$(-2+2i)^4 = \left(\sqrt{8}e^{i\frac{3}{4}\pi}\right)^4 = 8^2e^{i3\pi} = -64,$$

where we used that

$$e^{i3\pi} = e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1$$

by 2π periodicity of $e^{i\theta}$ and Euler's identity.

Definition 4.32: Complex exponential

The complex exponential of $z = a + ib \in \mathbb{C}$ is defined as

 $e^z = e^a e^{ib}$.

Theorem 4.33

Let $z, w \in \mathbb{C}$. Then

 $e^{z+w} = e^z e^w$, $(e^z)^w = e^{zw}$. (4.2)

Example 4.34

Question. Compute i^i . **Solution.** We know that

$$|i| = 1$$
, $\arg(i) = \frac{\pi}{2}$

Hence we can write i in exponential form

$$i = |i|e^{i \operatorname{arg}(i)} = e^{i\frac{\pi}{2}}.$$

Therefore

$$i^{i} = \left(e^{i\frac{\pi}{2}}\right)^{l} = e^{i^{2}\frac{\pi}{2}} = e^{-\frac{\pi}{2}}.$$

4.4 Fundamental Theorem of Algebra

Theorem 4.35: Fundamental theorem of algebra

Let $p_n(z)$ be a polynomial of degree *n* with complex coefficients, i.e.,

$$p_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$

for some coefficients $a_n, \ldots, a_0 \in \mathbb{C}$ with $a_n \neq 0$. There exist

 $z_1, \ldots, z_n \in \mathbb{C}$

solutions to the polynomial equation

$$p_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0.$$
(4.3)

In particular, p_n factorizes as

$$p_n(z) = a_n (z - z_1) (z - z_2) \cdots (z - z_n) .$$
(4.4)

Example 4.36

Question. Find all the complex solutions to

$$z^2 = -1$$
 (4.5)

Solution. The equation $z^2 = -1$ is equivalent to

$$p(z) = 0$$
, $p(z) := z^2 + 1$.

Since *p* has degree n = 2, the Fundamental Theorem of Algebra tells us that there are two solutions to (4.5). We have already seen that these two solutions are z = i and z = -i. Then *p* factorizes as

$$p(z) = z^2 + 1 = (z - i)(z + i)$$

Example 4.37

Question. Find all the complex solutions to

$$z^4 - 1 = 0. (4.6)$$

Solution The associated polynomial equation is

$$p(z) = 0$$
, $p(z) := z^4 - 1$.

Since *p* has degree n = 4, the Fundamental Theorem of Algebra tells us that there are 4 solutions to (4.6). Let us find such solutions. We use the well known identity

$$a^2 - b^2 = (a+b)(a-b), \quad \forall a, b \in \mathbb{R},$$

to factorize *p*. We get:

$$p(z) = (z^4 - 1) = (z^2 + 1)(z^2 - 1).$$

We know that

$$z^2 + 1 = 0$$

has solutions $z = \pm i$. Instead

$$z^2 - 1 = 0$$

has solutions $x = \pm 1$. Hence, the four solutions of (4.6) are given by

$$z = 1, -1, i, -i$$

and p factorizes as

$$p(z) = z^4 - 1 = (z - 1)(z + 1)(z - i)(z + i).$$

Definition 4.38: Multiplicity

Suppose that the polynomial p_n factorizes as

$$p_n(z) = a_n(z - z_1)^{k_1}(z - z_2)^{k_2} \cdots (z - z_m)^{k_m}$$

with $a_n \neq 0, z_1, \dots, z_m \in \mathbb{C}$ and $k_1, \dots, k_m \in \mathbb{N}, k_i \ge 1$. In this case p_n has degree

$$n = k_1 + \dots + k_m = \sum_{i=1}^m k_i$$

Note that z_i is solves the equation

$$p_n(z) = 0$$

exactly k_i times. We call k_i the **multiplicity** of the solution z_i .

Example 4.39

The equation

$$(z-1)(z-2)^2(z+i)^3 = 0$$

has 6 solutions:

• z = 1 with multiplicity 1

- z = 2 with multiplicity 2
- z = -i with multiplicity 3

4.5 Solving polynomial equations

Proposition 4.40: Quadratic formula

Let $a, b, c \in \mathbb{R}, a \neq 0$ and consider the equation

$$ax^2 + bx + c = 0. (4.7)$$

Define

 $\Delta := b^2 - 4ac \in \mathbb{R}.$

The following hold:

1. If $\Delta > 0$ then (4.7) has two distinct real solutions $z_1, z_2 \in \mathbb{R}$ given by

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad z_2 = \frac{-b + \sqrt{\Delta}}{2a}.$$

If ∆ = 0 then (4.7) has one real solution z ∈ ℝ with multiplicity
 Such solution is given by

$$z = z_1 = z_2 = \frac{-b}{2a}$$

If Δ < 0 then (4.7) has two distinct complex solutions z₁, z₂ ∈ C given by

$$z_1 = rac{-b - i\sqrt{-\Delta}}{2a}$$
, $z_2 = rac{-b + i\sqrt{-\Delta}}{2a}$,

where $\sqrt{-\Delta} \in \mathbb{R}$, since $-\Delta > 0$.

In all cases, the polynomial at (4.7) factorizes as

$$az^{2} + bz + c = a(z - z_{1})(z - z_{2})$$

Example 4.41

Question. Solve the following equations:

- 1. $3z^2 6z + 2 = 0$ 2. $4z^2 - 8z + 4 = 0$ 3. $z^2 + 2z + 3 = 0$
- 0

Solution.

1. We have that

$$\Delta = (-6)^2 - 4 \cdot 3 \cdot 2 = 12 > 0$$

Therefore the equation has two distinct real solutions, given by

$$z = \frac{-(-6) \pm \sqrt{12}}{2 \cdot 3} = \frac{6 \pm \sqrt{12}}{6} = 1 \pm \frac{\sqrt{3}}{3}$$

In particular we have the factorization

$$3z^{2} - 6z + 2 = 3\left(z - 1 - \frac{\sqrt{3}}{3}\right)\left(z - 1 + \frac{\sqrt{3}}{3}\right)$$

2. We have that

$$\Delta = (-8)^2 - 4 \cdot 4 \cdot 4 = 0 \, .$$

Therefore there exists one solution with multiplicity 2. This is given by

$$z = \frac{-(-8)}{2 \cdot 4} = 1$$

In particular we have the factorization

$$4z^2 - 8x + 4 = 4(z - 1)^2.$$

3. We have

$$\Delta = 2^2 - 4 \cdot 1 \cdot 3 = -8 < 0.$$

Therefore there are two complex solutions given by

$$z = \frac{-2 \pm i\sqrt{8}}{2 \cdot 1} = -1 \pm i\sqrt{2}.$$

In particular we have the factorization

$$z^{2} + 2z + 3 = (z + 1 - i\sqrt{2})(z + 1 + i\sqrt{2}).$$

Proposition 4.42: Quadratic formula with complex coefficients

Let $a, b, c \in \mathbb{C}$, $a \neq 0$. The two solutions to

$$az^2 + bz + c = 0$$

are given by

$$z_1 = \frac{-b + S_1}{2a}$$
, $z_2 = \frac{-b + S_2}{2a}$,

where S_1 and S_2 are the two solutions to

$$z^2 = \Delta$$
, $\Delta := b^2 - 4ac$.

Example 4.43

Question Find all the solutions to

$$\frac{1}{2}z^2 - (3+i)z + (4-i) = 0.$$
(4.8)

Solution. We have

$$\Delta = (-(3+i))^2 - 4 \cdot \frac{1}{2} \cdot (4-i)$$

= 8 + 6i - 8 + 2i
- 8i

Therefore $\Delta \in \mathbb{C}$. We have to find solutions S_1 and S_2 to the equation

$$z^2 = \Delta = 8i. \tag{4.9}$$

We look for solutions of the form z = a + ib. Then we must have that

$$z^{2} = (a + ib)^{2} = a^{2} - b^{2} + 2abi = 8i.$$

Thus

$$a^2 - b^2 = 0$$
, $2ab = 8$

From the first equation we conclude that |a| = |b|. From the second equation we have that ab = 4, and therefore *a* and *b* must have the same sign. Hence a = b, and

$$2ab = 8 \implies a = b = \pm 2.$$

From this we conclude that the solutions to (4.9) are

$$S_1 = 2 + 2i$$
, $S_2 = -2 - 2i$.

Hence the solutions to (4.8) are

$$z_1 = \frac{3+i+S_1}{2 \cdot \frac{1}{2}} = 3+i+S_2$$
$$= 3+i+2+2i = 5+3i$$

and

$$z_2 = \frac{3+i+S_2}{2\cdot\frac{1}{2}} = 3+i+S_2$$
$$= 3+i-2-2i = 1-i.$$

In particular, the given polynomial factorizes as

$$\frac{1}{2}z^2 - (3+i)z + (4-i) = \frac{1}{2}(z-z_1)(z-z_2)$$
$$= \frac{1}{2}(z-5-3i)(z-1+i).$$

Example 4.44

Question. Consider the equation

$$z^3 - 7z^2 + 6z = 0$$

- 1. Check whether z = 0, 1, -1 are solutions.
- 2. Using your answer from Point 1, and polynomial division, find all the solutions.

Solution.

- 1. By direct inspection we see that z = 0 and z = 1 are solutions.
- 2. Since z = 0 is a solution, we can factorize

$$z^3 - 7z^2 + 6z = z \left(z^2 - 7z + 6 \right) \, .$$

We could now use the quadratic formula on the term $z^2 - 7z + 6$ to find the remaining two roots. However, we have already observed that z = 1 is a solution. Therefore z - 1 divides $z^2 - 7z + 6$. Using polynomial long division, see Figure 4.4, we find that

$$\frac{z^2 - 7z + 6}{z - 1} = z - 6$$

Therefore the last solution is z = 6, and

$$z^3 - 7z^2 + 6z = z(z-1)(z-6)$$

$$\begin{array}{r} z-6 \\ z-1 \overline{\smash{\big)} \ z^2 - 7z + 6} \\ \underline{-z^2 + z} \\ -6z + 6 \\ \underline{-6z - 6} \\ 0 \end{array}$$

Figure 4.4: Polynomial long division between $z^2 - 7z + 6$ and z - 1.

Example 4.45

Question. Find all the complex solutions to

$$z^3 - 7z + 6 = 0$$
.

Solution. It is easy to see z = 1 is a solution. This means that z - 1 divides $z^3 - 7z + 6$. By using polynomial long division, see Figure 4.5,

we compute that

$$\frac{z^3 - 7z + 6}{z - 1} = z^2 + z - 6.$$

We are now left to solve

$$z^2 + z - 6 = 0.$$

Using the quadratic formula, we see that the above is solved by z = 2 and z = -3. Therefore the given polynomial factorizes as

$$z^{3} - 7z + 6 = (z - 1)(z - 2)(z + 3).$$

 $\begin{array}{r}z^2 + z - 6\\z - 1 \overline{\smash{\big)}z^3} & -7z + 6\\ -z^3 + z^2\\ \hline z^2 - 7z\\ -z^2 + z\\ -6z + 6\\ \hline 6z - 6\\ \hline 0\end{array}$

Figure 4.5: Polynomial long division between $z^3 - 7z + 6$ and z - 1.

4.6 Roots of unity

Theorem 4.46

Let $n \in \mathbb{N}$ and consider the equation

$$z^n = 1$$
. (4.10)

All the *n* solutions to (4.10) are given by

$$z_k = \exp\left(irac{2\pi k}{n}
ight), \quad k = 0, \dots, n-1,$$

 $z^n = 1$

where $\exp(x)$ denotes e^x .

Definition 4.47

The *n* solutions to

are called the **roots of unity**.

Example 4.48

Question. Find all the solutions to

$$z^4 = 1$$

Solution. The 4 solutions are given by

$$z_k = \exp\left(i\frac{2\pi k}{4}\right) = \exp\left(i\frac{\pi k}{2}\right),$$

for k = 0, 1, 2, 3. We compute:

$$\begin{aligned} z_0 &= e^{i0} = 1 \,, & z_1 &= e^{i\frac{\pi}{2}} = i \,, \\ z_2 &= e^{i\pi} = -1 \,, & z_3 &= e^{i\frac{3\pi}{2}} = -i \,. \end{aligned}$$

Note that for k = 4 we would again get the solution $z = e^{i2\pi} = 1$.

Example 4.49

Question. Find all the solutions to

 $z^3 = 1$.

Solution. The 3 solutions are given by

$$z_k = \exp\left(i\frac{2\pi k}{3}\right)$$

for k = 0, 1, 2. We compute:

$$z_0 = e^{i0} = 1$$
, $z_1 = e^{i\frac{2\pi}{3}}$, $z_2 = e^{i\frac{4\pi}{3}}$

We can write z_1 and z_2 in cartesian form:

$$z_1 = e^{i\frac{2\pi}{3}} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
$$z_2 = e^{i\frac{4\pi}{3}} = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$$

4.7 Roots in $\ensuremath{\mathbb{C}}$

and

Theorem 4.50

Let $n \in \mathbb{N}$, $c \in \mathbb{C}$ and consider the equation

$$z^n = c . (4.11)$$

All the n solutions to (4.11) are given by

$$z_k = \sqrt[n]{|c|} \exp\left(i\frac{\theta+2\pi k}{n}\right), \quad k=0,\ldots,n-1,$$

where $\sqrt[n]{|c|}$ is the *n*-th root of the real number |c|, and $\theta = \arg(c)$.

Example 4.51

Question. Find all the $z \in \mathbb{C}$ such that

 $z^5 = -32$.

Solution. Let c = -32. We have

$$|c| = |-32| = 32 = 2^5$$
, $\theta = \arg(-32) = \pi$.

The 5 solutions are given by

$$z_k = \left(2^5\right)^{\frac{1}{5}} \exp\left(i\pi \frac{1+2k}{5}\right), \quad k \in \mathbb{Z},$$

for k = 0, 1, 2, 3, 4. We get

$$z_{0} = 2e^{i\frac{\pi}{5}} \qquad z_{1} = 2e^{i\frac{3\pi}{5}}$$
$$z_{2} = 2e^{i\pi} = -2 \qquad z_{3} = 2e^{i\frac{7\pi}{5}}$$
$$z_{4} = 2e^{i\frac{9\pi}{5}}$$

Example 4.52

Question. Find all the $z \in \mathbb{C}$ such that

$$z^4 = 9\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)\,.$$

Solution. Set

$$c := 9\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$$

The complex number c is already in the trigonometric form, so that we can immediately obtain

$$|c| = 9$$
, $\theta = \arg(c) = \frac{\pi}{3}$

The 4 solutions are given by

$$z_k = \sqrt[4]{9} \exp\left(i\frac{\pi/3 + 2\pi k}{4}\right)$$
$$= \sqrt{3} \exp\left(i\pi\frac{1 + 6k}{12}\right)$$

for k = 0, 1, 2, 3. We compute

$$z_0 = \sqrt{3}e^{i\pi\frac{1}{12}} \qquad z_1 = \sqrt{3}e^{i\pi\frac{7}{12}}$$
$$z_2 = \sqrt{3}e^{i\pi\frac{13}{12}} \qquad z_3 = \sqrt{3}e^{i\pi\frac{19}{12}}$$

5 Sequences in \mathbb{R}

Definition 5.1: Convergent sequence

The real sequence (a_n) **converges** to *a*, or equivalently has limit *a*, denoted by

$$\lim_{n \to \infty} a_n = a$$

if for all $\varepsilon \in \mathbb{R}, \varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}, n \ge N$ it holds that

$$|a_n-a|<\varepsilon$$

Using quantifiers, we can write this as

 $\forall \, \varepsilon > 0, \, \exists \, N \in \mathbb{N} \, \text{ s.t. } \, \forall \, n \geq N \, , \, |a_n - a| < \varepsilon \, .$

The sequence $(a_n)_{n \in \mathbb{N}}$ is **convergent** if it admits limit.

Theorem 5.2

Let p > 0. Then

 $\lim_{n\to\infty}\frac{1}{n^p}=0\,.$

Proof

Let p > 0. We have to show that

$$\forall \varepsilon > 0 \ , \ \exists N \in \mathbb{N} \ \text{ s.t. } \ \forall n \ge N \ , \ \left| \frac{1}{n^p} - 0 \right| < \varepsilon \ .$$

Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that

$$N > \frac{1}{\varepsilon^{1/p}} \,. \tag{5.1}$$

Let $n \ge N$. Since p > 0, we have $n^p \ge N^p$, which implies

$$\frac{1}{n^p} \le \frac{1}{N^p} \,.$$

By (5.1) we deduce

$$\frac{1}{N^p} <$$

ε.

Then

$$\left|\frac{1}{n^p} - 0\right| = \frac{1}{n^p} \le \frac{1}{N^p} < \varepsilon$$

Example 5.3

Question. Using the definition of convergence, prove that

$$\lim_{n \to \infty} \frac{n}{2n+3} = \frac{1}{2} \,.$$

Solution.

1. *Rough Work:* Let $\varepsilon > 0$. We want to find $N \in \mathbb{N}$ such that

$$\left|\frac{n}{2n+3} - \frac{1}{2}\right| < \varepsilon, \quad \forall n \ge N$$

To this end, we compute:

$$\left|\frac{n}{2n+3} - \frac{1}{2}\right| = \left|\frac{-3}{4n+6}\right| = \frac{3}{4n+6}$$

Therefore

$$\left|\frac{n}{2n+3} - \frac{1}{2}\right| < \varepsilon \quad \iff \quad \frac{3}{4n+6} < \varepsilon$$
$$\iff \quad n > \frac{3}{4\varepsilon} - \frac{6}{4}$$

Looking at the above equivalences, it is clear that $N \in \mathbb{N}$ has to be chosen so that

$$N > \frac{3}{4\varepsilon} - \frac{6}{4} \,. \tag{5.2}$$

2. Formal Proof: We have to show that

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \ge N, \left| \frac{n}{2n+3} - \frac{1}{2} \right| < \varepsilon.$$

Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that (5.2) holds. By the rough work shown above, inequality (5.2) is equivalent to

$$\frac{3}{4N+6} < \varepsilon \, .$$

Let $n \ge N$. Then

$$\frac{n}{2n+3} - \frac{1}{2} \bigg| = \frac{3}{4n+6} \le \frac{3}{4N+6} < \varepsilon \,,$$

where in the third line we used that $n \ge N$.

Theorem 5.4: Uniqueness of limit

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. Suppose that

$$\lim_{n \to \infty} a_n = a \,, \quad \lim_{n \to \infty} a_n = b \,.$$

Then a = b.

5.1 Divergent sequences

Definition 5.5: Divergent sequence

We say that a sequence $(a_n)_{n \in \mathbb{N}}$ in \mathbb{R} is **divergent** if it is not convergent.

Theorem 5.6

Let (a_n) be the sequence defined by

$$a_n = (-1)^n \, .$$

Then (a_n) does not converge.

Proof

Suppose by contradiction that $a_n \rightarrow a$ for some $a \in \mathbb{R}$. Let

$$\varepsilon := \frac{1}{2}$$

Since $a_n \to a$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a| < \varepsilon = \frac{1}{3} \quad \forall n \ge N$$

If we take n = 2N, then $n \ge N$ and

$$|a_{2N} - a| = |1 - a| < \frac{1}{2}$$

If we take n = 2N + 1, then $n \ge N$ and

$$|a_{2N+1}-a| = |-1-a| < \frac{1}{2}.$$

Therefore

$$2 = |(1 - a) - (-1 - a)|$$

$$\leq |1 - a| + |-1 - a|$$

$$< \frac{1}{2} + \frac{1}{2} = 1,$$

which is a contradiction. Hence (a_n) is divergent.

5.2 Bounded sequences

Definition 5.7: Bounded sequence

A sequence $(a_n)_{n \in \mathbb{N}}$ is called **bounded** if there exists a constant $M \in \mathbb{R}$, with M > 0, such that

 $|a_n| \leq M$, $\forall n \in \mathbb{N}$.

Theorem 5.8

Every convergent sequence is bounded.

Example 5.9

The sequence

 $a_n = (-1)^n$

is bounded (M = 1) but not convergent.

Corollary 5.10

If a sequence is not bounded, then the sequence does not converge.

Remark 5.11

For a sequence (a_n) to be unbounded, it means that

 $\forall\,M>0\,,\;\exists\,n\in\mathbb{N}\;\;\mathrm{s.t.}\;\;|a_n|>M\,.$

Theorem 5.12

Let p > 0. The sequence $a_n = n^p$ is unbounded, and hence divergent.

Theorem 5.13

The sequence $a_n = \log n$ is unbounded, and hence divergent.

5.3 Algebra of limits

Theorem 5.14: Algebra of limits

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be sequences in \mathbb{R} . Suppose that

$$\lim_{n \to \infty} a_n = a \,, \quad \lim_{n \to \infty} b_n = b \,,$$

for some $a, b \in \mathbb{R}$. Then,

1. Limit of sum is the sum of limits:

$$\lim_{n \to \infty} \left(a_n \pm b_n \right) = a \pm b$$

2. Limit of product is the product of limits:

$$\lim_{n \to \infty} (a_n b_n) = ab$$

3. If $b_n \neq 0$ for all $n \in \mathbb{N}$ and $b \neq 0$, then

 $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b}$

Example 5.15

Question. Prove that

$$\lim_{n\to\infty}\,\frac{3n}{7n+4}=\frac{3}{7}\,.$$

Solution. We can rewrite

$$\frac{3n}{7n+4} = \frac{3}{7+\frac{4}{n}}$$

From Theorem 5.2, we know that

$$\frac{1}{n} \to 0$$
.

Hence, it follows from Theorem 5.14 Point 2 that

$$\frac{4}{n} = 4 \cdot \frac{1}{n} \to 4 \cdot 0 = 0 \,.$$

By Theorem 5.14 Point 1 we have

$$7 + \frac{4}{n} \to 7 + 0 = 7 \,.$$

Finally we can use Theorem 5.14 Point 3 to infer

$$\frac{3n}{7n+4} = \frac{3}{7+\frac{4}{n}} \to \frac{3}{7} \,.$$

Example 5.16

Question. Prove that

$$\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 - 3} = \frac{1}{2} \,.$$

Solution. Factor n^2 to obtain

$$\frac{n^2 - 1}{2n^2 - 3} = \frac{1 - \frac{1}{n^2}}{2 - \frac{3}{n^2}}$$

By Theorem 5.2 we have

$$\frac{1}{n^2} \rightarrow 0$$

We can then use the Algebra of Limits Theorem 5.14 Point 2 to infer

$$\frac{3}{n^2} \to 3 \cdot 0 = 0$$

and Theorem 5.14 Point 1 to get

$$1 - \frac{1}{n^2} \to 1 - 0 = 1$$
, $2 - \frac{3}{n^2} \to 2 - 0 = 2$.

Finally we use Theorem 5.14 Point 3 and conclude

$$\frac{1-\frac{1}{n^2}}{2-\frac{3}{n^2}} \to \frac{1}{2}.$$

Therefore

$$\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 - 3} = \lim_{n \to \infty} \frac{1 - \frac{1}{n^2}}{2 - \frac{3}{n^2}} = \frac{1}{2}$$

1

Example 5.17

Question. Prove that the sequence

$$a_n = \frac{4n^3 + 8n + 1}{7n^2 + 2n + 1}$$

does not converge.

Solution. To show that the sequence (a_n) does not converge, we divide by the largest power in the denominator, which in this case is n^2

$$a_n = \frac{4n^3 + 8n + 1}{7n^2 + 2n + 1}$$
$$= \frac{4n + \frac{8}{n} + \frac{1}{n^2}}{7 + \frac{2}{n} + \frac{1}{n^2}} = \frac{b_n}{c_n}$$

where we set

$$b_n := 4n + \frac{8}{n} + \frac{1}{n^2}, \quad c_n := 7 + \frac{2}{n} + \frac{1}{n^2}$$

Using the Algebra of Limits Theorem 5.14 we see that

$$c_n = 7 + \frac{2}{n} + \frac{1}{n^2} \to 7$$
.

Suppose by contradiction that

$$a_n \rightarrow a$$

for some $a \in \mathbb{R}$. Then, by the Algebra of Limits, we would infer

$$b_n = c_n \cdot a_n \to 7a$$
,

concluding that b_n is convergent to 7a. We have that

$$b_n = 4n + d_n$$
, $d_n := \frac{8}{n} + \frac{1}{n^2}$.

Again by the Algebra of Limits Theorem 5.14 we get that

$$d_n=\frac{8}{n}+\frac{1}{n^2}\to 0\,,$$

and hence

$$4n = b_n - d_n \to 7a - 0 = 7a \,.$$

This is a contradiction, since the sequence (4n) is unbounded, and hence cannot be convergent. Hence (a_n) is not convergent.

Example 5.18

Question. Define the sequence

$$a_n := \frac{2n^3 + 7n + 1}{5n + 9} \cdot \frac{8n + 9}{6n^3 + 8n^2 + 3}$$

Prove that

$$\lim_{n \to \infty} a_n = \frac{8}{1}$$

Solution. The first fraction in (a_n) does not converge, as it is unbounded. Therefore we cannot use Point 2 in Theorem 5.14 directly. However, we note that

$$a_n = \frac{2n^3 + 7n + 1}{5n + 9} \cdot \frac{8n + 9}{6n^3 + 8n^2 + 3}$$
$$= \frac{8n + 9}{5n + 9} \cdot \frac{2n^3 + 7n + 1}{6n^3 + 8n^2 + 3}.$$

Factoring out n and n^3 , respectively, and using the Algebra of Limits, we see that

$$\frac{8n+9}{5n+9} = \frac{8+9/n}{5+9/n} \to \frac{8+0}{5+0} = \frac{8}{5}$$

and

$$\frac{2+7/n^2+1/n^3}{6+8/n+3/n^3} \to \frac{2+0+0}{6+0+0} = \frac{1}{3}$$

Therefore Theorem 5.14 Point 2 ensures that

$$a_n \to \frac{8}{5} \cdot \frac{1}{3} = \frac{8}{15}$$

Example 5.19

Question. Prove that

$$a_n = \frac{n^{7/3} + 2\sqrt{n} + 7}{4n^{3/2} + 5n}$$

does not converge.

Solution. The largest power of *n* in the denominator is $n^{3/2}$. Hence we factor out $n^{3/2}$

$$a_n = \frac{n^{7/3} + 2\sqrt{n} + 7}{4n^{3/2} + 5n}$$

= $\frac{n^{7/3 - 3/2} + 2n^{1/2 - 3/2} + 7n^{-3/2}}{4 + 5n^{-3/2}}$
= $\frac{n^{5/6} + 2n^{-1} + 7n^{-3/2}}{4 + 5n^{-3/2}}$
= $\frac{b_n}{c_n}$

where we set

$$b_n := n^{5/6} + 2n^{-1} + 7n^{-3/2}, \quad c_n := 4 + 5n^{-3/2}$$

We see that b_n is unbounded while $c_n \rightarrow 4$. By the Algebra of Limits (and usual contradiction argument) we conclude that (a_n) is divergent.

Theorem 5.20

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} such that

$$\lim_{n \to \infty} a_n = a_n$$

for some $a \in \mathbb{R}$. If $a_n \ge 0$ for all $n \in \mathbb{N}$ and $a \ge 0$, then

 $\lim_{n\to\infty}\sqrt{a_n}=\sqrt{a}\,.$

Example 5.21

Question. Define the sequence

Prove that

$$\lim_{n\to\infty} a_n = \frac{1}{2} \,.$$

 $a_n = \sqrt{9n^2 + 3n + 1} - 3n \,.$

Solution. We first rewrite

$$\begin{split} a_n &= \sqrt{9n^2 + 3n + 1} - 3n \\ &= \frac{\left(\sqrt{9n^2 + 3n + 1} - 3n\right)\left(\sqrt{9n^2 + 3n + 1} + 3n\right)}{\sqrt{9n^2 + 3n + 1} + 3n} \\ &= \frac{9n^2 + 3n + 1 - (3n)^2}{\sqrt{9n^2 + 3n + 1} + 3n} \\ &= \frac{3n + 1}{\sqrt{9n^2 + 3n + 1} + 3n} \,. \end{split}$$

The biggest power of *n* in the denominator is *n*. Therefore we factor out *n*:

$$a_n = \sqrt{9n^2 + 3n + 1 - 3n}$$

= $\frac{3n + 1}{\sqrt{9n^2 + 3n + 1} + 3n}$
= $\frac{3 + \frac{1}{n}}{\sqrt{9 + \frac{3}{n} + \frac{1}{n^2}} + 3}$.

By the Algebra of Limits we have

$$9 + \frac{3}{n} + \frac{1}{n^2} \to 9 + 0 + 0 = 9.$$

Therefore we can use Theorem 5.20 to infer

$$\sqrt{9+\frac{3}{n}+\frac{1}{n^2}} \to \sqrt{9}\,.$$

By the Algebra of Limits we conclude:

$$a_n = \frac{3 + \frac{1}{n}}{\sqrt{9 + \frac{3}{n} + \frac{1}{n^2} + 3}} \to \frac{3 + 0}{\sqrt{9} + 3} = \frac{1}{2}$$

Example 5.22

Question. Prove that the sequence

$$a_n = \sqrt{9n^2 + 3n + 1 - 2n}$$

does not converge. **Solution.** We rewrite a_n as

$$\begin{split} a_n &= \sqrt{9n^2 + 3n + 1 - 2n} \\ &= \frac{(\sqrt{9n^2 + 3n + 1} - 2n)(\sqrt{9n^2 + 3n + 1} + 2n)}{\sqrt{9n^2 + 3n + 1} + 2n} \\ &= \frac{9n^2 + 3n + 1 - (2n)^2}{\sqrt{9n^2 + 3n + 1} + 2n} \\ &= \frac{5n^2 + 3n + 1}{\sqrt{9n^2 + 3n + 1} + 2n} \\ &= \frac{5n + 3 + \frac{1}{n}}{\sqrt{9n^2 + 3n + 1} + 2n} \\ &= \frac{5n + 3 + \frac{1}{n}}{\sqrt{9 + \frac{3}{n} + \frac{1}{n^2} + 2}} \\ &= \frac{b_n}{c_n} \,, \end{split}$$

where we factored n, being it the largest power of n in the denominator, and defined

$$b_n := 5n + 3 + \frac{1}{n}, \quad c_n := \sqrt{9 + \frac{3}{n} + \frac{1}{n^2}} + 2$$

Note that

$$9 + \frac{3}{n} + \frac{1}{n^2} \rightarrow 9$$

by the Algebra of Limits. Therefore

$$\sqrt{9 + \frac{3}{n} + \frac{1}{n^2}} \to \sqrt{9} = 3$$

by Theorem 5.20. Hence

$$c_n = \sqrt{9 + \frac{3}{n} + \frac{1}{n^2} + 2} \rightarrow 3 + 2 = 5.$$

The numerator

$$b_n = 5n + 3 + \frac{1}{n}$$

is instead unbounded. Therefore (a_n) is not convergent, by the Algebra of Limits and the usual contradiction argument.

5.4 Limit Tests

Theorem 5.23: Squeeze theorem

Let (a_n) , (b_n) and (c_n) be sequences in \mathbb{R} . Suppose that

$$b_n \leq a_n \leq c_n$$
, $\forall n \in \mathbb{N}$,

L .

and that

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n =$$

Then

 $\lim_{n \to \infty} a_n = L.$

Example 5.24

Question. Prove that

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

Solution. For all $n \in \mathbb{N}$ we can estimate

$$-1 \leq (-1)^n \leq 1$$
.

Therefore

Moreover

$$\frac{-1}{n} \le \frac{(-1)^n}{n} \le \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$

 $\lim_{n \to \infty} \frac{-1}{n} = -1 \cdot 0 = 0, \quad \lim_{n \to \infty} \frac{1}{n} = 0.$

By the Squeeze Theorem 5.23 we conclude

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

Example 5.25

Question. Prove that

$$\lim_{n \to \infty} \frac{\cos(3n) + 9n^2}{11n^2 + 15\sin(17n)} = \frac{9}{11}$$

Solution. We know that

$$-1 \le \cos(x) \le 1$$
, $-1 \le \sin(x) \le 1$, $\forall x \in \mathbb{R}$.

Therefore, for all $n \in \mathbb{N}$

$$-1 \le \cos(3n) \le 1$$
, $-1 \le \sin(17n) \le 1$.

We can use the above to estimate the numerator in the given sequence:

$$1 + 9n^2 \le \cos(3n) + 9n^2 \le 1 + 9n^2 . \tag{5.3}$$

Concerning the denominator, we have

$$11n^2 - 15 \le 11n^2 + 15\sin(17n) \le 11n^2 + 15$$

and therefore

$$\frac{1}{11n^2 + 15} \le \frac{1}{11n^2 + 15\sin(17n)} \le \frac{1}{11n^2 - 15} \,. \tag{5.4}$$

Putting together (5.3)-(5.4) we obtain

$$\frac{-1+9n^2}{11n^2+15} \le \frac{\cos(3n)+9n^2}{11n^2+15\sin(17n)} \le \frac{1+9n^2}{11n^2-15}$$

By the Algebra of Limits we infer

$$\frac{-1+9n^2}{11n^2+15} = \frac{-\frac{1}{n^2}+9}{11+\frac{15}{n^2}} \to \frac{0+9}{11+0} = \frac{9}{11}$$

and

$$\frac{1+9n^2}{11n^2-15} = \frac{\frac{1}{n^2}+9}{11-\frac{15}{n^2}} \to \frac{0+9}{11+0} = \frac{9}{11}$$

1

Applying the Squeeze Theorem 5.23 we conclude

$$\lim_{n \to \infty} \frac{\cos(3n) + 9n^2}{11n^2 + 15\sin(17n)} = \frac{9}{11}$$

Definition 5.26: Geometric sequence

A sequence (a_n) is called a **geometric sequence** if

$$a_n = x^n$$
,

for some $x \in \mathbb{R}$.

Theorem 5.27: Geometric Sequence Test

Let $x \in \mathbb{R}$ and let (a_n) be the sequence defined by $a_n := x^n$. We have:

1. If |x| < 1, then

- $\lim_{n\to\infty}a_n=0\,.$
- 2. If |x| > 1, then sequence (a_n) is unbounded, and hence divergent.

Example 5.28

We can apply Theorem 5.27 to prove convergence or divergence for the following sequences.

1. We have

since

$$\left(\frac{-1}{2}\right)^n \longrightarrow 0$$

 $\left(\frac{1}{2}\right)^n \longrightarrow 0$

 $\left|\frac{1}{2}\right| = \frac{1}{2} < 1$.

since

- $\left|\frac{-1}{2}\right| = \frac{1}{2} < 1.$
- 3. The sequence

$$a_n = \left(\frac{-3}{2}\right)^n$$

does not converge, since

$$\left|\frac{-3}{2}\right| = \frac{3}{2} > 1$$

4. As $n \to \infty$,

$$\frac{3^n}{(-5)^n} = \left(-\frac{3}{5}\right)^n \longrightarrow 0$$
$$\left|-\frac{3}{5}\right| = \frac{3}{5} < 1.$$

since

$$a_n = \frac{(-7)^n}{2^{2n}}$$

does not converge, since

$$\frac{(-7)^n}{2^{2n}} = \frac{(-7)^n}{(2^2)^n} = \left(-\frac{7}{4}\right)^n$$

and

$$\left|-\frac{7}{4}\right| = \frac{7}{4} > 1.$$

Theorem 5.29: Ratio Test

Let (a_n) be a sequence in \mathbb{R} such that

$$a_n \neq 0$$
, $\forall n \in \mathbb{N}$

1. Suppose that the following limit exists:

$$L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \, .$$

Then,

• If L < 1 we have

$$\lim_{n\to\infty}a_n=0\,.$$

- If *L* > 1, the sequence (*a_n*) is unbounded, and hence does not converge.
- 2. Suppose that there exists $N \in \mathbb{N}$ and L > 1 such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge L\,, \quad \forall \, n \ge N$$

Then the sequence (a_n) is unbounded, and hence does not converge.

Example 5.30

Question. Prove that

$$a_n = \frac{3^n}{n!} \to 0$$

where we recall that n! (pronounced n factorial) is defined by

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1.$$

Solution. We have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\left(\frac{3^{n+1}}{(n+1)!}\right)}{\left(\frac{3^n}{n!}\right)} = \frac{3}{n+1} \longrightarrow L = 0.$$

Hence, L = 0 < 1 so $a_n \rightarrow 0$ by the Ratio Test in Theorem 5.29.

Example 5.31

Question. Prove that the sequence is divergent

$$a_n = \frac{n! \cdot 3^n}{\sqrt{(2n)!}}$$

Solution. We have

$$\begin{vmatrix} a_{n+1} \\ a_n \end{vmatrix} = \frac{(n+1)! \cdot 3^{n+1}}{\sqrt{(2(n+1))!}} \frac{\sqrt{(2n)!}}{n! \cdot 3^n} = \frac{(n+1)!}{n!} \cdot \frac{3^{n+1}}{3^n} \cdot \frac{\sqrt{(2n)!}}{\sqrt{(2(n+1))!}}$$

For the first two fractions we have

$$\frac{(n+1)!}{n!} \cdot \frac{3^{n+1}}{3^n} = 3(n+1),$$

while for the third fraction

$$\frac{\sqrt{(2n)!}}{\sqrt{(2(n+1))!}} = \sqrt{\frac{(2n)!}{(2n+2)!}}$$
$$= \sqrt{\frac{(2n)!}{(2n+2)\cdot(2n+1)\cdot(2n)!}}$$
$$= \frac{1}{\sqrt{(2n+1)(2n+2)}}.$$

Therefore, using the Algebra of Limits,

$$\begin{vmatrix} \frac{a_{n+1}}{a_n} \end{vmatrix} = \frac{3(n+1)}{\sqrt{(2n+1)(2n+2)}}$$
$$= \frac{3n\left(1+\frac{1}{n}\right)}{\sqrt{n^2\left(2+\frac{1}{n}\right)\left(2+\frac{2}{n}\right)}}$$
$$= \frac{3\left(1+\frac{1}{n}\right)}{\sqrt{\left(2+\frac{1}{n}\right)\left(2+\frac{2}{n}\right)}} \longrightarrow \frac{3}{\sqrt{4}} = \frac{3}{2} > 1.$$

By the Ratio Test we conclude that (a_n) is divergent.

Example 5.32

Question. Prove that the following sequence is divergent

$$a_n = \frac{n!}{100^n}$$

Solution. We have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{100^n}{100^{n+1}} \frac{(n+1)!}{n!} = \frac{n+1}{100}.$$

Choose N = 101. Then for all $n \ge N$,

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{n+1}{100} \ge \frac{N+1}{100} = \frac{101}{100} > 1.$$

Hence a_n is divergent by the Ratio Test.

5.5 Monotone sequences

Definition 5.33: Monotone sequence

Let (a_n) be a real sequence. We say that:

1. (a_n) is increasing if

$$a_n \leq a_{n+1}, \quad \forall n \geq N.$$

2. (a_n) is decreasing if

 $a_n \ge a_{n+1}$, $\forall n \ge N$.

3. (a_n) is **monotone** if it is either increasing or decreasing.

Example 5.34

Question. Prove that the following sequence is increasing

$$a_n = \frac{n-1}{n} \, .$$

Solution. We have

$$a_{n+1} = \frac{n}{n+1} > \frac{n-1}{n} = a_n$$

where the inequality holds because

$$\frac{n}{n+1} > \frac{n-1}{n} \quad \iff \quad n^2 > (n-1)(n+1)$$
$$\iff \quad n^2 > n^2 - 1$$
$$\iff \quad 0 > -1$$

Example 5.35

Question. Prove that the following sequence is decreasing

$$a_n = \frac{1}{n}$$

Solution. We immediately see that

$$a_n = \frac{1}{n} > \frac{1}{n+1} = a_{n+1}$$

Theorem 5.36: Monotone Convergence Theorem

Let (a_n) be a sequence in \mathbb{R} . Suppose that (a_n) is bounded and monotone. Then (a_n) converges. In particular,

1. If a_n is increasing, then

$$\lim_{n\to\infty}a_n=\sup A\,,$$

2. If a_n is decreasing, then

$$\lim_{n \to \infty} a_n = \inf A$$

where we define $A = \{a_n : n \in \mathbb{N}\}.$

Theorem 5.37

Consider the sequence

$$a_n = \left(1 + \frac{1}{n}\right)^n \, .$$

We have that:

(a_n) is monotone increasing,
 (a_n) is bounded.

In particular (a_n) is convergent.

Definition 5.38: Euler's Number

The Euler's number is defined as

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

5.6 Special limits

Theorem 5.39

Let $x \in \mathbb{R}$, with x > 0. Then

 $\lim_{n\to\infty}\sqrt[n]{x} = 1.$

Theorem 5.40

Let (a_n) be a sequence such that $a_n \to 0$. Then

$$\sin(a_n) \to 0$$
, $\cos(a_n) \to 1$.

Theorem 5.41

Suppose (a_n) is such that $a_n \to 0$ and $a_n \neq 0$. Then,

$$\lim_{n\to\infty}\frac{\sin(a_n)}{a_n}=1\,.$$

Theorem 5.42

Suppose
$$(a_n)$$
 is such that $a_n \to 0$ and $a_n \neq 0$. Then,

$$\lim_{n \to \infty} \frac{1 - \cos(a_n)}{(a_n)^2} = \frac{1}{2}, \quad \lim_{n \to \infty} \frac{1 - \cos(a_n)}{a_n} = 0$$

Proof

$$\cos(a_n) \to 1$$
, $\frac{\sin(a_n)}{a_n} \to 1$.

Therefore

$$\frac{1 - \cos(a_n)}{(a_n)^2} = \frac{1 - \cos(a_n)}{(a_n)^2} \frac{1 + \cos(a_n)}{1 + \cos(a_n)}$$
$$= \frac{1 - \cos^2(a_n)}{(a_n)^2} \frac{1}{1 + \cos(a_n)}$$
$$= \left(\frac{\sin(a_n)}{a_n}\right)^2 \frac{1}{1 + \cos(a_n)} \longrightarrow 1 \cdot \frac{1}{1 + 1} = \frac{1}{2},$$

where in the last line we use the Algebra of Limits. *Step 2.* We have

$$\frac{1-\cos(a_n)}{a_n} = a_n \cdot \frac{1-\cos(a_n)}{(a_n)^2} \longrightarrow 0 \cdot \frac{1}{2} = 0,$$

using Step 1 and the Algebra of Limits.

Example 5.43

Question. Prove that

$$\lim_{n \to \infty} n \sin\left(\frac{1}{n}\right) = 1.$$
(5.5)

Solution. By Theorem 5.41 with $a_n = 1/n$, we get

$$n\sin\left(\frac{1}{n}\right) = \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} \longrightarrow 1$$

Example 5.44

Question. Prove that

$$\lim_{n \to \infty} n^2 \left(1 - \cos\left(\frac{1}{n}\right) \right) = \frac{1}{2}.$$
 (5.6)

Solution. By Theorem 5.42 with $a_n = 1/n$, we have

$$n^{2}\left(1-\cos\left(\frac{1}{n}\right)\right) = \frac{1-\cos\left(\frac{1}{n}\right)}{\frac{1}{n^{2}}} \longrightarrow \frac{1}{2}.$$

Example 5.45

Question. Prove that

$$\lim_{n \to \infty} \frac{n\left(1 - \cos\left(\frac{1}{n}\right)\right)}{\sin\left(\frac{1}{n}\right)} = \frac{1}{2}$$

Solution. Using (5.6)-(5.5) and the Algebra of Limits

$$\frac{n\left(1-\cos\left(\frac{1}{n}\right)\right)}{\sin\left(\frac{1}{n}\right)} = \frac{n^2\left(1-\cos\left(\frac{1}{n}\right)\right)}{n\sin\left(\frac{1}{n}\right)}$$
$$\longrightarrow \frac{1/2}{1} = \frac{1}{2}.$$

Example 5.46

Question. Prove that

$$\lim_{n \to \infty} n \cos\left(\frac{2}{n}\right) \sin\left(\frac{2}{n}\right) = 2.$$

Solution. We have $\cos(2)$

$$\cos\left(\frac{-}{n}\right) \longrightarrow 1$$

by Theorem 5.40 applied with $a_n = 2/n$. Moreover

$$\frac{\sin\left(\frac{2}{n}\right)}{\frac{2}{n}} \longrightarrow 1$$

by Theorem 5.41 applied with $a_n = 2/n$. Therefore

$$n\cos\left(\frac{2}{n}\right)\sin\left(\frac{2}{n}\right) = 2\cdot\cos\left(\frac{2}{n}\right)\cdot\frac{\sin\left(\frac{2}{n}\right)}{\frac{2}{n}}$$
$$\longrightarrow 2\cdot1\cdot1 = 2,$$

where we used the Algebra of Limits.

Example 5.47

Question. Prove that

$$\lim_{n \to \infty} \frac{n^2 + 1}{n+1} \sin\left(\frac{1}{n}\right) = 1$$

Solution. Using (5.5) and the Algebra of Limits,

$$\frac{n^2+1}{n+1}\sin\left(\frac{1}{n}\right) = \left(\frac{1+\frac{1}{n^2}}{1+\frac{1}{n}}\right) \cdot \left(n\sin\left(\frac{1}{n}\right)\right)$$
$$\longrightarrow \frac{1+0}{1+0} \cdot 1 = 1.$$

6 Sequences in \mathbb{C}

Definition 6.1: Convergent sequence in C

We say that a sequence (a_n) in \mathbb{C} **converges** to $a \in \mathbb{C}$, or equivalently has limit a, denoted by

$$\lim_{n\to\infty}a_n=a\quad\text{or}\quad a_n\to a\,,$$

if it holds:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \ge N, |a_n - a| < \varepsilon.$$

If there exists $a \in \mathbb{C}$ such that $\lim_{n\to\infty} a_n = a$, we say that the sequence (a_n) is **convergent**.

Example 6.2

Question. Using Definition 6.1, prove that

$$\lim_{n \to \infty} \frac{(3+i)n - 7i}{n} = 3 + i$$

Solution.

Part 1. Rough Work. Let $\varepsilon > 0$. We need to clarify for which values of *n* the following holds:

$$\left|\frac{(3+i)n-7i}{n}-(3+i)\right|<\varepsilon.$$

We have

$$\left|\frac{(3+i)n-7i}{n} - (3+i)\right| = \frac{|-7i|}{n} = \frac{7}{n}$$

Therefore

 $\frac{7}{n} < \varepsilon \quad \iff \quad n > \frac{7}{\varepsilon}.$

Part 2. Formal Proof. We want to prove that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\left|\frac{(3+i)n-7i}{n}-(3+i)\right|<\varepsilon,\qquad\forall n\geq N$$

Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that

$$N > \frac{7}{\varepsilon}$$

The above is equivalent to

 $\frac{7}{N} < \varepsilon \, .$

For $n \ge N$ we have

$$\left|\frac{(3+i)n-7i}{n}-(3+i)\right|=\frac{7}{n}\leq\frac{7}{N}<\varepsilon.$$

Definition 6.3: Bounded sequence in C

A sequence (a_n) in \mathbb{C} is called **bounded** if there exists a constant $M \in \mathbb{R}$, with M > 0, such that

$$|a_n| \le M$$
, $\forall n \in \mathbb{N}$

Theorem 6.4

If a sequence (a_n) in \mathbb{C} converges, then the sequence is bounded.

Definition 6.5: Divergent sequences in ℂ

We say that a sequence (a_n) in \mathbb{C} is **divergent** if it is not convergent.

Corollary 6.6

Let (a_n) be a complex sequence. If (a_n) is not bounded, then it is divergent.

6.1 Algebra of limits in C

Theorem 6.7: Algebra of limits in ℂ

Let (a_n) and (b_n) be sequences in \mathbb{C} . Suppose that

$$\lim_{n \to \infty} a_n = a \,, \quad \lim_{n \to \infty} b_n = b \,,$$

for some $a, b \in \mathbb{C}$. Then,

1. Limit of sum is the sum of limits:

$$\lim_{n \to \infty} \left(a_n \pm b_n \right) = a \pm b$$

2. Limit of product is the product of limits:

$$\lim_{n \to \infty} (a_n b_n) = a b_n$$

3. If $b_n \neq 0$ for all $n \in \mathbb{N}$ and $b \neq 0$, then

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b}$$

Example 6.8

Question. Compute the limit of

$$a_n = \frac{(2-i)n^2 + 6in - 5 - 3i}{(6+3i)n^2 + 11i}$$

Solution. Factor n^2 , the largest power of *n* in the denominator,

$$a_n = \frac{(2-i) + \frac{6i}{n} - \frac{5}{n^2} - \frac{3i}{n^2}}{(6+3i) + \frac{11i}{n^2}} \longrightarrow \frac{2-i}{6+3i}$$

where we used the Algebra of Limits. Finally,

 $\frac{2-i}{6+3i} = \frac{(2-i)(6-3i)}{(6+3i)(6-3i)} = \frac{1}{5} - \frac{4}{15}i.$

6.2 Convergence to zero

Theorem 6.9

Let (a_n) be a sequence in \mathbb{C} and suppose that

$$\lim_{n\to\infty}|a_n|=0\,.$$

Then

$$\lim_{n \to \infty} a_n = 0$$

Example 6.10

Question. Prove that $a_n \rightarrow 0$, where

$$a_n = \left(\frac{1}{2} + \frac{1}{3}i\right)^n \,.$$

Solution. We have

$$a_n| = \left| \left(\frac{1}{2} + \frac{1}{3}i \right)^n \right|$$
$$= \left| \frac{1}{2} + \frac{1}{3}i \right|^n$$
$$= \left(\sqrt{\left(\frac{1}{2} \right)^2 + \left(\frac{1}{3} \right)^2} \right)$$
$$= \left(\sqrt{\frac{13}{36}} \right)^n.$$

Since

$$\left| \frac{13}{36} \right| < 1 \,,$$

by the Geometric Sequence Test for real sequences, we conclude that

 $|a_n| \to 0$.

Hence $a_n \rightarrow 0$ by Theorem 6.9.

Example 6.11

Question. Consider the sequence

$$a_n := \frac{2i\cos(3n)n + (7-i)n^2}{3n^2 + 2in + \sin(2n)}$$

Prove that

 $\lim_{n\to\infty}a_n=\frac{7}{3}-\frac{1}{3}i.$

Solution. We divide by the largest power in the denominator, to get

$$a_n = \frac{\frac{2i\cos(3n)}{n} + (7-i)}{3 + \frac{2i}{n} + \frac{\sin(2n)}{n^2}}.$$

 $-1 \leq \cos(3n) \leq 1$, $\forall n \in \mathbb{N}$,

 $-\frac{2}{n} \le \frac{2\cos(3n)}{n} \le \frac{2}{n}, \quad \forall n \in \mathbb{N}.$

Notice that

and thus

Since

$$-\frac{2}{n} \longrightarrow 0, \quad \frac{2}{n} \longrightarrow 0,$$

by the Squeeze Theorem we conclude that also

$$\frac{2\cos(3n)}{n} \to 0\,.$$

In particular we have shown that

$$\left|\frac{2i\cos(3n)}{n}\right| = \left|\frac{2\cos(3n)}{n}\right| \to 0.$$

Using Theorem 6.9 we infer

$$\frac{2i\cos(3n)}{n} \to 0.$$

Similarly,

$$-\frac{1}{n^2} \le \frac{\sin(2n)}{n^2} \le -\frac{1}{n^2}, \quad \forall n \in \mathbb{N}.$$

Since

$$-rac{1}{n^2}\longrightarrow 0\,,\quad rac{1}{n^2}\longrightarrow 0\,,$$

by the Squeeze Theorem we conclude

$$\frac{\sin(2n)}{n^2} \longrightarrow 0$$

Finally, we have

$$\left|\frac{2i}{n}\right| = \frac{2}{n} \longrightarrow 0,$$

and therefore

$$\frac{2i}{n} \longrightarrow 0$$

by Theorem 6.9. Using the Algebra of Limits in $\mathbb C$ we conclude

$$a_n = \frac{\frac{2i\cos(3n)}{n} + (7-i)}{3 + \frac{2i}{n} + \frac{\sin(2n)}{n^2}} \longrightarrow \frac{0 + (7-i)}{3 + 0 + 0} = \frac{7}{3} - \frac{1}{3}i$$

6.3 Geometric sequence Test and Ratio Test in C

Theorem 6.12: Geometric sequence Test in C

Let $x \in \mathbb{C}$ and let $(a_n)_{n \in \mathbb{N}}$ be the geometric sequence in \mathbb{C} defined by

 $a_n := x^n$.

We have:

1. If |x| < 1, then

 $\lim_{n\to\infty}a_n=0\,.$

2. If |x| > 1, then sequence (a_n) is unbounded, and hence divergent.

Example 6.13

Question. Prove that $a_n \rightarrow 0$, where

$$a_n = \frac{(-1+4i)^n}{(7+3i)^n}$$

Solution. We first rewrite

$$a_n = \frac{(-1+4i)^n}{(7+3i)^n} = \left(\frac{-1+4i}{7+3i}\right)^n$$

Then, we compute

$$\left|\frac{-1+4i}{7+3i}\right| = \frac{\left|-1+4i\right|}{\left|7+3i\right|}$$
$$= \frac{\sqrt{(-1)^2+4^2}}{\sqrt{7^2+3^2}}$$
$$= \frac{\sqrt{17}}{\sqrt{58}}$$
$$= \sqrt{\frac{17}{58}}$$
$$< 1$$

By the Geometric Sequence Test $a_n \rightarrow 0$.

Example 6.14

Question. Prove that a_n diverges, where

$$a_n = \frac{(-5+12i)^n}{(3-4i)^n}$$
.

Solution. We first rewrite

$$a_n = \frac{(-5+12i)^n}{(3-4i)^n} = \left(\frac{-5+12i}{3-4i}\right)^n$$

We compute

$$\left|\frac{-5+12i}{3-4i}\right| = \frac{\left|-5+12i\right|}{\left|3-4i\right|}$$
$$= \frac{\sqrt{5^{2}+(-12)^{2}}}{\sqrt{3^{2}+(-4)^{2}}}$$
$$= \frac{13}{5}$$
$$> 1.$$

By the Geometric Sequence Test, the sequence a_n diverges.

Example 6.15

Question. Prove that a_n diverges, where

$$a_n = \exp\left(\frac{i\pi}{2}n\right)$$

Solution. We have

$$|a_n| = \left| e^{\frac{i\pi}{2}n} \right| = 1,$$

and hence the Geometric Sequence Test cannot be applied. However, we can see that

$$a_n = (i, -1, -i, 1, i, -1, -i, 1, ...),$$

that is, a_n assumes only the values $\{i, -1, -i, 1\}$, and each of them is assumed infinitely many times. Therefore a_n is oscillating, and thus divergent.

Theorem 6.16: Ratio Test in ℂ

Let (a_n) be a sequence in \mathbb{C} such that

$$a_n \neq 0$$
, $\forall n \in \mathbb{N}$.

1. Suppose that the following limit exists:

$$L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \, .$$

Then,

If
$$L < 1$$
 we have

$$\lim_{n\to\infty}a_n=0\,.$$

- If *L* > 1, the sequence (*a_n*) is unbounded, and hence does not converge.
- 2. Suppose that there exists $N \in N$ and L > 1 such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge L, \quad \forall \, n \ge N$$

Then the sequence a_n is unbounded, and hence does not converge.

Example 6.17

Question. Study the convergence / divergence of the sequence

$$a_n = \frac{(4-3i)^n}{(2n)!} \,.$$

Solution. We compute

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(4-3i)^{n+1}}{(2(n+1))!} \frac{(2n)!}{(4-3i)^n}\right|$$
$$= \frac{|4-3i|^{n+1}}{|4-3i|^n} \cdot \frac{(2n)!}{(2n+2)!}$$
$$= \frac{|4-3i|}{(2n+2)(2n+1)}$$
$$= \frac{\sqrt{4^2 + (-3)^2}}{(2n+2)(2n+1)}$$
$$= \frac{5}{(2n+2)(2n+1)}$$
$$= \frac{5}{n^2}$$
$$\longrightarrow L = 0$$

Since L = 0 < 1, by the Ratio Test in \mathbb{C} we infer $a_n \to 0$.

6.4 Convergence of real and imaginary part

Theorem 6.18

Let $(z_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} . For $n \in \mathbb{N}$, let $a_n, b_n \in \mathbb{R}$ such that

 $z_n = a_n + b_n i.$

Let z = a + bi, with $a, b \in \mathbb{R}$. Then

$$\lim_{n \to \infty} z_n = z \quad \iff \quad \lim_{n \to \infty} a_n = a \,, \quad \lim_{n \to \infty} b_n = b \,.$$

Example 6.19

Question. Consider the complex sequence

$$z_n := \frac{(4n+3n^2i)(2n^2+i)}{5n^4}$$

Show that

$$\lim_{n\to\infty} z_n = \frac{6}{5}i.$$

Solution. We find the real and imaginary parts of z_n

$$z_n = \frac{(4n+3n^2i)(2n^2+i)}{5n^4}$$

= $\frac{8n^3+4ni+6n^4i+3n^2i^2}{5n^4}$
= $\frac{8n^3-3n^2}{5n^4} + \frac{6n^4+4n}{5n^4}i$
= $a_n + b_n i$.

Using the Algebra of Limits for real sequences we have that

$$a_n = \frac{8n^3 - 3n^2}{5n^4} = \frac{\frac{8}{n} - \frac{3}{n^2}}{5} \longrightarrow \frac{0 - 0}{5} = 0,$$

$$b_n = \frac{6n^4 + 4n}{5n^4} = \frac{6 + \frac{4}{n^3}}{5} \longrightarrow \frac{6 + 0}{5} = \frac{6}{5}.$$

By Theorem 6.18 we conclude

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} a_n + i \lim_{n \to \infty} b_n = 0 + \frac{6}{5}i = \frac{6}{5}i.$$

7 Series

Definition 7.1: Partial sums

Let (a_n) be a sequence in \mathbb{C} . The *k*-th partial sum of (a_n) is

$$s_k := a_1 + a_2 + \dots + a_k = \sum_{n=1}^{k} a_n$$

This sequence $(s_k)_{k \in \mathbb{N}}$ is called the sequence of **partial sums**.

Definition 7.2: Convergent series

Let (a_n) be a sequence in \mathbb{C} . We denote the series of $(a_n)_{n \in \mathbb{N}}$ by

$$\sum_{n=1}^{\infty} a_n$$

We say that this series **converges** to $s \in \mathbb{C}$ if

$$\lim_{k \to \infty} \sum_{n=1}^{k} a_n = \lim_{k \to \infty} s_k = s$$

In this case we write

$$\sum_{n=1}^{\infty} a_n = s$$

Definition 7.3: Divergent series

Let (a_n) be a sequence in \mathbb{C} . The series

 $\sum_{n=1}^{\infty} a_n$

is **divergent** if the sequence of partial sums (s_k) is divergent.

Example 7.4

Question. Prove that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

Solution. The idea to prove convergence is to split the general term into the sum of two fraction:

$$\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n(n+1)}$$
$$= \frac{A(n+1) + Bn}{n(n+1)}$$
$$= \frac{(A+B)n + A}{n(n+1)}$$

In order for the LHS and RHS to be the same, we need to impose

$$(A+B)n+A=1,$$

which holds if and only if

$$A + B = 1, A = 1 \implies A = 1, B = -1.$$

Therefore, we conclude that

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
.

We can now compute the partial sums s_k as follows:

$$s_k = \sum_{n=1}^k \frac{1}{n(n+1)}$$

= $\sum_{n=1}^k \left(\frac{1}{n} - \frac{1}{n+1}\right)$
= $\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{k} - \frac{1}{k+1}$
= $1 - \frac{1}{k+1}$.

Therefore,

$$\lim_{k\to\infty}s_k=\lim_{k\to\infty}\left(1-\frac{1}{k+1}\right)=1\,,$$

which means that the series converges to 1, that is,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

A series of this kind is called a **telescopic series**, since we can *fold* the entire partial sum together, in such a way that only two terms remain.

Example 7.5

Question. Prove that the following series diverges

$$\sum_{n=1}^{\infty} (-1)^n \, .$$

Solution. The partial sums s_k are given by

$$s_k = \sum_{n=1}^k (-1)^n = \begin{cases} -1 & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

Therefore s_k diverges, so also the series $\sum (-1)^n$ diverges.

Theorem 7.6: Necessary Condition for Convergence

Let (a_n) be a sequence in \mathbb{C} . If the series

$$\sum_{n=1}^{\infty} a_n$$

converges, then

$$\lim_{n\to\infty}a_n=0\,.$$

Example 7.7

Consider the series

$$\sum_{n=1}^{\infty} (-1)^n \,. \tag{7.1}$$

We have that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)^n \neq 0$$

being (a_n) divergent. Therefore the series at (7.1) diverges by Theorem 7.6.

Example 7.8

Question. Discuss converge/divergence for the following series

$$\sum_{n=1}^{\infty} \frac{n}{5n+11}$$

Solution. We have

$$a_n := \frac{n}{5n+11} = \frac{1}{5+\frac{11}{n}} \longrightarrow \frac{1}{5} \neq 0$$

Hence, the series $\sum a_n$ diverges.

Important

Theorem 7.6 says that if $\sum_{n=1}^{\infty} a_n$ converges, then

 $a_n \rightarrow 0$.

The converse is false: In general the condition $a_n \rightarrow 0$ does not guarantee convergence of the associated series, as shown in the example below.

Example 7.9

Question. Discuss convergence/divergence for the following series

$$\sum_{n=1}^{\infty} a_n \,, \quad a_n \,:= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Solution. By the Algebra of Limits we have

 $\lim_{n\to\infty}a_n=0\,.$

Therefore, we cannot conclude anything yet: The series might converge or diverge. Let us compute the partial sums:

$$s_{k} = \sum_{n=1}^{k} \frac{1}{\sqrt{k+1} + \sqrt{k}}$$
$$= \sum_{n=1}^{k} \frac{1}{\sqrt{k+1} + \sqrt{k}} \cdot \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}}$$
$$= \sum_{n=1}^{k} \sqrt{k+1} - \sqrt{k}$$
$$= \sqrt{2} - \sqrt{1} + \sqrt{3} - \sqrt{2} + \dots + \sqrt{k+1} - \sqrt{k}$$
$$= \sqrt{k+1} - 1.$$

We have shown that the partial sums are

$$s_k = \sum_{n=1}^k a_n = \sqrt{k+1} - 1.$$

Therefore (s_k) is divergent, and so the series $\sum a_n$ is divergent.

Remark 7.10

It is customary to sum a series starting at n = 1. However one could start the sum at any n = N with $N \in \mathbb{N}$. This does not affect the convergence of the series, in the sense that

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{n=N}^{\infty} a_n \text{ converges.}$$

In case of convergence, we would of course have

$$\sum_{n=N}^{\infty} a_n = \sum_{n=1}^{\infty} a_n - (a_1 + \dots + a_{N-1}) \; .$$

Example 7.11

Question. Prove that

$$\sum_{n=7}^{\infty} \frac{1}{n(n+1)} = \frac{1}{7} \, .$$

Solution. We have seen that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Hence also the series

$$\sum_{n=7}^{\infty} \frac{1}{n(n+1)}$$

converges. In this case, the partial sums are given by

$$s_k = \sum_{n=7}^k \frac{1}{n(n+1)}$$

= $\sum_{n=7}^k \left(\frac{1}{n} - \frac{1}{n+1}\right)$
= $\frac{1}{7} - \frac{1}{8} + \frac{1}{8} - \frac{1}{9} + \dots + \frac{1}{k} - \frac{1}{k+1}$
= $\frac{1}{7} - \frac{1}{k+1}$.

Therefore

$$\sum_{n=7}^{\infty} \frac{1}{n(n+1)} = \lim_{k \to \infty} s_k = \frac{1}{7}.$$

7.1 Geometric series

Definition 7.12: Geometric Series in C

Let $x \in \mathbb{C}$. The **geometric series** of ratio x is the series

 $\sum_{n=0}^{\infty} x^n \, .$

Theorem 7.13: Geometric Series Test

Let $x \in \mathbb{C}$. We have:

1. If |x| < 1, then the geometric series of ratio *x* converges, with

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \,. \tag{7.2}$$

2. If $|x| \ge 1$, then the geometric series of ratio *x* diverges.

Example 7.14

Question. Discuss convergence/divergence of the following series. If the series converges, compute the limit.

Solution.

1. Since $\left|\frac{1}{2}\right| < 1$, by the GST we have

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1 - \frac{1}{2}} = 2$$

2. Since $\left|\frac{-3}{2}\right| = \frac{3}{2} > 1$, by the GST the series

$$\sum_{n=0}^{\infty} \left(-\frac{3}{2}\right)^n$$

diverges.

3. Since $\left|\frac{-3}{4}\right| = \frac{3}{4} < 1$, we have

$$\sum_{n=0}^{\infty} \left(\frac{-3}{4}\right)^n = \frac{1}{1 - \frac{-3}{4}} = \frac{1}{\frac{7}{4}} = \frac{4}{7}$$

4. Since |-1| = 1, the series

$$\sum_{n=0}^{\infty} (-1)^n$$

diverges.

Remark 7.15

If the sum of a Geometric Sries does not start at n = 0, we need to tweak the summation formula at (7.2). For example, if |x| < 1, and we start the series at n = 1, we get

$$\sum_{n=1}^{\infty} x^k = \frac{1}{1-x} - 1 = \frac{x}{1-x}$$

Example 7.16

Question. Prove that

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 1$$

Solution. We have that

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n - 1$$
$$= \frac{1}{1 - \frac{1}{2}} - 1 = 1$$

Example 7.17

Question. Discuss convergence/divergence of the following series. If the series converges, compute the limit.

$$\sum_{n=0}^{\infty} \frac{1}{(1+i)^n} , \quad \sum_{n=0}^{\infty} \left(\frac{1-5i}{3+3i}\right)^n , \quad \sum_{n=0}^{\infty} \left(\frac{2+i}{3-2i}\right)^n$$

Solution.

1. We have

$$\frac{1}{(1+i)^n} = \left(\frac{1}{1+i}\right)^n$$

$$\left|\frac{1}{1+i}\right| = \frac{1}{\sqrt{1^2+1^2}} = \frac{1}{\sqrt{2}} < 1.$$

Therefore, the series converges by the Geometric Series Test, and

$$\sum_{n=0}^{\infty} \frac{1}{(1+i)^n} = \frac{1}{1 - \frac{1}{1+i}} = 1 - i.$$

2. Since

$$\begin{aligned} \frac{1-5i}{3+3i} &| = \frac{|1-5i|}{|3+3i|} \\ &= \frac{\sqrt{(1)^2 + (-5)^2}}{3\sqrt{1^2 + 1^2}} \\ &= \frac{\sqrt{26}}{3\sqrt{2}} \\ &= \frac{\sqrt{13}}{3} > 1 \,, \end{aligned}$$

the series diverges by the Geometric Series Test.

3. We have

$$\begin{aligned} \left| \frac{2+i}{3-2i} \right| &= \frac{|2+i|}{|3-2i|} \\ &= \frac{\sqrt{2^2+1^2}}{\sqrt{3^2+(-2)^2}} \\ &= \sqrt{\frac{5}{13}} < 1. \end{aligned}$$

Therefore the series converges by the Geometric Series Test, and

$$\sum_{n=0}^{\infty} \left(\frac{2+i}{3-2i}\right)^n = \frac{1}{1-\frac{2+i}{3-2i}}$$
$$= \frac{1}{\frac{3-2i-(2+i)}{3-2i}}$$
$$= \frac{3-2i}{1-3i}$$
$$= \frac{3-2i}{1-3i} \frac{1+3i}{1+3i}$$
$$= \frac{3-2i+9i-6i^2}{1-9i^2}$$
$$= \frac{9}{10} + \frac{7}{10}i$$

7.2 Algebra of Limits for Series

Theorem 7.18: Algebra of Limits for Series

Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be sequences in \mathbb{C} and let $c\in\mathbb{C}$. Suppose that

$$\sum_{n=1}^{\infty} a_n = a, \qquad \sum_{n=1}^{\infty} b_n = b$$

Then:

1. The sum of series is the series of the sums:

$$\sum_{n=1}^{\infty} \left(a_n \pm b_n \right) = a \pm b$$

2. The product of a series with a number obeys

$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot a$$

Example 7.19

Question. Prove that

$$\sum_{n=0}^{\infty} \left(2\left(\frac{1}{3}\right)^n + \left(\frac{2}{3}\right)^n \right) = 6.$$

Solution. Note that

$$\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n = \frac{1}{1-\frac{1}{3}} = \frac{3}{2},$$
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = \frac{1}{1-\frac{2}{3}} = 3,$$

by the Geometric Series Test. Therefore, we can apply the Algebra of Limit for Series to conclude that

$$\sum_{n=0}^{\infty} \left(2\left(\frac{1}{3}\right)^n + \left(\frac{2}{3}\right)^n \right) = 2 \cdot \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n + \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = 2 \cdot \frac{3}{2} + 3 = 6$$

7.3 Non-negative series

Definition 7.20: Non-negative series

Let (a_n) be a sequence in \mathbb{R} . We call the series

$$\sum_{n=1}^{\infty} a_n$$

a non-negative series if

 $a_n \geq 0$, $\forall n \in \mathbb{N}$.

Lemma 7.21

Let (a_n) be a sequence in \mathbb{R} with

$$a_n \ge 0$$
, $\forall n \in \mathbb{N}$.

Define the partial sums as

$$s_k := \sum_{n=1}^k a_n$$

The sequence (s_k) is increasing.

We present 4 test for the convergence of non-negative series:

- 1. Cauchy Condensation Test
- 2. Comparison Test
- 3. Limit Comparison Test
- 4. Ratio Test (positive series only)

Theorem 7.22: Cauchy Condensation Test

Let (a_n) be a sequence in \mathbb{R} . Suppose that (a_n) is non-negative and decreasing, that is,

$$a_n \ge a_{n+1}$$
, $\forall n \in \mathbb{N}$.

They are equivalent:

1. The following series converges

$$\sum_{n=1}^{\infty} a_n$$

2. The following series converges

$$\sum_{n=0}^{\infty} 2^n a_{2^n} = a_1 + 2a_2 + 8a_8 + 16a_{16} + \dots$$

Theorem 7.23: Convergence of *p*-series

Let $p \in \mathbb{R}$. Consider the *p*-series

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$

We have:

1. If p > 1 the *p*-series converges.

2. If $p \leq 1$ the *p*-series diverges.

Proof

The series in question is

$$\sum_{n=1}^{\infty} a_n, \quad a_n := \frac{1}{n^p}$$

Note that (a_n) is decreasing and non-negative. Hence, by the Cauchy Condensation Test of Theorem 7.22, the *p*-series converges if and only if

$$\sum_{n=0}^{\infty} 2^n a_{2^n}$$

converges. We have

$$\sum_{n=0}^{\infty} 2^n a_{2^n} = \sum_{n=0}^{\infty} 2^{n-np} = \sum_{n=0}^{\infty} (2^{1-p})^n$$

and the latter is a Geometric Series of ratio

$$x := 2^{1-p}$$

By the Geometric Series Test, we have convergence if and only if

|x| < 1,

which is equivalent to

 2^{1-}

$$p < 1 = 2^0 \quad \Longleftrightarrow \quad 1 - p < 0$$

 $\Leftrightarrow \quad p > 1.$

Therefore

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges if and only if p > 1, ending the proof.

Theorem 7.24

Let $p \in \mathbb{R}$. Consider the series

$$\sum_{n=2}^{\infty} \frac{1}{n \left(\log n\right)^p}.$$

We have:

1. If p > 1 the series converges.

2. If $p \leq 1$ the series diverges.

Proof

The series in question is

$$\sum_{n=2}^{\infty} a_n, \quad a_n := \frac{1}{n \left(\log n\right)^p}.$$

Note that (a_n) is non-negative and decreasing. Therefore we can apply the Cauchy Condensation Test to conclude that the above series is convergent if and only if the series

$$\sum_{n=1}^{\infty} 2^n a_{2^n}$$

is convergent. We have

$$2^{n}a_{2^{n}} = 2^{n} \frac{1}{2^{n} \left(\log 2^{n}\right)^{p}} = \frac{1}{n^{p} \log 2}$$

so that

$$\sum_{n=1}^{\infty} 2^n a_{2^n} = \frac{1}{\log 2} \sum_{n=1}^{\infty} \frac{1}{n^p} \, .$$

The latter is a *p*-series, which by Theorem 7.23 converges if and only if p > 1. Hence

$$\sum_{n=2}^{\infty} \frac{1}{n \left(\log n\right)^p}$$

converges if and only if p > 1, and the proof is concluded.

Theorem 7.25: Comparison test

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be non-negative sequences. Suppose that there exists $N \in \mathbb{N}$ such that

$$a_n \leq b_n$$
, $\forall n \geq N$.

They hold:

$$\sum_{n=1}^{\infty} b_n \text{ converges} \implies \sum_{n=1}^{\infty} a_n \text{ converges},$$
$$\sum_{n=1}^{\infty} a_n \text{ diverges} \implies \sum_{n=1}^{\infty} b_n \text{ diverges}.$$

Example 7.26

Question. Discuss convergence/divergence of the following series:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 3n - 1},$$
(7.3)

$$\sum_{n=0}^{\infty} \frac{3^n + 6n + \frac{1}{n+1}}{2^n} \,. \tag{7.4}$$

Solution.

1. Since $3n - 1 \ge 0$ for all $n \in \mathbb{N}$, we get

$$\frac{1}{n^2+3n-1} \leq \frac{1}{n^2} \,, \quad \forall \, n \in \mathbb{N} \,.$$

By Theorem 7.23 the *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converges. Therefore also the series at (7.3) converges by the Comparison Test in Theorem 7.25.

2. Note that

$$\frac{3^n + 6n + \frac{1}{n+1}}{2^n} \ge \frac{3^n}{2^n} = \left(\frac{3}{2}\right)^n, \quad \forall n \in \mathbb{N}.$$

Since $\left|\frac{3}{2}\right| = \frac{3}{2} > 1$, the series

$$\sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n$$

diverges by the Geometric Series Test in Theorem 7.13. Therefore, by the Comparison Test, also the series at (7.4) diverges.

Theorem 7.27: Limit Comparison Test

Let (a_n) and (b_n) be sequences such that

$$a_n \ge 0$$
, $b_n > 0$, $\forall n \in \mathbb{N}$.

Suppose there exists $L \in \mathbb{R}$ such that

 $L = \lim_{n \to \infty} \frac{a_n}{b_n} \, .$

They hold:

1. If $0 < L < \infty$, then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{n=1}^{\infty} b_n \text{ converges.}$$

2. If L = 0, then

$$\sum_{n=1}^{\infty} b_n \text{ converges} \implies \sum_{n=1}^{\infty} a_n \text{ converges},$$
$$\sum_{n=1}^{\infty} a_n \text{ diverges} \implies \sum_{n=1}^{\infty} b_n \text{ diverges}.$$

Example 7.28

Question. Prove that the following series converges

$$\sum_{n=1}^{\infty} \frac{2n^3 + 5n + 1}{7n^6 + 2n + 5} \,.$$

Solution. Set

$$a_n := \frac{2n^3 + 5n + 1}{7n^6 + 2n + 5}, \quad b_n := \frac{1}{n^3}$$

We have

$$L := \lim_{n \to \infty} \frac{a_n}{b_n}$$

= $\lim_{n \to \infty} \frac{2n^3 + 5n + 1}{7n^6 + 2n + 5} / \frac{1}{n^3}$
= $\lim_{n \to \infty} \frac{2n^6 + 5n^4 + n^3}{7n^6 + 2n + 5}$
= $\lim_{n \to \infty} \frac{2 + \frac{5}{n^2} + \frac{1}{n^3}}{7 + \frac{2}{n^5} + \frac{5}{n^6}} = \frac{2}{7}.$

The series

$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

converges, being a *p*-series with p = 3 > 1. Since $L = \frac{2}{7} > 0$, also the series

$$\sum_{n=1}^{\infty} \frac{2n^3 + 5n + 1}{7n^6 + 2n + 5}$$

converges, by the Limit Comparison Test.

Example 7.29

Question. Prove that the following series diverges

$$\sum_{n=1}^{\infty} \frac{n + \cos(n)}{n^2}$$

Solution. Since sin(n) is bounded, we expect the terms in the series to behave like 1/n for large *n*. Hence we set

$$a_n := \frac{n + \cos(n)}{n^2}, \quad b_n = \frac{1}{n}$$

We compute

$$L := \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n + \cos(n)}{n^2} / \frac{1}{n}$$
$$= \lim_{n \to \infty} \frac{n^2 + n\cos(n)}{n^2}$$
$$= \lim_{n \to \infty} \left(1 + \frac{\cos(n)}{n}\right)$$

Note that

$$-1 \le \cos(n) \le 1 \implies -\frac{1}{n} \le \frac{\cos(n)}{n} \le \frac{1}{n}$$

As both $-\frac{1}{n} \to 0$ and $\frac{1}{n} \to 0$, by the Squeeze Theorem

$$\frac{\cos(n)}{n} \longrightarrow 0.$$

Hence

$$L = \lim_{n \to \infty} \left(1 + \frac{\cos(n)}{n} \right) = 1$$

The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Since L = 1 > 0, the series

$$\sum_{n=1}^{\infty} \frac{n + \cos(n)}{n^2}$$

diverges by the Limit Comparison Test.

Example 7.30

Question. Prove that the following series converges

$$\sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{1}{n}\right) \right)$$

Solution. Since

$$\cos\left(\frac{1}{n}\right) \le 1$$

the above is a non-negative series. Recall the limit

$$\lim_{n\to\infty}\frac{1-\cos(a_n)}{(a_n)^2}=\frac{1}{2}\,,$$

where (a_n) is a sequence in \mathbb{R} such that $a_n \to 0$ and

$$a_n \neq 0 \quad \forall n \in \mathbb{N}$$

In particular, for $a_n = 1/n$, we obtain

 $\lim_{n\to\infty} n^2 \left(1-\cos\left(\frac{1}{n}\right)\right) = \frac{1}{2}.$

Set

 $b_n := 1 - \cos\left(\frac{1}{n}\right), \quad c_n := \frac{1}{n^2}.$

We have

$$L := \lim_{n \to \infty} \frac{b_n}{c_n} = \lim_{n \to \infty} n^2 \left(1 - \cos\left(\frac{1}{n}\right) \right) = \frac{1}{2}$$

Note that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, being a *p*-series with p > 2. Therefore, since L = 1/2 > 0, also the series

$$\sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{1}{n}\right) \right)$$

converges, by the Limit Comparison Test.

Example 7.31

Question. Prove that the following series converges

$$\sum_{n=1}^{\infty} \frac{1+\sin(n)}{n^2}$$

Solution. Since

$$\sin(n) \ge -1\,,$$

the above is a non-negative series. As sin(n) is bounded, the series behaves similarly to

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \, .$$

However

$$\frac{1+\sin(n)}{n^2} \bigg/ \frac{1}{n^2} = 1 + \sin(n)$$

does not converge. Hence, we cannot use the Limit Comparison Test. In alternative, we note that

$$\frac{1+\sin(n)}{n^2} \le \frac{2}{n^2}, \quad \forall n \in \mathbb{N}.$$

 $\sum_{n=1}^{\infty} \frac{2}{n^2}$

The series

converges, being a *p*-series with p = 2 > 1. Therefore also

$$\sum_{n=1}^{\infty} \frac{1 + \sin(n)}{n^2}$$

converges, by the Comparison Test of Theorem 7.25.

Theorem 7.32: Ratio Test for positive series

Let (a_n) be a sequence in \mathbb{R} such that

$$a_n > 0$$
, $\forall n \in \mathbb{N}$.

1. Suppose that the following limit exists:

$$L := \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

They hold:

2. Suppose that there exists $N \in \mathbb{N}$ and L > 1 such that

$$\frac{a_{n+1}}{a_n} \ge L \,, \quad \forall \, n \ge N \,.$$

Then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Example 7.33

Question. Discuss convergence/divergence of the following series

$$\sum_{n=1}^{\infty} a_n \,, \quad a_n = \frac{(n!)^2}{(2n)!}$$

Solution. We compute

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{((n+1)!)^2}{(2(n+1))!} / \frac{(n!)^2}{(2n)!}$$
$$= \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+1)}$$
$$= \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^2}{\left(2 + \frac{2}{n}\right)\left(2 + \frac{1}{n}\right)} = \frac{1}{4}$$

Since L = 1/4 < 1, by the Ratio Test we conclude that $\sum a_n$ converges.

Example 7.34

Question. Using the Cauchy Condensation Test and the Ratio Test, prove that the following series converges

$$\sum_{n=1}^{\infty} \frac{\log(n)}{n^2}$$

Solution. Set $a_n = \log n/n^2$. By the Cauchy Condensation Test, we know that $\sum a_n$ converges if and only if $\sum 2^n a_{2^n}$ converges. We have:

$$\sum_{n=0}^{\infty} 2^n a_{2^n} = \sum_{n=0}^{\infty} 2^n \frac{\log(2^n)}{(2^n)^2}$$
$$= \log(2) \sum_{n=0}^{\infty} \frac{n}{2^n}$$
$$= \log(2) \sum_{n=0}^{\infty} b_n, \qquad b_n := \frac{n}{2^n}.$$

Apply the Ratio Test to the series $\sum b_n$

$$\frac{b_{n+1}}{b_n} = \frac{n+1}{2^{n+1}} \bigg/ \frac{n}{2^n} = \frac{n+1}{2n} \longrightarrow \frac{1}{2} < 1.$$

Therefore, $\sum b_n$ converges by the Ratio Test, so that also $\sum 2^n a_{2^n}$ converges. We conclude that $\sum a_n$ converges by the Cauchy Condensation Test.

7.4 General series

Definition 7.35: Absolute convergence

Let (a_n) be a sequence in \mathbb{C} . The series $\sum_{n=1}^{\infty} a_n$ is said to **converge absolutely** if the following non-negative series converges

$$\sum_{n=1}^{\infty} |a_n|$$

Theorem 7.36: Absolute Convergence Test

Let (a_n) be a sequence in C. If the series $\sum_{n=1}^{\infty} a_n$ converge absolutely, then the series converges.

Example 7.37

Question. Discuss absolute convergence of the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

Solution. The series does not converge absolutely, since

$$\sum_{n=1}^{\infty} \left| (-1)^n \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$

does not converge, being the harmonic series.

Example 7.38

Question. Prove that the following series converges

$$\sum_{n=1}^{\infty} a_n, \qquad a_n = (-1)^n \frac{n^2 - 5n + 2}{n^4}.$$

Solution. We have

$$|a_n| = \frac{|n^2 - 5n + 2|}{n^4} = \frac{n^2 + 5n + 2}{n^4},$$

for *n* sufficiently large (e.g. $n \ge 10$). Note that

$$\frac{n^2 + 5n + 2}{n^4} \bigg/ \frac{1}{n^2} = \frac{n^4 + 5n^3 + 2n^2}{n^4}$$
$$= 1 + \frac{5}{n} + \frac{2}{n^2} \longrightarrow 1$$

The series $\sum 1/n^2$ converges, being a *p*-series with p = 2. Hence, also

$$\sum_{n=1}^{\infty} \frac{n^2 + 5n + 2}{n^4}$$

converges, by the Limit Comparison Test for non-negative series (Theorem 7.27). This shows $\sum |a_n|$ converges, which means that $\sum a_n$ converges absolutely. In particular, $\sum a_n$ converges by the Absolute Convergence Test.

Theorem 7.39: Ratio Test for general series

Let (a_n) be a sequence in \mathbb{C} , such that

$$u_n \neq 0 \quad \forall n \in \mathbb{N}.$$

1. Suppose that the following limit exists:

$$L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

They hold:

- If L < 1 then $\sum_{n=1}^{\infty} a_n$ converges absolutely, and hence converges.
- If L > 1 then $\sum_{n=1}^{\infty} a_n$ diverges.
- 2. Suppose that there exists $N \in \mathbb{N}$ and L > 1 such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge L, \quad \forall \, n \ge N$$

Then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Example 7.40

Question. Prove that the series converges

$$\sum_{n=1}^{\infty} a_n, \quad a_n = \frac{(4-3i)^n}{(n+1)!}.$$

Solution. We have

$$L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

= $\lim_{n \to \infty} \left| \frac{(4-3i)^{n+1}}{((n+1)+1)!} \right| / \frac{(4-3i)^n}{(n+1)!}$
= $\lim_{n \to \infty} \frac{5}{n+2} = 0.$

As L = 0 < 1, we conclude that $\sum a_n$ converges absolutely, by the Ratio Test. Hence, $\sum a_n$ converges by the Absolute Convergence Test.

Theorem 7.41: Exponential series

Let $z \in \mathbb{C}$. The **exponential series**

$$\sum_{n=0}^{\infty} \frac{z}{n}$$

converges absolutely.

Proof

Set $a_n = z^n/n!$. Then

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
$$= \lim_{n \to \infty} \left| \frac{z^{n+1}}{(n+1)!} \right| \frac{z^n}{n!}$$
$$= \lim_{n \to \infty} \frac{|z|}{n+1} = 0.$$

Therefore the series converges absolutely by the Ratio Test in Theorem 7.39.

7.5 Conditional convergence

Definition 7.42: Conditional convergence

Let (a_n) be a sequence in \mathbb{C} . We say that the series

$$\sum_{n=1}^{\infty} a_n$$

converges **conditionally** if it converges, but it does not converge absolutely.

Definition 7.43: Rearrangement of a series

Let (a_n) be a sequence in \mathbb{C} . Then:

- 1. A **permutation** is a bijection $\sigma : \mathbb{N} \to \mathbb{N}$.
- 2. A **rearrangement** of the series $\sum_{n=1}^{\infty} a_n$ is a series

$$\sum_{n=1}^{\infty} a_{\sigma(n)}$$

for some permutation σ .

Theorem 7.44

Let (a_n) be a sequence in \mathbb{C} such that

 $\sum_{n=1}^{\infty} |a_n|$

converges. For any permutation σ we have

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = \sum_{n=1}^{\infty} a_n \, .$$

Theorem 7.45: Riemann rearrangement Theorem

Let (a_n) be a real sequence such that the series

$$\sum_{n=1}^{\infty} a_n$$

converges conditionally. Let

$$L \in \mathbb{R}$$
 or $L = \pm \infty$.

There exists a permutation σ such that the corresponding rearrangement $\sum_{n=1}^{\infty} a_{\sigma(n)}$ converges conditionally to *L*, that is,

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = L$$

Theorem 7.46: Dirichlet Test

Let (c_n) be a sequence in \mathbb{C} and (q_n) a sequence in \mathbb{R} . Suppose that

- q_n is decreasing,
- $q_n \rightarrow 0$,
- $q_n \ge 0$ for all $n \in \mathbb{N}$.
- Suppose there exists M > 0 such that

$$\left|\sum_{n=1}^k c_n\right| \le M, \quad \forall k \in \mathbb{N}.$$

Then the following series converges

$$\sum_{n=1}^{\infty} c_n q_n \, .$$

Question. Let $\theta \in \mathbb{R}$, with

 $\theta \neq 2k\pi \,, \quad \forall \, k \in \mathbb{Z} \,.$

Prove that the below series are conditionally convergent

$$\sum_{n=1}^{\infty} \frac{e^{i\theta n}}{n} , \quad \sum_{n=1}^{\infty} \frac{\cos(\theta n)}{n} , \quad \sum_{n=1}^{\infty} \frac{\sin(\theta n)}{n} .$$

Solution.

1. Recalling the Euler's Identity

$$e^{i\theta} = \cos(\theta) + i\sin(\theta),$$

we obtain that

$$\sum_{n=1}^{\infty} \frac{e^{i\theta n}}{n} = \sum_{n=1}^{\infty} \frac{\cos(n\theta)}{n} + i \sum_{n=1}^{\infty} \frac{\sin(n\theta)}{n}$$

Therefore, the series $\sum e^{i\theta n}/n$ converge conditionally if and only if $\sum \cos(\theta n)/n$ and $\sum \sin(\theta n)/n$ converge conditionally. It is then sufficient to study $\sum e^{i\theta n}/n$.

2. The series $\sum e^{i\theta n}/n$ does not converge absolutely, since

$$\sum_{n=1}^{\infty} \left| \frac{e^{i\theta n}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$

diverges, being the Harmonic Series.

3. Set $c_n = e^{i\theta n}$, $q_n = 1/n$, so that

$$\sum_{n=1}^{\infty} \frac{e^{i\theta n}}{n} = \sum_{n=1}^{\infty} c_n q_n$$

We have that q_n is decreasing, $q_n \rightarrow 0$ and $q_n \ge 0$. Let us prove that there exists M > 0 such that

$$\left|\sum_{n=1}^{k} e^{i\theta n}\right| \le M, \quad \forall k \in \mathbb{N}.$$
(7.5)

Note that

$$1-e^{i\theta}\neq 0\,,$$

since $\theta \neq 2k\pi$ for all $k \in \mathbb{Z}$. Therefore we can use the Geometric Series (truncated) summation formula to get

$$\sum_{n=1}^{k} e^{i\theta n} = \sum_{n=1}^{k} (e^{i\theta})^n$$
$$= \frac{1 - e^{i(k+1)\theta}}{1 - e^{i\theta}} - 1$$
$$= e^{i\theta} \frac{1 - e^{ik\theta}}{1 - e^{i\theta}}$$

Taking the modulus

$$\begin{split} \left| \sum_{n=1}^{k} e^{i\theta n} \right| &= \left| e^{i\theta} \frac{1 - e^{ik\theta}}{1 - e^{i\theta}} \right| = \left| e^{i\theta} \right| \left| \frac{1 - e^{ik\theta}}{1 - e^{i\theta}} \right| \\ &= \frac{|1 - e^{ik\theta}|}{|1 - e^{i\theta}|} \le \frac{|1| + |e^{ik\theta}|}{|1 - e^{i\theta}|} = \frac{2}{|1 - e^{i\theta}|} \,, \end{split}$$

where we used the triangle inequality. Since the RHS does not depend on k, we can set

$$M = \frac{2}{|1 - e^{i\theta}|}$$

so that (7.5) holds. Therefore, $\sum e^{i\theta n}/n$ converges by the Dirichlet Test.

4. We have shown that $\sum e^{i\theta n}/n$ converges, but not absolutely. Hence, it converges conditionally.

Theorem 7.48: Alternate Convergence Test

Let (q_n) be a sequence in \mathbb{R} such that

- q_n is decreasing,
- $q_n \rightarrow 0$,
- $q_n \ge 0$ for all $n \in \mathbb{N}$.

The following series converges

$$\sum_{n=1}^{\infty} (-1)^n q_n$$

Example 7.49

Question. Prove that the series converges conditionally

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

Solution. The series does not converge absolutely, since

$$\sum_{n=1}^{\infty} \left| (-1)^n \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$

diverges, being the Harmonic Series. Set $q_n = 1/n$, so that

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^n q_n \, .$$

Clearly, $q_n \ge 0$, $q_n \to 0$ and q_n is decreasing. Hence, the series converges by the Alternating Series Test. Thus, the series converges conditionally.

Theorem 7.50: Abel's Test

Let (a_n) and (q_n) be sequences in \mathbb{R} . Suppose that

- q_n is monotone and bounded,
- The series $\sum a_n$ converges.

Then the following series converges

$$\sum_{n=1}^{\infty} a_n q_n$$

Question. Prove that the series converges conditionally

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(1 + \frac{1}{n}\right)^n.$$

Solution. Set

$$a_n := \frac{(-1)^n}{n}, \quad q_n := \left(1 + \frac{1}{n}\right)^n.$$

We have seen that q_n is monotone increasing and bounded (recall that $q_n \rightarrow \varepsilon$). Moreover, the series $\sum_{n=1}^{\infty} a_n$ converges by the Alternating Series Test, as seen in Example 7.49. Hence the series $\sum_{n=1}^{\infty} a_n q_n$ converges by the Abel Test.

However, the series in question does not converge absolutely. In-deed,

$$\left|\frac{(-1)^n}{n}\left(1+\frac{1}{n}\right)^n\right| = \frac{1}{n}q_n \ge \frac{1}{n}q_1 = \frac{2}{n}$$

since (q_n) is increasing. As the series $\sum 2/n$ diverges, by the Comparison Test we conclude that also

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \left(1 + \frac{1}{n} \right)^n \right|$$

diverges. Therefore, the series in the example converges conditionally.

Good Luck with the Exam!

License

Reuse

This work is licensed under CC-BY-NC-ND 4.0

Citation

For attribution, please cite this work as:

Fanzon, Silvio. (2024). *Revision Guide of Numbers Sequences and Series.* https://www.silviofanzon.com/2024-NSS-Revision/

BibTex citation: