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Revision Guide

Revision Guide for the Exam of the module Numbers Sequences and
Series 400297 2024/25 at the University of Hull. If you have any ques-
tion or find any typo, please email me at

S.Fanzon@hull.ac.uk
Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-NSS-Notes

Recommended revision strategy

Make sure you are very comfortable with:

1. The Definitions, Theorems, Proofs, and Examples contained in this
Revision Guide

2. The Tutorial and Homework questions

3. The 2023/24 Exam Paper questions.

4. The Checklist below

Checklist

You should be comfortable with the following topics/taks:

Preliminaries

» Prove that \/p ¢ Q for p a prime number

« Compute infinite union / intersection

« Show that a binary relation is of equivalence / order / total order

« Characterize the equivalence classes of a given equivalence relation
« Prove statements by induction (such as Bernoulli’s inequality)

» Compute the absolute value of a real number

+ Understand how to apply triangle inequality

Real Numbers

« Determine if a given set with binary operation is a field

« Prove uniqueness of neutral element / inverse

+ Computing Sup / Max and Inf / Min of a given set

« Prove that a given set is inductive

« Remember that IN, Z are not fields, Q is an ordered field, R is a
complete ordered field

« State the axiom of completeness

Properties of R

« Know how to use the Archimedean property

+ Characterization of sup / inf in terms of ¢

+ Sup / Inf and Max / Min of intervals

+ Determine if a given set is finite / countable / uncountable
« Remember that N, Z, Q are countable

« Remember that R and the irrationals are uncountable

Complex Numbers

« Sum, multiplication, division, conjugate of complex numbers
« Computing the inverse of a complex number
« Find modulus and argument of a complex number

« Compute Cartesian, Trigonometric and Exponential form of a com-
plex number

« Complex exponential and its properties

« Computing powers of complex numbers

« Solving degree 2 polynomial equations in C

« Long division of polynomials

« Solving higher degree polynomial equations in C

« Finding the roots of unity

« Finding the n-th roots of a complex number

Sequences in R

« Use the definition of convergence to prove convergence of a given
real sequence

« Prove that a given sequence is bounded

« Remember that convergent sequences are bounded

« Use the Algebra of Limits to prove convergence / divergence of a
given sequence

« Use the Squeeze Theorem to prove convergence of a given sequence

« Use the Geometric Sequence Test to prove convergence / divergence
of a given sequence

« Use the Ratio Test to prove convergence / divergence of a given
sequence

« Prove that a sequence is monotone increasing / decreasing

« Know the statement of the Monotone Convergence Theorem

« Memorize the 4 Special Limits, and know how to apply them to
study convergence / divergence of a given sequence

Sequences in C

« Use the definition of convergence to prove convergence of a given
complex sequence

« Prove that a complex sequence is bounded

« Use the Algebra of Limits to prove convergence / divergence of a
given sequence

« Use the Geometric Sequence Test / Ratio Test to prove convergence
/ divergence of a given complex sequence

« Determine convergence of real and imaginary part of a given com-
plex sequence

Series

« Compute the partial sums of a given series

« Compute the sum of a telescopic series

« Apply the Necessary Condition for Convergence to prove that a
given series is divergent

« Use the Geometric Series test to determine convergence / diver-
gence of a given geometric series

« Compute the sum of a given (convergent) geometric series

« Determine convergence / divergence of non-negative series by us-
ing the Cauchy Condensation Test, Comparison Test, Limit Com-
parison Test and Ratio Test

+ Study convergence / divergence of p-series

« Prove that a given series converges absolutely

« Prove that a complex series converges / diverges by using the Ratio
Test for general series

« Prove that a series converges conditionally

« Use the Dirichlet / Alternate Convergence / Abel’s tests to study the
convergence of a given series
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1 Preliminaries

Theorem 1.1

The number /2 does not belong to Q.

Proof
Aassume by contradiction that
V2€0. (11)
1. Therefore, there exist m € Z,n € N, n # 0, such that
o_ 2.
n
2. Withouth loss of generality, we can assume that m and n
have no common factors.

3. Square the equation to get

m? = 2n?. (1.2)
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Therefore the integer m* is an even number.

4. Since m? is an even number, it follows that also m is an even

number. Then there exists p € IN such that
m=2p. (13)
5. Substitute (1.3) in (1.2) to get
m? =2n’ = (2p)? =2n® = 4p? = 2n?
Dividing both terms by 2, we obtain
n? =2p?. (14)
Now, observe that:

« Equation (1.4) says that n? is even. The argument in Step 4
guarantees that also n is even.

« Therefore n and m are both even, meaning they have 2 as com-
mon factor.

« But Step 2 says that n and m have no common factors. Con-
tradiction

The contradiction stems from assumption (1.1). Thus, (1.1) is false,
ending the proof.

1.1 Set Theory

Definition 1.2
Let A be a set.

1. We write x € A if the element x belongs to the set A.
2. We write x ¢ A if the element x does not belong to the set A.

Definition 1.3
Given two sets A and B, we say that A is contained in B, in symbols
ACB,

if all the elements of A are also contained in B. Two sets A and B
are equal, in symbols
A=B,

if they contain the same elements.

Remark 1.4
The inclusion A C B is equivalent to the implication:
x€A = x€B

for all x € A. The symbol = reads implies, and denotes the fact
that the first condition implies the second.

Definition 1.5: Union and Intersection

For two sets A and B we define their union as the set
AuB:={x: x€ A or x € B}.

The intersection of A and B is defined by
AnB:={x: x€ A and x € B}.

We denote the empty set by the symbol @. Two sets are disjoint if

AnB=09.
Proposition 1.6
Let A and B be sets. Then
A=B < ACB and BCA.

Definition 1.7: Infinite union and intersection
Let Q be a set, and A,, C Q a family of subsets, where n € IN.
1. The infinte union of the A, is the set

UA" ={xeQ: xeA, foratleast one ne IN}.
nelN

2. The infinte intersection of the A, is the set

ﬂA,, ={xeQ: xeA, forall neN}.
nelN




Example 1.8

Question. Define Q := N and a family A, by

A, ={nn+1,n+2,n+3,..}, neN.
1. Prove that
U A, =N. (15)
nelN
2. Prove that
ﬂ A, =0. (1.6)
nelN

Solution.

1. Assume that m € u,A,. Then m € A, for at least one n € IN.
Since A, € N, we conclude that m € IN. This shows

) A, cN.

nelN

Conversely, suppose that m € IN. By definition m € A,,. Hence
there exists at least one index n, n = m in this case, such that
m € A,,. Then by definition m € u,eNA,, showing that

Nc | ]a,.

nelN
This proves (1.5).

2. Suppose that (1.6) is false, i.e.,

ﬂAn:t@.

nelN

This means there exists some m € IN such that m € ny,eNA,.
Hence, by definition, m € A, for alln € N. Howeverm ¢ A, 1,
yielding a contradiction. Thus (1.6) holds.

Definition 1.9: Complement

Let A, B C Q. The complement of A with respect to B is the set of
elements of B which do not belong to A, that is

BNA :={x€eQ: x€Band x ¢ A}.
In particular, the complement of A with respect to Q is denoted by

A :=QNA:={xeQ: x¢A}

Example 1.10

Question. Suppose A, B C Q. Prove that
ACB < B°CA".
Solution. Let us prove the above claim:

« First implication = :
Suppose that A C B. We need to show that B C A°. Hence,
assume x € B°. By definition this means that x ¢ B. Now
notice that we cannot have that x € A. Indeed, assume x € A.
By assumption we have A C B, hence x € B. But we had
assumed x € B, contradiction. Therefore it must be that x ¢ A.
Thus B° C A°.

« Second implication <= : Note that, for any set,
(A =A.
Hence, by the first implication,

BCA® = (A C(B) = ACB.

Proposition 1.11: De Morgan’s Laws
Suppose A, B C Q. Then

(AnB)Y =A°UB°, (AUB) =A°nB.

Definition 1.12
Let Q be a set. The power set of Q is

PQ) :={A: ACQ}.

Example 1.13

Question. Compute the power set of
Q={x,y,z2}.

Solution. 2(Q) has 2> = 8, and

P(Q) = {2, {x}, {y} {2} {x. y}
{x.2} .2 {x .23

Definition 1.14: Product of sets
Let A, B be sets. The product of A and B is the set of pairs

AxB:={(a,b) : a€ A, be B}.

1.2 Eequivalence Relations

Definition 1.15: Binary relation

Suppose A is a set. A binary relation R on A is a subset

RCAxA.

Definition 1.16: Equivalence relation

A binary relation R is called an equivalence relation if it satisfies
the following properties:

1. Reflexive: For each x € A one has

(x,x) €ER,

2. Symmetric: We have

(x,y) R = (y,x)€R

3. Transitive: We have

(x,y)€R, (y,2)€eR = (x,z)€R




If (x,y) € R we write
X~y

and we say that x and y are equivalent.

Definition 1.17: Equivalence classes

Suppose R is an equivalence relation on A. The equivalence
class of an element x € A is the set

[x] :={yeA: y~x}.

The set of equivalence classes of elements of A with respect to the
equivalence relation R is denoted by

A/R := A/~ :={[x] : x€A}.

Proposition 1.18: Well-posedness of Definition 1.17
Let ~ be an equivalence relation on A. Then

1. For each x € A we have [x] # @.

2. For all x,y € A it holds

x~y = [x=Dl

Example 1.19: Equality is an equivalence relation

Question. The equality defines a binary relation on Q x Q, via

R:={(x,y) €QxQ: x=y}.

1. Prove that R is an equivalence relation.
2. Prove that [x] = {x} and compute Q/R.

Solution.

1. We need to check that R satisfies the 3 properties of an equiva-
lence relation:

« Reflexive: It holds, since x = x for all x € Q,
« Symmetric: Again x = y if and only if y = x,
« Transitive: If x = y and y = z then x = z.

Therefore, R is an equivalence relation.

2. The class of equivalence of x € Q is given by

[x] = {x},

that is, this relation is quite trivial, given that each element of
Q can only be related to itself. The quotient space is then

Q/R={lx] : xeQ}={{x}: xeQ}.

1. Prove that R is an equivalence relation on Q.
2. Compute [x] for each x € Q.
3. Compute Q/R.

Solution.

1. We have:

+ Reflexive: Let x € Q. Then x — x = 0 and 0 € Z. Thus
X~ X.

« Symmetric: If x ~ y then x — y € Z. But then also

—(x—y)=y-x€Z
and so y ~ x.

« Transitive: Suppose x ~ y and y ~ z. Then
x—y€Zand y—z€Z.
Thus, we have
x—z=(x-y+(y—-2)eZ

showing that x ~ z.

Thus, we have shown that R is an equivalence relation on Q.

2. Note that
x~y << 3dne€Z st y=x+n.
Therefore the equivalence classes with respect to ~ are
[x]={x+n: neZ}.

Each equivalence class has exactly one element in [0,1) n Q,
meaning that:

vx€Q, 3geQ st 0<g<1and qe€[x]. (1.7)

Indeed: take x € Q arbitrary. Then x € [n,n+1) for somen € Z.
Setting q := x — n we obtain that
x=q+n, qgelo,1),

proving (1.7). In particular (1.7) implies that for each x € Q
there exists g € [0,1) n Q such that

[x] =I[ql.
3. From Point 2 we conclude that

Q/R={[x] : x€Q}={geQ: 0<g<1}.

Example 1.20

Question. Let R be the binary relation on the set Q of rational
numbers defined by

X~y &= x—y€ZL.

1.3 Order relations

Definition 1.21: Partial order

A binary relation R on A is called a partial order if it satisfies the
following properties:

1. Reflexive: For each x € A one has

(x,x) €R,




2. Antisymmetric: We have

(x,y)€R and (y,x) eR = x=1y

3. Transitive: We have

(x,¥)€R, (y,z2)€eR = (x,2) €R

3. Transitive: If x < yand y < zthen x < z.

Finally, we halso have that R is a total order on Q, since for all
x,y € Q we have
x<y or y<x.

Definition 1.22: Total order

Abinary relation R on A is called a total order relation if it satisfies
the following properties:

1. Partial order: R is a partial order on A.
2. Total: For each x,y € A we have

(x,y)€R or (y,x)€R.

Example 1.23: Set inclusion is a partial order but not total order
Question. Let Q be a non-empty set and consider its power set
P ={A: ACQ}.
The inclusion defines binary relation on %(Q) x 2(Q), via
R:={(A,B) e P(Q)xP(Q) : ACB}.

1. Prove that R is an order relation.
2. Prove that R is not a total order.

Solution.

1. Check that R is a partial order relation on S(Q):

« Reflexive: It holds, since A C A for all A € 22(Q).

 Antisymmetric: If A C Band B C A, then A = B.

o Transitive: If A C B and B C C, then, by definition of
inclusion, A C C.

2. In general, R is not a total order. For example consider
Q= {x,y}.

Thus
P(Q) =1{o, {x}, ¥}, {x. ¥}

If we pick A = {x} and B = {y} then A n B = @, meaning that
A¢B, BZA.

This shows R is not a total order.

Example 1.24: Inequality is a total order

Question. Consider the binary relation

R:={(x,»)) €QxQ : x<y}.

Prove that R is a total order relation.
Solution. We need to check that:

1. Reflexive: It holds, since x < x for all x € Q,

2. Antisymmetric: If x < y and y < x then x = y.

1.4 Induction

Axiom 1.25: Principle of Inducion

Let a(n) be a statement which depends on n € IN. Suppose that

1. a(1) is true, and
2. Whenever a(n) is true, then a(n + 1) is true.

Then a(n) is true for all n € IN.

Example 1.26: Formula for summing first n natural numbers

Question. Prove by induction that the following formula holds for
alln € N:

nn+1
142+34+...+(n—1+n= (2 ). (1.8)

Solution. Define
Sn)=1+2+...+n.

This way the formula at (1.8) is equivalent to

1. It is immediate to check that (1.8) holds for n = 1.
2. Suppose (1.8) holds for n = k. Then

Sk+1)=1+..+k+(k+1)
=Sk)+ (k+1)
=M+(k+1)

_ k(k+1)+2(k+1)

2

_ (k+1D(k+2)

2

where in the first equality we used that (1.8) holds for n = k.
We have proven that

_ k+1D(k+2)

Stk +1) :

The RHS in the above expression is exactly the RHS of (1.8)

computed at n = k+ 1. Therefore, we have shown that formula
(1.8) holds forn = k + 1.

By the Principle of Induction, we conclude that (1.8) holds for all
nelN.




Example 1.27: Bernoulli’s inequality

Question. Let x € R with x > —1. Bernoulli’s inequality states that
1+x)">1+nx, VneNlN. (1.9)

Prove Bernoulli’s inequality by induction.
Solution. Let x € R, x > —1. We prove the statement by induction:

« Base case: (1.9) holds with equality whenn = 1.

« Induction hypothesis: Let k € IN and suppose that (1.9) holds
forn=k,ie,
A+ )k >1+kx.

Then

A+ = 1+ 01 + x)
> (1 +kx)(1+x)
=1+4kx+x + kx?
>1+((k+ Dx,

where we used that kx? > 0. Then (1.9) holds forn = k + 1.

By induction we conclude (1.9).

1.5 Absolute value

Definition 1.28: Absolute value
Let x € R. The absolute value of x is

X if x>0
|x| = .
—-x fx<0

Proposition 1.29: Properties of absolute value

For all x € R they hold:

1. |x| >0.
2. |x| = 0 if and only if x = 0.
3. x[=1—x[.

Lemma 1.30
Let x,y € R. Then

X[<y & -y<x<y.

Corollary 1.31
Let x,y € R. Then

x| <y &= —-y<x<y.

Theorem 1.32: Triangle inequality

For every x,y € R we have

Proposition 1.33

For any x, y € R it holds

[l = Iyll < e =yl < x| + [yl

Moreover for any x, y, z € R it holds

x—yl<lx—zl+]z -yl

(1.11)

[l = Il < e+ yl < [xl + [y (1.10)




2 Real Numbers

2.1 Fields

Definition 2.1: Binary operation

A binary operation on a set K is a function
o: KxK—>K

which maps the ordered pair (x, y) into x ° y.

Definition 2.2: Properties of binary operations

Let K be asetand - : K x K — K be a binary operation on K. We
say that:

1. o is commutative if
xey=yex, Vx,y€K
2. o is associative if
(xey)ez=x0°(yecz), Vx,y,z€K
3. An element e € K is called neutral element of o if
vxeK

Xoe=eox =x,

4. Let ebe a neutral element of - and let x € K. An element y € K
is called an inverse of x with respect to  if

Xey=yox=e.

Example 2.3

Question. Let K = {0, 1} be a set with binary operation - defined
by the table

— ol o
S = O

1
1
0
1. Is o commutative? Justify your answer.
2. Is o associative? Justify your answer.
Solution.

1. The operation - is not commutative, since

0ec1=1#0=1-0.

2. The operation - is not associative, since
(001)e1=101=0,

while
00(101)=000=1,

so that
(001)e1#00(101).

2.2 Fields

Definition 2.4: Field
Let K be a set with binary operations of addition
+: KxK—->K, (xy)—x+y
and multiplication
-t KxK—>K, (x,y)-x-y=xy.
We call the triple (K, +, ) a field if:

1. The addition + satisfies: Vx,y,z € K

+ (A1) Commutativity and Associativity:
X+y=y+x

x+y)+z=x+(y+2)

+ (A2) Additive Identity: There exists a neutral element
in K for +, which we call 0. It holds:

x+0=04+x=x

+ (A3) Additive Inverse: There exists an inverse of x with
respect to +. We call this element the additive inverse
of x and denote it by —x. It holds

x+(x)=(x)+x=0

2. The multiplication - satisifes: Vx,y,z € K

« (M1) Commutativity and Associativity:
X-y=y-x

(x-y)-z=x-(y-2)

« (M2) Multiplicative Identity: There exists a neutral el-
ement in K for -, which we call 1. It holds:

+ (M3) Multiplicative Inverse: If x # 0 there exists an in-
verse of x with respect to -. We call this element the mul-
tiplicative inverse of x and denote it by x~!. It holds

3. The operations + and - are related by

« (AM) Distributive Property: Vx,y,z € K

x-(y+z2)=(x-»)+(y-2).




Theorem 2.5

Let K with + and - defined by

=
oS Ol o
_ O

1
1
0

— o+
= =]

Then (K, +, ) is a field.

Definition 2.6: Subtraction and division
Let (K, +,-) be a field. We define:
1. Subtraction as the operation — defined by
x—y:=x+(-y), Vx,yek,
where —y is the additive inverse of y.
2. Division as the operation / defined by
x/y i=x-y !, Vx,yeK,y=#0,

where y~! is the multiplicative inverse of y.

Proposition 2.7: Uniqueness of neutral elements and inverses

Let (K, +,-) be a field. Then

. There is a unique element in K with the property of 0.

. There is a unique element in K with the property of 1.

. For all x € K there is a unique additive inverse —x.

. For all x € K, x # 0, there is a unique multiplicative inverse
x L

B W N R

Proof

1. Suppose that 0 € K and 0 € K are both neutral element of +,
that is, they both satisfy (A2). Then

0+0=0
since 0 is a neutral element for +. Moreover

0+0=0

since 0 is a neutral element for +. By commutativity of +, see
property (A1), we have

0=0+0=0+0=0,

showing that 0 = 0. Hence the neutral element for + is unique.
2. Exercise.
3. Let x € K and suppose that y, y € K are both additive inverses
of x, that is, they both satisfy (A3). Therefore

x+y=0
since y is an additive inverse of x and
x+y=0

since y is an additive inverse of x. Therefore we can use com-
mutativity and associativity and of +, see property (A1), and
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the fact that 0 is the neutral element of +, to infer

y=y+0=y+x+y)
=(y+x)+j=C+y)+y

=0+y=9j,
concluding that y = y. Thus there is a unique additive inverse
of x, and
y= 5) = —x,
with —x the element from property (As).
4. Exercise.

Theorem 2.8

Consider the sets N, Z, Q with the usual operations + and -. We
have:

« (N, +,-) is not a field.
« (Z,+,") is not a field.
« (Q,+,")is a field.

2.3 Ordered fields

Definition 2.9

Let K be a set with binary operations + and -, and with an order
relation <. We call (K, +,-, <) an ordered field if:

1. (K,+,)is afield
2. There < is of total order on K: Vx,y,z € K

« (O1) Reflexivity:
x<x

« (O2) Antisymmetry:

x<yand y<x = x=y
«+ (O3) Transitivity:

x<yand y<z = x=z

+ (O4) Total order:

x<y or y<x

3. The operations + and -, and the total order <, are related by the
following properties: Vx,y,z € K

+ (AM) Distributive: Relates addition and multiplication
via
x-(Y+2)=x-y+x-z

« (AO) Relates addition and order with the requirement:
x<Ly = x+z<y+z

« (MO) Relates multiplication and order with the require-
ment:
x20,y20 = x-y20




Theorem 2.10

(Q,+,,<) is an ordered field.

2.4 Supremum and infimum
In the following we assume that (K, +, -, <) is an ordered field.
Definition 2.11: Upper bound and bounded above
Let ACK:

1. We say that b € K is an upper bound for A if
VacA.

a<b,

2. We say that A is bounded above if there exists and upper
bound b € K for A.

Definition 2.12: Supremum

Let A C K. A number s € K is called least upper bound or supre-
mum of A if:

1. sis an upper bound for A,
2. s is the smallest upper bound of A, that is,

If b € K is upper bound for A then s <b.
If it exists, the supremum is denoted by

s:=sup A.

Remark 2.13

Note thatifaset A € K in NOT bounded above, then the supremum
does not exist, as there are no upper bounds of A.

Proposition 2.14: Uniqueness of the supremum

Let A C K. If sup A exists, then it is unique.

Definition 2.15: Maximum

Let A C K. A number M € K is called the maximum of A if:
MeA and a< M,VacA.

If it exists, we denote the maximum by

M =maxA.

Proposition 2.16: Relationship between Max and Sup

Let A € K. If the maximum of A exists, then also the supremum
exists, and
sup A =maxA.
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Definition 2.17: Lower bound, bounded below, infimum, mini-

mum
Let ACK:
1. We say that! € K is a lower bound for A if

[<a, VaeA.

2. We say that A is bounded below if there exists a lower bound
l € K for A.

3. We say that i € K is the greatest lower bound or infimum
of A if:

« iis alower bound for A,
« iis the largest lower bound of A, that is,

If [ € K is alower bound for A then [ <i.
If it exists, the infimum is denoted by
i=infA.
4. We say that m € K is the minimum of A if:
meA and m<a,VacA.
If it exists, we denote the minimum by

m=minA.

Proposition 2.18
Let ACK:

1. If inf A exists, then it is unique.
2. If the minimum of A exists, then also the infimum exists, and

infA=minA.

Proposition 2.19
Let A C K. If inf A and sup A exist, then

infA<a<supA, VacA.

Proposition 2.20: Relationship between sup and inf
Let A C K. Define
—A:={-a: ac A}
They hold
1. If sup A exists, then inf A exists and
inf(—A) = —sup A.
2. If inf A exists, then sup A exists and

sup(—A) = —inf A.




2.5 Axioms of Real Numbers Proposition 2.27

Definition 2.21: Completeness Let / be a collection of inductive subsets of R. Then
Let (K, +, -, <) be an ordered field. We say that K is complete if the Si= ﬂ M
Mell

following property holds:

. . . R
« (AC) For every A C K non-empty and bounded above is an inductive subset of R

supAekK. Definition 2.28: Set of Natural Numbers
Let . be the collection of all inductive subsets of R. We define the
Theorem 2.22 set of natural numbers in R as
Q is not complete. In particular, there exists a set A C Q such that N := ﬂ M.
. Me
A is non-empty,
« Ais bounded above,
« sup A does not exist in Q. Proposition 2.29: Ny, is the smallest inductive subset of R
One of such sets is, for example, Let C C R be an inductive subset. Then
A={q€eQ: q>0, ¢*<2}. NCC.

. In other words, IN is the smallest inductive set in R.
Proposition 2.23

Let (K, +,, <) be a complete ordered field. Suppose that A C K is Theorem 2.30

non-empty and bounded below. Then ™
Let x € N. Then

infAeK. x2>1.

Definition 2.24: System of Real Numbers R

A system of Real Numbers is a set R with two operations + and -,
and a total order relation <, such that

e (R, +,-, <) is an ordered field

+ R sastisfies the Axiom of Completeness

2.6 Inductive sets

Definition 2.25: Inductive set
Let S € R. We say that S is an inductive set if they are satisfied:

« 1€8S,
« If x €S, then(x+1)€S.

Example 2.26

Question. Prove the following:

1. Ris an inductive set.

2. The set A = {0, 1} is not an inductive set.
Solution.

1. We have that 1 € R by axiom (M2). Moreover (x + 1) € R for
every x € R, by definition of sum +.

2. Wehave1l€ A,but(1+1)¢ A, sincel+1#0.
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3 Properties of R

Theorem 3.1: Archimedean Property
Let x € R be given. Then:
1. There exists n € IN such that
n>x.

2. Suppose in addition that x > 0. There exists n € N such that

1
-<Xx.
n

Theorem 3.2: Archimedean Property (Alternative formulation)
Let x,y € R, with 0 < x < y. There exists n € N such that

nx>y.

Theorem 3.3: Nested Interval Property
For each n € IN assume given a closed interval
L :=la,b,]={xeR: aq,<x<b,}.

Suppose that the intervals are nested, that is,

I,oL.,, VneN.
Then
h=o. (3)
n=1
Example 3.4

Question. Consider the open intervals

hem(ol).
n
These are clearly nested
LoL., VYneN.
Prove that
ﬂ L =0. (3.2)
n=1

Solution. Suppose by contradiction that the intersection is non-
empty. Then there exists x € IN such that
x€l,, VvnelN.

By definition of I, the above reads

0<x<l, vneN. (3.3)
n
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Since x > 0, by the Archimedean Property in Theorem 3.1 Point 2,
there exists ny € IN such that

1
0< —<x.
ny

The above contradicts (3.3). Therefore (3.2) holds.

3.1 Revisiting Sup and Inf

Proposition 3.5: Characterization of Supremum

Let A C R be a non-empty set. Suppose that s € R is an upper bound
for A. They are equivalent:

1. s=supA
2. For every ¢ > 0 there exists x € A such that

s—e<x.

Proposition 3.6: Characterization of Infimum

Let A C R be a non-empty set. Suppose that i € R is a lower bound
for A. They are equivalent:

1. i =infA
2. For every ¢ € R, with ¢ > 0, there exists x € A such that

x<i+e.

Proposition 3.7
Leta,b € Rwitha <b. Let
A:=(ab)={xeR: a<x<b}.

1. We have that

infA=a, supA=b.
2. min A and max A do not exist.
Corollary 3.8
Leta,b € Rwitha <b. Let
A:=[ab)={xeR: a<x<b}.
Then
minA =infA=a, supA=b>,

max A does not exist.




Proposition 3.9

Define the set

A ::{l: ne]N}.
n
Then
infA=0, supA=maxA=1.

Proof
Part 1. We have .

-<1, VvVneN.

n

Therefore 1 is an upper bound for A. Since 1 € A, by definition of
maximum we conclude that

maxA=1.

Since the maximum exists, we conclude that also the supremum ex-
ists, and

supA=maxA=1.
Part 2. We have .

->0,
n

vnelN,

showing that 0 is a lower bound for A. Suppose by contradiction
that 0 is not the infimum. Therefore 0 is not the largest lower bound.
Then there exists ¢ € R such that:

« ¢1is alower bound for A, that is,

1
e<=, VneN, (3.4)
n

« ¢islarger than 0:
0<e.

As ¢ > 0, by the Archimedean Property there exists ny € IN such
that
0< 1 <e.

o
This contradicts (3.4). Thus 0 is the largest lower bound of A, that
is, 0 = inf A.
Part 3. We have that min A does not exist. Indeed suppose by con-
tradiction that min A exists. Then

min A = infA.

As inf A = 0 by Part 2, we conclude min A = 0. Asmin A € A, we
obtain 0 € A, which is a contradiction.

3.2 Cardinality
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Definition 3.10: Bijective function

Let X,Y be setsand f : X — Y be a function. We say that:
1. f is injective if it holds:
f&) =)
2. f is surjective if it holds:
VyeY, dxeX st f(x)=y.

3. f is bijective if it is both injective and surjective.

Definition 3.11: Cardinality, Finite, Countable, Uncountable

Let X be a set. The cardinality of X is the number of elements in
X. We denote the cardinality of X by

|X] :=# of elementsin X.
Further, we say that:
1. X is finite if there exists a natural number n € IN and a bijec-

tion
f:{,2,...,n}-> X.

In particular
X =n.

2. X is countable if there exists a bijection
f:N->X.
In this case we denote the cardinality of X by

| X| = IINJ.

3. X is uncountable if X is neither finite, nor countable.

Proposition 3.12

Let X be a countable set and A C X. Then either A is finite or
countable.

Example 3.13

Question. Prove that X = {a, b, ¢} is finite.
Solution. Set Y = {1, 2, 3}. The function f: X — Y defined by

fW=a, f@=b, fB)=c,

is bijective. Therefore X is finite, with | X| = 3.

Example 3.14

Question. Prove that the set of natural numbers IN is countable.
Solution. The function f : X — N defined by

f) :=n,

is bijective. Therefore X = N is countable.




Example 3.15
Question. Let X be the set of even numbers
X ={2n: neN}.

Prove that X is countable.
Solution. Define the map f: N — X by

f(n) :=2n.
We have that:
1. f is injective, because

fm)=f(k) = 2m=2k m=k.

2. f is surjective: Suppose that m € X. By definition of X, there
exists n € N such that m = 2n. Therefore, f(n) = m.

We have shown that f is bijective. Thus, X is countable.

Example 3.16

Question. Prove that the set of integers Z is countable.
Solution. Define f : N — Z by

g if n even
f) = _ntl if n odd
For example
fO=0, fM=-1, f@=1, fB)=-2,
f@=2, f6)=-3, f6)=3, [f(7)=-4.

We have:

1. f is injective: Indeed, suppose that m # n. If n and m are both
even or both odd we have, respectively

fm) =2 =2 = f()

m+1 _n+1

fm = =" P~ £,
If instead m is even and n is odd, we get
+1
flm) =2 # === = f(n),

since the LHS is positive and the RHS is negative. The case
when m is odd and n even is similar.

2. f is surjective: Let z € Z. If z > 0, then m := 2z belongs to IN,
is even, and

fm) = f(2z) = z.

If instead z < 0, then m := —2z — 1 belongs to N, is odd, and
fm) = f(-2z-1)=z.

Therefore f is bijective, showing that Z is countable.
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Proposition 3.17
Let the set A, be countable for all n € N. Define

A= 4,.

nelN

Then A is countable.

Theorem 3.18: Q is countable

The set of rational numbers Q is countable.

Theorem 3.19: R is uncountable

The set of Real Numbers R is uncountable.

Theorem 3.20
The set of irrational numbers
J :=R\Q

is uncountable.

Proof

We know that R in uncountable and Q is countable. Suppose by
contradiction that .# is countable. Then

Qus

is countable by Proposition 3.17, being union of countable sets. Since
by definition
R=Qu.7,

we conclude that R is countable. Contradiction.




4 Complex Numbers

Definition 4.1: Complex Numbers
The set of complex numbers C is defined as
C:=R+iR:={x+iy: x,y €R}.
For a complex number
z=x+iyeC
we say that
« x is the real part of z, and denote it by
x = Re(2)
+ yis the imaginary part of z, and denote it by
y = Im(2)
We say that

« If Rez = 0 then z is a purely imaginary number.
« IfIm z = 0 then z is a real number.

Definition 4.2: Addition and multiplication in C
Let 2,25 € C, so that
zp=x1+iy, z=x+iy,
for some xq, %3, y1, y» € R:
1. The sum of z; and z, is
21tz =0+ x) +i(yr + ) .
2. The multiplication of z; and z, is

z1zp = (X =y y) Hilx X0 y1) s

Example 4.3
Question. Compute zw, where

z=-2+3i, w=1-1i.
Solution. Using the definition we compute

z-w=(—2+30)-(1-1)
=(=2-(=3)+(2+3)i
=1+5i.
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Alternatively, we can proceed formally: We just need to recall that
i has to be replaced with —1:

z-w=(=2+30)-(1-19)
= —2+2i +3i — 32

=(-2+3)+(2+3)i
=1+5i.

Proposition 4.4: Additive inverse in C

The neutral element of addition in C is the number
0:=0+0i.

For any z = x + iy € C, the unique additive inverse is given by

-z i=—x—1y.

Proposition 4.5: Multiplicative inverse in C

The neutral element of multiplication in C is the number
1:=1+0i.

For any z = x +iy € C, the unique multiplicative inverse is given by

_ x .Y
21 .=

= +1 .
x2+y2 x2+y2

Proof

It is immediate to check that 1 is the neutral element of multiplica-
tion in C. For the remaining part of the statement, set

X .Y
wi=— s +Hi— > -
x4+ y x4+ y

We need to check thatz-w =1

z-w:(x+iy)-< X 4 -y )

x2+y2 x2+y2

_( x? y-(—y)) .(x-(—y) xy )
= - +i +
x2 +y2 X2 +y2 x2 +y2 x2 +y2

=1,

so indeed z7! = w.

Example 4.6

Question. Let z = 3 + 2i. Compute z 1.
Solution. By the formula in Propostion 4.5 we immediately get

27l = 3 + 2 i=—— =i
32422 32422 13 13




Alternatively, we can proceed formally:

1
34 2i
1 3-2i
342i3-2i
_3-2i
32 + 22
32,
13 13°

(3 + 271

and obtain the same result.

Theorem 4.7

(C,+,-) is a field.

Example 4.8

Question. Let w = 1 +iand z = 3 — i. Compute %
Solution. We compute w/z using the two options we have:

1. Using the formula for the inverse from Proposition 4.5 we com-

pute
-1 _ X 4
z =
x2 + 2 x2 +y?
_ 3 _; -1
32412 32412
3 1.
=—+4+ —i
10 10
and therefore
K =w- 271
z

.<3 1.)
| —+—=1
10 10

(3 1) (1 3).
==-=)+(=+=)i
10 10 10 10

2. We proceed formally, using the multiplication by 1 trick. We
have

3—1+G+1)i
32 +12
2 4 .

==+ —i

10 10

1 2.

=+ =i

5 5

Definition 4.9: Complex conjugate

Let z = x + iy. We call the complex conjugate of z, denoted by z,
the complex number
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Theorem 4.10
For all z{, z; € C it holds:
LAl + Z9 = Z + 5

7 =22

4.1 The complex plane

Im
z=x+ 1y
2] = V2% T 4
0 Re

Figure 4.1: A point z = x + iy € C can be represented on the complex
plane by the point of coordinates (x, y). The distance between

z and 0 is given by |z| = /2% + y2.

Definition 4.11: Modulus

The modulus of a complex number z = x + iy is defined by
2| := sz + 2.

Definition 4.12: Distance in C

Given zy,zy € C, we define the distance between z; and z, as the
quantity
|21 — 25l

Theorem 4.13

Given z;,z5 € C, we have

lz1 — 2| = \/(xl —x)% + (1 — ).

Example 4.14
Question. Compute the distance between

z=2—-4i, w=-5+1.




Solution. The distance is
|z —w| = (2 - 4) — (=5 +1)|
=17 - 5i|

PP
V7

Theorem 4.15
Let z,21,25 € C. Then
L 21 2| = |z1] 23]
2. |2 =|z["foralln e N

3. z-%2 =z

Theorem 4.16: Triangle inequality in C

Forall x,y,z € C,
L |x+yl < x| + [yl

2. [x—z[<|x =yl +|y -2

Example 4.18

We have the following arguments:

arg(1) =0 arg(i) = %

arg(-1) == arg(—i) = —%

arg(1+1i) = iﬂ' arg(—1—1i) = —%7‘[

Theorem 4.19: Polar coordinates
Let z € C with z = x + iy and z # 0. Then

y = psin(0),

pi=lzl=x2+y2, 0 :=arg(z).

x = pcos(6),

where

Definition 4.20: Trigonometric form

Let z € C. The trigonometric form of z is
z = |z|[cos(0) +isin(0)] ,

where 0 = arg(z).

4.2 Polar coordinates

Im

Figure 4.2: Polar coordinates (p, 9) for the complex number z € C.

Definition 4.17: Argument

Let z € C. The angle 0 between the line connecting the origin and z
and the positive real axis is called the argument of z, and is denoted
by

0 :=arg(z).
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Example 4.21
Question. Suppose that z € C has polar coordinates
p= J8, 0= Eﬂ'.
4
Therefore, the trigonometric form of z is

2 = 8[eos(2) wisn (2]

Write z in cartesian form.
Solution. We have

x = pcos(f) = chos(%f) = 8- y2_
. . (3 2
y = psin(f) = x@ﬁn(Zn) =48 X2 =2,
Therefore, the cartesian form of z is

z=x+iy=-2+2i.

Corollary 4.22: Computing arg(z)

Let z € C with z = x + iy and z # 0. Then

arctan(%) ifx>0
arctan(%)+ﬂ ifx<0and y>0
arg(z) = arctan(z)—ﬂ ifx<0and y<0
% * ifx=0and y>0
—% ifx=0and y<0

where arctan is the inverse of tan.




r P I
X<o
9320 X>0
6 = arc tan {ix)+ T & = arc tan (lx)

> X

>
I s

X <o

y<o Xso0

6 = arc tan {ix)—- T 6 = arc tan (};)

Figure 4.3: The definition of arg(z) depends on the position of z in the
complex plane.

Example 4.23
Question. Compute the arguments of the complex numbers
z=3+4, z=3-4i, -z=-3+4i, -—z=-3-4.
Solution. Using the formula for arg in Corollary 4.22 we have
arg(3 + 4i) = arctan (
arg(3 — 4i) = arctan

4
) =—arctan(§>+7r

arg(—3 — 4i) = arctan T

|
-
-

(-
arg(—3 +4i) = arctan(
(

[SSRI

Example 4.28

Question. Write the number
z=-2+2i

in exponential form.

Solution. From Example 4.21 we know that z = —2 + 2i can be
written in trigonometric form as

= 5fos(3r) s3]

By Euler’s identity we hence obtain the exponential form

.3
1=7JT
z=+8e4

Remark 4.29: Periodicity of exponential

For all kK € Z we have

ei@ — ei(9+271'k) , (4'1)

meaning that the complex exponential is 27-periodic.

4.3 Exponential form

Theorem 4.24: Euler’s identity
For all 6 € R it holds

e = cos(0) + i sin(0).

Theorem 4.25

For all 6 € R it holds .
‘e’a‘ =1.

Theorem 4.26
Let z € C with z = x + iy and z # 0. Then
z=pé?,

where

p =zl = (x% + 2, 0 :=arg(z).

Definition 4.27: Exponential form
The exponential form of a complex number z € C is

7z = pei0 — |z| eiarg(z) )

Proposition 4.30
Let z,z1,29 € C and suppose that

z=pe?, z=ph, z = pye®

We have

7 2y = plpzei(91+92) o= pnemH

for alln € IN.

Example 4.31

Question. Compute (-2 + 2i)*.
Solution. We have two possibilities:

1. Use the binomial theorem:
(-2 +20)" = (—2)4+( B )(—2)3-2i+< ) )(—2)2~(2i)2
+( 5 )(—2)-(21’)3 T (20

=16—4-8-2i—
=16 — 64i —

6-4-4+4-2-8i+16
96 + 64i + 16 = —64.

2. Amuch simpler calculation is possible by using the exponential
form: We know that
.3
—2+2i = 8¢'s"

by Example 4.28. Hence
.3 4 .
—2+20)% = (V8e'i") =827 = —64,
(
where we used that
3w _

37 = ¢ = cos(n) +isin(n) = —1

by 27 periodicity of ¢ and Euler’s identity.




Definition 4.32: Complex exponential

The complex exponential of z = a + ib € C is defined as

% = eaelb.

Theorem 4.33

Let z,w € C. Then

zZ+w _ ,Zz,W (eZ)W — eZW . (42)

Example 4.34

Question. Compute ',
Solution. We know that

=1, arg()=
Hence we can write i in exponential form

i = Jileiare® = ¢i7

Therefore

4.4 Fundamental Theorem of Algebra

Theorem 4.35: Fundamental theorem of algebra
Let p,(z) be a polynomial of degree n with complex coefficients, i.e.,
Pa(2) = @2 + ap_127 + .+ ayz +ag,
for some coefficients ay,, ..., ay € C with a, # 0. There exist
21,2y €C

solutions to the polynomial equation

() =a, 2" +ap_ 12" P+ . +az+ay=0. (4.3)
In particular, p, factorizes as
@ =a,(z-21)(z—23) (2 - 7). (4.4)
Example 4.36
Question. Find all the complex solutions to
2 =-1 (4.5)

2

Solution. The equation z° = —1 is equivalent to

p(z)=0, pz):=22+1.

Since p has degree n = 2, the Fundamental Theorem of Algebra tells
us that there are two solutions to (4.5). We have already seen that
these two solutions are z = i and z = —i. Then p factorizes as

p(2) =22 +1=(z—i)z+i).

Example 4.37
Question. Find all the complex solutions to
zt—-1=0. (4.6)
Solution The associated polynomial equation is
p(z)=0, p(z):=2z*-1.

Since p has degree n = 4, the Fundamental Theorem of Algebra tells
us that there are 4 solutions to (4.6). Let us find such solutions. We
use the well known identity

- =(a+ba—b), VabeR,
to factorize p. We get:
p(z) =t -1) =+ 1) -1).

We know that
Z2+1=0

has solutions z = =+i. Instead
Z-1=0
has solutions x = +1. Hence, the four solutions of (4.6) are given by
z=1,-1,i,—i,

and p factorizes as

pR) =2 1= -DE+DEz-i)z+i).

Definition 4.38: Multiplicity
Suppose that the polynomial p, factorizes as
Pu(®) = ay(z = 2 (2 = 2)% (2 = z)

witha, #0, z1,...,2, € Cand kq, ..., k,, € N, k; > 1. In this case p,
has degree

m
n=ki+..tky=Y k.
i=1
Note that z; is solves the equation

Pn(Z) =0

exactly k; times. We call k; the multiplicity of the solution z;.
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Example 4.39

The equation
z-D(z-22%E=+i>=0

has 6 solutions:
« z = 1 with multiplicity 1

+ z = 2 with multiplicity 2
+ z = —i with multiplicity 3




4.5 Solving polynomial equations

Proposition 4.40: Quadratic formula

Let a,b,c € R,a # 0 and consider the equation

ax> +bx+c=0. (4.7)
Define

A :=b>—4accR.
The following hold:

1. If A > 0 then (4.7) has two distinct real solutions z;,z, € R
given by
—b—JA —b+JA
HH=—, Zp=—-—.
2a 2a

2. If A = 0 then (4.7) has one real solution z € R with multiplicity
2. Such solution is given by

z2=2z1 =29 = b
1=%2=7
3. If A < 0 then (4.7) has two distinct complex solutions zy, z, € C
given by
—b—iv—A —b+iv—-A
HE=E——0>H Z="TT_——_—"">
2a 2a

where v—A € R, since —A > 0.
In all cases, the polynomial at (4.7) factorizes as

az +bz+c=alz—z)(z—1z).

Example 4.41

Question. Solve the following equations:

1. 322-6z4+42=0
2. 422 —8z+4 =10
3. 22+224+3=0

Solution.
1. We have that
A=(—6)%—-4-3-2=12>0

Therefore the equation has two distinct real solutions, given
by
—(—-6)£V12  6++12
z = = =1+—
2-3 6 3
In particular we have the factorization

322—6z+2:3<z—1—g)<z—1+g).

2. We have that

A=(-8)?—-4-4-4=0.
Therefore there exists one solution with multiplicity 2. This is
given by
_ =8 _

zZ= 1.
2-4

In particular we have the factorization

4z° —8x + 4 = 4(z — 1)%.
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3. We have
A=22-4.1.3=-8<0.

Therefore there are two complex solutions given by

z:_z%;\/g:—lii\/?.

In particular we have the factorization

22 +22+3=(z+1-iV2)(z+1+iV2).

Proposition 4.42: Quadratic formula with complex coefficients
Leta,b,c € C,a # 0. The two solutions to
az> +bz+c=0

are given by

-b+ S -b+S,
zZ1 = 5 Z9 = 5
2a 2a
where S; and S, are the two solutions to
Z2=A, A:=b*—4dac.

Example 4.43

Question Find all the solutions to

%zz—(3+i)z+(4—i)=0. (4-8)

Solution. We have

A:(—(3+i))2—4%-(4—i)

=8+6i—8+2i
=8i.

Therefore A € C. We have to find solutions S; and S, to the equation

22 =NA=8i. (4.9)
We look for solutions of the form z = a + ib. Then we must have
that

z? = (a +ib)? = a® — b® + 2abi = 8i.

Thus

a*—b* =0, 2ab=38.

From the first equation we conclude that |a| = |b|. From the second
equation we have that ab = 4, and therefore a and b must have the
same sign. Hence a = b, and

2ab =8 a=b=42.

=SS

From this we conclude that the solutions to (4.9) are

S =242, Sy=-2-2i.
Hence the solutions to (4.8) are
3+i+S
Z1 = —11 :3+i+51
9.1

2
=3+i+2+2i=5+3i,




and

340+ S,

Zy = 5 1 :3+i+52

2
=3+i—-2-2i=1-1i.

In particular, the given polynomial factorizes as

%zz B4zt (d—i)= %(z — )z - 2)

%(2—5—3i)(z—1+i).

Example 4.44
Question. Consider the equation
22 —722+62=0.

1. Check whether z = 0, 1, —1 are solutions.
2. Using your answer from Point 1, and polynomial division, find
all the solutions.

Solution.

1. By direct inspection we see that z = 0 and z = 1 are solutions.

2. Since z = 0 is a solution, we can factorize
z3—7zz+6z:z(zz—7z+6) .

We could now use the quadratic formula on the term z° —7z+6

to find the remaining two roots. However, we have already

observed that z = 1 is a solution. Therefore z — 1 divides z —

7z + 6. Using polynomial long division, see Figure 4.4, we find
that

22 -72+6 _

z—1 -

z—6.
Therefore the last solution is z = 6, and

-7 +6z=2(z—1)(z—6).

z—06

2—1) 22 —T2+6
— 22 +z

—62+6

6z —6

0

Figure 4.4: Polynomial long division between z? — 7z + 6 and z — 1.

Example 4.45
Question. Find all the complex solutions to
2 —7z+6=0.

Solution. It is easy to see z = 1 is a solution. This means that z — 1
divides z> —7z+6. By using polynomial long division, see Figure 4.5,

22

we compute that

2-7z2+6
z—1

=z22+z-6.
We are now left to solve
Z2+z-6=0.

Using the quadratic formula, we see that the above is solved by z = 2
and z = —3. Therefore the given polynomial factorizes as

22-T7246=(z-1D(z-2)(z+3).

22 +2-6
z—l) 23 —T72+6
— 28422
22— Tz
—22 4z
—62z+6
6z —6
0

Figure 4.5: Polynomial long division between z> — 7z + 6 and z — 1.

4.6 Roots of unity

Theorem 4.46
Let n € IN and consider the equation
Z"=1.

(4.10)

All the n solutions to (4.10) are given by

2z = exp (1%) , k=0,...
n

where exp(x) denotes e*.

Definition 4.47

The n solutions to
Z'=1

are called the roots of unity.

Example 4.48
Question. Find all the solutions to
2i=1.
Solution. The 4 solutions are given by
Z = €x <1%> =ex (z”—k)
k P\ P57 )
for k =0,1,2,3. We compute:
zZy = 0 = 1,
z =6 =1,

Note that for k = 4 we would again get the solution z = €/?" = 1.




Example 4.49
Question. Find all the solutions to
2=1.

Solution. The 3 solutions are given by

ZI = ex (l%)
k P 3 )’

for k = 0, 1, 2. We compute:

L2 .4

1 1— [ —
20=€0=1, z1=¢€3, z=¢€3.

We can write z; and z, in cartesian form:
2T 2 . (2 1 3.
zZ1 = e = cos(—”) +ism(—”) =4 £1
3 3 2

and

[Eus (477:) . (4;1) 1 3.
zp=e3 =cos|— |+ismm|—|=—=— —I.
3 3 2

4.7 Roots in C

Theorem 4.50
Let n € N, ¢ € C and consider the equation
(4.11)

zZ =cC.

All the n solutions to (4.11) are given by
2 :meXPGM) ,
n

where Qm is the n-th root of the real number |c|, and 0 = arg(c).

Example 4.51
Question. Find all the z € C such that
2> =-32.
Solution. Let ¢ = —32. We have
lcj=]-32/=32=2°, 0=arg(-32)=r.
The 5 solutions are given by

1+ 2k

1
zk:(25)5exp<i7r ) keZ,

fork=0,1,2,3,4. We get

iz .3
zg = 2es z1 =2e 5
LT

7y = 2e7 = =2 23 =2€ 5

.9

1
z4 =2€ 5

23

Example 4.52

Question. Find all the z € C such that

o esfez) ()
cceofes(£) 1n(2)

The complex number c is already in the trigonometric form, so that
we can immediately obtain

Solution. Set

lel=9, 0=arg(c)= %
The 4 solutions are given by
/3 + 21k
Z = Yo exp <i /T)
(. 1+ 6k)
=+3exp|ir
for k =0,1,2,3. We compute
.1 .7
zy = V3e™ iz z1 = V3™ 2
.13 .19
Zz — \/gelﬂ'a 23 — \/gelﬂ'a




5 Sequences in R

Definition 5.1: Convergent sequence

The real sequence (a,,) converges to a, or equivalently has limit a,
denoted by

lim a, = a,
n—oo

if for all ¢ € R, e > 0, there exists N € IN such that for alln € N,n >
N it holds that
la, —al <e.

Using quantifiers, we can write this as
Ve>0,AINeN st. Vvn>N, |a, —a| <e.

The sequence (a,),c is convergent if it admits limit.

Theorem 5.2

Let p > 0. Then

lim — =0.
pm -5 =0

Proof

Let p > 0. We have to show that

Ve>0,INeN st. vn> N,

1
n—p — 0‘ <E€.
Let ¢ > 0. Choose N € N such that

o (5.1)

Letn > N. Since p > 0, we have n? > NP, which implies

1.1

np NP
By (5.1) we deduce

1

W <¢

Then . . .
RS A

Example 5.3

Question. Using the definition of convergence, prove that

n 1

lim =-.
n—o 2n + 3 2

Solution.

1. Rough Work: Let ¢ > 0. We want to find N € IN such that

n —l‘<5, vn>N.
2n+3 2
To this end, we compute:
n 11 | -3 |_ 3
‘2n+3_§_’4n+6‘_4n+6'

24

Therefore
‘ n 1’ 3
- = <€
2n+3 2 4n+6
3 6
= n>——--.
4 4

Looking at the above equivalences, it is clear that N € IN has
to be chosen so that

(5.2)

2. Formal Proof: We have to show that

n 1‘
——=1<e.
2n+3 2

Ve>0,IN €N st. vn> N,

Let ¢ > 0. Choose N € NN such that (5.2) holds. By the rough
work shown above, inequality (5.2) is equivalent to

3
4N +6

<é&E

Letn > N. Then

‘n 1‘ 3< 3

— 2| = < <
4n+6 4N +6

£,
2n+3 2

where in the third line we used thatn > N.

Theorem 5.4: Uniqueness of limit

Let (a,),en be a sequence. Suppose that

lim a, =b.
n—oo

lim g, = a,
n—oo

Then a = b.

5.1 Divergent sequences

Definition 5.5: Divergent sequence

We say that a sequence (a,),¢n in R is divergent if it is not conver-
gent.

Theorem 5.6
Let (a,) be the sequence defined by
a, = (—1)".

Then (a,) does not converge.




Proof

Suppose by contradiction that a, — a for some a € R. Let

1
£ 1= =
2

Since a, — a, there exists N € IN such that

vn>N.

1
la, —al <e= 3
If we take n = 2N, thenn > N and
1
lagy —al=1-al < =.
2
If we taken = 2N + 1, thenn > N and
1
|a2N+1—a|:|—1—a|<5.
Therefore

2=|1-a)-(-1-a)l
<l1-a+|-1-4g
1 1

<-4+=-=1,
2 2

which is a contradiction. Hence (a,,) is divergent.

5.2 Bounded sequences

Definition 5.7: Bounded sequence

A sequence (), is called bounded if there exists a constant M €
R, with M > 0, such that

la,| <M, VvneN.

Theorem 5.8

Every convergent sequence is bounded.

Example 5.9

The sequence
a, = (=1)"

is bounded (M = 1) but not convergent.

Corollary 5.10

If a sequence is not bounded, then the sequence does not converge.

Remark 5.11
For a sequence (a,) to be unbounded, it means that

VM >0, 3neN s.t. |a,| > M.

25

Theorem 5.12

Let p > 0. The sequence a, = n’ is unbounded, and hence diver-
gent.

Theorem 5.13

The sequence a, = logn is unbounded, and hence divergent.

5.3 Algebra of limits

Theorem 5.14: Algebra of limits

Let (a,)pen and (b,),en be sequences in R. Suppose that

lim b, = b,

n—o0

lim a, = a,
n—oo

for some a,b € R. Then,
1. Limit of sum is the sum of limits:

lim (a, £b,) =a+b
n—oo

2. Limit of product is the product of limits:

lim (a,b,) = ab
n—oo

3. If b, # 0 for alln € N and b # 0, then

a,
im (%)
nl—glo <bn

a
b

Example 5.15

Question. Prove that

. 3n 3
lim ==,
n—o 7n+4 7

Solution. We can rewrite

3n 3

n+4 o, 4
n

From Theorem 5.2, we know that

-—=0.
n

Hence, it follows from Theorem 5.14 Point 2 that

doyl 40=0.
n n

By Theorem 5.14 Point 1 we have

7+é—>7+0=7.
n

Finally we can use Theorem 5.14 Point 3 to infer

3n 3
n+4

742
n




Example 5.16

Question. Prove that

. n -1 1
lim ==,
n—co2p2 —3 2

Solution. Factor n® to obtain

1
1__
n?—1 _ n’
m?2-3 ., 3

2-=

S

By Theorem 5.2 we have

1

— —0.
n2

We can then use the Algebra of Limits Theorem 5.14 Point 2 to infer

3
= 53.0=0
n2
and Theorem 5.14 Point 1 to get
1—%—)1—0:1, 2—%—>2—O:2.
n n

Finally we use Theorem 5.14 Point 3 and conclude

Therefore

Example 5.17
Question. Prove that the sequence

_4n3+8n+1

a_
" T +2n+1

does not converge.

Solution. To show that the sequence (a,) does not converge, we
divide by the largest power in the denominator, which in this case
fo 2

isn

4nd +8n+1
ap = —————
n“+2n+1
8 1
4n+—+—2 b
- n_ "
2 1 ’
THZ+— @
n n
where we set
8 1 2 1
b, :=dn+-+—=, ¢ :=7+-+—.
n n? n n?

Using the Algebra of Limits Theorem 5.14 we see that

2 1
Cn:7+;+n—2—>7.
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Suppose by contradiction that
a, > a
for some a € R. Then, by the Algebra of Limits, we would infer
b,=¢, a, > 7a,

concluding that b, is convergent to 7a. We have that

b,=4n+d,, d,:=

S | oo

L1
n?’
Again by the Algebra of Limits Theorem 5.14 we get that

dn:§+i—>0,
n  n?
and hence
dn=b,—d, > 7a—-0=7Ta.

This is a contradiction, since the sequence (4n) is unbounded, and
hence cannot be convergent. Hence (a,) is not convergent.

Example 5.18

Question. Define the sequence

2n3 +7n+1 8n+9
Cln = . .
5n+9 6n3 +8n2 +3
Prove that
) 8
lim a, = —.
n—oo 15

Solution. The first fraction in (a,) does not converge, as it is un-
bounded. Therefore we cannot use Point 2 in Theorem 5.14 directly.
However, we note that

Lo+l 8149
" 5n+9 6n3 +8n2 +3
8n+9_ on3 +7n+1
5n+9 6n3+8n2+3

Factoring out n and n3, respectively, and using the Algebra of Limits,

we see that
gnt+9 _8+9/n

5n+9 5+9/n

8+0 8

5+0 5

and
2+7/m*+1/n®> 24040 1
- = -
6+8/n+3/n3 6+0+0 3

Therefore Theorem 5.14 Point 2 ensures that

Example 5.19
Question. Prove that

3+ on+7
= ———
" 4n3/2 4+ 5n

does not converge.




3/2

Solution. The largest power of n in the denominator is n°/“. Hence

we factor out n3/2

n3 +on+7
4n3/2 4+ 5
n1/3-3/2 4 op1/2-3/2 4 7,,-3/2
4+5n73/2
n/6 + on 1 4 7n73/2
4+5n73/2

a, =

where we set

b, := n3/6 4 on~t 4 7n3/2 C = 4450732,

We see that b, is unbounded while ¢, — 4. By the Algebra of Limits
(and usual contradiction argument) we conclude that (a,) is diver-
gent.

Theorem 5.20
Let (a,)pen be a sequence in R such that

lim a, =a,
n—oo

for somea € R. If a, > 0 for alln € N and a > 0, then

lim JJa, = a.

n—oo

Example 5.21

Question. Define the sequence

a, =\n% +3n+1-3n.

Prove that

. 1
lim g, = =.
n—»oo 2

Solution. We first rewrite

a, =\9n% +3n+1-3n
(\/9n2 . 3n) (\/9n2 F3n+1+ 3n)
o2 +3n+1+3n

_9n® +3n+1-(3n)?

Jon? +3n+1+3n

3n+1

N2 +3n+1+3n

The biggest power of n in the denominator is n. Therefore we factor

out n:
a, =\ +3n+1-3n

_ 3n+1

\Non2+3n+1+3n

1
34 =
n

- :
9+§+—2+3
non

27

By the Algebra of Limits we have

9+3+ L1 Lot04+0=0.
n n?

Therefore we can use Theorem 5.20 to infer

[ 3 1
9+ =+ = =9,
n n

By the Algebra of Limits we conclude:

1
3+ =
n 3+0 1
a, = 3 T —)\/6 3:5
9+ >+ —+3 +
n n

Example 5.22

Question. Prove that the sequence

a, =% +3n+1-2n

does not converge.
Solution. We rewrite a, as

a, =\9% +3n+1-2n
 (Jon? +3n+1—2m)(/9n? + 3n + 1 + 2n)

Jon2 +3n+1+2n

_9n® +3n+1—(2n)?

N2 +3n+1+2n

5n2 +3n+ 1

N2 +3n+1+2n

1
S5n+3+ —
n

31
9+=+—=+2
n n

where we factored n, being it the largest power of n in the denomi-
nator, and defined
b, ::5n+3+l, Cp = 9+§+i+2.
n n  n?
Note that

9+§+i—>9
n  n?

by the Algebra of Limits. Therefore

/9+§+i2—>\@:3
non

by Theorem 5.20. Hence

1
C, = 9+§+—+2—>3+2=5.
n o n?

bn:5n+3+l
n

is instead unbounded. Therefore (a,) is not convergent, by the Al-
gebra of Limits and the usual contradiction argument.

The numerator




5.4 Limit Tests

Theorem 5.23: Squeeze theorem

Let (ay,), (b,) and (c,) be sequences in R. Suppose that

b,<a,<c¢,, VYneN,
and that
lim b, = lim¢, = L.
n—oo n—oo
Then
lima, =L.
n—oo
Example 5.24
Question. Prove that
—1)"
lim 1) =0.
n—oo n

Solution. For all n € IN we can estimate

—1<(-1)"<1.
Therefore .
- -1
—13( ) Sl, vneN.
n n n
Moreover ) .
lim — =-1-0=0, lim - =0.
By the Squeeze Theorem 5.23 we conclude
—1)?
lim ) =0.
n—oo n
Example 5.25
Question. Prove that
cos(3n) + 9n? 9

noo 1102 + 15 sin(17n)  11°
Solution. We know that
—1<cos(x)<1, —-1<sin(x)<1, VxeR.
Therefore, for alln € N
—1<cos(3n) <1, -1<sin(17n)<1.

We can use the above to estimate the numerator in the given se-
quence:

—1+ 9% < cos(3n) + 9n® < 1+ 9n?. (5.3)
Concerning the denominator, we have
11n% — 15 < 11n? + 15sin(17n) < 11n% + 15
and therefore
! . : (5.4)

< < .
11n2 + 15 = 11n2 + 15sin(17n) ~ 11n2 - 15

Putting together (5.3)-(5.4) we obtain

—1+9n2 cos(3n) + 9n? 1 4+ 92
11n2 +15 ~ 11n% + 15sin(17n) ~ 11n2 —15°

By the Algebra of Limits we infer

1

—i+on® _ 2~ 0+9 _ 9
- - -2
n?+15 ;. b 11+0 11

nz

and

—+9
1+9n2  p2 L0+9 9
11n2 — 15 15 1140 11°

11-=

n2

Applying the Squeeze Theorem 5.23 we conclude

cos(3n) +9n* 9

im - ==,
n—eo 11n2 + 15sin(17n) 11

Definition 5.26: Geometric sequence
A sequence (a,) is called a geometric sequence if
a, = x",

for some x € R.

Theorem 5.27: Geometric Sequence Test

Let x € R and let (a,) be the sequence defined by a, := x". We
have:

1. If |x| < 1, then
lim a, =0.
n—oo
2. If |x| > 1, then sequence (a,) is unbounded, and hence diver-
gent.

28

Example 5.28

We can apply Theorem 5.27 to prove convergence or divergence for
the following sequences.

1. We have
1 n
(3) —o
2
since
21=3
-l==-<1
2 2
2. We have
—1\"
(3) —o
2
since
2 1-3
—|==><1
2 2

3. The sequence

does not converge, since

‘__3|:§>1.
217 2




4. Asn — oo,

(=5)" 5
since
‘ 3
-Zl==<1
5 5
5. The sequence
_ 7"
n = 22n

does not converge, since

7 (=) - 7)n

22n _(22)”_ 4
and
‘ 7| 7
—sl==>1
4 4

Theorem 5.29: Ratio Test
Let (a,) be a sequence in R such that
vnelN.

a, 0,

1. Suppose that the following limit exists:

a
L := lim |22
n—o | q,
Then,
« If L <1 we have
lim g, = 0.

n—oo

« If L > 1, the sequence (a,) is unbounded, and hence does
not converge.

2. Suppose that there exists N € N and L > 1 such that

a
n+1 > L,

vn>N.

an

Then the sequence (a,) is unbounded, and hence does not con-
verge.

Example 5.30

Question. Prove that

3?’!
an:——)O,
n!

where we recall that n! (pronounced n factorial) is defined by

n:=n-(n-1)-(n-2)-...-3-2-1.

3n+1
B ((n+1)!) 3

3_" T n+1
n!

Hence, L = 0 < 1 s0 a, — 0 by the Ratio Test in Theorem 5.29.

Solution. We have

i1 — L=0

an

Example 5.31

Question. Prove that the sequence is divergent

n!-3"

Jen)!

a, =

Solution. We have

Gny1| _ (n+1)!-3"1 m
n @n+1) -3

J(2n)!
J@n+ 1))

_(n+1) 3l
T 3n

For the first two fractions we have

(n+1) 371

_ i 3(n+1),
while for the third fraction
J@n) (2n)!

Jemrny \@n+2)

B (2n)!
"\ (@n+2)-Cn+1)-(2n)!
1

Jen+ D@n+2)

Therefore, using the Algebra of Limits,

Cln_+1 _ 3(’1 + 1)
ap, J@n+1)(2n+2)

) 3n(1+ )
FEDEd
s

Fed

By the Ratio Test we conclude that (a,) is divergent.

=351,

3
Ja o2

Example 5.32

Question. Prove that the following sequence is divergent

n!
a, = —.
" 100m
Solution. We have
Aui1| 100" (n+ 1) n+1
a, 100"t n! 100 °

Choose N = 101. Then for alln > N,

An+1

_n+l>N+1_10_1
100 — 100 100

an

Hence a, is divergent by the Ratio Test.

29



5.5 Monotone sequences

Definition 5.33: Monotone sequence

Let (a,) be a real sequence. We say that:

1. (a,) is increasing if

a, <ay1, Yn=N
2. (a,) is decreasing if
ay 2 apy1, Vn2=>N.

3. (ay,) is monotone if it is either increasing or decreasing.

Example 5.34

Question. Prove that the following sequence is increasing

n—1
a, =
n
Solution. We have
G = n—1 a
T n n

where the inequality holds because

-1
U = n>h-1Dn+1)
n+1 n
— n>n%-1
— 0>-1

Example 5.35
Question. Prove that the following sequence is decreasing

ap = ~.
n

Solution. We immediately see that

1
n+1

1
a, = - >
n

= Ont1 -

Theorem 5.36: Monotone Convergence Theorem

Let (a,) be a sequence in R. Suppose that (a,) is bounded and mono-
tone. Then (a,) converges. In particular,

1. If g, is increasing, then

lim a, = sup A,
n—oo

2. If a, is decreasing, then

lim a, = infA,

n—oo

where we define A = {a, : ne N}

30

Theorem 5.37

Consider the sequence

We have that:

1. (a,) is monotone increasing,
2. (ay) is bounded.

In particular (a,) is convergent.

Definition 5.38: Euler’s Number

The Euler’s number is defined as

e= lim

n—oo

)

5.6 Special limits

Theorem 5.39
Let x € R, with x > 0. Then

lim ¥x=1.

n—>oo

Theorem 5.40
Let (a,) be a sequence such that a, — 0. Then

sin(a,) »> 0, cos(a,) = 1.

Theorem 5.41

Suppose (a,) is such that a, — 0 and a, # 0. Then,

sin(a
lim M =1
n—oo an

Theorem 5.42

Suppose (a,) is such that a, — 0 and g, # 0. Then,

. l1—cos(a,) 1 )
lim —————— = 2 lim

1—cos(a,) 0
n—o0 (an)z n—o0 B

an

Proof
Step 1. By Theorem 5.40 and Theorem 5.41, we have

sin(a,
cos(a,) = 1, M -1
ap




Therefore
1—cos(a,) 1-—cos(a,) 1+ cos(ay)
@@ (a)?  1+cos(a)
11— cos?(ay) 1
(a,)? 1+ cos(ay,)
. 2
3 ( sin(a,) ) 1 1

— 1 — =
ay 1 + cos(ay,) 1+1

where in the last line we use the Algebra of Limits.
Step 2. We have

1 —cos(a,) 1 — cos(ay,) 1
=ay,- —0-=-=
an (an)Z 2

using Step 1 and the Algebra of Limits.

Example 5.43
Question. Prove that

lim nsin(l) =1.

n—oo n

Solution. By Theorem 5.41 with a, = 1/n, we get

i (1)
sim| —
. 1 n
nsm{\— )= —— —
n

1
n

5

1
2

(5.5)

Example 5.44

Question. Prove that

lim n? <1 — cos (1)) - .
n—oo n 2

Solution. By Theorem 5.42 with a,, = 1/n, we have

1—cos (l)
n
—

i) 1

(5.6)

Example 5.45

Question. Prove that

(-es(l)

Jim, . ( 1) P
sin | =
n
Solution. Using (5.6)-(5.5) and the Algebra of Limits
n (1 — CcoS (l» n? (1 — COoS (l))
n// _ n
n(;)
sin | =
n
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Example 5.46
Question. Prove that
lim ncos (E) sin (E) =2.
n—oo n n
Solution. We have

cos(z) — 1,
n

by Theorem 5.40 applied with a,, = 2/n. Moreover

(3)sn(2)
ncos|—J)sin|—-)=2-cos
n n

—2-1-1=2,

where we used the Algebra of Limits.

Example 5.47

Question. Prove that

Il
_

. onf+1 (1)
lim sin( =
n—ooo n+41 n

Solution. Using (5.5) and the Algebra of Limits,

1+ 1
n+1 . <1> n? ( : (1))
smm|—| = 1 nsmy| —
n+1 n 14— n
n
140,
1+0




6 SequencesinC

Definition 6.1: Convergent sequence in C

We say that a sequence (a,) in C converges toa € C, or equivalently
has limit a, denoted by

lim a, =a
n—oo

or a,—a,

if it holds:

Ve>0,AINeN st. Yn> N, |a, —a| <e.

If there exists a € C such that lim,,_,, a, = a, we say that the se-
quence (a,) is convergent.

Example 6.2
Question. Using Definition 6.1, prove that

. B+Dn—7i
hm _—

n—oo n

=3+i.

Solution.
Part 1. Rough Work. Let ¢ > 0. We need to clarify for which values
of n the following holds:

3+in—7i
@iy,
We have ( ) | |
3+in—7i —7i
‘——(3+i) =—=Z.
n
Therefore
7 7
- <¢€ — n>-.
n £

Part 2. Formal Proof. We want to prove that for all ¢ > 0 there exists
N € N such that

3+in—7i
G+n=7 _5ipl<e.  wn>N.
Let ¢ > 0. Choose N € N such that
N>1.
£
The above is equivalent to
7
— <€
N
For n > N we have
3+in—7i
Grin=mi (1T,
n~ N
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Definition 6.3: Bounded sequence in C

A sequence (ay,) in C is called bounded if there exists a constant
M € R, with M > 0, such that

la,| <M, vVneNlN.

Theorem 6.4

If a sequence (g,) in C converges, then the sequence is bounded.

Definition 6.5: Divergent sequences in C

We say that a sequence (a,) in C is divergent if it is not convergent.

Corollary 6.6

Let (a,) be a complex sequence. If (a,) is not bounded, then it is
divergent.

6.1 Algebra of limits in C

Theorem 6.7: Algebra of limits in C

Let (a,) and (b,) be sequences in C. Suppose that

lim b, = b,

n—oo

lim a, = a,
n—oo

for some a,b € C. Then,
1. Limit of sum is the sum of limits:

lim (a, £b,) =a+b
n—0oo
2. Limit of product is the product of limits:
lim (a,b,) = ab
n—o0o
3. If b, # 0 for alln € N and b # 0, then

(“_n>:2
b,) b

lim

n—oo

Example 6.8

Question. Compute the limit of

_(2—dn*+6in—5-3i
(6+3)n2+11i

ap




Solution. Factor n?, the largest power of n in the denominator,

61 5 3i
2-i+=-2 -2
a_( ) n n® n? 2—1i
n — 11 .
®+3D+—§ 6+3i
n

where we used the Algebra of Limits. Finally,

2—-i _ 2-D6-3) 1
6+3i (6+3i)(6-30) 5

4.
- —1.
15

6.2 Convergence to zero

Theorem 6.9

Let (a,) be a sequence in C and suppose that
lim |a,| =0.
n—oo

Then

lim a, =0.
n—oo

Example 6.10

Question. Prove that a, — 0, where

Solution. We have

Since

| —_
w

by the Geometric Sequence Test for real sequences, we conclude
that
|a,| — 0.

Hence a,, — 0 by Theorem 6.9.

Example 6.11

Question. Consider the sequence

2i cos(3m)n + (7 — Hn?
a, 1=
" 3n% + 2in + sin(2n)

Prove that

w3

. 1.
lim g, = - — =i.
n—oo 3
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Solution. We divide by the largest power in the denominator, to

get
2i cos(3n) 70

2i sin(2n
34 2, sinGn)
n n

Notice that

—1<cos(3n) <1, VvneNlN,
and thus
2 cos(3n
_ES#SE’ VHEN.
n n n
Since 5
-——0, -—0,
n n

by the Squeeze Theorem we conclude that also

2 cos(3n)
—— — 0.
n

In particular we have shown that

2i cos(3n) ‘ 2 cos(3n)
= — 0.
n n
Using Theorem 6.9 we infer
2i cos(3n)
— — 0.
n
Similarly,
sin(2n
—%S (Z)S_iz’ vnelN.
n n n
Since 1 1
-— —0, — —0,
n? n?

by the Squeeze Theorem we conclude

sin(2n)

5 — 0.

n

Finally, we have

gei e
n n
and therefore

2i

2 _ 50

n

by Theorem 6.9. Using the Algebra of Limits in C we conclude

2i cos(3n) .
0D ohg-n 71
a, = — ==-—-I.
" 2i  sin(2n) 340+0 3 3
3+ =+
n n?




6.3 Geometric sequence Test and Ratio Test
in C

Theorem 6.12: Geometric sequence Test in C

Let x € C and let (a,),¢n be the geometric sequence in C defined by

n

a, 1= x".
We have:
1. If|x| < 1, then
lim a, =0.
n—oo

2. If [x| > 1, then sequence (g,) is unbounded, and hence diver-
gent.

Example 6.13

Question. Prove that a, — 0, where

(-1 + 4)"
a, = ———.
" (743"

Solution. We first rewrite

(=1 +4)" (—1 +4i>"
a, = =
(7430 7+ 3i

Then, we compute

=144
T 7 +3i]

Jonrva
V7% + 32

‘—1+4i
7+ 3i

<1

By the Geometric Sequence Test g, — 0.

Example 6.14

Question. Prove that g, diverges, where
(=5 + 12i)"
nT T34y
Solution. We first rewrite
(=5+12)" -5+ 12i\"
T T E Ty :< 3_ 4 > '

We compute

| =5+ 12i
T3 —4i

13

‘—5+12i
3—-4i

>1.
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By the Geometric Sequence Test, the sequence a,, diverges.

Example 6.15

Question. Prove that g, diverges, where

Solution. We have

|an|: ezn :1,

and hence the Geometric Sequence Test cannot be applied. How-
ever, we can see that

ay = (i, ~1,~i, 1L,i,~1,—i, 1,...),

that is, a, assumes only the values {i, —1, —i, 1}, and each of them is
assumed infinitely many times. Therefore a,, is oscillating, and thus
divergent.

Theorem 6.16: Ratio Test in C
Let (a,) be a sequence in C such that
a, #0, vnelN.

1. Suppose that the following limit exists:

a
L:= lim |22
n—oo | q,
Then,
o If L <1 we have
lim a, = 0.

n—»o0o

« If L > 1, the sequence (a,) is unbounded, and hence does
not converge.

2. Suppose that there exists N € N and L > 1 such that

An+1
an

2L5

vn>N.

Then the sequence g, is unbounded, and hence does not con-
verge.

Example 6.17

Question. Study the convergence / divergence of the sequence

(4—3i)
= n)!




Solution. We compute

_|[(a=3)mt (2n)!
e+ 1) (4-3in
a3ttt (2n)!
T Tl4-3i"  (2n+2)!
B 4 — 3|

T @2n+2)(2n+1)

C @Cn+2)(2n+1)

3 5

T (2n+2)(@2n+1)
5

2
= L L=0.

Bl

Since L = 0 < 1, by the Ratio Test in C we infer a, — 0.

Gn+1
an

6.4 Convergence of real and imaginary part

Theorem 6.18

Let (z,),en be a sequence in C. For n € N, let a,,, b, € R such that
Zy =ay +byi.

Let z = a + bi, with a,b € R. Then

limz,=z < limag,=a, limb,=0.
n—oo n—»oo n—o0

Example 6.19

Question. Consider the complex sequence

 (4n+3n%0) (2n% +1)

.
5n4

Show that
. 6.
lim z, = Ez.

n—o0

Solution. We find the real and imaginary parts of z,

(4n + 3n2i) (2n2 + i)
= 5n4

8n® + 4ni + 6n*i + 3n%i

5n4
8n® —3n®  6en*+4n,
= i
5n4 5n4

=a, + byi.

Using the Algebra of Limits for real sequences we have that

8_3
8n®—3n> n  n? 0-0

n: =  — :0’

5nt 5 5

4

4 6+—3
b :6n +4n n 6+0_§
" 5n4 5 5 5
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By Theorem 6.18 we conclude

lim z, = lim a, +i lim bn:0+9i: éi.
N—00 n—co n—co 5 5




7 Series

Definition 7.1: Partial sums

Let (a,) be a sequence in C. The k-th partial sum of (a,) is

k

S =aptat . tao= )y a
n=1

This sequence (s;)ren is called the sequence of partial sums.

Definition 7.2: Convergent series

Let (a,) be a sequence in C. We denote the series of (a,),cn by

(o8]
D,
n=1

We say that this series converges to s € C if

k
lim a, = lim s =s.
nz:l s k

k—o00 = —>00

In this case we write

[se]
Y4 =s.
n=1

Definition 7.3: Divergent series

Let (a,) be a sequence in C. The series

(o8]
D,
n=1

is divergent if the sequence of partial sums (s) is divergent.

Example 7.4

Question. Prove that

- 1
z:n(n+1):1

n=1

Solution. The idea to prove convergence is to split the general term
into the sum of two fraction:
_1 _A, B
nn+1) n nn+1)
_A(n+1)+ Bn
 nn+1)
_(A+Bpn+A
 a(n+1)

In order for the LHS and RHS to be the same, we need to impose

(A+Bn+A=1,
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which holds if and only if

A+B=1 A=1

—_—

Therefore, we conclude that

1 11

nn+1) n n+1’

We can now compute the partial sums s as follows:

k

1
sk:Zn(n+l)

n=1

[
M=

n=1 n 1
1 1 1 1 1 1 1 1
=4 -—-—=4+=-——-4+...t+ - —
1 2 2 3 3 4 k k+1
1
:1——
k+1

Therefore,
. . 1
lim s = lim (1——) =1,
k—o0 k—o0 k+1
which means that the series converges to 1, that is,

(o]

1
Z:n(n—i-l):1

n=1

A series of this kind is called a telescopic series, since we can fold
the entire partial sum together, in such a way that only two terms
remain.

Example 7.5

Question. Prove that the following series diverges

PGS
n=1

Solution. The partial sums s; are given by

k

=Y =]

n=1 0

if n is odd

if n is even.

Therefore s, diverges, so also the series Y,(—1)" diverges.

Theorem 7.6: Necessary Condition for Convergence

Let (a,) be a sequence in C. If the series

o0
D,
n=1




converges, then
lim g, = 0.

n—o0

Example 7.7

Consider the series

PGV (7.0
n=1
We have that

lim a, = lim(-1)" =0,

n—oo n—oo
being (a,) divergent. Therefore the series at (7.1) diverges by Theo-
rem 7.6.

Example 7.8

Question. Discuss converge/divergence for the following series

o0
Z n
1o+ 11

Solution. We have

n 1 1
= = —>
5n+ 11 11 5

a,

Hence, the series Y, a, diverges.

Important

Theorem 7.6 says that if Z:ozl ay, converges, then
a, > 0.

The converse is false: In general the condition a, — 0 does not guar-
antee convergence of the associated series, as shown in the example
below.

Example 7.9

Question. Discuss convergence/divergence for the following series

- 1
ap, Gy = ——.
,,; P n+144n
Solution. By the Algebra of Limits we have

lim g, = 0.

n—o0
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Therefore, we cannot conclude anything yet: The series might con-
verge or diverge. Let us compute the partial sums:

Sk

[
M=

n=1 +\/E
Vk+1-+k
k+1-k

Il
M-
a = =
+ + +
ol | = [ B =Y
+
&

Il
M~
;'

n=1
=V2-J1+\V3-V2+..+Vk+1-k

=+vk+1-1.

We have shown that the partial sums are
k
sk=Zan=\/k+1—1.
n=1

Therefore (s) is divergent, and so the series Y, a, is divergent.

Remark 7.10

It is customary to sum a series starting at n = 1. However one could
start the sum at any n = N with N € IN. This does not affect the
convergence of the series, in the sense that

o0 o0
Z a, converges <<= Z a, converges.
n=1 n=N

In case of convergence, we would of course have

[se] (o]
Z a, = Zan—(al +...+an_1) -
n=N n=1

Example 7.11

Question. Prove that

(o)

¥ _t _1

Znnh+1) 7 ’
Solution. We have seen that

- 1

St

Zinn+1)
Hence also the series

o 1
Z n(n+1)

n=7




converges. In this case, the partial sums are given by

Il
M~
—/
S|
|
+ [ =
~——

1
k k+1

Therefore
%t
n(n+1)

. 1
lim s = =.
n=7 7

k—o0

7.1 Geometric series

Definition 7.12: Geometric Series in C

Let x € C. The geometric series of ratio x is the series

Theorem 7.13: Geometric Series Test
Let x € C. We have:

1. If |x| < 1, then the geometric series of ratio x converges, with

(7.2)

2. If |x| > 1, then the geometric series of ratio x diverges.

Example 7.14

Question. Discuss convergence/divergence of the following series.
If the series converges, compute the limit.

n=0 n=0
(o) _3 n o0
>(3) P4
n=0 n=0
Solution.
1. Since ‘%‘ < 1, by the GST we have
00 n
Z (l) = Ll =2
n=0 2 1-—

2. Since ‘%3‘ = % > 1, by the GST the series
© g
%(-3)
diverges.

. —3‘_3
3. Slnce’4 =13

ENEENTIE
N

4. Since | — 1| = 1, the series

(o]

PNCVE

n=0

diverges.

Remark 7.15
If the sum of a Geometric Sries does not start at n = 0, we need to

tweak the summation formula at (7.2). For example, if |x| < 1, and
we start the series atn = 1, we get

- 1
Zxk: -1= X .
= 1-x 1—-x

Example 7.16
Question. Prove that

ey

n=1
Solution. We have that

S(1)-3

n=1
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Example 7.17

Question. Discuss convergence/divergence of the following series.
If the series converges, compute the limit.

i 1 i(l—Si)" i<2+1)”
S+’ S\343i) 7 HN\3-2)
Solution.
1. We have

()




and
o g
1+i 2Zy1z2 V2

Therefore, the series converges by the Geometric Series Test,

and
- 1 1
= =1-i.
,;(Hi)" 1L
1+1
2. Since
‘1—5i‘_|1—5i|
343l |3+3

V@2 + (=5)
3412 4 12

_m
32
Vs
3
the series diverges by the Geometric Series Test.

3. We have

‘ 2+i| 2+

3-2il  |3— 2]

V22 +12

ENERY
13

Therefore the series converges by the Geometric Series Test,

and
i(zﬂ')"_ 1
Z4\3 - 2i 1 2+1i
3—2i
3 1
3-2i—(2+1)
3—2i
3-2i
1-3i
3—2i 1+3i
1—3i 1+3i
_3—2i+9i— 6i
1-9i
9 7.
==+ —ij
10 10

7.2 Algebra of Limits for Series

Theorem 7.18: Algebra of Limits for Series

Let (a,),en and (by),en be sequences in € and let ¢ € C. Suppose

that
Z a, =a, Z b,=0b.
n=1 n=1

Then:

1. The sum of series is the series of the sums:
(o)
> (ayby)=axb.
n=1

2. The product of a series with a number obeys

o0
Zc~an:c-a.
n=1

Example 7.19
Question. Prove that

506N ()=

n=0

Solution. Note that

Z(l)n_L_é
i3 o1 2
3
©0 n
3(3) =—5=%
n=0 3 1 -
3

by the Geometric Series Test. Therefore, we can apply the Algebra

of Limit for Series to conclude that
) )
—_ + —_
(3 Z 3

e (E))- 20 2

n=0

M

0

Do | W ﬁ

+3=6

7.3 Non-negative series

Definition 7.20: Non-negative series

Let (a,) be a sequence in R. We call the series
I
n=1

a non-negative series if

39

a, >0, vnelN.
Lemma 7.21
Let (a,) be a sequence in R with

a, >0, vnelN.

Define the partial sums as

k
S 1= Zan.
n=1

The sequence (s;) is increasing.




We present 4 test for the convergence of non-negative series:

1. Cauchy Condensation Test

2. Comparison Test

3. Limit Comparison Test

4. Ratio Test (positive series only)

Theorem 7.22: Cauchy Condensation Test

Let (a,) be a sequence in R. Suppose that (a,) is non-negative and
decreasing, that is,

ay, > apy1, VneN.

They are equivalent:

1. The following series converges
(o)
S
n=1

2. The following series converges

(o8]
Z 2"agn = ay + 2ay + 8ag + 16aj4 + ...
n=0

Theorem 7.23: Convergence of p-series
Let p € R. Consider the p-series

3L

n=1 nb
We have:

1. If p > 1 the p-series converges.

2. If p < 1 the p-series diverges.

Proof

The series in question is

(S

S i
n> (P

n=1 nP

Note that (a,) is decreasing and non-negative. Hence, by the
Cauchy Condensation Test of Theorem 7.22, the p-series converges
if and only if

(<]

Z 2”a2n

n=0

converges. We have

(o] (o] o0
D 2Mag =y 2P =y (217F),
n=0 n=0 n=0
and the latter is a Geometric Series of ratio
x =277,
By the Geometric Series Test, we have convergence if and only if

Ix| <1,
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which is equivalent to

N P<c1=22 =

1-p<0
p>1.

Therefore
3L
n=1 nb
converges if and only if p > 1, ending the proof.

Theorem 7.24

Let p € R. Consider the series

(o8]

1
=5 n(logn)f

We have:
1. If p > 1 the series converges.

2. If p < 1 the series diverges.

Proof

The series in question is

o0
1
n=2

n(log n)? .

Note that (a,) is non-negative and decreasing. Therefore we can ap-
ply the Cauchy Condensation Test to conclude that the above series
is convergent if and only if the series

0
Z 2nazn
n=1

is convergent. We have

1 1

2” n — 2” =
“ 2n (log2m)?  nP log2

so that

The latter is a p-series, which by Theorem 7.23 converges if and only
if p > 1. Hence

1
n=2 n(log n)p

converges if and only if p > 1, and the proof is concluded.

Theorem 7.25: Comparison test

Let (a,),en and (b,),en be non-negative sequences. Suppose that
there exists N € IN such that




They hold:

o0 (]

an converges = Zan converges,
n=1 n=1

o0 (o]

Zan diverges — an diverges.

n=1 n=1

Example 7.26

Question. Discuss convergence/divergence of the following series:

- 1
- 7-3
n;lnz-i-’jn—l 73)
oo 3"+6n+;
n+1
: (7.4)

n
n=0 2

Solution.

1. Since 3n — 1 > 0 for alln € N, we get

1

1
— < =, VneN.
n+3n—-1" n?

By Theorem 7.23 the p-series

(<]
n=1

converges. Therefore also the series at (7.3) converges by the
Comparison Test in Theorem 7.25.

l\JlH

n

2. Note that

3"+ 6n +

n n
n+123_=<§) , VnelN.
2n 2n

Since E‘ = % > 1, the series
(o)

§)n
X

diverges by the Geometric Series Test in Theorem 7.13. There-
fore, by the Comparison Test, also the series at (7.4) diverges.

Theorem 7.27: Limit Comparison Test

Let (a,) and (b,) be sequences such that

a, >0, b, >0, vnelN.

Suppose there exists L € R such that
a
L= lim .

—>00
n n

They hold:
1. If 0 < L < o0, then

(o) (S
Za,, converges < Zb,, converges.

n=1 n=1
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2. If L =0, then
(o) (o)
Z b, converges — Z a, converges,
n=1 n=1

Zan diverges — an diverges.

n=1 n=1

Example 7.28

Question. Prove that the following series converges
© 53
Z 2n° +5n+1

b+ om+5

Solution. Set

a __2n3+5n+1 L
" mmbyon+s5” "

CA

We have

.4y
L :=lim —
n—oo b,

2l +5n+1 /1
=lim ——— / —
n—>e 7né +2n+5/ n3
2n® +5n* +n3
n—>e b +2n+5

The series

converges, being a p-series with p = 3 > 1. Since L = % > 0, also
the series
(o)

22n3+5n+1

S b +2n+5

converges, by the Limit Comparison Test.

Example 7.29

Question. Prove that the following series diverges

i n + cos(n)
n=1 n2

Solution. Since sin(n) is bounded, we expect the terms in the series
to behave like 1/n for large n. Hence we set

n + cos(n) 1
e b,=-.
n n




We compute

a . n+cos(n) /1
L:=—=1lm —=/-=
bn n—co n? n
~ n®+ncos(n)
= lim ——=
n—oo n?
cos(n
- i (1+20)
n—oo n
Note that
1  cos(n 1
—1<cos(n) <1 = —=< ()S—.
n n n

As both —% — 0 and % — 0, by the Squeeze Theorem

cos(n)

Hence

n—oo n

Lzlim<1+&(n)>:1.

The harmonic series Y, ; % diverges. Since L = 1 > 0, the series
i n + cos(n)
-
n=1 n

diverges by the Limit Comparison Test.

Example 7.30

Question. Prove that the following series converges

5 (1-(2).

n=1

1
cos(—) <1,
n

the above is a non-negative series. Recall the limit

Solution. Since

. 1—cos(a,) 1
lim ——— = -,
e @R 2
where (a,) is a sequence in R such that a, — 0 and
a, 0 VvVnelN.

In particular, for a, = 1/n, we obtain
(1 — cos <l)> = 1 .
n 2
b, := 1—cos<1) .G =
n

() -

Note that the series 220:1 niz converges, being a p-series with p > 2.
Therefore, since L = 1/2 > 0, also the series

lim n?
n—oo

Set

We have

L := lim 2 = lim n®

n—e ¢, n—oo

(o]

2 (1))

1

converges, by the Limit Comparison Test.

Example 7.31

Question. Prove that the following series converges
i 1 + sin(n)
> .
n=1 n

Solution. Since
sin(n) > -1,

the above is a non-negative series. As sin(n) is bounded, the series
behaves similarly to

NgE

L
nz.

Il
—

n

1+ sin(n
%/%zl—i—sin(ﬂ)
n n

does not converge. Hence, we cannot use the Limit Comparison
Test. In alternative, we note that

However

1+sin(n) = 2
2

The series

converges, being a p-series with p = 2 > 1. Therefore also
i 1 + sin(n)
2
n=1 n

converges, by the Comparison Test of Theorem 7.25.

Theorem 7.32: Ratio Test for positive series

Let (a,) be a sequence in R such that

a, >0, vnelN.

1. Suppose that the following limit exists:

. An+1
L := lim .
n—o  q,

They hold:

« IfL < 1then Y, a, converges.
« IfL > 1then Y, a, diverges.

2. Suppose that there exists N € N and L > 1 such that

ni1
an

>L, Vvn>N.

Then the series Z:;l a, diverges.
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Example 7.33

Question. Discuss convergence/divergence of the following series

S _ @y
';a,,, a, = (2n)!'




Solution. We compute

i 9L DY/ @)
e a  noe 2+ 1)/ (2n)!
(n+1)>?

1 -
nooo (21 + 2)(2n + 1)

2
1
1+ -
( n) 1

lim —————— ==
By

n n
Since L = 1/4 < 1, by the Ratio Test we conclude that ) a, con-
verges.

Example 7.34

Question. Using the Cauchy Condensation Test and the Ratio Test,
prove that the following series converges

i log(n)
n=1 n2

Solution. Set a, = logn/n?. By the Cauchy Condensation Test,
we know that Y a, converges if and only if ), 2"a,» converges. We
have:

& & log(2")
2" n = 2”—
e’

= @
n
= log(2) Z P
n=0
- n
=1log(2) Y. by, by, = o
n=0
Apply the Ratio Test to the series Y, b,
bn+1:n_+1 £:n+1_)l<l.
b, ontl /[ on T 2p 2

Therefore, Y. b, converges by the Ratio Test, so that also . 2"asn
converges. We conclude that ) a, converges by the Cauchy Con-
densation Test.

7.4 General series

Definition 7.35: Absolute convergence

Let (a,) be a sequence in C. The series 2:021 ay is said to converge
absolutely if the following non-negative series converges

(o8]
> lanl -
n=1

Theorem 7.36: Absolute Convergence Test

Let (a,) be a sequence in C. If the series Z;ozl ay, converge absolutely,
then the series converges.

Example 7.37

Question. Discuss absolute convergence of the series

d 1
PGS
n=1 n
Solution. The series does not converge absolutely, since
- 1] w1
Yl =2
n=1 n n=1 n

does not converge, being the harmonic series.

Example 7.38
Question. Prove that the following series converges

2_s5p42

)
n

Z an H an = (_1)" 4

n=1 n

Solution. We have

n? —5n +2| :n2+5n+2

|an| = i 7 >

n

for n sufficiently large (e.g. n > 10). Note that
n? +5n+ 2 i_n4+5n3-i-2n2
nt n? nt

1+§+£—>1
n  n?

The series Y, 1/n? converges, being a p-series with p = 2. Hence,
also
Z n® +5n+ 2

4
n=1 n

converges, by the Limit Comparison Test for non-negative series
(Theorem 7.27). This shows Y. |a,| converges, which means that
Y, a, converges absolutely. In particular, Y, a, converges by the Ab-
solute Convergence Test.

Theorem 7.39: Ratio Test for general series

Let (a,) be a sequence in C, such that
a, #0 VnelN.
1. Suppose that the following limit exists:

An+1

L := lim

n—o0

an
They hold:

« If L < 1 then 2:’:1 a, converges absolutely, and hence
converges.

« If L > 1then Y, a, diverges.
2. Suppose that there exists N € N and L > 1 such that

an+1
an

>L, vn>N.

Then the series Y. a, diverges.

43




Example 7.40

Question. Prove that the series converges

o (430"
Z ay,, = -——.
n=1

 (n+1)!

Solution. We have

a
L := lim |2
n—oo an
(4-3)"1  [(4-3)"
= 1um
nooo|(n+ 1)+ 1)/ (n+1)!
= lim > =
n—oon+ 2

As L = 0 < 1, we conclude that )’ a, converges absolutely, by the
Ratio Test. Hence, ), a, converges by the Absolute Convergence
Test.

Theorem 7.41: Exponential series
Let z € C. The exponential series

D
n=0 n!

converges absolutely.

Proof

Set a, = z"*/n!. Then

Therefore the series converges absolutely by the Ratio Test in The-
orem 7.39.

7.5 Conditional convergence

Definition 7.42: Conditional convergence

Let (a,) be a sequence in C. We say that the series

o0
D, n
n=1

converges conditionally if it converges, but it does not converge
absolutely.
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Definition 7.43: Rearrangement of a series

Let (a,) be a sequence in C. Then:

1. A permutation is a bijection o : N — IN.
2. A rearrangement of the series ),,_; a, is a series

Z 4o (n)
n=1

for some permutation o.

Theorem 7.44

Let (a,) be a sequence in C such that

(]
Y lanl
n=1

converges. For any permutation o we have

. o) = D, -
n=1 n=1

Theorem 7.45: Riemann rearrangement Theorem

Let (a,) be a real sequence such that the series

(o)

2. an

n=1
converges conditionally. Let

LeR or L=400.

There exists a permutation o such that the corresponding rearrange-
ment Z;ozl ag(n) converges conditionally to L, that is,

Z Ay(n) = L.
n=1

Theorem 7.46: Dirichlet Test

Let (c,) be a sequence in C and (g,) a sequence in R. Suppose that
* ¢, is decreasing,
e g, — 0,

e g, >0forallnelN.
« Suppose there exists M > 0 such that

<M, VkeN.

k
D6
n=1

Then the following series converges

(o)
D nthn -
n=1




Example 7.47
Question. Let 0 € R, with
0+2kr, VkeZ.

Prove that the below series are conditionally convergent

o0
Z eten
n=1

— cos(fn)
>, :

n

— sin(6n)
> —.

n=1 n

n=1
Solution.

1. Recalling the Euler’s Identity
¢ = cos(0) + isin(6),

we obtain that

el cos(n@)
DEEDRS

Therefore, the series Y ¢%"/n converge conditionally if and
only if }; cos(6n)/n and }; sin(fn)/n converge conditionally. It
is then sufficient to study Y. ¢ /n.

Z sin(nf)

n=1 n

2. The series ¥ ¢ /n does not converge absolutely, since
(o8] 19 [ee]

2= :

n=1 n=1"

diverges, being the Harmonic Series.

ion
bl

gn = 1/n, so that

.
Ze
n

n=1

3. Setc, =€

Z Culln -

We have that g, is decreasing, g, — 0 and g, > 0. Let us prove
that there exists M > 0 such that

k
Ze’@" <M, vkeN.
n=1

(7-5)

Note that
1—¢? 20,

since 6 # 2k for all k € Z. Therefore we can use the Geomet-
ric Series (truncated) summation formula to get

k k
Z £l — Z(eiﬁ)n
n=1 n=1
1— ei(k+1)0
- -1
1—el?
o 1— ek
=¢ -
1—¢lf
Taking the modulus
ion _ lel_elka ‘ 9‘ l_elk0
— et 610
- efk0| 1]+ |ei’<9| _ 2
I N e
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where we used the triangle inequality. Since the RHS does not
depend on k, we can set

_ 2
|1 -0’

so that (7.5) holds. Therefore, ¥ ¢ /n converges by the Dirich-
let Test.

4. We have shown that Zew” /n converges, but not absolutely.
Hence, it converges conditionally.

Theorem 7.48: Alternate Convergence Test

Let (g,) be a sequence in R such that
* ¢, is decreasing,
e g, 0,
e g, >0forallnelN.

The following series converges

Z(_l)n%
n=1

Example 7.49

Question. Prove that the series converges conditionally
< 1
(-1l
n=1 n
Solution. The series does not converge absolutely, since
S 1 w1
PR SV EDE
n=1 n n=1"

diverges, being the Harmonic Series. Set g, = 1/n, so that

St = S,
n=1 n n=1

Clearly, g, > 0, g, — 0 and g, is decreasing. Hence, the series
converges by the Alternating Series Test. Thus, the series converges
conditionally.

Theorem 7.50: Abel’s Test

Let (a,) and (g,) be sequences in R. Suppose that

* ¢, is monotone and bounded,
« The series Y, a, converges.

Then the following series converges

(o)
Dty -
n=1




Example 7.51

Question. Prove that the series converges conditionally

> SE(e)

Solution. Set

n n
ap 1= —(_1) , G :=<l+l) .
n n

We have seen that g, is monotone increasing and bounded (recall
that g, — ¢). Moreover, the series Z;ozl a, converges by the Al-
ternating Series Test, as seen in Example 7.49. Hence the series
Z;ozl anq, converges by the Abel Test.
However, the series in question does not converge absolutely. In-

deed, .
_ n
C (14 2)
n n

1 1 2
= — > = = -,
nqn—nql "

since (g,) is increasing. As the series ), 2/n diverges, by the Com-
parison Test we conclude that also

SUTA

n n

(o]

2

n=1

diverges. Therefore, the series in the example converges condition-
ally.

Good Luck with the Exam!
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