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Welcome

These are the Lecture Notes of Numbers Sequences and Series 400297 for 2024/25 at the Univer-
sity of Hull. I will use this material during lectures. If you have any question or find any typo, please
email me at

S.Fanzon@hull.ac.uk

Up to date information about the course, Tutorials and Homework will be published on the Univer-
sity of Hull Canvas Website

canvas.hull.ac.uk/courses/73579

Revision Guide

A Revision Guide to prepare for the Exam is available at

silviofanzon.com/2024-NSS-Revision

Digital Notes

Digital version of these notes available at

silviofanzon.com/2024-NSS-Notes

Readings

We will study the set of real numbers ℝ, and then sequences and series in ℝ. I will follow mainly the
textbook by Bartle and Sherbert [2]. Another good reading is the book by Abbott [1]. I also point
out the classic book by Rudin [3], although this is a more difficult read.
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You are not expected to purchase any of the above books. These lecture notes will cover
100% of the topics you are expected to known in order to excel in the Homework and Final
Exam.
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1 Introduction

The first aim of this lecture notes is to rigorously introduce the set of Real Numbers, which is
denoted by ℝ. But what do we mean by real numbers? To start our discussion, introduce the set of
natural numbers (or non-negative integers)

ℕ = {0, 1, 2, 3, 4, 5, … }

On this set we have a notion of sum of two numbers, denoted as usual by

𝑛 + 𝑚

for 𝑛, 𝑚 ∈ ℕ. Here the symbol ∈ denotes that 𝑚 and 𝑛 belong to ℕ. For example 3+ 7 results in 10.
Question 1.1

Can the sum be inverted? That is, given any 𝑛, 𝑚 ∈ ℕ, can you always find 𝑥 ∈ ℕ such that

𝑛 + 𝑥 = 𝑚 ? (1.1)

Of course to invert (1.1) we can just perform a subtraction, implying that

𝑥 = 𝑚 − 𝑛 .

But there is a catch. In general 𝑥 does not need to be in ℕ. For example, take 𝑛 = 10 and 𝑚 = 1.
Then 𝑥 = −9, which does not belong to ℕ. Therefore the answer to Question 1.1 is NO.

To make sure that we can always invert the sum, we need to extend the set ℕ. This is done simply
by introducing the set of integers

ℤ ∶= {−𝑛, 𝑛 ∶ 𝑛 ∈ ℕ} ,

that is, the set

ℤ ∶= {… , −3, −2, −1, 0, 1, 2, 3, …} .

The sum can be extended to ℤ, by defining

(−𝑛) + (−𝑚) ∶= −(𝑚 + 𝑛) (1.2)
7
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for all 𝑚, 𝑛 ∈ ℕ. Now every element of ℤ possesses an inverse, that is, for each 𝑛 ∈ ℤ, there exists
𝑚 ∈ ℤ, such that

𝑛 + 𝑚 = 0 .

Can we characterize 𝑚 explicitly? Yes; Seeing the definition at (1.2), we simply have

𝑚 = −𝑛 .

On the set ℤ we can also define the operation of multiplication in the usual way. For 𝑛, 𝑚 ∈ ℤ, we
denote the multiplication of 𝑛 times 𝑚 by

𝑛𝑚 or 𝑛 ⋅ 𝑚 .
For example 7 ⋅ 2 = 14 and 1 ⋅ (−1) = −1.

Question 1.2

Can the multiplication inℤ be inverted? That is, given any 𝑛, 𝑚 ∈ ℤ, can you always find 𝑥 ∈ ℤ
such that

𝑛𝑥 = 𝑚 ? (1.3)

To invert (1.3) if 𝑛 ≠ 0, we can just perform a division, to obtain

𝑥 = 𝑚
𝑛 .

But again there is a catch. Indeed taking 𝑛 = 2 and 𝑚 = 1 yields 𝑥 = 1/2, which does not belong to
ℤ. The answer to Question 1.2 is therefore NO.

Thus, in order to invert the multiplication, we need to extend the set of integers ℤ. This extension
is called the set of rational numbers, defined by

ℚ ∶= {𝑚𝑛 ∶ 𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0} .

We then extend the operations of sum and multiplication to ℚ by defining

𝑚
𝑛 + 𝑝

𝑞 ∶= 𝑚𝑞 + 𝑛𝑝
𝑛𝑞

and 𝑚
𝑛 ⋅ 𝑝

𝑞 ∶= 𝑚𝑝
𝑛𝑞

Now the multiplication is invertible in ℚ. Specifically, each non-zero element has an inverse: the
inverse of 𝑚/𝑛 is given by 𝑛/𝑚.

To summarize, we have extended ℕ to ℤ, and ℤ to ℚ. By construction we have

ℕ ⊂ ℤ ⊂ ℚ .
Moreover sum and product are invertible in ℚ. Now we are happy right? So and so.

8
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Question 1.3

Can we represent the set ℚ with a drawing?

It is clear how to draw ℤ, as seen below.

Figure 1.1: Representation of integers ℤ

However ℚ is much larger than the set ℤ represented by the ticks in Figure 1.1. What do we mean
by larger? For example, consider 0 ∈ ℚ.

Question 1.4

What is the number 𝑥 ∈ ℚ which is closest to 0?

There is no right answer to the above question, since whichever rational number 𝑚/𝑛 you consider,
you can always squeeze the rational number 𝑚/(2𝑛) in between:

0 < 𝑚
2𝑛 < 𝑚

𝑛 .

For example think about the case of the numbers

1
𝑛 for 𝑛 ∈ ℕ, 𝑛 ≠ 0 .

Such numbers get arbitrarily close to 0, as depicted below.

Figure 1.2: Fractions 1
𝑛 can get arbitrarily close to 0

Maybe if we do the same reasoning with other progressively smaller rational numbers, we manage
to fill up the interval [0, 1]. In other words, we might conjecture the following.

Conjecture 1.5

Maybe ℚ can be represented by a continuous line.

Do you think the above conjecture is true? Conjecture 1.5 is false, as shown by the Theorem below.

9
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Theorem 1.6

The number √2 does not belong to ℚ.

Theorem 1.6 is the reason why √2 is called an irrational number. For reference, a few digits of √2
are given by

√2 = 1.414213562373095048…
and the situation is as in the picture below.

Figure 1.3: Representing √2 on the numbers line.

We can therefore see that Conjecture 1.5 is false, and ℚ is not a line: indeed ℚ has a gap at √2. Let
us see why Theorem 1.6 is true.

Proof: Proof of Theorem 1.6

We prove that
√2 ∉ ℚ

by contradiction.
Wait, what does this mean? Proving the claim by contradiction means assuming that the claim
is false. This means we assume that

√2 ∈ ℚ . (1.4)

From this assumptionwe then start deducing other statements, hoping to encounter a statement
which is FALSE. But if (1.4) leads to a false statement, then it must be that (1.4) was FALSE to
begin with. Thus the contrary of (1.4) must hold, meaning that

√2 ∉ ℚ
as we wanted to show. This would conclude the proof.
Now we need to actually show that assuming (1.4) will lead to a contradiction. Since this is our
first proof, let us take it slowly, step-by-step.

1. Assuming (1.4) just means that there exists 𝑞 ∈ ℚ such that

𝑞 = √2 . (1.5)

2. Since 𝑞 ∈ ℚ, by definition we have
𝑞 = 𝑚

𝑛
for some 𝑚, 𝑛 ∈ ℕ with 𝑛 ≠ 0.

10
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3. Recalling (1.5), we then have 𝑚
𝑛 = √2 .

4. We can square the above equation to get

𝑚2
𝑛2 = 2 . (1.6)

5. Withouth loss of generality, we can assume that 𝑚 and 𝑛 have no common factors.

Wait. What does Step 5mean? Youwill encounter the sentencewithouth loss of
generality many times in mathematics. It is often abbreviated in WLOG. WLOG
means that we can make some extra assumption which does not affect the
validity of the proof in general.
For example in our case we can assume that 𝑚 and 𝑛 have no common factor.
This is because if 𝑚 and 𝑛 had common factors, then it would mean

𝑚 = 𝑎𝑚̃ , 𝑛 = 𝑎𝑛̃
for some factor 𝑎 ∈ ℕ with 𝑎 ≠ 0. Then

𝑚
𝑛 = 𝑎𝑚̃

𝑎𝑛̃ = 𝑚̃
𝑛̃ .

Therefore by (1.6)
𝑚̃2
𝑛̃2 = 2 .

and this time 𝑚̃ and 𝑛̃ have no common factors by construction. The proof
can now proceed in the same way it would have proceeded from Step 4, but in
addition we have the hypothesis that 𝑚̃ and 𝑛̃ have no common factors.

6. Equation (1.6) implies
𝑚2 = 2𝑛2 . (1.7)

Therefore the integer 𝑚2 is an even number.

Why is 𝑚2 even? As you already know, even numbers are

0, 2, 4, 6, 8, 10, 12, …
All these numbers have in common that they can be divided by 2, and so they
can be written as

2𝑝
for some 𝑝 ∈ ℕ. For example 52 is even, because

52 = 2 ⋅ 26 .
11
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Instead, odd numbers are

1, 3, 5, 7, 8, 9, 11, …
These can be all written as

2𝑝 + 1
for some 𝑝 ∈ ℕ. For example 53 is odd, because

52 = 2 ⋅ 26 + 1 .
7. Since 𝑚2 is an even number, it follows that also 𝑚 is an even number. Then there exists

𝑝 ∈ ℕ such that
𝑚 = 2𝑝 . (1.8)

Why is 𝑚 even if 𝑚2 is even? Let us see what happens if we take the square of
an even number 𝑚 = 2𝑝

𝑚2 = (2𝑝)2 = 4𝑝2 = 2(2𝑝2) = 2𝑞 .
Thus 𝑚2 = 2𝑞 for some 𝑞 ∈ ℕ, and so 𝑚2 is an even number. If instead 𝑚 is
odd, then 𝑚 = 2𝑝 + 1 and

𝑚2 = (2𝑝 + 1)2 = 4𝑝2 + 4𝑝 + 1 = 2(2𝑝2 + 2𝑝) + 1
showing that also 𝑚2 is odd.
This proves Step 7: Indeed we know that 𝑚2 is an even number from Step 6. If
𝑚 was odd, then 𝑚2 would be odd. Hence 𝑚 must be even as well.

8. If we substitute (1.8) in (1.7) we get

𝑚2 = 2𝑛2 ⟹ (2𝑝)2 = 2𝑛2 ⟹ 4𝑝2 = 2𝑛2
Dividing both terms by 2, we obtain

𝑛2 = 2𝑝2 . (1.9)

9. We now make a series of observations:

• Equation (1.9) says that 𝑛2 is even.
• The same argument in Step 7 guarantees that also 𝑛 is even.
• We have already seen that 𝑚 is even.
• Therefore 𝑛 and 𝑚 are both even.

• Hence 𝑛 and 𝑚 have 2 as common factor.
• But Step 5 says that 𝑛 and 𝑚 have no common factors.
• CONTRADICTION

10. Our reasoning has run into a contradiction, stemming from assumption (1.4). Therefore
(1.4) is FALSE, and so

√2 ∉ ℚ
ending the proof.
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Seeing that √2 ∉ ℚ, we might be tempted to just fill in the gap by adding √2 to ℚ. However, with
analogous proof to Theorem 1.6, we can prove that

√𝑝 ∉ ℚ
for each prime number 𝑝. As there are infinite prime numbers, this means that ℚ has infinite gaps.
Then we might attempt to fill in these gaps via the extension

ℚ̃ ∶= ℚ ∪ {√𝑝 ∶ 𝑝 prime} .
However even this is not enough, as we would still have numbers which are not contained in 𝑄̃, for
example

√2 + √3, 𝜋, 𝜋 + √2 ∉ ℚ̃ .
Conclusion: It is now intuitive to think that there is no straightforward way to fill the gaps of ℚ
by adding numbers by hand.

Remark 1.7

Proving that
√2 + √3 ∉ ℚ

is relatively easy, and will be left as an exercise. Instead, proving that

𝜋 ∉ ℚ
is way more complicated. There are several proofs of the fact, all requiring mathematics which
is more advanced than the one presented in this course. For some proofs, see this Wikipedia
page.

The reality of things is that to complete ℚ and make it into a continuous line we have to add a lot
of points. Indeed, we need to add way more points than the ones already contained in ℚ.

Definition 1.8

Such extension of ℚ will be called ℝ, the set of real numbers.

The inclusions will therefore be
ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ .

The set ℝ is not at all trivial to construct. In fact, explicit constructions are so involved and technical,
that they are best left for future reading. It is customary instead to proceed as follows:

• We will assume that ℝ exists and satisfies a set of axioms.
• One of the axioms states that ℝ fills all the gaps that ℚ has. Therefore ℝ can be thought as a
continuous line.

• We will study the properties of ℝ which descend from such axioms.

For example one of the properties of ℝ will be the following:

13
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Theorem 1.9: We will prove this in the future

ℝ contains all the square roots. This means that for every 𝑥 ∈ ℝ with 𝑥 ≥ 0, we have

√𝑥 ∈ ℝ .

A concrete model for the real numbers ℝ can be constructed using Dedekind cuts. The interested
reader can refer to the Appendix in Chapter 1 of [3], or to the beautifully written Chapter 8.6 in [1].
Such model of ℝ can be used to prove the following Theorem:

Theorem 1.10: Existence of the Real Numbers

There exists a set ℝ, called the set of Real Numbers, which has the following properties:

• ℝ extends ℚ, that is,
ℚ ⊂ ℝ .

• ℝ satisfies a certain set of axioms.
• ℝ fills all the gaps that ℚ has. In particular ℝ can be represented by a continuous line.

14



2 Preliminaries

Before introducing ℝ we want to make sure that we cover all the basics needed for the task.

2.1 Sets

A set is a collection of objects. These objects are called elements of the set. For example in the
previous section we mentioned the following sets:

• ℕ the set of natural numbers
• ℤ the set of integers
• ℚ the set of rational numbers
• ℝ the set of real numbers

Definition 2.1

Let 𝐴 be a set.

1. We write 𝑥 ∈ 𝐴 if the element 𝑥 belongs to the set 𝐴.
2. We write 𝑥 ∉ 𝐴 if the element 𝑥 does not belong to the set 𝐴.

Remark 2.2

A set can contain all sorts of elements. For example the students in a classroom can be modelled
by a set 𝑆. The elements of the set are the students. For example

𝑆 = {Alice, Olivia, Jake, Sahab}
In this case we have

Alice ∈ 𝑆
but instead

Silvio ∉ 𝑆 .

15



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

2.2 Logic

In this section we introduce some basic logic symbols. Suppose that you are given two statements,
say 𝛼 and 𝛽 . The formula

𝛼 ⟹ 𝛽
means that 𝛼 implies 𝛽 . In other words, if 𝛼 is true then also 𝛽 is true.
The formula

𝛼 ⟸ 𝛽
means that 𝛼 is implied by 𝛽 : if 𝛽 is true then also 𝛼 is true.
When we write

𝛼 ⟺ 𝛽 (2.1)

we mean that 𝛼 and 𝛽 are equivalent. We also say that 𝛼 is true if and only if 𝛽 is true. Note that
(2.1) is equivalent to

𝛼 ⟹ 𝛽 and 𝛽 ⟹ 𝛼 .

Example 2.3

We have that
𝑥 > 0 ⟹ 𝑥 > −100 ,

and
contradiction ⟸ √2 ∈ ℚ .

Concerning ⟺ we have
𝑥2 < 2 ⟺ −√2 < 𝑥 < √2 .

We now introduce logic quantifiers. These are

• ∀ which reads for all
• ∃ which reads exists
• ∃! which reads exists unique
• ∄ which reads does not exists

These work in the following way. Suppose that you are given a statement 𝛼(𝑥) which depends on
the point 𝑥 ∈ ℝ. Then we say

• 𝛼(𝑥) is satisfied for all 𝑥 ∈ 𝐴with𝐴 some collection of numbers. This translates to the symbols

𝛼(𝑥) is true ∀ 𝑥 ∈ 𝐴 ,
• There exists some 𝑥 in ℝ such that 𝛼(𝑥) is satisfied: in symbols

∃ 𝑥 ∈ ℝ such that 𝛼(𝑥) is true,
• There exists a unique 𝑥0 in ℝ such that 𝛼(𝑥) is satisfied: in symbols

∃! 𝑥0 ∈ ℝ such that 𝛼(𝑥0) is true,
16
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• 𝛼(𝑥) is never satisfied:
∄ 𝑥 ∈ ℝ such that 𝛼(𝑥) is true.

Example 2.4

Let us make concrete examples:

• The expression 𝑥2 is always non-negative. Thus we can say

𝑥2 ≥ 0 for all 𝑥 ∈ ℝ .
• The equation 𝑥2 = 1 has two solutions 𝑥 = 1 and 𝑥 = −1. Therefore we can say

∃ 𝑥 ∈ ℝ such that 𝑥2 = 1 .
• The equation 𝑥3 = 1 has a unique solution 𝑥 = 1. Thus

∃! 𝑥 ∈ ℝ such that 𝑥3 = 1 .
• We know that the equation 𝑥2 = 2 has no solutions in ℚ. Then

∄ 𝑥 ∈ ℚ such that 𝑥2 = 2 .

2.3 Operations on sets

Definition 2.5: Inclusion and equality

Given two sets 𝐴 and 𝐵, we say that 𝐴 is contained in 𝐵, in symbols

𝐴 ⊆ 𝐵 ,
if all the elements of 𝐴 are also contained in 𝐵. Two sets 𝐴 and 𝐵 are equal, in symbols

𝐴 = 𝐵 ,
if they contain the same elements.

Remark 2.6

The inclusion 𝐴 ⊆ 𝐵 is equivalent to the implication:

𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ 𝐵
for all 𝑥 ∈ 𝐴. The symbol ⟹ reads implies, and denotes the fact that the first condition
implies the second.

17
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Definition 2.7: Union and Intersection

For two sets 𝐴 and 𝐵 we define their union as the set

𝐴 ∪ 𝐵 ∶= {𝑥 ∶ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵} .
The intersection of 𝐴 and 𝐵 is defined by

𝐴 ∩ 𝐵 ∶= {𝑥 ∶ 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵} .
We denote the empty set by the symbol ∅. Two sets are disjoint if

𝐴 ∩ 𝐵 = ∅ .

Example 2.8

Given two sets 𝐴 and 𝐵 we always have

(𝐴 ∩ 𝐵) ⊆ 𝐴 , (𝐴 ∩ 𝐵) ⊆ 𝐵 , (2.2)

𝐴 ⊆ (𝐴 ∪ 𝐵) , 𝐵 ⊆ (𝐴 ∪ 𝐵) . (2.3)

Example 2.9

Define the subset of rational numbers

𝑆 ∶= {𝑥 ∈ ℚ ∶ 0 < 𝑥 < 5
2} .

Then we have
ℕ ∩ 𝑆 = {1, 2} .

We can also define the sets of even and odd numbers by

𝐸 ∶= {2𝑛 ∶ 𝑛 ∈ ℕ} , (2.4)

𝑂 ∶= {2𝑛 + 1 ∶ 𝑛 ∈ ℕ} . (2.5)

Then we have

ℕ ∩ 𝐸 = 𝐸 , ℕ ∩ 𝑂 = 𝑂 , (2.6)

𝑂 ∪ 𝐸 = ℕ , 𝑂 ∩ 𝐷 = ∅ . (2.7)

18
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Example 2.10

1. The sets
𝐴 = {1, 2, 3} , 𝐵 = {3, 1, 2}

are equal, that is 𝐴 = 𝐵. This is because they contain exactly the same elements: order
does not matter when talking about sets.

2. Consider the sets
𝐴 = {1, 2} , 𝐵 = {1, 2, 5} .

Then 𝐴 is contained in 𝐵, but 𝐴 is not equal to 𝐵. Therefore we write 𝐴 ⊆ 𝐵 or 𝐴 ≠ 𝐵.

The next proposition is very useful when we need to prove that two sets are equal: rather than
showing directly that 𝐴 = 𝐵, we can prove that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.

Proposition 2.11

Let 𝐴 and 𝐵 be sets. Then

𝐴 = 𝐵 ⟺ 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 .

Proof

The proof is almost trivial. However it is a good exercise in basic logic, so let us do it.

1. First implication ⟹ :
Suppose that 𝐴 = 𝐵. Let us show that 𝐴 ⊆ 𝐵. Since 𝐴 = 𝐵, this means that all the
elements of 𝐴 are also contained in 𝐵. Therefore if we take 𝑥 ∈ 𝐴 we have

𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ 𝐵 .
This shows 𝐴 ⊆ 𝐵. The proof of 𝐵 ⊆ 𝐴 is similar.

2. Second implication ⟸ :
Suppose that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. We need to show 𝐴 = 𝐵, that is, 𝐴 and 𝐵 have the same
elements. To this end let 𝑥 ∈ 𝐴. Since 𝐴 ⊆ 𝐵 then we have 𝑥 ∈ 𝐵. Thus 𝐵 contains all
the elements of 𝐴. Since we are also assuming 𝐵 ⊆ 𝐴, this means that 𝐴 contains all the
elements of 𝐵. Hence 𝐴 and 𝐵 contain the same elements, and 𝐴 = 𝐵.
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2.3.1 Infinite union and intersection

Definition 2.12: Infinite union and intersection

Let Ω be a set, and 𝐴𝑛 ⊆ Ω a family of subsets, where 𝑛 ∈ ℕ.

1. The infinte union of the 𝐴𝑛 is the set

⋃
𝑛∈ℕ

𝐴𝑛 ∶= {𝑥 ∈ Ω ∶ 𝑥 ∈ 𝐴𝑛 for at least one 𝑛 ∈ ℕ} .

2. The infinte intersection of the 𝐴𝑛 is the set

⋂
𝑛∈ℕ

𝐴𝑛 ∶= {𝑥 ∈ Ω ∶ 𝑥 ∈ 𝐴𝑛 for all 𝑛 ∈ ℕ} .

Example 2.13

Question. Define Ω ∶= ℕ and a family 𝐴𝑛 by

𝐴𝑛 = {𝑛, 𝑛 + 1, 𝑛 + 2, 𝑛 + 3, …} , 𝑛 ∈ ℕ .
1. Prove that

⋃
𝑛∈ℕ

𝐴𝑛 = ℕ . (2.8)

2. Prove that
⋂
𝑛∈ℕ

𝐴𝑛 = ∅ . (2.9)

Solution.

1. Assume that 𝑚 ∈ ∪𝑛𝐴𝑛 . Then 𝑚 ∈ 𝐴𝑛 for at least one 𝑛 ∈ ℕ. Since 𝐴𝑛 ⊆ ℕ, we conclude
that 𝑚 ∈ ℕ. This shows

⋃
𝑛∈ℕ

𝐴𝑛 ⊆ ℕ .

Conversely, suppose that 𝑚 ∈ ℕ. By definition 𝑚 ∈ 𝐴𝑚 . Hence there exists at least one
index 𝑛, 𝑛 = 𝑚 in this case, such that 𝑚 ∈ 𝐴𝑛 . Then by definition 𝑚 ∈ ∪𝑛∈ℕ𝐴𝑛 , showing
that

ℕ ⊆ ⋃
𝑛∈ℕ

𝐴𝑛 .

This proves (2.8).

2. Suppose that (2.9) is false, i.e.,
⋂
𝑛∈ℕ

𝐴𝑛 ≠ ∅ .

This means there exists some 𝑚 ∈ ℕ such that 𝑚 ∈ ∩𝑛∈ℕ𝐴𝑛 . Hence, by definition, 𝑚 ∈ 𝐴𝑛
for all 𝑛 ∈ ℕ. However 𝑚 ∉ 𝐴𝑚+1, yielding a contradiction. Thus (2.9) holds.
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2.3.2 Complement

Definition 2.14: Complement

Let 𝐴, 𝐵 ⊆ Ω. The complement of 𝐴 with respect to 𝐵 is the set of elements of 𝐵 which do not
belong to 𝐴, that is

𝐵 ∖ 𝐴 ∶= {𝑥 ∈ Ω ∶ 𝑥 ∈ 𝐵 and 𝑥 ∉ 𝐴} .
In particular, the complement of 𝐴 with respect to Ω is denoted by

𝐴𝑐 ∶= Ω ∖ 𝐴 ∶= {𝑥 ∈ Ω ∶ 𝑥 ∉ 𝐴} .

Remark 2.15

Suppose that 𝐴 ⊆ Ω. Then 𝐴 and 𝐴𝑐 form a partition of Ω, in the sense that

𝐴 ∪ 𝐴𝑐 = Ω and 𝐴 ∩ 𝐴𝑐 = ∅ .

Example 2.16

Question. Suppose 𝐴, 𝐵 ⊆ Ω. Prove that

𝐴 ⊆ 𝐵 ⟺ 𝐵𝑐 ⊆ 𝐴𝑐 .
Solution. Let us prove the above claim:

• First implication ⟹ :
Suppose that 𝐴 ⊆ 𝐵. We need to show that 𝐵𝑐 ⊆ 𝐴𝑐 . Hence, assume 𝑥 ∈ 𝐵𝑐 . By definition
this means that 𝑥 ∉ 𝐵. Now notice that we cannot have that 𝑥 ∈ 𝐴. Indeed, assume 𝑥 ∈ 𝐴.
By assumption we have 𝐴 ⊆ 𝐵, hence 𝑥 ∈ 𝐵. But we had assumed 𝑥 ∈ 𝐵, contradiction.
Therefore it must be that 𝑥 ∉ 𝐴. Thus 𝐵𝑐 ⊆ 𝐴𝑐 .

• Second implication ⟸ : Note that, for any set,

(𝐴𝑐)𝑐 = 𝐴 .
Hence, by the first implication,

𝐵𝑐 ⊆ 𝐴𝑐 ⟹ (𝐴𝑐)𝑐 ⊆ (𝐵𝑐)𝑐 ⟹ 𝐴 ⊆ 𝐵 .

We conclude by stating the De Morgan’s Laws. The proof will be left as an exercise.
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Proposition 2.17: De Morgan’s Laws

Suppose 𝐴, 𝐵 ⊆ Ω. Then

(𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 , (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 .

2.3.3 Power set

Definition 2.18: Power set

Let Ω be a set. The power set of Ω is

𝒫 (Ω) ∶= {𝐴 ∶ 𝐴 ⊆ Ω} .

Hence, the power set of Ω is the set of all subsets of Ω.

Remark 2.19

It holds that:

1. 𝒫 (Ω) is always non-empty, since we have that

∅ ∈ 𝒫 (Ω) , Ω ∈ 𝒫 (Ω) .

2. Given 𝐴, 𝐵 ∈ 𝒫 (Ω), then the sets

𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵, 𝐴𝑐 , 𝐵 ∖ 𝐴
are all elements of 𝒫 (Ω).

3. Suppose Ω is discrete and finite, that is,

Ω = {𝑥1, … , 𝑥𝑚}
for some 𝑚 ∈ ℕ. Then 𝒫 (Ω) contains 2𝑚 elements.

Indeed, suppose that we want to define a subset𝐴 ⊂ Ω. Then for each element
𝑥𝑖 ∈ Ω there are two choices: either we include 𝑥𝑖 ∈ 𝐴, or we do not include
𝑥𝑖 ∈ 𝐴. Therefore there are

2 ⋅ 2 ⋅ … ⋅ 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚 times

= 2𝑚

ways of constructing 𝐴. It follows that Ω possesses exactly 2𝑚 subsets, so that
𝒫 (Ω) contains 2𝑚 elements.
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Example 2.20

Question. Compute the power set of

Ω = {𝑥, 𝑦 , 𝑧} .
Solution. 𝒫 (Ω) has 23 = 8, and

𝒫 (Ω) = {∅, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}
{𝑥, 𝑧}, {𝑦 , 𝑧}, {𝑥, 𝑦 , 𝑧}} .

2.3.4 Product of sets

Definition 2.21: Product of sets

Let 𝐴, 𝐵 be sets. The product of 𝐴 and 𝐵 is the set of pairs

𝐴 × 𝐵 ∶= {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .

By definition, two elements in 𝐴 × 𝐵 are the same, in symbols

(𝑎, 𝑏) = (𝑎̃, 𝑏̃)
if and only if they are equal component-by-componenent, that is

𝑎 = 𝑎̃ , 𝑏 = 𝑏̃ .

2.4 Equivalence relation

Definition 2.22: Binary relation

Suppose 𝐴 is a set. A binary relation 𝑅 on 𝐴 is a subset

𝑅 ⊆ 𝐴 × 𝐴 .

Definition 2.23: Equivalence relation

A binary relation 𝑅 is called an equivalence relation if it satisfies the following properties:

1. Reflexive: For each 𝑥 ∈ 𝐴 one has

(𝑥, 𝑥) ∈ 𝑅 ,
This is saying that all the elements in 𝐴 must be related to themselves
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2. Symmetric: We have
(𝑥, 𝑦) ∈ 𝑅 ⟹ (𝑦, 𝑥) ∈ 𝑅

If 𝑥 is related to 𝑦 , then 𝑦 is related to 𝑥
3. Transitive: We have

(𝑥, 𝑦) ∈ 𝑅 , (𝑦 , 𝑧) ∈ 𝑅 ⟹ (𝑥, 𝑧) ∈ 𝑅
If 𝑥 is related to 𝑦 , and 𝑦 is related to 𝑧, then 𝑥 must be related to 𝑧

If (𝑥, 𝑦) ∈ 𝑅 we write
𝑥 ∼ 𝑦

and we say that 𝑥 and 𝑦 are equivalent.

Definition 2.24: Equivalence classes

Suppose 𝑅 is an equivalence relation on 𝐴. The equivalence class of an element 𝑥 ∈ 𝐴 is
the set

[𝑥] ∶= {𝑦 ∈ 𝐴 ∶ 𝑦 ∼ 𝑥} .
The set of equivalence classes of elements of 𝐴 with respect to the equivalence relation 𝑅 is
denoted by

𝐴/𝑅 ∶= 𝐴/∼∶= {[𝑥] ∶ 𝑥 ∈ 𝐴} .

In order for the definition of [𝑥] to be well-posed we need to check that:

1. [𝑥] is non-empty.
2. [𝑥] does not depend on the representative 𝑥 : we need to check that

𝑥 ∼ 𝑦 ⟺ [𝑥] = [𝑦]
This is shown in the following proposition.

Proposition 2.25: Well-posedness of Definition 2.24

Let ∼ be an equivalence relation on 𝐴. Then

1. For each 𝑥 ∈ 𝐴 we have [𝑥] ≠ ∅.
2. For all 𝑥, 𝑦 ∈ 𝐴 it holds

𝑥 ∼ 𝑦 ⟺ [𝑥] = [𝑦] .
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Proof

Proof of Point 1: By the reflexive property we have 𝑥 ∼ 𝑥 . By definition of equivalence class we
conclude that 𝑥 ∈ [𝑥]. This shows

[𝑥] ≠ ∅
Proof of Point 2: We need to prove a double implication. It is convenient to divide the proof into
two parts.
Part 1: 𝑥 ∼ 𝑦 ⟹ [𝑥] = [𝑦].
Assume 𝑥 ∼ 𝑦 . By the definition of an equivalence class

[𝑥] = {𝑧 ∈ 𝐴 ∣ 𝑧 ∼ 𝑥}
is the set of all elements in 𝐴 that are related to 𝑥 . Similarly,

[𝑦] = {𝑧 ∈ 𝐴 ∣ 𝑧 ∼ 𝑦} .
We need to show that

[𝑥] = [𝑦] ,
meaning that every element in [𝑥] is also in [𝑦], and vice versa.

1. First, take an arbitrary element 𝑧 ∈ [𝑥].
• By definition, 𝑧 ∼ 𝑥 .
• Since ∼ is an equivalence relation, it satisfies the transitive property.
• Therefore, from 𝑧 ∼ 𝑥 and 𝑥 ∼ 𝑦 , we can conclude that 𝑧 ∼ 𝑦
• Hence, 𝑧 ∈ [𝑦].
• This shows that [𝑥] ⊆ [𝑦].

2. Now, take an arbitrary element 𝑧 ∈ [𝑦].
• By definition, 𝑧 ∼ 𝑦 .
• Since ∼ is an equivalence relation, it satisfies the symmetric property.
• Therefore, from 𝑥 ∼ 𝑦 , we also have 𝑦 ∼ 𝑥 .
• By the transitive property, from 𝑧 ∼ 𝑦 and 𝑦 ∼ 𝑥 , we can conclude that 𝑧 ∼ 𝑥 .
• Hence, 𝑧 ∈ [𝑥].
• This shows that [𝑦] ⊆ [𝑥].

Since [𝑥] ⊆ [𝑦] and [𝑦] ⊆ [𝑥], it follows that [𝑥] = [𝑦], as required. Thus, we have shown that
𝑥 ∼ 𝑦 ⟹ [𝑥] = [𝑦].
Part 2: [𝑥] = [𝑦] ⟹ 𝑥 ∼ 𝑦 .
Assume [𝑥] = [𝑦]. This means that the equivalence classes of 𝑥 and 𝑦 are the same.

• By point (i) in the Proposition, we have 𝑥 ∈ [𝑥] and 𝑦 ∈ [𝑦].
• Since [𝑥] = [𝑦], we have 𝑥 ∈ [𝑦].
• By the definition of [𝑦], this means 𝑥 ∼ 𝑦 .

Thus, we have shown that [𝑥] = [𝑦] ⟹ 𝑥 ∼ 𝑦 .
Conclusion: Since we have proven both directions:
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• 𝑥 ∼ 𝑦 ⟹ [𝑥] = [𝑦]
• [𝑥] = [𝑦] ⟹ 𝑥 ∼ 𝑦

we conclude that
𝑥 ∼ 𝑦 ⟺ [𝑥] = [𝑦] .

This completes the proof.

The prototypical (and trivial) example of equivalence relation is the equality over ℚ.

Example 2.26: Equality is an equivalence relation

Question. The equality defines a binary relation on ℚ × ℚ, via

𝑅 ∶= {(𝑥, 𝑦) ∈ ℚ × ℚ ∶ 𝑥 = 𝑦} .
1. Prove that 𝑅 is an equivalence relation.
2. Prove that [𝑥] = {𝑥} and compute ℚ/𝑅.

Solution.

1. We need to check that 𝑅 satisfies the 3 properties of an equivalence relation:

• Reflexive: It holds, since 𝑥 = 𝑥 for all 𝑥 ∈ ℚ,

• Symmetric: Again 𝑥 = 𝑦 if and only if 𝑦 = 𝑥 ,
• Transitive: If 𝑥 = 𝑦 and 𝑦 = 𝑧 then 𝑥 = 𝑧.

Therefore, 𝑅 is an equivalence relation.

2. The class of equivalence of 𝑥 ∈ ℚ is given by

[𝑥] = {𝑥} ,
that is, this relation is quite trivial, given that each element of ℚ can only be related to
itself. The quotient space is then

ℚ/𝑅 = {[𝑥] ∶ 𝑥 ∈ ℚ} = {{𝑥} ∶ 𝑥 ∈ ℚ} .

We now give an example of a non-trivial equivalence relation over ℚ.

Example 2.27

Question. Let 𝑅 be the binary relation on the set ℚ of rational numbers defined by

𝑥 ∼ 𝑦 ⟺ 𝑥 − 𝑦 ∈ ℤ .
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1. Prove that 𝑅 is an equivalence relation on ℚ.
2. Compute [𝑥] for each 𝑥 ∈ ℚ.
3. Compute ℚ/𝑅.

Solution.

1. We have:

• Reflexive: Let 𝑥 ∈ ℚ. Then 𝑥 − 𝑥 = 0 and 0 ∈ ℤ. Thus 𝑥 ∼ 𝑥 .
• Symmetric: If 𝑥 ∼ 𝑦 then 𝑥 − 𝑦 ∈ ℤ. But then also

−(𝑥 − 𝑦) = 𝑦 − 𝑥 ∈ ℤ
and so 𝑦 ∼ 𝑥 .

• Transitive: Suppose 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧. Then
𝑥 − 𝑦 ∈ ℤ and 𝑦 − 𝑧 ∈ ℤ .

Thus, we have
𝑥 − 𝑧 = (𝑥 − 𝑦) + (𝑦 − 𝑧) ∈ ℤ

showing that 𝑥 ∼ 𝑧.
Thus, we have shown that 𝑅 is an equivalence relation on ℚ.

2. Note that
𝑥 ∼ 𝑦 ⟺ ∃𝑛 ∈ ℤ s.t. 𝑦 = 𝑥 + 𝑛 .

Therefore the equivalence classes with respect to ∼ are

[𝑥] = {𝑥 + 𝑛 ∶ 𝑛 ∈ ℤ} .
Each equivalence class has exactly one element in [0, 1) ∩ ℚ, meaning that:

∀𝑥 ∈ ℚ , ∃! 𝑞 ∈ ℚ s.t. 0 ≤ 𝑞 < 1 and 𝑞 ∈ [𝑥] . (2.10)

Condition (2.10) is illustrated in Figure 2.1. Indeed: take 𝑥 ∈ ℚ arbitrary. Then 𝑥 ∈ [𝑛, 𝑛+1)
for some 𝑛 ∈ ℤ. Setting 𝑞 ∶= 𝑥 − 𝑛 we obtain that

𝑥 = 𝑞 + 𝑛 , 𝑞 ∈ [0, 1) ,
proving (2.10). In particular (2.10) implies that for each 𝑥 ∈ ℚ there exists 𝑞 ∈ [0, 1) ∩ ℚ
such that

[𝑥] = [𝑞] .
3. From Point 2 we conclude that

ℚ/𝑅 = {[𝑥] ∶ 𝑥 ∈ ℚ} = {𝑞 ∈ ℚ ∶ 0 ≤ 𝑞 < 1} .
27



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

Figure 2.1: For each 𝑥 ∈ ℚ there exist unique 𝑞 ∈ [0, 1) ∩ℚ such that 𝑥 = 𝑞+𝑛. In particular [𝑥] = [𝑞].

2.5 Order relation

Order relations are defined similarly to equivalence relations. However notice that symmetry is
replaced by antisymmetry.

Definition 2.28: Partial order

A binary relation 𝑅 on 𝐴 is called a partial order if it satisfies the following properties:

1. Reflexive: For each 𝑥 ∈ 𝐴 one has

(𝑥, 𝑥) ∈ 𝑅 ,

2. Antisymmetric: We have

(𝑥, 𝑦) ∈ 𝑅 and (𝑦 , 𝑥) ∈ 𝑅 ⟹ 𝑥 = 𝑦

3. Transitive: We have

(𝑥, 𝑦) ∈ 𝑅 , (𝑦 , 𝑧) ∈ 𝑅 ⟹ (𝑥, 𝑧) ∈ 𝑅

Remark 2.29

Notice that conditions 1 and 3 are the same for equivalence and order relations. Instead condi-
tion 2 changes: it is symmetry for equivalence relation, and antisymmetry for order relations.

We say that a partial order is total if all the elements in the set are related.

Definition 2.30: Total order

A binary relation 𝑅 on 𝐴 is called a total order relation if it satisfies the following properties:

1. Partial order: 𝑅 is a partial order on 𝐴.
2. Total: For each 𝑥, 𝑦 ∈ 𝐴 we have

(𝑥, 𝑦) ∈ 𝑅 or (𝑦 , 𝑥) ∈ 𝑅 .

The operation of set inclusion is a partial order on 𝑃(Ω) but not a total order.
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Example 2.31: Set inclusion is a partial order but not total order

Question. Let Ω be a non-empty set and consider its power set

𝒫 (Ω) = {𝐴 ∶ 𝐴 ⊆ Ω} .
The inclusion defines binary relation on 𝒫 (Ω) × 𝒫 (Ω), via

𝑅 ∶= {(𝐴, 𝐵) ∈ 𝒫 (Ω) × 𝒫 (Ω) ∶ 𝐴 ⊆ 𝐵} .
1. Prove that 𝑅 is an order relation.
2. Prove that 𝑅 is not a total order.

Solution.

1. Check that 𝑅 is a partial order relation on 𝒫 (Ω):
• Reflexive: It holds, since 𝐴 ⊆ 𝐴 for all 𝐴 ∈ 𝒫 (Ω).
• Antisymmetric: If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, then 𝐴 = 𝐵.
• Transitive: If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 , then, by definition of inclusion, 𝐴 ⊆ 𝐶 .

2. In general, 𝑅 is not a total order. For example consider

Ω = {𝑥, 𝑦} .
Thus

𝒫 (Ω) = {∅, {𝑥}, {𝑦}, {𝑥, 𝑦}} .
If we pick 𝐴 = {𝑥} and 𝐵 = {𝑦} then 𝐴 ∩ 𝐵 = ∅, meaning that

𝐴 ⊈ 𝐵 , 𝐵 ⊈ 𝐴 .
This shows 𝑅 is not a total order.

The inequality on ℚ is an example of total order.

Example 2.32: Inequality is a total order

Question. Consider the binary relation induced by the inequality on ℚ × ℚ:

𝑅 ∶= {(𝑥, 𝑦) ∈ ℚ × ℚ ∶ 𝑥 ≤ 𝑦} .
Prove that 𝑅 is a total order relation.
Solution. We need to check that:

1. Reflexive: It holds, since 𝑥 ≤ 𝑥 for all 𝑥 ∈ ℚ,

2. Antisymmetric: If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 = 𝑦 .
3. Transitive: If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 ≤ 𝑧.
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Finally, we halso have that 𝑅 is a total order on ℚ, since for all 𝑥, 𝑦 ∈ ℚ we have

𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 .

Notation 2.33

If 𝐴 is a set and 𝑅 is a total order on 𝐴, we write

(𝑥, 𝑦) ∈ 𝑅 ⟺ 𝑥 ≤ 𝑦 .
Therefore the symbol ≤ will always denote a total order relation.

2.6 Intervals

In this section we assume to have available the set ℝ of real numbers, which we recall is an exten-
sion of ℚ. We now introduce the concept of interval.

Definition 2.34

Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. We define the open interval (𝑎, 𝑏) as the set

(𝑎, 𝑏) ∶= {𝑥 ∈ ℝ ∶ 𝑎 < 𝑥 < 𝑏} .
We define the close interval [𝑎, 𝑏] as the set

[𝑎, 𝑏] ∶= {𝑥 ∈ ℝ ∶ 𝑎 ≤ 𝑥 ≤ 𝑏} .

In general we also define the intervals

[𝑎, 𝑏) ∶= {𝑥 ∈ ℝ ∶ 𝑎 ≤ 𝑥 < 𝑏} , (2.11)

(𝑎, 𝑏] ∶= {𝑥 ∈ ℝ ∶ 𝑎 ≤ 𝑥 ≤ 𝑏} , (2.12)

(𝑎, ∞) ∶= {𝑥 ∈ ℝ ∶ 𝑥 > 𝑎} , (2.13)

[𝑎, ∞) ∶= {𝑥 ∈ ℝ ∶ 𝑥 ≥ 𝑎} , (2.14)

(−∞, 𝑏) ∶= {𝑥 ∈ ℝ ∶ 𝑥 < 𝑏} , (2.15)

(−∞, 𝑏] ∶= {𝑥 ∈ ℝ ∶ 𝑥 ≤ 𝑏} . (2.16)

Some of the above intervals are depicted in Figure 2.2, Figure 2.3, Figure 2.4, Figure 2.5 below.
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Figure 2.2: Interval (𝑎, 𝑏)

Figure 2.3: Interval [𝑎, 𝑏]

2.7 Functions

Definition 2.35: Functions

Let 𝐴 and 𝐵 be sets. A function from 𝐴 to 𝐵 is a rule which associates at each element 𝑥 ∈ 𝐴
a single element 𝑦 ∈ 𝐵. Notations:

• We write
𝑓 ∶ 𝐴 → 𝐵

to indicate such rule,
• For 𝑥 ∈ 𝐴, we denote by

𝑦 ∶= 𝑓 (𝑥) ∈ 𝐵
the element associated with 𝑥 by 𝑓 .

• We will often denote the map 𝑓 also by

𝑥 ↦ 𝑓 (𝑥) .
In addition:

• The set 𝐴 is called the domain of 𝑓 ,
• The range or image of 𝑓 is the set

𝑓 (𝐴) ∶= {𝑦 ∈ 𝐵 ∶ 𝑦 = 𝑓 (𝑥) for some 𝑥 ∈ 𝐴} ⊆ 𝐵 .

Warning

We want to stress the importance of the first two sentences in Definition 2.35. Assume that
𝑓 ∶ 𝐴 → 𝐵 is a function. Then:

• To each element 𝑥 ∈ 𝐴 we can only associate one element 𝑓 (𝑥) ∈ 𝐵,
• Every element 𝑥 ∈ 𝐴 has to be associated to an element 𝑓 (𝑥) ∈ 𝐵.

Figure 2.4: Interval (𝑎, ∞)
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Figure 2.5: Interval (−∞, 𝑏]

Example 2.36

Assume given the two sets
𝐴 = {𝑎1, 𝑎2} , 𝐵 = {𝑏1, 𝑏2, 𝑏3} .

Let us see a few examples:

1. Define 𝑓 ∶ 𝐴 → 𝐵 by setting

𝑓 (𝑎1) = 𝑏1 , 𝑓 (𝑎2) = 𝑏1 .
In this way 𝑓 is a function, with domain 𝐴 and range

𝑓 (𝐴) = {𝑏1} ⊆ 𝐵 .

2. Define 𝑔 ∶ 𝐴 → 𝐵 by setting

𝑔(𝑎1) = 𝑏2 , 𝑔(𝑎1) = 𝑏3 , 𝑔(𝑎2) = 𝑏3
Then 𝑔 is NOT a function, since the element 𝑎1 has two elements associated.

3. Define ℎ ∶ 𝐴 → 𝐵 by setting
ℎ(𝑎1) = 𝑏1 .

Then 𝑔 is NOT a function, since the element 𝑎2 has no element associated.

Figure 2.6: Schematic picture of the function 𝑓
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Figure 2.7: Schematic picture of the function 𝑔

Figure 2.8: Schematic picture of the function ℎ

Example 2.37

Let us make two examples of functions on ℝ:
1. Define 𝑓 ∶ ℝ → ℝ by

𝑓 (𝑥) = 𝑥2 .
Note that the domain of 𝑓 is given by ℝ, while the range is

𝑓 (ℝ) = [0,∞) .

2. Define 𝑔 ∶ ℝ → ℝ as the logarithm:

𝑔(𝑥) = log(𝑥) .
This time the domain is (0, ∞), while the range is 𝑔(ℝ) = ℝ.
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Figure 2.9: Plot of function 𝑓 (𝑥) = 𝑥2

Figure 2.10: Plot of function 𝑔(𝑥) = log(𝑥)

2.8 Absolute value or Modulus

In this section we assume to have available the set ℝ of real numbers, which we recall is an exten-
sion of ℚ.
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Definition 2.38: Absolute value

Let 𝑥 ∈ ℝ. The absolute value of 𝑥 is

|𝑥 | = {𝑥 if 𝑥 ≥ 0
−𝑥 if 𝑥 < 0

Example 2.39

By definition one has |𝑥| = 𝑥 if 𝑥 ≥ 0. For example

|𝜋 | = 𝜋 , |√2| = √2 , |0| = 0 .
Instead |𝑥 | = −𝑥 if 𝑥 < 0. For example

| − 𝜋| = 𝜋 , |−√2| = √2 , | − 10| = 10 .

Let us highlight some basic properties of the absolute value.

Proposition 2.40: Properties of absolute value

For all 𝑥 ∈ ℝ they hold:

1. |𝑥| ≥ 0.
2. |𝑥| = 0 if and only if 𝑥 = 0.
3. |𝑥| = | − 𝑥|.

We can use the definition of absolute value to define the absolute value function. This is the
function

𝑓 ∶ ℝ → ℝ , 𝑓 (𝑥) ∶= |𝑥| .
You might be familiar with the graph associated to 𝑓 , as seen below.
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Figure 2.11: Plot of the absolute value function 𝑓 (𝑥) = |𝑥|

It is also useful to understand the absolute value in a geometric way.

Remark 2.41: Geometric interpretation of |𝑥 |

A number 𝑥 ∈ ℝ can be represented with a point on the real line ℝ.The non-negative number
|𝑥| represents the distance of 𝑥 from the origin 0. Notice that this works for both positive and
negative numbers 𝑥1 and 𝑥2 respectively, as shown in Figure 2.12 below.

Figure 2.12: Geometric interpretation of |𝑥 |

Remark 2.42: Geometric interpretation of |𝑥 − 𝑦|

If 𝑥, 𝑦 ∈ ℝ then the number |𝑥 − 𝑦| represents the distance between 𝑥 and 𝑦 on the real line, as
shown in Figure 2.13 below. Note that by Point 3 in Proposition 2.40 we have

|𝑥 − 𝑦| = |𝑦 − 𝑥| .

Figure 2.13: Geometric interpretation of |𝑥 − 𝑦|
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In the next Lemma we show a fundamental equivalence regarding the absolute value.

Lemma 2.43

Let 𝑥, 𝑦 ∈ ℝ. Then
|𝑥 | ≤ 𝑦 ⟺ −𝑦 ≤ 𝑥 ≤ 𝑦 .

The geometric meaning of the above statement is clear: the distance of 𝑥 from the origin is less than
𝑦 , in formulae

|𝑥| ≤ 𝑦 ,
if and only if 𝑥 belongs to the interval [−𝑦, 𝑦], in formulae

−𝑦 ≤ 𝑥 ≤ 𝑦 .
A sketch of this explanation is seen in Figure 2.14 below.

Figure 2.14: Geometric meaning of Lemma 2.43

Proof: Proof of Lemma 2.43

Step 1: First implication.
Suppose first that

|𝑥| ≤ 𝑦 . (2.17)

Recalling that the absolute value is non-negative, from (2.17) we deduce that 0 ≤ |𝑥| ≤ 𝑦 . In
particular it holds

𝑦 ≥ 0 . (2.18)

We make separate arguments for the cases 𝑥 ≥ 0 and 𝑥 < 0:
• Case 1: 𝑥 ≥ 0. From (2.17), (2.18) and from 𝑥 ≥ 0 we have

−𝑦 ≤ 0 ≤ 𝑥 = |𝑥| ≤ 𝑦
which shows

−𝑦 ≤ 𝑥 ≤ 𝑦 .
• Case 2: 𝑥 < 0. From (2.17), (2.18) and from 𝑥 < 0 we have

−𝑦 ≤ 0 < −𝑥 = |𝑥| ≤ 𝑦
which shows

−𝑦 ≤ −𝑥 ≤ 𝑦 .
Multiplying the above inequalities by −1 yields

−𝑦 ≤ 𝑥 ≤ 𝑦 .
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Step 2: Second implication.
Suppose now that

−𝑦 ≤ 𝑥 ≤ 𝑦 . (2.19)

We make separate arguments for the cases 𝑥 ≥ 0 and 𝑥 < 0:
• Case 1: 𝑥 ≥ 0. Since 𝑥 ≥ 0, from (2.19) we get

|𝑥| = 𝑥 ≤ 𝑦
showing that

|𝑥 | ≤ 𝑦 .
• Case 2: 𝑥 < 0. Since 𝑥 < 0, from (2.19) we have

−𝑦 ≤ 𝑥 = −|𝑥| .
Multiplying the above inequality by −1 yields

|𝑥 | ≤ 𝑦 .

With the same arguments, just replacing ≤ with <, one can also show the following.

Corollary 2.44

Let 𝑥, 𝑦 ∈ ℝ. Then
|𝑥 | < 𝑦 ⟺ −𝑦 < 𝑥 < 𝑦 .

2.9 Triangle inequality

The triangle inequality relates the absolute value to the sum operation. It is a very important in-
equality, which we will use a lot in the future.

Theorem 2.45: Triangle inequality

For every 𝑥, 𝑦 ∈ ℝ we have
||𝑥 | − |𝑦 || ≤ |𝑥 + 𝑦| ≤ |𝑥| + |𝑦 | . (2.20)

Before proceeding with the proof, let us discuss the geometric meaning of the triangle inequality.
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Remark 2.46: Geometric meaning of triangle inequality

The notion of absolute value can be extended also to vectors in the plane. Suppose that 𝑥 and 𝑦
are two vectors in the plane, as in Figure 2.15 below. Then |𝑥 | and |𝑦 | can be interpreted as the
lengths of these vectors.
Using the rule of sum of vectors, we can draw 𝑥 + 𝑦 , as shown in Figure 2.16 below. From the
picture it is evident that

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦 | , (2.21)

that is, the length of each side of a triangle does not exceed the sum of the lengths of the two
remaining sides. Note that (2.21) is exactly the second inequality in (2.20). This is why (2.20) is
called triangle inequality.

Figure 2.15: Vectors 𝑥 and 𝑦

Figure 2.16: Summing the vectors 𝑥 and 𝑦 . The triangle inequality relates the length of 𝑥 + 𝑦 to the
length of 𝑥 and 𝑦
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Proof: Proof of Theorem 2.45

Assume that 𝑥, 𝑦 ∈ ℝ. We prove the two inequalities in (2.20) individually.
Step 1. Proof of the second inequality in (2.20).
Trivially we have

|𝑥| ≤ |𝑥| .
Therefore we can apply Lemma 2.43 and infer

−|𝑥| ≤ 𝑥 ≤ |𝑥| . (2.22)

Similarly we have that |𝑦 | ≤ |𝑦 |, and so Lemma 2.43 implies

−|𝑦| ≤ 𝑦 ≤ |𝑦 | . (2.23)

Summing (2.22) and (2.23) we get

−(|𝑥| + |𝑦 |) ≤ 𝑥 + 𝑦 ≤ |𝑥| + |𝑦 | .
We can now again apply Lemma 2.43 to get

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦 | , (2.24)

which is the second inequality in (2.20).
Step 2. Proof of the first inequality in (2.20).
Note that the trivial identity

𝑥 = 𝑥 + 𝑦 − 𝑦
always holds. We then have

|𝑥| = |𝑥 + 𝑦 − 𝑦| (2.25)

= |(𝑥 + 𝑦) + (−𝑦)| (2.26)

= |𝑎 + 𝑏| (2.27)

with 𝑎 = 𝑥 + 𝑦 and 𝑏 = −𝑦 . We can now apply (2.24) to 𝑎 and 𝑏 to obtain

|𝑥| = |𝑎 + 𝑏| (2.28)

≤ |𝑎| + |𝑏| (2.29)

= |𝑥 + 𝑦| + | − 𝑦| (2.30)

= |𝑥 + 𝑦| + |𝑦 | (2.31)

Therefore
|𝑥 | − |𝑦 | ≤ |𝑥 + 𝑦| . (2.32)

We can now swap 𝑥 and 𝑦 in (2.32) to get

|𝑦 | − |𝑥| ≤ |𝑥 + 𝑦| .
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By rearranging the above inequality we obtain

−|𝑥 + 𝑦| ≤ |𝑥| − |𝑦 | . (2.33)

Putting together (2.32) and (2.33) yields

−|𝑥 + 𝑦| ≤ |𝑥| − |𝑦 | ≤ |𝑥 + 𝑦| .
By Lemma 2.43 the above is equivalent to

||𝑥 | − |𝑦 || ≤ |𝑥 + 𝑦| ,
which is the first inequality in (2.20).

An immediate consequence of the triangle inequality are the following inequalities, which are left
as an exercise.

Proposition 2.47

For any 𝑥, 𝑦 ∈ ℝ it holds
||𝑥 | − |𝑦 || ≤ |𝑥 − 𝑦| ≤ |𝑥| + |𝑦 | . (2.34)

Moreover for any 𝑥, 𝑦 , 𝑧 ∈ ℝ it holds

|𝑥 − 𝑦| ≤ |𝑥 − 𝑧| + |𝑧 − 𝑦| .

Notice that the inequality in (2.34) differs from the triangle inequality (2.20) by a sign. Indeed it can
be shown tha (2.20) and (2.34) are equivalent.

2.10 Proofs in Mathematics

In a mathematical proof one needs to show that

𝛼 ⟹ 𝛽 (2.35)

where

• 𝛼 is a given set of assumptions, or Hypothesis
• 𝛽 is a conclusion, or Thesis

Proving (2.35) means convincing ourselves that 𝛽 follows from 𝛼 . Common strategies to prove (2.35)
are:
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1. Contradiction: Assume that the thesis is false, and hope to reach a contradiction: that is,
prove that

¬𝛽 ⟹ contradiction

where ¬𝛽 is the negation of 𝛽 .
For example we already proved by contradiction that

Definition of ℚ ⟹ √2 ∉ ℚ ,
In the above statement

𝛼 = (Definition of ℚ) .
𝛽 = (√2 ∉ ℚ) .

Therefore
¬𝛽 = (√2 ∈ ℚ) .

2. Direct: Sometimes proofs will also need direct arguments, meaning that one need to show
directly that (2.35) holds.

3. Contrapositive: The statement (2.35) is equivalent to

¬𝛽 ⟹ ¬𝛼 . (2.36)

Thus, instead of proving (2.35), one could show (2.36). The statement (2.36) is called the con-
trapositive of (2.35).

Let us make an example.

Proposition 2.48

Two real numbers 𝑎, 𝑏 are equal if and only if for every real number 𝜀 > 0 it follows that |𝑎−𝑏| < 𝜀.

Before proceeding with the proof, note that the above stetement is just saying that:

Two numbers are equal if and only if they are arbitrarily close

By arbitrarily close we mean that they are as close as you want the to be.

Proof: of Proposition 2.48

Let us first rephrase the statement using mathematical symbols:

Let 𝑎, 𝑏 ∈ ℝ. Then it holds:

𝑎 = 𝑏 ⟺ |𝑎 − 𝑏| < 𝜀 , ∀ 𝜀 > 0 .
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Setting

𝛼 = (𝑎 = 𝑏) (2.37)

𝛽 = (|𝑎 − 𝑏| < 𝜀 , ∀ 𝜀 > 0) (2.38)

the statement is equivalent to
𝛼 ⟺ 𝛽 .

To show the above, it is sufficient to show that

𝛼 ⟹ 𝛽 and 𝛽 ⟹ 𝛼 .
Step 1. Proof that 𝛼 ⟹ 𝛽 .
This proof can be carried out by a direct argument. Since we are assuming 𝛼 , this means

𝑎 = 𝑏 .
We want to see that 𝛽 holds. Therefore fix an arbitrary 𝜀 > 0. This means that 𝜀 can be any
positive number, as long as you fix it. Clearly

|𝑎 − 𝑏| = |0| = 0 < 𝜀
since 𝑎 = 𝑏, |0| = 0, and 𝜀 > 0. The above shows that

|𝑎 − 𝑏| < 𝜀 .
As 𝜀 > 0 was arbitrary, we have just proven that

|𝑎 − 𝑏| < 𝜀 , ∀ 𝜀 > 0 ,
meaning that 𝛽 holds and the proof is concluded.
Step 2. Proof that 𝛽 ⟹ 𝛼 .
Let us prove this implication by showing the contrapositive

¬𝛼 ⟹ ¬𝛽 .
So let us assume ¬𝛼 is true. This means that

𝑎 ≠ 𝑏 .
We have to see that ¬𝛽 holds. But ¬𝛽 means that

∃ 𝜀0 > 0 s.t. |𝑎 − 𝑏| ≥ 𝜀0 .
The above is satisfied by choosing

𝜀0 ∶= |𝑎 − 𝑏| ,
since 𝜀0 > 0 given that 𝑎 ≠ 𝑏.
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2.11 Induction

Another technique for carrying out proofs is induction, which we take as an axiom.

Axiom 2.49: Principle of Induction

Let 𝑆 ⊆ ℕ. Suppose that

1. We have 1 ∈ 𝑆, and
2. Whenever 𝑛 ∈ 𝑆, then (𝑛 + 1) ∈ 𝑆.

Then we have
𝑆 = ℕ .

Important

The above is an axiom, meaning that we do not prove it, but rather we just assume it holds.

Remark 2.50

It would be possible to prove the Principle of Induction starting from elementary axioms for ℕ,
called the Peano Axioms, see the Wikipedia page.
However, in justifying basic principles of mathematics, one at some point needs to draw a line.
This means that something which looks elementary needs to be assumed to hold, in order to
have a starting point for proving deeper statements.
In the case of the Principle of Induction, the intuition is clear:

The Principle of Induction is just describing the domino effect: If one tile falls,
then the next one will fall as well. Therefore if the first tile falls, all the tiles will fall.

It seems reasonable to assume such evident principle.

The Principle of Induction can be used to prove statements which depend on some index 𝑛 ∈ ℕ.
Precisely, the following statement holds.

Corollary 2.51: Principle of Inducion - Alternative formulation

Let 𝛼(𝑛) be a statement which depends on 𝑛 ∈ ℕ. Suppose that

1. 𝛼(1) is true, and
2. Whenever 𝛼(𝑛) is true, then 𝛼(𝑛 + 1) is true.

Then 𝛼(𝑛) is true for all 𝑛 ∈ ℕ.
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Proof

Define the set
𝑆 ∶= {𝑛 ∈ ℕ s.t. 𝛼(𝑛) is true} .

Then

1. We have 1 ∈ 𝑆, since 𝛼(1) is true.
2. If 𝑛 ∈ 𝑆 then 𝛼(𝑛) is true. By assumption this implies that 𝛼(𝑛 + 1) is true. Therefore

(𝑛 + 1) ∈ 𝑆.
Therefore 𝑆 satisfies the assumptions of the Induction Principle and we conclude that

𝑆 = ℕ .
By definition this means that 𝛼(𝑛) is true for all 𝑛 ∈ ℕ.

Example 2.52: Formula for summing first 𝑛 natural numbers

Question. Prove by induction that the following formula holds for all 𝑛 ∈ ℕ:

1 + 2 + 3 + … + (𝑛 − 1) + 𝑛 = 𝑛(𝑛 + 1)
2 . (2.39)

Solution. To be really precise, consider the statement

𝛼(𝑛) ∶= the above formula is true for 𝑛 .
In order to apply induction, we need to show that

1. 𝛼(1) is true,
2. If 𝛼(𝑛) is true then 𝛼(𝑛 + 1) is true.

Let us proceed: Define
𝑆(𝑛) = 1 + 2 + … + 𝑛 .

This way the formula at (2.39) is equivalent to

𝑆(𝑛) = 𝑛(𝑛 + 1)
2 , ∀ 𝑛 ∈ ℕ .

1. It is immediate to check that (2.39) holds for 𝑛 = 1.
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2. Suppose (2.39) holds for 𝑛 = 𝑘. Then
𝑆(𝑘 + 1) = 1 + … + 𝑘 + (𝑘 + 1) (2.40)

= 𝑆(𝑘) + (𝑘 + 1) (2.41)

= 𝑘(𝑘 + 1)
2 + (𝑘 + 1) (2.42)

= 𝑘(𝑘 + 1) + 2(𝑘 + 1)
2 (2.43)

= (𝑘 + 1)(𝑘 + 2)
2 (2.44)

where in the first equality we used that (2.39) holds for 𝑛 = 𝑘. We have proven that

𝑆(𝑘 + 1) = (𝑘 + 1)(𝑘 + 2)
2 .

The RHS in the above expression is exactly the RHS of (2.39) computed at 𝑛 = 𝑘 + 1.
Therefore, we have shown that formula (2.39) holds for 𝑛 = 𝑘 + 1.

By the Principle of Induction, we then conclude that 𝛼(𝑛) is true for all 𝑛 ∈ ℕ, which means
that (2.39) holds for all 𝑛 ∈ ℕ.

Example 2.53: Statements about sequences of numbers

Suppose you are given a collection of numbers

{𝑥𝑛 s.t. 𝑛 ∈ ℕ} .
Such collection of numbers is called sequence. Assume that

𝑥1 ∶= 1 (2.45)

𝑥𝑛+1 ∶= 𝑥𝑛
2 + 1 . (2.46)

A sequence defined as above is called recurrence sequence. Using the above rule we can
compute all the terms of 𝑥𝑛 .
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Let us compute the first 4 elements:

𝑥1 = 1 (2.47)

𝑥2 = 𝑥1
2 + 1 = 1 + 1

2 = 𝑥1 + 1
2 (2.48)

𝑥3 = 𝑥2
2 + 1 = 1 + 1

2 + 1
4 = 𝑥2 + 1

4 (2.49)

𝑥4 = 𝑥3
2 + 1 = 1 + 1

2 + 1
4 + 1

8 = 𝑥3 + 1
8 (2.50)

(2.51)

We see a pattern: The successive term is obtained by adding a power of 1/2 to the previous
term. We therefore conjecture that

𝑥𝑛+1 = 𝑥𝑛 + 1
2𝑛 (2.52)

We want to prove our conjecture rigorously, i.e. using induction.
Claim. (2.52) holds for all 𝑛 ∈ ℕ.
Proof of Claim. We argue by induction:

1. We see that
𝑥2 = 1 + 1

2 = 𝑥1 + 1
2

proving (2.52) for 𝑛 = 1.
2. Suppose now that (2.52) holds for 𝑛 = 𝑘. We need to prove that (2.52) holds for 𝑛 = 𝑘 + 1,

that is,
𝑥𝑘+2 = 𝑥𝑘+1 + 1

2𝑘+1 . (2.53)

Starting with the definition of 𝑥𝑘+2 we see that

𝑥𝑘+2 = 𝑥𝑘+1
2 + 1 (definition of 𝑥𝑘+2)

=
𝑥𝑘 + 1

2𝑘
2 + 1 (inductive hypothesis)

= 𝑥𝑘
2 + 1 + 1

2𝑘+1 (just calculations)

= 𝑥𝑘+1 + 1
2𝑘+1 (definition of 𝑥𝑘+1)

which proves (2.53).

Therefore the assumptions of the Induction Principle are satisfied, and (2.52) follows.
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Example 2.54: Bernoulli’s inequality

Question. Let 𝑥 ∈ ℝ with 𝑥 > −1. Bernoulli’s inequality states that

(1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 , ∀ 𝑛 ∈ ℕ . (2.54)

Prove Bernoulli’s inequality by induction.
Solution. Let 𝑥 ∈ ℝ, 𝑥 > −1. We prove the statement by induction:

• Base case: (6.9) holds with equality when 𝑛 = 1.
• Induction hypothesis: Let 𝑘 ∈ ℕ and suppose that (6.9) holds for 𝑛 = 𝑘, i.e.,

(1 + 𝑥)𝑘 ≥ 1 + 𝑘𝑥 .
Then

(1 + 𝑥)𝑘+1 = (1 + 𝑥)𝑘(1 + 𝑥)
≥ (1 + 𝑘𝑥)(1 + 𝑥)
= 1 + 𝑘𝑥 + 𝑥 + 𝑘𝑥2
≥ 1 + (𝑘 + 1)𝑥 ,

where we used that 𝑘𝑥2 ≥ 0. Then (6.9) holds for 𝑛 = 𝑘 + 1.
By induction we conclude (6.9).
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3 Real Numbers

In this chapter we introduce the system of Real Numbers ℝ and study some of its properties. We
will follow quite an abstract approach, which requires the definition of ordered field. The fact that
ℝ is a continuum with no gaps (unlike ℚ) will be consequence of the Axiom of Completeness.

Therefore ℝ will be defined as an ordered field in which the Axiom of Completeness holds.

3.1 Fields

In order to introduce ℝ, we need the concepts of binary operation and field. We proceed in a
general setting, starting from a set 𝐾 . We will assume that there is an equivalence relation on 𝐾
denoted by =.

Definition 3.1: Binary operation

A binary operation on a set 𝐾 is a function

∘ ∶ 𝐾 × 𝐾 → 𝐾
which maps the ordered pair (𝑥, 𝑦) into 𝑥 ∘ 𝑦 .

Notation 3.2

We use the special symbols of + and ⋅ to refer to addition and multiplication.

• Addition: The addition, or sum of 𝑥, 𝑦 ∈ 𝐾 is denoted by

𝑥 + 𝑦
• Multiplication: The multiplication, or product of 𝑥, 𝑦 ∈ 𝐾 is denoted by

𝑥 ⋅ 𝑦 or 𝑥𝑦
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Warning

When we talk about + and ⋅ in a set 𝐾 we are not necessarily thinking about the usual sum
and multiplication in ℚ. This is the case in the next Example, where we define

1 + 1 = 0

Example 3.3: An example of binary operation

Let 𝐾 = {0, 1}. We can for example define operations of sum and product on 𝐾 according to the
tables

+ 0 1
0 0 1
1 1 0

⋅ 0 1
0 0 0
1 0 1

The above mean that
0 + 0 = 1 + 1 = 0 , 0 + 1 = 1 + 0 = 1 ,

0 ⋅ 0 = 0 ⋅ 1 = 1 ⋅ 0 = 0 , 1 ⋅ 1 = 1 . (3.1)

Note that we have defined (rather controversially!)

1 + 1 = 0
The other option would have been to define

1 + 1 = 1
This would have been absolutely fine. However we could not have defined

1 + 1 = 2
because 2 ∉ 𝐾 .
Note: The operations in (3.1) look more natural if you identify 0 with the even numbers and 1
with the odd numbers. In that case 1 + 1 = 0 reads

Odd + Odd = Even

Indeed all the definitions given in (3.1) agree with such identification, see tables below:

+ Even Odd
Even Even Odd
Odd Odd Even

⋅ Even Odd
Even Even Even
Odd Even Odd

Binary operations take ordered pairs of elements of 𝐾 as input. Therefore the operation

𝑥 ∘ 𝑦 ∘ 𝑧
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does not make sense, since we do not know which one between

𝑥 ∘ 𝑦 or 𝑦 ∘ 𝑧
has to be performed first. Moreover the outcome of an operation depends on order:

𝑥 ∘ 𝑦 ≠ 𝑦 ∘ 𝑥 .
This motivates the following definition.

Definition 3.4: Properties of binary operations

Let 𝐾 be a set and ∘ ∶ 𝐾 × 𝐾 → 𝐾 be a binary operation on 𝐾 . We say that:

1. ∘ is commutative if
𝑥 ∘ 𝑦 = 𝑦 ∘ 𝑥 , ∀ 𝑥, 𝑦 ∈ 𝐾

2. ∘ is associative if
(𝑥 ∘ 𝑦) ∘ 𝑧 = 𝑥 ∘ (𝑦 ∘ 𝑧) , ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾

3. An element 𝑒 ∈ 𝐾 is called neutral element of ∘ if
𝑥 ∘ 𝑒 = 𝑒 ∘ 𝑥 = 𝑥 , ∀ 𝑥 ∈ 𝐾

4. Let 𝑒 be a neutral element of ∘ and let 𝑥 ∈ 𝐾 . An element 𝑦 ∈ 𝐾 is called an inverse of 𝑥
with respect to ∘ if

𝑥 ∘ 𝑦 = 𝑦 ∘ 𝑥 = 𝑒 .

Example 3.5

Consider ℚ with the usual operations of sum and multiplication

• We already know that + and ⋅ are commutative and associative

• The neutral element of the sum is 𝑒 = 0
• The neutral element of the product is 𝑒 = 1
• The additive inverse of 𝑥 is −𝑥
• The multiplicative inverse of 𝑥 ≠ 0 is 1/𝑥 .

Example 3.6

Let 𝐾 with + and ⋅ be as in Example 3.3. The sum satisfies:

• + is commutative, since
0 + 1 = 1 + 0 = 0 .
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• + is associative, since for example

(0 + 1) + 1 = 1 + 1 = 0 , 0 + (1 + 1) = 0 + 0 = 0 ,
and therefore

(0 + 1) + 1 = 0 + (1 + 1) .
In general one can show that + is associative by checking all the other permutations.

• The neutral element of + is 0, since
0 + 0 = 0 , 1 + 0 = 0 + 1 = 1 .

• Every element has an inverse. Indeed, the inverse of 0 is 0, since
0 + 0 = 0 ,

while the inverse of 1 is 1, since
1 + 1 = 1 + 1 = 0 .

The multiplication satisfies:

• ⋅ is commutative, since
1 ⋅ 0 = 0 ⋅ 1 = 0 .

• ⋅ is associative, since for example

(0 ⋅ 1) ⋅ 1 = 0 ⋅ 1 = 0 , 0 ⋅ (1 ⋅ 1) = 0 ⋅ 1 = 0 ,
and therefore

(0 ⋅ 1) ⋅ 1 = 0 ⋅ (1 ⋅ 1) .
By checking all the other permutations one can show that ⋅ is associative.

• The neutral element of ⋅ is 1, since
0 ⋅ 1 = 1 ⋅ 0 = 0 , 1 ⋅ 1 = 1 .

• The element 0 has no inverse, since

0 ⋅ 0 = 0 ⋅ 1 = 1 ⋅ 0 = 0 ,
and thus we never obtain the neutral element 1. The inverse of 1 is given by 1, since

1 ⋅ 1 = 1 .
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Example 3.7

Question. Let 𝐾 = {0, 1} be a set with binary operation ∘ defined by the table

∘ 0 1
0 1 1
1 0 0

1. Is ∘ commutative? Justify your answer.

2. Is ∘ associative? Justify your answer.

Solution.

1. The operation ∘ is not commutative, since

0 ∘ 1 = 1 ≠ 0 = 1 ∘ 0 .

2. The operation ∘ is not associative, since
(0 ∘ 1) ∘ 1 = 1 ∘ 1 = 0 ,

while
0 ∘ (1 ∘ 1) = 0 ∘ 0 = 1 ,

so that
(0 ∘ 1) ∘ 1 ≠ 0 ∘ (1 ∘ 1) .

We are ready to define fields.

Definition 3.8: Field

Let 𝐾 be a set with binary operations of addition

+ ∶ 𝐾 × 𝐾 → 𝐾 , (𝑥, 𝑦) ↦ 𝑥 + 𝑦
and multiplication

⋅ ∶ 𝐾 × 𝐾 → 𝐾 , (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 = 𝑥𝑦 .
We call the triple (𝐾, +, ⋅) a field if:

1. The addition + satisfies: ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾
• (A1) Commutativity and Associativity:

𝑥 + 𝑦 = 𝑦 + 𝑥
(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
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• (A2) Additive Identity: There exists a neutral element in 𝐾 for +, which we call
0. It holds:

𝑥 + 0 = 0 + 𝑥 = 𝑥
• (A3) Additive Inverse: There exists an inverse of 𝑥 with respect to +. We call this
element the additive inverse of 𝑥 and denote it by −𝑥 . It holds

𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0
2. The multiplication ⋅ satisifes: ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾

• (M1) Commutativity and Associativity:

𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥
(𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧)

• (M2) Multiplicative Identity: There exists a neutral element in 𝐾 for ⋅, which
we call 1. It holds:

𝑥 ⋅ 1 = 1 ⋅ 𝑥 = 𝑥
• (M3)Multiplicative Inverse: If 𝑥 ≠ 0 there exists an inverse of 𝑥 with respect to ⋅.
We call this element the multiplicative inverse of 𝑥 and denote it by 𝑥−1. It holds

𝑥 ⋅ 𝑥−1 = 𝑥−1 ⋅ 𝑥 = 1
3. The operations + and ⋅ are related by

• (AM) Distributive Property: ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾
𝑥 ⋅ (𝑦 + 𝑧) = (𝑥 ⋅ 𝑦) + (𝑦 ⋅ 𝑧) .

Remark 3.9

Since fields are an abstract model for ℚ, we have chosen to denote the two field operations with
+ and ⋅. We could have denoted themwith other symbols, e.g.♣ and♡. In this case (AM) would
read

𝑥 ♣ (𝑦 ♡ 𝑧) = (𝑥 ♣ 𝑦)♡ (𝑦 ♣ 𝑧)
This would of course still make sense. It would just be a lot harder to write calculations and to
remember which operation is which!
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Warning

It might be tempting to dismiss the definition of field, and to think that all fields look like ℚ.
This is not the case, as seen in the following Example.

Example 3.10

Question. Let 𝐾 with + and ⋅ be as in Example 3.3, that is, 𝐾 = {0, 1} with operations defined
by

+ 0 1
0 0 1
1 1 0

⋅ 0 1
0 0 0
1 0 1

Prove that (𝐾, +, ⋅) is a field.
Solution. We have already shown in Example 3.6 that:

• (A1) and (M1) hold,
• (A2) holds with neutral element 0,
• (M2) holds with neutral element 1,
• (A3) every element has an additive inverse, with

−0 = 0 , −1 = 1 ,
• (M3) every element which is not 0 a multiplicative inverse, with

1−1 = 1 .
We are left to show the Distributive Property (AM). Indeed:

• (AM) For all 𝑦, 𝑧 ∈ 𝐾 we have

0 ⋅ (𝑦 + 𝑧) = 0 , (0 ⋅ 𝑦) + (0 ⋅ 𝑧) = 0 + 0 = 0 ,
and also

1 ⋅ (𝑦 + 𝑧) = 𝑦 + 𝑧 , (1 ⋅ 𝑦) + (1 ⋅ 𝑧) = 𝑦 + 𝑧 .
Thus (AM) holds.

Definition 3.11: Subtraction and division

Let (𝐾, +, ⋅) be a field. We define:

1. Subtraction as the operation − defined by

𝑥 − 𝑦 ∶= 𝑥 + (−𝑦) , ∀ 𝑥, 𝑦 ∈ 𝐾 ,
where −𝑦 is the additive inverse of 𝑦 .
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2. Division as the operation / defined by

𝑥/𝑦 ∶= 𝑥 ⋅ 𝑦−1 , ∀ 𝑥, 𝑦 ∈ 𝐾 , 𝑦 ≠ 0 ,
where 𝑦−1 is the multiplicative inverse of 𝑦 .

Warning

One might wonder why we are defining subtraction and division. Are they not already defined
in ℚ? Yes they are. But they make no sense in a general field (𝐾, +, ⋅), unless we define them
explicitly.

Using the field axioms we can prove the following properties.

Proposition 3.12: Uniqueness of neutral elements and inverses

Let (𝐾, +, ⋅) be a field. Then

1. There is a unique element in 𝐾 with the property of 0,
2. There is a unique element in 𝐾 with the property of 1,
3. For all 𝑥 ∈ 𝐾 there is a unique additive inverse −𝑥 ,
4. For all 𝑥 ∈ 𝐾 , 𝑥 ≠ 0, there is a unique multiplicative inverse 𝑥−1.

Proof

1. Suppose that 0 ∈ 𝐾 and 0̃ ∈ 𝐾 are both neutral element of +, that is, they both satisfy
(A2). Then

0 + 0̃ = 0
since 0̃ is a neutral element for +. Moreover

0̃ + 0 = 0̃
since 0 is a neutral element for +. By commutativity of +, see property (A1), we have

0 = 0 + 0̃ = 0̃ + 0 = 0̃ ,
showing that 0 = 0̃. Hence the neutral element for + is unique.

2. Exercise.
3. Let 𝑥 ∈ 𝐾 and suppose that 𝑦, ̃𝑦 ∈ 𝐾 are both additive inverses of 𝑥 , that is, they both

satisfy (A3). Therefore
𝑥 + 𝑦 = 0

since 𝑦 is an additive inverse of 𝑥 and

𝑥 + ̃𝑦 = 0
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since ̃𝑦 is an additive inverse of 𝑥 . Therefore we can use commutativity and associativity
and of +, see property (A1), and the fact that 0 is the neutral element of +, to infer

𝑦 = 𝑦 + 0 = 𝑦 + (𝑥 + ̃𝑦)
= (𝑦 + 𝑥) + ̃𝑦 = (𝑥 + 𝑦) + ̃𝑦
= 0 + ̃𝑦 = ̃𝑦 ,

concluding that 𝑦 = ̃𝑦 . Thus there is a unique additive inverse of 𝑥 , and
𝑦 = ̃𝑦 = −𝑥 ,

with −𝑥 the element from property (A3).
4. Exercise.

Using the properties of field we can also show that the usual properties of sum, subtraction, multi-
plication and division still hold in any field. We list such properties in the following proposition.

Proposition 3.13: Properties of field operations

Let (𝐾, +, ⋅) be a field. Then for all 𝑥, 𝑦 , 𝑧 ∈ 𝐾 ,

• 𝑥 + 𝑦 = 𝑥 + 𝑧 ⟹ 𝑦 = 𝑧
• 𝑥 ⋅ 𝑦 = 𝑥 ⋅ 𝑧 and 𝑥 ≠ 0 ⟹ 𝑦 = 𝑧
• −0 = 0
• 1−1 = 1
• 𝑥 ⋅ 0 = 0
• −1 ⋅ 𝑥 = −𝑥
• −(−𝑥) = 𝑥
• (𝑥−1)−1 = 𝑥 if 𝑥 ≠ 0
• (𝑥 ⋅ 𝑦)−1 = 𝑥−1 ⋅ 𝑦−1

The above properties can be all proven with elementary use of the field properties (A1)-(A3), (M1)-
(M3) and (AM). This is an exercise in patience, and is left to the reader.

Let us conclude with examining the sets of numbers introduced in Chapter 1.

Theorem 3.14

Consider the sets ℕ, ℤ, ℚ with the usual operations + and ⋅. We have:

• (ℕ, +, ⋅) is not a field.

• (ℤ, +, ⋅) is not a field.

• (ℚ, +, ⋅) is a field.
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Proof

1. (ℕ, +, ⋅) is not a field:
It satisfies properties (A1), (A2), (M1), (M2), (AM) of fields. It is missing properties (A3)
and (M3), the additive and multiplicative inverse properties, respectively.

• (ℤ, +, ⋅) is not a field:
It satisfies properties (A1), (A2), (A3), (M1), (M2), (AM) of fields. Thus it is only missing
(M3), the multiplicative inverse property.

• (ℚ, +, ⋅) is a field. This is clear: The field axioms are introduced exactly to model ℚ.
Therefore, ℚ is trivially a field.

3.2 Ordered fields

Definition 3.15: Ordered field

Let 𝐾 be a set with binary operations + and ⋅, and with an order relation ≤. We call (𝐾, +, ⋅, ≤)
an ordered field if:

1. (𝐾, +, ⋅) is a field

2. There ≤ is of total order on 𝐾 : ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝐾
• (O1) Reflexivity:

𝑥 ≤ 𝑥
• (O2) Antisymmetry:

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 ⟹ 𝑥 = 𝑦
• (O3) Transitivity:

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 ⟹ 𝑥 = 𝑧
• (O4) Total order:

𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
3. The operations + and ⋅, and the total order ≤, are related by the following properties:

∀𝑥, 𝑦 , 𝑧 ∈ 𝐾
• (AM) Distributive: Relates addition and multiplication via

𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧
• (AO) Relates addition and order with the requirement:

𝑥 ≤ 𝑦 ⟹ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧
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• (MO) Relates multiplication and order with the requirement:

𝑥 ≥ 0, 𝑦 ≥ 0 ⟹ 𝑥 ⋅ 𝑦 ≥ 0

Theorem 3.16

(ℚ, +, ⋅, ≤) is an ordered field.

3.3 Cut Property

We have just introduced the notion of fields and ordered fields. We noted that the set of rational
numbers with the usual operations of sum and multiplication

(ℚ, +, ⋅)
is a field. Moreover it is an ordered field with the usual order ≤.
We now need to address the key issue we proved in Chapter 1, namely, the fact that

√2 ∉ ℚ .
Intuitively, this means that ℚ has gaps, and cannot be represented as a continuous line. The rigor-
ous definition of lack of gaps needs the concept of cut of a set. This, in turn, needs the concept of
partition.

Definition 3.17: Partition of a set

Let 𝑆 be a non-empty set. The pair (𝐴, 𝐵) is a partition of 𝑆 if

𝐴, 𝐵 ⊆ 𝑆 , 𝐴 ≠ ∅ , 𝐵 ≠ ∅ ,
and

𝑆 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .

Figure 3.1: Schematic picture of a partition (𝐴, 𝐵) of the set 𝐾 .
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Definition 3.18: Cut of a set

Let 𝑆 be a non-empty set with a total order relation ≤. The pair (𝐴, 𝐵) is a cut of 𝑆 if

1. (𝐴, 𝐵) is a partition of 𝑆,
2. We have

𝑎 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵 .

The cut of a set is often called Dedekind cut, named after Richard Dedekind, who used cuts to
give an explicit construction of the real numbers ℝ, see Wikipedia page.

Definition 3.19: Cut property

Let 𝑆 be a non-empty set with a total order relation ≤. We say that 𝑆 has the cut property if
for every cut (𝐴, 𝐵) of 𝑆 there exists some 𝑠 ∈ 𝑆 such that

𝑎 ≤ 𝑠 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵 .
We call 𝑠 the separator of the cut (𝐴, 𝐵).

Example 3.20

Let 𝑆 = ℚ and consider the sets

𝐴 = (−∞, 𝑠] ∩ ℚ , 𝐵 = (𝑠, ∞) ∩ ℚ .
for some 𝑠 ∈ ℚ. Then the pair (𝐴, 𝐵) is a cut of ℚ, and 𝑠 is the separator.

Figure 3.2: (𝐴, 𝐵) is a cut of ℚ with separator 𝑠.

Question 3.21

Do all ordered fields have the Cut Property? Does ℚ have the Cut Property?

The answer to the above question is NO. For example the pair

𝐴 = (−∞, √2) ∩ ℚ , 𝐵 = (√2,∞) ∩ ℚ . (3.2)

is a cut of ℚ, since √2 ∉ ℚ. However what is the separator? It should be 𝑠 = √2, given that clearly

𝑎 ≤ √2 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵 .
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However √2 ∉ ℚ, so we are NOT ALLOWED to take it as separator. Indeed, we can show that
(𝐴, 𝐵) defined as in (3.2) has no separator.

Figure 3.3: (𝐴, 𝐵) is a cut of ℚ which has no separator

Theorem 3.22: ℚ does not have the cut property.

ℚ does not have the cut property. More explicitly, there exist a cut (𝐴, 𝐵) of ℚ which has no
separator.

Remark 3.23: Ideas for the proof of Theorem 3.22

Before proceeding with the proof, let us summarize the ideas behind it:
We will consider the cut (𝐴, 𝐵) in (3.2). We then assume by contradiction that (𝐴, 𝐵) admits a
separator 𝐿 ∈ ℚ, so that

𝑎 ≤ 𝐿 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵 . (3.3)

Since (𝐴, 𝐵) is a partition ofℚ, then either 𝐿 ∈ 𝐴 or 𝐿 ∈ 𝐵. Thesewill both lead to a contradiction:

• If 𝐿 ∈ 𝐴, by definition of 𝐴 we have

𝐿 < √2 .
We want to contradict the fact that 𝐿 is a separator for the cut (𝐴, 𝐵). The idea is that,
since √2 ∉ ℚ, it is possible to squeeze a rational number 𝐿̃ ∈ ℚ in between 𝐿 and √2, i.e.

𝐿 < 𝐿̃ < √2 .
How do we find such 𝐿̃ in practice? We look for a number 𝐿̃𝑛 of the form

𝐿̃𝑛 = 𝐿 + 1
𝑛

for some 𝑛 ∈ ℕ to be suitably chosen later. Clearly 𝐿̃𝑛 ∈ ℚ and

𝐿 < 𝐿̃𝑛
for all 𝑛 ∈ ℕ. We will then be able to find 𝑛0 ∈ ℕ such that

𝐿 < 𝐿̃𝑛0 < √2 . (3.4)

Now comes the contradiction: From (3.4) we see that 𝐿̃𝑛0 ∈ 𝐴. However 𝐿 is a separator,
and so from (3.3) we have

𝐿̃𝑛0 ≤ 𝐿 ,
which contradicts (3.4).
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• If 𝐿 ∈ 𝐵, by definition of 𝐵 we have
√2 < 𝐿 .

The idea is the same as above: Since √2 ∉ ℚ, we can squeeze a rational number 𝐿̃ ∈ ℚ
between √2 and 𝐿, i.e.,

√2 < 𝐿̃ < 𝐿 .
Since we want 𝐿̃ to be a rational number smaller than 𝐿, we look for 𝐿̃ of the form

𝐿̃𝑛 ∶= 𝐿 − 1
𝑛 ,

for a suitable 𝑛 ∈ ℕ. Clearly 𝐿̃𝑛 ∈ ℚ and

𝐿̃𝑛 < 𝐿 ,
for all 𝑛 ∈ ℕ. We will be able to find 𝑛0 ∈ ℕ such that

√2 < 𝐿̃𝑛0 < 𝐿 . (3.5)

Therefore 𝐿̃𝑛0 ∈ 𝐵. Again, contradiction: 𝐿 is a separator and so

𝐿 ≤ 𝐿̃𝑛0 ,
which contradicts (3.5).

Both cases 𝐿 ∈ 𝐴 or 𝐿 ∈ 𝐵 lead to a contradiction. Since these are all the possibilities, we
conclude that the cut (𝐴, 𝐵) has no separator in ℚ.

Time to make the ideas in the above remark rigorous. Two main issues need fixing:

1. √2 is just a symbol for a number 𝑥 such that 𝑥2 = 2. As √2 ∉ ℚ, what is the meaning of the
expression

𝑎 < √2 < 𝑏
when 𝑎, 𝑏 ∈ ℚ? We can only compare rational numbers with rational numbers, so the above
inequalities are meaningless. We need a more clever way to write down the sets 𝐴 and 𝐵 so
that they make sense as objects in ℚ.

2. We said it is possible to find 𝑛0 ∈ ℕ such that

𝐿 < 𝐿̃𝑛0 < √2 or √2 < 𝐿̃𝑛0 < 𝐿
We need to prove it!
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Proof: Proof of Theorem 3.22

Let 𝐴 and 𝐵 be the sets defined in (3.2). It is useful to rewrite 𝐴 and 𝐵 in the form

𝐴 = 𝐴1 ∪ 𝐴2 ,
where

𝐴1 = {𝑞 ∈ ℚ ∶ 𝑞 < 0} ,
𝐴2 = {𝑞 ∈ ℚ ∶ 𝑞 ≥ 0 , 𝑞2 < 2} ,

and
𝐵 = {𝑞 ∈ ℚ ∶ 𝑞 > 0, 𝑞2 > 2} .

Step 1. (𝐴, 𝐵) is a cut of ℚ:
We need to prove the following:

1. (𝐴, 𝐵) is a partition of ℚ. This is because 𝐴, 𝐵 ⊆ ℚ with 𝐴 ≠ ∅ and 𝐵 ≠ ∅. Moreover
𝐴 ∩ 𝐵 = ∅ and

𝐴 ∪ 𝐵 = ℚ ,
given that √2 ∉ ℚ, and so there is no element 𝑞 ∈ ℚ such that 𝑞2 = 2.

2. It holds
𝑎 ≤ 𝑏 , ∀𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵 .

Indeed, suppose that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. We have two cases:

• 𝑎 ∈ 𝐴1: Therefore 𝑎 < 0. In particular

𝑎 < 0 < 𝑏 ,
given that 𝑏 > 0 for all 𝑏 ∈ 𝐵. Thus 𝑎 < 𝑏.

• 𝑎 ∈ 𝐴2: Therefore 𝑎 ≥ 0 and 𝑎2 < 2. In particular

𝑎2 < 2 < 𝑏2 ,
since 𝑏2 > 2 for all 𝑏 ∈ 𝐵. In particular

𝑎2 < 𝑏2 .
Since 𝑏 > 0 for all 𝑏 ∈ 𝐵, from the above inequality we infer 𝑎 < 𝑏, concluding.

Step 2. (𝐴, 𝐵) has no separator :
Suppose by contradiction that (𝐴, 𝐵) admits a separator

𝐿 ∈ ℚ .
By definition this means

𝑎 ≤ 𝐿 ≤ 𝑏 , ∀𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵 . (3.6)
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Since
𝐿 ∈ ℚ , ℚ = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ ,

then either 𝐿 ∈ 𝐴 or 𝐿 ∈ 𝐵. We will see that both these possibilities lead to a contradiction:
Case 1: 𝐿 ∈ 𝐴.
By (3.6) we know that

𝑎 ≤ 𝐿 , ∀ 𝑎 ∈ 𝐴 . (3.7)

In particular the above implies
𝐿 ≥ 0 (3.8)

since 0 ∈ 𝐴. Therefore we must have 𝐿 ∈ 𝐴2, that is,

𝐿 ≥ 0 and 𝐿2 < 2 . (3.9)

Set
𝐿̃ ∶= 𝐿 + 1

𝑛
for 𝑛 ∈ ℕ, 𝑛 ≠ 0 to be chosen later. Clearly we have

𝐿̃ ∈ ℚ and 𝐿 < 𝐿̃ . (3.10)

From (3.8) and (3.10) we have also
𝐿̃ > 0 . (3.11)

We now want to show that there is a choice of 𝑛 such that 𝐿̃2 < 2, which will lead to a contra-
diction. Indeed, we can estimate

𝐿̃2 = (𝐿 + 1
𝑛)

2

= 𝐿2 + 1
𝑛2 + 2𝐿𝑛

< 𝐿2 + 1
𝑛 + 2𝐿𝑛 (using 1

𝑛 < 1
𝑛2 )

= 𝐿2 + 2𝐿 + 1
𝑛 .

If we now impose that

𝐿2 + 2𝐿 + 1
𝑛 < 2 ,

we can rearrange the above and obtain

𝑛(2 − 𝐿2) > 2𝐿 + 1 .
Now note that 𝐿2 < 2 by assumption (3.9). Thus we can divived by (2 − 𝐿2) and obtain

𝑛 > 2𝐿 + 1
2 − 𝐿2 .
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Therefore we have just shown that

𝑛 > 2𝐿 + 1
2 − 𝐿2 ⟹ 𝐿̃2 < 2 .

Together with (3.11) this implies 𝐿̃ ∈ 𝐴. Therefore we have

𝐿̃ ≤ 𝐿
by (3.7). On the other hand it also holds

𝐿̃ > 𝐿
by (3.10), and therefore we have a contradiction. Thus 𝐿 ∉ 𝐴.
Case 2: 𝐿 ∈ 𝐵.
As 𝐿 ∈ 𝐵, we have by definition

𝐿 > 0 , 𝐿2 > 2 . (3.12)

Moreover since 𝐿 is a separator, see (3.6), in particular

𝐿 ≤ 𝑏 , ∀ 𝑏 ∈ 𝐵 . (3.13)

Define now
𝐿̃ ∶= 𝐿 − 1

𝑛
with 𝑛 ∈ ℕ, 𝑛 ≠ 0 to be chosen later. Clearly we have

𝐿̃ ∈ ℚ , 𝐿̃ < 𝐿 . (3.14)

We now show that 𝑛 can be chosen so that 𝐿̃ ∈ 𝐵. Indeed

𝐿̃2 = (𝐿 − 1
𝑛)

2

= 𝐿2 + 1
𝑛2 − 2𝐿𝑛

> 𝐿2 − 1
𝑛2 − 2𝐿𝑛 (using 1

𝑛2 > − 1
𝑛2 )

> 𝐿2 − 1
𝑛 − 2𝐿𝑛 (using − 1

𝑛2 > −1
𝑛)

= 𝐿2 − 1 + 2𝐿
𝑛 .

Now we impose

𝐿2 − 1 + 2𝐿
𝑛 > 2

which is equivalent to
𝑛(𝐿2 − 2) > 1 + 2𝐿 .
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Since we are assuming 𝐿 ∈ 𝐵, then 𝐿2 > 2, see (3.12). Therefore we can divide by (𝐿2 − 2) and
get

𝑛 > 1 + 2𝐿
𝐿2 − 2 .

In total, we have just shown that

𝑛 > 1 + 2𝐿
𝐿2 − 2 ⟹ 𝐿̃2 > 2 ,

proving that 𝐿̃ ∈ 𝐵. Therefore by (3.13) we get

𝐿 ≤ 𝐿̃ .
This contradicts (3.14).
Conclusion:
We have seen that assuming that (𝐴, 𝐵) has a separator 𝐿 ∈ ℚ leads to a contradiction. Thus the
cut (𝐴, 𝐵) has no separator.

Remark 3.24

The above proof is also suggesting the following observations:

• The set
𝐴 = (−∞, √2) ∩ ℚ

does not admit a largest element in ℚ
• The set

𝐵 = (√2,∞) ∩ ℚ
does not admit a lowest element in ℚ.

It turns out that the largest and lowest element play a crucial role in analysis. We will give
precise definitions in the next section.

3.4 Supremum and infimum

A crucial definition in Analysis is the one of supremum or infimum of a set. This is also another way
of studying the gaps of ℚ.
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Example 3.25: Intuition about supremum and infimum

Consider the set
𝐴 = [0, 1) ∩ ℚ .

Intuitively, we understand that 𝐴 is bounded, i.e. not infinite. We also see that

• 0 is the lowest element of 𝐴
• 1 is the highest element of 𝐴

However we see that 0 ∈ 𝐴 while 1 ∉ 𝐴. We will see that

• 0 can be defined as the infimum and minimum of 𝐴.
• 1 can be defined as the supremum, but not maximum, of 𝐴.

3.4.1 Upper bound, supremum, maximum

We start by defining the supremum. First we need the notion of upper bound of a set. In the following
we assume that (𝐾, +, ⋅, ≤) is an ordered field.

Definition 3.26: Upper bound and bounded above

Let 𝐴 ⊆ 𝐾 :

1. We say that 𝑏 ∈ 𝐾 is an upper bound for 𝐴 if

𝑎 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 .
2. We say that 𝐴 is bounded above if there exists and upper bound 𝑏 ∈ 𝐾 for 𝐴.

Definition 3.27: Supremum

Let 𝐴 ⊆ 𝐾 . A number 𝑠 ∈ 𝐾 is called least upper bound or supremum of 𝐴 if:

1. 𝑠 is an upper bound for 𝐴,
2. 𝑠 is the smallest upper bound of 𝐴, that is,

If 𝑏 ∈ 𝐾 is upper bound for 𝐴 then 𝑠 ≤ 𝑏 .
If it exists, the supremum is denoted by

𝑠 ∶= sup 𝐴 .
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Remark 3.28

Note that if a set 𝐴 ⊆ 𝐾 in NOT bounded above, then the supremum does not exist, as there
are no upper bounds of 𝐴.

Proposition 3.29: Uniqueness of the supremum

Let 𝐴 ⊆ 𝐾 . If sup𝐴 exists, then it is unique.

Proof

Suppose there exist 𝑠1, 𝑠2 ∈ 𝐾 such that

𝑠1 = sup𝐴, 𝑠2 = sup𝐴 .
Then:

• Since 𝑠2 = sup𝐴, in particular 𝑠2 is an upper bound for 𝐴. Since 𝑠1 = sup𝐴 then 𝑠1 is the
lowest upper bound. Thus we get

𝑠1 ≤ 𝑠2 .
• Exchanging the roles 𝑠1 and 𝑠2 in the above reasoning we also get

𝑠2 ≤ 𝑠1 .
This shows 𝑠1 = 𝑠2.

Warning

It could happen that:

• A set can have infinite upper bounds,
• The supremum does not belong to the set.

For example
𝐴 = [0, 1) ∩ ℚ

has for upper bounds all the numbers 𝑏 ∈ ℚ with 𝑏 > 1. Moreover one can show that

sup𝐴 = 1 ,
and so

sup𝐴 ∉ 𝐴 .
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Warning

The supremum does not exist in general. For example let

𝐴 = [0, √2) ∩ ℚ .
We will show that sup𝐴 does not exist in ℚ. Indeed we will have that

sup𝐴 = √2 ∈ ℝ .

Figure 3.4: Supremum and upper bounds of a set 𝐴 in the field 𝐾

Definition 3.30: Maximum

Let 𝐴 ⊆ 𝐾 . A number 𝑀 ∈ 𝐾 is called the maximum of 𝐴 if:

𝑀 ∈ 𝐴 and 𝑎 ≤ 𝑀 , ∀𝑎 ∈ 𝐴 .
If it exists, we denote the maximum by

𝑀 = max𝐴 .

Proposition 3.31: Relationship between Max and Sup

Let 𝐴 ⊆ 𝐾 . If the maximum of 𝐴 exists, then also the supremum exists, and

sup𝐴 = max𝐴 .

Proof

Let
𝑀 = max𝐴 .

Then:

• By definition we have 𝑀 ∈ 𝐴 and

𝑎 ≤ 𝑀 , ∀ 𝑎 ∈ 𝐴 .
In particular the above tells us that 𝑀 is an upper bound of 𝐴.
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• We claim that 𝑀 is the least upper bound. Indeed, suppose 𝑏 is an upper bound of 𝐴, that
is,

𝑎 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 .
In particular, since 𝑀 ∈ 𝐴, by the above condition we have

𝑀 ≤ 𝑏 .
Therefore 𝑀 is the least upper bound of 𝐴, meaning that 𝑀 = sup𝐴.

Warning

The converse of the above statement is false: In general the sup might exist while the max does
not. For example

𝐴 = [0, 1) ∩ ℚ
is such that

sup𝐴 = 1
but max𝐴 does not exist. Instead for the set

𝐵 = [0, 1] ∩ ℚ
we have that

max𝐴 = sup𝐴 = 1 .

3.4.2 Lower bound, infimum, minimum

We now introduce the definitions of lower bound, infimum, minimum. These are the counterpart
of upper bound, supremum and maximum, respectively. In the following (𝐾, +, ⋅, ≤) is an ordered
field.

Definition 3.32: Lower bound, bounded below, infimum, minimum

Let 𝐴 ⊆ 𝐾 :

1. We say that 𝑙 ∈ 𝐾 is a lower bound for 𝐴 if

𝑙 ≤ 𝑎 , ∀ 𝑎 ∈ 𝐴 .

2. We say that 𝐴 is bounded below if there exists a lower bound 𝑙 ∈ 𝐾 for 𝐴.

3. We say that 𝑖 ∈ 𝐾 is the greatest lower bound or infimum of 𝐴 if:
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• 𝑖 is a lower bound for 𝐴,
• 𝑖 is the largest lower bound of 𝐴, that is,

If 𝑙 ∈ 𝐾 is a lower bound for 𝐴 then 𝑙 ≤ 𝑖 .
If it exists, the infimum is denoted by

𝑖 = inf𝐴 .
4. We say that 𝑚 ∈ 𝐾 is the minimum of 𝐴 if:

𝑚 ∈ 𝐴 and 𝑚 ≤ 𝑎 , ∀𝑎 ∈ 𝐴 .
If it exists, we denote the minimum by

𝑚 = min𝐴 .

Figure 3.5: Infimum and lower bounds of a set 𝐴 in the field 𝐾

Proposition 3.33

Let 𝐴 ⊆ 𝐾 :

1. If inf𝐴 exists, then it is unique.
2. If the minimum of 𝐴 exists, then also the infimum exists, and

inf𝐴 = min𝐴 .

The proof is similar to the ones of Propositions 3.29 and 2.42, and is left to the reader as an exercise.

Warning

It could happen that:

• A set has infinite lower bounds,
• The infimum does not belong to the set.

For example
𝐴 = (0, 1) ∩ ℚ

71



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

has for lower bounds all the numbers 𝑏 ∈ ℚ with 𝑏 < 1. Moreover we will show that

inf𝐴 = 0 ,
and so

inf𝐴 ∉ 𝐴 .

Warning

The infimum does not exist in general. For example let

𝐴 = (√2, 5] ∩ ℚ .
We will show that inf𝐴 does not exist in ℚ. Indeed we will have that

inf𝐴 = √2 ∈ ℝ .

Warning

In general the inf might exist while the min does not. For example

𝐴 = (0, 1) ∩ ℚ
is such that

inf𝐴 = 0
but min𝐴 does not exist. Instead for the set

𝐵 = [0, 1] ∩ ℚ
we have that

inf𝐴 = min𝐴 = 0 .

Proposition 3.34

Let 𝐴 ⊆ 𝐾 . If inf𝐴 and sup𝐴 exist, then

inf𝐴 ≤ 𝑎 ≤ sup𝐴 , ∀ 𝑎 ∈ 𝐴 .

The proof is trivial, and is left as an exercise. We now have a complete picture about supremum and
infimum, see Figure 3.6.

We conclude with another simple, but useful proposition. The proof is again left to the reader.
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Figure 3.6: Supremum, upper bounds, infimum and lower bounds of a set 𝐴 in 𝐾

Proposition 3.35: Relationship between sup and inf

Let 𝐴 ⊆ 𝐾 . Define
−𝐴 ∶= {−𝑎 ∶ 𝑎 ∈ 𝐴} .

They hold:

1. If sup𝐴 exists, then inf𝐴 exists and

inf(−𝐴) = − sup𝐴 .
2. If inf𝐴 exists, then sup𝐴 exists and

sup(−𝐴) = − inf𝐴 .

3.5 Completeness

In this section (𝐾, +, ⋅, ≤) denotes an ordered field.

Question 3.36

Let 𝐴 ⊆ 𝐾 be non-empty and bounded above. Does

sup𝐴
always exist?

The answer to the above question isNO. Like we did with the Cut Property, the counterexample can
be found in the set of rational numbers ℚ. A set bounded above for which the supremum does nor
exist is, for example,

𝐴 = [0, √2) ∩ ℚ . (3.15)

Theorem 3.37

There exists a set 𝐴 ⊆ ℚ such that

• 𝐴 is non-empty,

73



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

• 𝐴 is bounded above,
• sup𝐴 does not exist in ℚ.

The proof uses similar ideas to those employed in demonstrating that ℚ does not satisfy the Cut
Property, see the proof of Theorem 3.22.

Proof

Define the set
𝐴 = {𝑞 ∈ ℚ ∶ 𝑞 ≥ 0 , 𝑞2 < 2} .

Notice that 𝐴 formally coincides with the set in (3.15).
Step 1. 𝐴 is bounded above.
Take 𝑏 ∶= 3. Then 𝑏 is an upper bound for 𝐴. Indeed by definition

𝑞2 < 2 , 𝑞 ≥ 0 , ∀ 𝑞 ∈ 𝐴 .
Therefore

𝑞2 < 2 < 9 ⟹ 𝑞2 < 9 ⟹ 𝑞 < 3 = 𝑏
for each 𝑞 ∈ 𝐴, showing that 𝑏 = 3 is an upper bound for 𝐴.
Step 2. The supremum of 𝐴 does not exist in ℚ.
Assume by contradiction that there exists

𝑠 = sup𝐴 ∈ ℚ
By definition it holds

𝑞 ≤ 𝑠 , ∀ 𝑞 ∈ 𝐴 (3.16)

𝑞 ≤ 𝑏 , ∀ 𝑞 ∈ 𝐴 ⟹ 𝑠 ≤ 𝑏 (3.17)

There are two possibilities: 𝑠 ∈ 𝐴 or 𝑠 ∉ 𝐴.
Case 1. If 𝑠 ∈ 𝐴, by definition of 𝐴 we have

𝑠 ≥ 0 , 𝑠2 < 2 . (3.18)

Define
̃𝑠 ∶= 𝑠 + 1

𝑛
with 𝑛 ∈ ℕ, 𝑛 ≠ 0 to be chosen later. Then

̃𝑠2 = (𝑠 + 1
𝑛)

2

= 𝑠2 + 1
𝑛2 + 2 𝑠𝑛

< 𝑠2 + 1
𝑛 + 2 𝑠𝑛 (using 1

𝑛 < 1
𝑛2 )

= 𝑠2 + 2𝑠 + 1
𝑛 .
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If we now impose that

𝑠2 + 2𝑠 + 1
𝑛 < 2 ,

we can rearrange the above and obtain

𝑛(2 − 𝑠2) > 2𝑠 + 1 .
Now note that 𝑠2 < 2 by assumption (3.18). Thus we can divide by (2 − 𝑠2) and obtain

𝑛 > 2𝑠 + 1
2 − 𝑠2 .

To summarize, we have just shown that

𝑛 > 2𝑠 + 1
2 − 𝑠2 ⟹ ̃𝑠2 < 2 .

Moreover ̃𝑠 ∶= (𝑠 + 1/𝑛) ∈ ℚ and
̃𝑠 > 𝑠 ≥ 0 ,

showing that
̃𝑠 ∈ 𝐴 .

Since 𝑠 = sup𝐴, we then have
̃𝑠 ≤ 𝑠 .

However
̃𝑠 ∶= 𝑠 + 1

𝑛 > 𝑠 ,
yielding a contradiction. Thus 𝑠 ∈ 𝐴 is not possible.
Case 2. Assume 𝑠 ∉ 𝐴. Since 𝑠 = sup𝐴 and 0 ∈ 𝐴, we deduce that

𝑠 > 0 .
In particular 𝑠 ∉ 𝐴 implies that

𝑠2 > 2 . (3.19)

Define
̃𝑠 ∶= 𝑠 − 1

𝑛 .
We have

̃𝑠2 = (𝑠 − 1
𝑛)

2

= 𝑠2 + 1
𝑛2 − 2 𝑠𝑛

> 𝑠2 − 1
𝑛2 − 2 𝑠𝑛 (using 1

𝑛2 > − 1
𝑛2 )

> 𝑠2 − 1
𝑛 − 2 𝑠𝑛 (using − 1

𝑛2 > −1
𝑛)

= 𝑠2 − 1 + 2𝑠
𝑛 .
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Now we impose

𝑠2 − 1 + 2𝑠
𝑛 > 2

which is equivalent to
𝑛(𝑠2 − 2) > 1 + 2𝑠 .

By (3.19) we have 𝑠2 > 2. Therefore we can divide by (𝑠2 − 2) and get

𝑛 > 1 + 2𝑠
𝑠2 − 2 .

In summary, we have just shown that

𝑛 > 1 + 2𝑠
𝑠2 − 2 ⟹ ̃𝑠2 > 2 .

We also want to choose 𝑛 in such a way that

̃𝑠 > 0
This means

0 < ̃𝑠 = 𝑠 − 1
𝑛 ⟺ 𝑛 > 1

𝑠
Therefore

𝑛 > min {1 + 2𝑠
𝑠2 − 2 ,

1
𝑠 } ⟹ ̃𝑠 > 0 , ̃𝑠2 > 2

In particular ̃𝑠 ∉ 𝐴, and by definition of 𝐴 we have

̃𝑠 ≥ 𝑞 , ∀ 𝑞 ∈ 𝐴 .
Indeed, assume ̃𝑠 < 𝑞 for some 𝑞 ∈ 𝐴. Since ̃𝑠 > 0, we can take the squares and
deduce that ̃𝑠2 < 𝑞2 < 2, which is a contradiction.

By definition we have ̃𝑠 = (𝑠 − 1/𝑛) ∈ ℚ. Therefore ̃𝑠 is an upper bound for 𝐴 in ℚ. Since
𝑠 = sup𝐴 is the smallest upper bound, see (3.17), it follows that

𝑠 ≤ ̃𝑠 .
However

̃𝑠 ∶= 𝑠 − 1
𝑛 < 𝑠 ,

obtaining a contradiction. Then 𝑠 ∉ 𝐴.
Conclusion. We have assumed by contradiction that 𝑠 = sup𝐴 exists in ℚ. In this case either
𝑠 ∈ 𝐴 or 𝑠 ∉ 𝐴. In both instances we found a contradiction. Therefore sup𝐴 does not exist in ℚ.

The above theorem shows that the supremumdoes not necessarily exist. What about the infimum?
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Question 3.38

Let 𝐴 ⊆ 𝐾 be non-empty and bounded below. Does

inf𝐴
always exist?

The answer to the above question is again NO. A set bounded below for which the infimum does
nor exist is, for example,

𝐴 = (√2, 10] ∩ ℚ .
The proof of this fact is, of course, very similar to the one of Theorem 3.37, and is therefore omitted.

In conclusion, infimum and supremum do not exist in general. The fields for which all bounded sets
admit supremum or infimum are called complete.

Definition 3.39: Completeness

Let (𝐾, +, ⋅, ≤) be an ordered field. We say that 𝐾 is complete if the following property holds:

• (AC) For every 𝐴 ⊆ 𝐾 non-empty and bounded above

sup𝐴 ∈ 𝐾 .

In particular, Theorem 3.37 can be re-stated as follows.

Theorem 3.40

ℚ is not complete. In particular, there exists a set 𝐴 ⊆ ℚ such that

• 𝐴 is non-empty,
• 𝐴 is bounded above,
• sup𝐴 does not exist in ℚ.

One of such sets is, for example,

𝐴 = {𝑞 ∈ ℚ ∶ 𝑞 ≥ 0 , 𝑞2 < 2} .

Notation 3.41

1. Property (AC) is called Axiom of Completeness

2. If 𝐾 is an ordered field in which (AC) holds, then 𝐾 is called a complete ordered field

Notice that if the Axiom of Completeness holds, then also the infimum exists. This is shown in
the following proposition.

77



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

Proposition 3.42

Let (𝐾, +, ⋅, ≤) be a complete ordered field. Suppose that 𝐴 ⊆ 𝐾 is non-empty and bounded
below. Then

inf𝐴 ∈ 𝐾 .

Proof

Suppose that 𝐴 ⊆ 𝐾 is non-empty and bounded below. Then

−𝐴 ∶= {−𝑎 ∶ 𝑎 ∈ 𝐴}
is non-empty and bounded above. By completeness we have that sup(−𝐴) exists in 𝐾 . From
Proposition 2.46 we deduce that inf𝐴 exists in 𝐾 , with

inf𝐴 = − sup(−𝐴) .

Example 3.43

We have seen that (ℚ, +, ⋅, ≤) is an ordered field. However ℚ is not complete, as proven in
Theorem 3.37.

3.6 Equivalence of Completeness and Cut Property

We can show that Completeness is equivalent to the Cut Property.

Theorem 3.44: Equivalence of Cut Property and Completeness

Let (𝐾, +, ⋅, ≤) be an ordered field. They are equivalent:

1. 𝐾 has the Cut Property
2. 𝐾 is Complete

Remark 3.45: Ideas for proving Theorem 3.44

The proof of Theorem 3.44 is rather long, but the ideas are simple:
Step 1. Cut Property ⟹ Completeness.
Suppose 𝐾 has the Cut Property. To prove that 𝐾 is Complete, we need to:

1. Consider an arbitrary set 𝐴 ⊆ 𝐾 such that 𝐴 ≠ ∅ and 𝐴 is bounded above.

2. Show that 𝐴 has a supremum.
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To achieve this, consider the set of upper bounds of 𝐴
𝐵 ∶= {𝑏 ∈ 𝐾 ∶ 𝑏 ≥ 𝑎 , ∀𝑎 ∈ 𝐴} ,

We can show that the pair
(𝐵𝑐 , 𝐵)

is a Cut of 𝐾 . As 𝐾 has the Cut Property, then there exists 𝑠 ∈ 𝐾 separator of (𝐵𝑐 , 𝐵). We will
show that such separator 𝑠 is the supremum of 𝐴, i.e.,

𝑠 = sup𝐴 .
This proves completeness of 𝐾 . See Figure 3.7 for a schematic picture of the above construction.
Step 2. Completeness ⟹ Cut Property.
Conversely, suppose that 𝐾 is Complete. To prove that 𝐾 has the Cut Property, we need to:

1. Consider a cut (𝐴, 𝐵) of 𝐾 .
2. Show that (𝐴, 𝐵) has a separator 𝑠 ∈ 𝐾 .

This implication is easier. Indeed, since 𝐴 is non-empty and bounded above (by the elements
of 𝐵), by Completeness there exists

𝑠 ∶= sup𝐴 ∈ 𝐾 .
We will show that 𝑠 is a separator for the cut (𝐴, 𝐵), and therefore 𝐾 has the Cut Property. See
Figure 3.8 for a schematic picture of the above construction.

Figure 3.7: Let 𝑠 be the separator of the cut (𝐵𝑐 , 𝐵), with 𝐵 the set of upper bounds of 𝐴. Then
𝑠 = sup𝐴.

Figure 3.8: Let (𝐴, 𝐵) be a cut of 𝐾 and let 𝑠 = sup𝐴. Then 𝑠 is the separator of the cut (𝐴, 𝐵).

Keeping the above ideas in mind, let us proceed with the proof.
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Proof: Proof of Theorem 3.44

Step 1. Cut Property ⟹ Completeness.
We need to prove that 𝐾 is complete. To this end, consider 𝐴 ⊆ 𝐾 non-empty and bounded
above. Define the set of upper bounds of 𝐴:

𝐵 ∶= {𝑏 ∈ 𝐾 ∶ 𝑏 ≥ 𝑎 , ∀𝑎 ∈ 𝐴} .
Claim. The pair (𝐵𝑐 , 𝐵) is a cut of 𝐾 .
Proof of Claim. We have to prove two points:

• (𝐵𝑐 , 𝐵) forms a partition of 𝐾 .

Indeed, we have 𝐵 ≠ ∅, since 𝐴 is bounded above. Further, we have 𝐵𝑐 ≠ ∅, since
𝐴 is non-empty. Thus

𝐾 = 𝐵𝑐 ∪ 𝐵 , 𝐵𝑐 ∩ 𝐵 = ∅ .
Then (𝐵𝑐 , 𝐵) is a partition of 𝐾 .

• We have
𝑥 ≤ 𝑦 , ∀ 𝑥 ∈ 𝐵𝑐 , ∀ 𝑦 ∈ 𝐵 . (3.20)

To show the above, let 𝑥 ∈ 𝐵𝑐 and 𝑦 ∈ 𝐵. By definition of 𝐵 we have that elements
of 𝐵𝑐 are not upper bounds of 𝐴. Therefore 𝑥 is not an upper bound. This means
there exists 𝑎̃ ∈ 𝐴 which is larger than 𝑥 , that is,

𝑥 ≤ 𝑎̃ .
Since 𝑦 ∈ 𝐵, then 𝑦 is an upper bound for 𝐴, so that

𝑎 ≤ 𝑦 , ∀𝑎 ∈ 𝐴 .
Therefore

𝑥 ≤ 𝑎̃ ≤ 𝑦 ,
concluding (3.20).

Thus (𝐵𝑐 , 𝐵) is a cut of 𝐾 and the claim is proven.
Since (𝐵𝑐 , 𝐵) is a cut of 𝐾 , by the Cut Property there exists a separator 𝑠 ∈ 𝐾 such that

𝑥 ≤ 𝑠 ≤ 𝑦 , ∀ 𝑥 ∈ 𝐵𝑐 , ∀ 𝑦 ∈ 𝐵 . (3.21)

Claim. 𝑠 is an upper bound for 𝐴.
Proof of Claim.
Suppose by contradiction that 𝑠 is not an upper bound for 𝐴. Therefore by definition of upper
bound, there exists 𝑎̃ ∈ 𝐴 such that

𝑠 < 𝑎̃ .
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Consider the mid-point between 𝑠 and 𝑎̃, that is,

𝑚 ∶= 𝑠 + 𝑎̃
2 ∈ 𝐾 .

Since 𝑚 is the mid-point between 𝑠 and 𝑎̃, and 𝑠 < 𝑎̃, it holds
𝑠 < 𝑚 < 𝑎̃ .

Indeed, since 𝑠 < 𝑎̃ then

𝑠 = 2𝑠
2 < 𝑠 + 𝑎̃

2 < 2𝑎̃
2 = 𝑎̃ .

In particular the above tells us that 𝑚 is not an upper bound for 𝐴, given that 𝑎̃ ∈ 𝐴 and 𝑚 < 𝑎̃.
Therefore 𝑚 ∈ 𝐵𝑐 , by definition of 𝐵𝑐 . Therefore(3.21) implies

𝑚 ≤ 𝑠 ,
which contradicts 𝑠 < 𝑚. Hence 𝑠 is an upper bound of 𝐴, concluding the proof of Claim.
Conclusion. We have shown that 𝑠 is an upper bound of 𝐴. Condition
(3.21) tells us that

𝑠 ≤ 𝑦 , ∀𝑦 ∈ 𝐵 .
Recalling that 𝐵 is the set of upper bounds of 𝐴, this means that 𝑠 is the smallest upper bound
of 𝐴, that is,

𝑠 = sup𝐴 ∈ 𝐾 .
Step 2. Completeness ⟹ Cut Property.
Suppose 𝐾 is complete. We need to show that 𝐾 has the Cut Property. Therefore assume (𝐴, 𝐵)
is a cut of 𝐾 , that is,

𝐴 ≠ ∅ , 𝐵 ≠ ∅ ,
𝐾 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ ,
𝑎 ≤ 𝑏 , ∀𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵 . (3.22)

Since 𝐵 ≠ ∅, from (3.22) it follows that 𝐴 is bounded above: indeed, every element of 𝐵 is an
upper bound for 𝐴, thanks to (3.22). Since 𝐴 ≠ ∅, by the Axiom of Completeness we have

𝑠 = sup𝐴 ∈ 𝐾 .
In particular, by definition of supremum, we have

𝑎 ≤ 𝑠 , ∀ 𝑎 ∈ 𝐴 .
Let now 𝑏 ∈ 𝐵 be arbitrary. From (3.22) we have that

𝑎 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 . (3.23)
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Therefore 𝑏 is an upper bound of 𝐴. Since 𝑠 = sup𝐴, we have that 𝑠 is the smallest upper bound,
and so

𝑠 ≤ 𝑏 .
Given that 𝑏 ∈ 𝐵 was arbitrary, it actually holds

𝑠 ≤ 𝑏 , ∀ 𝑏 ∈ 𝐵 . (3.24)

From (3.23) and (3.24) we therefore have

𝑎 ≤ 𝑠 ≤ 𝑏 , ∀𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵 ,
showing that 𝑠 is a separator of (𝐴, 𝐵). Thus 𝐾 has the Cut Property.

3.7 Axioms of Real Numbers

We now have all the key elements to introduce the Real Numbers ℝ. These ingredients are:

• Definition of ordered field,
• The Cut Property or Axiom of Completeness.

The definition of ℝ is given in an axiomatic way.

Definition 3.46: System of Real Numbers ℝ

A system of Real Numbers is a set ℝ with two operations + and ⋅, and a total order relation ≤,
such that

• (ℝ, +, ⋅, ≤) is an ordered field

• ℝ sastisfies the Axiom of Completeness

For reader’s convenience we explicitly state the above mentioned properties.

1. There is an operation + of addition on ℝ
+ ∶ ℝ × ℝ → ℝ , (𝑥, 𝑦) ↦ 𝑥 + 𝑦

The addition satisifes: ∀ 𝑥, 𝑦 , 𝑧 ∈ ℝ
• (A1) Commutativity and Associativity:

𝑥 + 𝑦 = 𝑦 + 𝑥
(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
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• (A2) Additive Identity: ∃ 0 ∈ ℝ s.t.

𝑥 + 0 = 0 + 𝑥 = 𝑥
• (A3) Additive Inverse: ∃ (−𝑥) ∈ ℝ s.t.

𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0
2. There is an operation ⋅ of multiplication on ℝ

⋅ ∶ ℝ × ℝ → ℝ , (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 = 𝑥𝑦
The multiplication satisifes: ∀ 𝑥, 𝑦 , 𝑧 ∈ ℝ

• (M1) Commutativity and Associativity:

𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥
(𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧)

• (M2) Multiplicative Identity: ∃ 1 ∈ ℝ s.t.

𝑥 ⋅ 1 = 1 ⋅ 𝑥 = 𝑥
• (M3) Multiplicative Inverse: If 𝑥 ≠ 0 , ∃ 𝑥−1 ∈ ℝ s.t.

𝑥 ⋅ 𝑥−1 = 𝑥−1 ⋅ 𝑥 = 1
3. There is a relation ≤ of total order on ℝ. The order satisfies: ∀ 𝑥, 𝑦 , 𝑧 ∈ ℝ

• (O1) Reflexivity:
𝑥 ≤ 𝑥

• (O2) Antisymmetry:

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 ⟹ 𝑥 = 𝑦
• (O3) Transitivity:

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 ⟹ 𝑥 = 𝑧
• (O4) Total order:

𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
4. The operations + and ⋅, and the total order ≤, are related by the following properties:

∀𝑥, 𝑦 , 𝑧 ∈ ℝ
• (AM) Distributive: Relates addition and multiplication via

𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧
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• (AO) Relates addition and order with the requirement:

𝑥 ≤ 𝑦 ⟹ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧
• (MO) Relates multiplication and order with the requirement:

𝑥 ≥ 0, 𝑦 ≥ 0 ⟹ 𝑥 ⋅ 𝑦 ≥ 0
5. Axiom of Completeness:

• (AC) For every 𝐴 ⊆ ℝ non-empty and bounded above, there exists

sup𝐴 ∈ ℝ

Remark 3.47

Since Axiom of Completeness and Cut Property are equivalent by Theorem 3.44, one can
replace the Axiom of Completeness in Definition 3.46 Point 5 with:

5. Cut Property holds:

• (CP) Every cut (𝐴, 𝐵) of ℝ admits a separator 𝑠 ∈ ℝ s.t.

𝑎 ≤ 𝑠 ≤ 𝑏 , ∀ 𝑎 ∈ 𝐴 , ∀ 𝑏 ∈ 𝐵

Notation 3.48

For 𝑥 ∈ ℝ, 𝑥 ≠ 0, the multiplicative inverse is also denoted by

𝑥−1 ∶= 1
𝑥 .

Remark 3.49

Recall that

• (𝐾, +, ⋅) is a field if they hold:

(A1)-(A3), (M1)-(M3), (AM)

• (𝐾, +, ⋅, ≤) is an ordered field if they hold

(A1)-(A3), (M1)-(M3), (O1)-(O4) ,(AM), (AO), (MO)

In particular we have that
(ℝ, +, ⋅, ≤)
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is a complete ordered field: that is, an ordered field in which the Cut Property (CP) or
Axiom of Completeness (AC) hold.

Question 3.50

There are two main questions here:

1. We have only postulated the existence of ℝ. Does such complete ordered field actually
exist?

2. Is ℝ the only complete ordered field?

The answer to both questions is YES:

1. There are several equivalent methods for explicitly constructing the system ℝ. One such
method uses Dedekind cuts. The interested reader can refer to the Appendix in Chapter
1 of [3], or Chapter 8.6 in [1].

2. It can be shown that (ℝ, +, ⋅, ≤) is the only complete ordered field. Uniqueness is intended
in the following sense: if (𝐾, +, ⋅, ≤) is another complete ordered field, then 𝐾 looks like ℝ.
Mathematically this means that there exists an invertible mapΨ ∶ ℝ → 𝐾 , called isomorphism
of fields, which preserves the operations +, ⋅ and the order ≤.

In particular the following Theorem can be proven.

Theorem 3.51: Existence of the Real Numbers

There exists a complete ordered field (ℝ, +, ⋅, ≤) called the System of Real Numbers. Moreover
ℝ is unique, up to isomorphism of fields.

3.8 Special subsets of ℝ
In Definition 3.46, we introduced ℝ as a complete ordered field, doing so axiomatically and in a non-
constructive manner. But what about the setsℕ,ℤ, ℚ now? Are they still well-defined? Specifically,
can we say that

ℕ ,ℤ ,ℚ ⊆ ℝ ?
The definitions we provided in Chapter 1 for ℕ, ℤ, and ℚ are not directly linked to the real number
system ℝ we just introduced. To address this issue, we will need to define new sets

ℕℝ, ℤℝ , ℚℝ
from scratch, relying solely on the axioms of ℝ. The subscript ℝ is used here to clearly distinguish
these new sets from the original ones.
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3.8.1 Natural numbers

Let us start with the definition of ℕℝ. We would like ℕℝ to be

ℕℝ = {1, 2, 3, …} .
We are denoting the above numbers with bold symbols in order to distinguish them from the ele-
ments of ℝ. The key property that we would like ℕℝ to have is the following:

Every n ∈ ℕℝ has a successor (n + 1) ∈ ℕℝ .
How do we ensure this property? We could start by defining

1 ∶= 1 ,
with 1 the neutral element of themultiplication inℝ, which exists by the field axiom (M2) inDefintion
3.46. We could then define 2 by setting

2 ∶= 1 + 1 .
We need a formal definition to capture this idea.

Definition 3.52: Inductive set

Let 𝑆 ⊆ ℝ. We say that 𝑆 is an inductive set if they are satisfied:

• 1 ∈ 𝑆,
• If 𝑥 ∈ 𝑆, then (𝑥 + 1) ∈ 𝑆.

Note that in the above definition we just used:

• The existence of the neutral element 1, given by axiom (M2).
• The operation of sum in ℝ, which is again given as an axiom.

Example 3.53

Question. Prove the following:

1. ℝ is an inductive set.

2. The set 𝐴 = {0, 1} is not an inductive set.

Solution.

1. We have that 1 ∈ ℝ by axiom (M2). Moreover (𝑥 + 1) ∈ ℝ for every 𝑥 ∈ ℝ, by definition of
sum +.

2. We have 1 ∈ 𝐴, but (1 + 1) ∉ 𝐴, since 1 + 1 ≠ 0.
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Since ℝ is itself an inductive set, it is clear that the definition of inductive set is not sufficient to fully
describe our intuitive idea of ℕℝ. The right way to define ℕℝ is as follows:

ℕℝ is the smallest inductive subset of ℝ .
To make the above definition precise, we first need a Proposition.

Proposition 3.54

Let ℳ be a collection of inductive subsets of ℝ. Then
𝑆 ∶= ⋂

𝑀∈ℳ
𝑀

is an inductive subset of ℝ.

Proof

We have to show that the two properties of inductive sets hold for 𝑆:
1. We have 1 ∈ 𝑀 for every 𝑀 ∈ ℳ, since these are inductive sets. Thus

1 ∈ ⋂
𝑀∈ℳ

𝑀 = 𝑆 .

2. Suppose that 𝑥 ∈ 𝑆. By definition of 𝑆 this implies that 𝑥 ∈ 𝑀 for all 𝑀 ∈ ℳ. Since 𝑀 is
an inductive set, then (𝑥 + 1) ∈ 𝑀 . Therefore (𝑥 + 1) ∈ 𝑀 for all 𝑀 ∈ ℳ, showing that
(𝑥 + 1) ∈ 𝑆.

Therefore 𝑆 is an inductive set.

We are now ready to define the natural numbers ℕℝ.

Definition 3.55: Set of Natural Numbers

Let ℳ be the collection of all inductive subsets of ℝ. We define the set of natural numbers in
ℝ as

ℕℝ ∶= ⋂
𝑀∈ℳ

𝑀 .

Therefore ℕℝ is the intersection of all the inductive subsets of ℝ. From this definition it follows that
ℕℝ is the smallest inductive subset of ℝ, as shown in the following Proposition.

Proposition 3.56: ℕℝ is the smallest inductive subset of ℝ

Let 𝐶 ⊆ ℝ be an inductive subset. Then

ℕℝ ⊆ 𝐶 .
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In other words, ℕℝ is the smallest inductive set in ℝ.

Proof

Let ℳ be the collection of all inductive subsets of ℝ. By definition

ℕℝ = ⋂
𝑀∈ℳ

𝑀 .

Let 𝑥 ∈ ℕℝ. Then 𝑥 ∈ 𝑀 for all 𝑀 ∈ ℳ. Since 𝐶 ∈ ℳ then 𝑥 ∈ 𝐶 . This shows ℕℝ ⊆ 𝐶 .

The definition of ℕℝ guarantees that all numbers in ℕℝ are larger than 1.
Theorem 3.57

Let 𝑥 ∈ ℕℝ. Then
𝑥 ≥ 1 .

Proof

Define the set
𝐶 ∶= {𝑥 ∈ ℝ ∶ 𝑥 ≥ 1} .

We have that 𝐶 is an inductive subset of ℝ.
By definition 1 ∈ 𝐶 . Suppose now that 𝑥 ∈ 𝐶 , so that 𝑥 ≥ 1. Since 1 ≥ 0 as a
consequence of the field axioms, we deduce that

𝑥 + 1 ≥ 𝑥 + 0 = 𝑥 ≥ 1 ,
showing that 𝑥 + 1 ≥ 1. Thus (𝑥 + 1) ∈ 𝐶 .

By Proposition 3.56 we conclude that
ℕℝ ⊆ 𝐶 ,

showing that 𝑥 ≥ 1 for all 𝑥 ∈ ℕℝ.

Notation 3.58

We have just shown that all the numbers 𝑥 ∈ ℕℝ satisfy

𝑥 ≥ 1 .
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Moreover, by the fact that ℕℝ is an inductive set, we know that

1 + 1 ∈ ℕℝ ,
since 1 ∈ ℕℝ. We denote

2 ∶= 1 + 1 .
Similarly, we will have that

2 + 1 ∈ ℕℝ ,
since 2 ∈ ℕℝ. We denote

3 ∶= 2 + 1 .
In this way we give a name to all the numbers in ℕℝ.

3.8.2 Principle of induction

The Principle of Induction is a consequence of the definition of ℕℝ, see Definition 3.55, and of the
field axioms of ℝ in Definition 3.46.

Theorem 3.59: Principle of Induction

Let 𝛼(𝑛) be a statement depending on 𝑛 ∈ ℕℝ. Assume that

1. 𝛼(1) is true.
2. If 𝛼(𝑛) is true then also 𝛼(𝑛 + 1) is true.

Then 𝛼(𝑛) is true for all 𝑛 ∈ ℕℝ.

Proof

Define the set
𝐶 ∶= {𝑥 ∈ ℕℝ ∶ 𝛼(𝑛) is true} .

We have that 𝐶 is an inductive subset of ℝ.
Indeed:

• 1 ∈ 𝐶 since 𝛼(1) is true by assumption.
• If 𝑛 ∈ 𝐶 then 𝛼(𝑛) is true. By assumption 𝛼(𝑛+1) is true. Therefore (𝑛+1) ∈ 𝐶 .

By Proposition 3.56 we conclude that
ℕℝ ⊆ 𝐶 .

As by definition 𝐶 ⊆ ℕℝ, we have proven that

ℕℝ = 𝐶 ,
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showing that 𝛼(𝑛) is true for all 𝑛 ∈ ℕℝ.

As a consequence of the principle of induction, we can prove that ℕℝ is closed under the field
operations of sum and multiplication.

Theorem 3.60

For all 𝑛, 𝑚 ∈ ℕℝ we have:

1. ℕℝ is closed under addition, that is,

𝑚 + 𝑛 ∈ ℕℝ .

2. ℕℝ is closed under multiplication, that is,

𝑚 ⋅ 𝑛 ∈ ℕℝ ,

3. If 𝑚 > 𝑛 there exists 𝑘 ∈ ℕℝ such that

𝑚 = 𝑛 + 𝑘 .

Proof

We only prove the first point, the other statements are left as an exercise. Fix𝑚 ∈ ℕℝ. We prove
that

𝑚 + 𝑛 ∈ ℕℝ , ∀ 𝑛 ∈ ℕℝ , (3.25)

by using induction.

• Induction base: We have 𝑚 + 1 ∈ ℕℝ, since 𝑚 ∈ ℕℝ and ℕℝ is an inductive set.
• Inductive hypothesis: Suppose 𝑚 + 𝑛 ∈ ℕℝ. Since ℕℝ is an inductive set, we have (𝑚 +
𝑛) + 1 ∈ ℕℝ. By associativity of the sum, see axiom (A1), we get

𝑚 + (𝑛 + 1) = (𝑚 + 𝑛) + 1 ∈ ℕℝ ,
which is the desired theis.

By the Induction Principle of Theorem 3.59 we conclude (3.25).

As a consequence of the above theorem, we see that the restriction of the operations of sum and
multiplication to ℕℝ are still binary operations:

+ ∶ ℕℝ × ℕℝ → ℕℝ , ⋅ ∶ ℕℝ × ℕℝ → ℕℝ .

Equipped with the above operations, ℕℝ satisfies the following properties.
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Theorem 3.61

(ℕℝ, +, ⋅, ≤) satisfies the following axioms from Definition 3.46:

• (A1).
• (M1), (M2).
• (O1)-(O4).
• (AM), (AO), (MO).

The proof is trivial, as it follows immediately from the inclusion of ℕℝ in ℝ.

3.8.3 Integers

We have seen in Theorem 3.60 that ℕℝ is closed under addition. However ℕℝ is not closed under
subtraction. We therefore define the set of integers ℤℝ in a way that we can perform subtraction
of any two natural numbers.

Definition 3.62: Set of Integers

The set of integers in ℝ is defined by

ℤℝ ∶= {𝑚 − 𝑛 ∶ 𝑛, 𝑚 ∈ ℕℝ} .

In the definition of ℤℝ we denote by −𝑛 the inverse of 𝑛 in ℝ, which exists by the field axiom (A3)
in Definition 3.46. The following characterization explains the relationship between ℤℝ and ℕℝ.

Theorem 3.63

It holds
ℤℝ = {−𝑛 ∶ 𝑛 ∈ ℕℝ} ∪ {0} ∪ ℕℝ .

Proof

Define the set
𝑀 ∶= {−𝑛 ∶ 𝑛 ∈ ℕℝ} ∪ {0} ∪ ℕℝ .

• 𝑀 ⊆ ℤℝ: Suppose 𝑚 ∈ 𝑀 . We have 3 cases:

– If 𝑚 ∈ {−𝑛 ∶ 𝑛 ∈ ℕℝ} then there exists 𝑛 ∈ ℕℝ such that 𝑚 = −𝑛. Thus
𝑚 = −𝑛 = 1 − (𝑛 + 1) ∈ ℤℝ ,

since 1 ∈ ℕℝ and 𝑛 + 1 ∈ ℕℝ because 𝑛 ∈ ℕℝ.
– If 𝑚 = 0 then

𝑚 = 0 = 1 − 1 ∈ ℤℝ ,
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as 1 ∈ ℕℝ.
– If 𝑚 ∈ ℕℝ then

𝑚 = (𝑚 + 1) − 1 ∈ ℤℝ ,
since 1 ∈ ℕℝ and 𝑚 + 1 ∈ ℕℝ, given that 𝑚 ∈ ℕℝ.

In all 3 cases we have shown that 𝑚 ∈ ℤℝ, proving that 𝑀 ⊆ ℤℝ.

• ℤℝ ⊆ 𝑀 : Let 𝑧 ∈ ℤℝ. Then 𝑧 = 𝑚 − 𝑛 for some 𝑛, 𝑚 ∈ ℕℝ. We have 3 cases:

– If 𝑚 = 𝑛 then

𝑧 = 𝑚 − 𝑛 = 𝑚 − 𝑚 (𝐴3)= 0 ∈ 𝑀 .
– If 𝑚 > 𝑛, by Theorem 3.60 there exists 𝑘 ∈ ℕℝ such that 𝑚 = 𝑘 + 𝑛. Therefore

𝑧 = 𝑚 − 𝑛 = (𝑘 + 𝑛) − 𝑛
(𝐴1)= 𝑘 + (𝑛 − 𝑛) (𝐴3)= 𝑘 + 0
(𝐴2)= 𝑘 ∈ 𝑀 ,

since 𝑘 ∈ ℕℝ.
– If 𝑚 < 𝑛, by Theorem 3.60 there exists 𝑘 ∈ ℕℝ such that 𝑛 = 𝑘 + 𝑚. Therefore

𝑧 = 𝑚 − 𝑛 = −𝑘 ∈ 𝑀 ,
since 𝑘 ∈ ℕℝ, where again we have used (implicitly) the field axioms (A1), (A2) and
(A3).

Therefore ℤℝ = 𝑀 .

Like we did with ℕℝ, we can also show that ℤℝ is closed under the operations of sum and multipli-
cation.

Theorem 3.64

For all 𝑛, 𝑚 ∈ ℤℝ we have:

1. ℤℝ is closed under addition, that is,

𝑚 + 𝑛 ∈ ℤℝ .

2. ℤℝ is closed under multiplication, that is,

𝑚 ⋅ 𝑛 ∈ ℤℝ ,

The proof is left as an exercise. As a consequence of Theorem 3.64 we have that the restriction of
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the operations of sum and multiplication to ℤℝ are still binary operations:

+ ∶ ℤℝ × ℤℝ → ℤℝ , ⋅ ∶ ℤℝ × ℤℝ → ℤℝ .

Equipped with the above operations, ℤℝ satisfies the following properties.

Theorem 3.65

(ℤℝ, +, ⋅, ≤) satisfies the following axioms from Definition 3.46:

• (A1), (A2), (A3).
• (M1), (M2).
• (O1)-(O4).
• (AM), (AO), (MO).

Proof

The fact that
(A1), (A2), (M1), (M2), (O1)-(O4), (AM), (AO), (MO)

are satisfied descends immediately from the inclusion

ℤℝ ⊆ ℝ .
We are left to prove (A3). This is non-trivial because a priori the additive inverse −𝑧 of some
𝑧 ∈ ℤℝ belongs to ℝ. We need to check that−𝑧 ∈ ℤℝ. Indeed, since 𝑧 ∈ ℤℝ, there exist 𝑛, 𝑚 ∈ ℕℝ
such that 𝑧 = 𝑚 − 𝑛. Define 𝑦 ∶= 𝑛 − 𝑚. We have that 𝑦 ∈ ℤℝ and

𝑧 + 𝑦 = (𝑚 − 𝑛) + (𝑛 − 𝑚) = (𝑚 − 𝑚) + (𝑛 − 𝑛) = 0 .
Therefore 𝑦 is the inverse of 𝑧 and 𝑦 ∈ ℤℝ, proving that the sum in ℤℝ satisfies (A3).

Remark 3.66

ℤℝ does not satisfy (M3).

For example, let us show that 2 ∈ ℤℝ has no inverse in ℤℝ. Indeed, let 𝑚 ∈ ℤℝ. By
Theorem 3.63 we have 3 cases:

• 𝑚 ∈ ℕℝ: Since 2 > 1 we have

2 ⋅ 𝑚 > 1 ⋅ 𝑚 ≥ 1
where in the last inequality we used that 𝑚 ≥ 1 for all 𝑚 ∈ ℕℝ, as shown in
Theorem 3.57. The above shows that

2 ⋅ 𝑚 > 1 ,
and therefore 𝑚 cannot be the inverse of 2.
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• 𝑚 = 0: Then 2 ⋅ 𝑚 = 0, so that 𝑚 cannot be the inverse of 2.
• 𝑚 = −𝑛 with 𝑛 ∈ ℕℝ. Then

2 ⋅ 𝑚 = 2 ⋅ (−𝑛) < 0 ,
so that 𝑚 cannot be the inverse of 2.

As we have exhausted all the possibilities, we conclude that 2 does not have a mul-
tiplicative inverse in ℕℝ.

3.8.4 Rational numbers

In Theorem 3.65 and 3.66 we have seen that ℤℝ satisfy all the field axiom, except for (M3). We
therefore extend ℤℝ in a way that the extension contains multiplicative inverses. The extension is
the set of rational numbers ℚℝ.

Definition 3.67: Set of Rational Numbers

The set of rational numbers in ℝ is

ℚℝ ∶= {𝑚𝑛 ∶ 𝑚 ∈ ℤℝ , 𝑛 ∈ ℕℝ} .

Notice that in the above definition we are just using the field axiom (M3), with

𝑚
𝑛 ∶= 𝑚 ⋅ 𝑛−1 .

The inverse of 𝑛 exists because we are assuming 𝑛 ∈ ℕℝ, and therefore 𝑛 cannot be 0, as a conse-
quence of Theorem 3.57.

The set ℚℝ is closed under addition and multiplication (exercise). Therefore they are well defined
the operations:

+ ∶ ℚℝ × ℚℝ → ℚℝ , ⋅ ∶ ℚℝ × ℚℝ → ℚℝ .

Theorem 3.68

(ℚℝ, +, ⋅, ≤) is an ordered field.

Proof

All the field properties, except for (M3), follow from the inclusion

ℚℝ ⊆ ℝ
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and from the field properties of ℝ. To check (M3), let 𝑞 ∈ ℚℝ with 𝑞 ≠ 0. Therefore 𝑞 = 𝑚/𝑛 for
𝑚 ∈ ℤℝ, 𝑛 ∈ ℕℝ. As 𝑞 ≠ 0 and 𝑛 ≠ 0, see Theorem 3.57, we deduce that 𝑚 ≠ 0. We have two
cases:

• 𝑚 > 0: In this case 𝑚 ∈ ℕℝ by Theorem 3.63. Therefore

𝑝 = 𝑛
𝑚 ∈ ℚℝ

by definition, since 𝑛, 𝑚 ∈ ℕℝ. By commutativity we have

𝑞 ⋅ 𝑝 = 𝑚
𝑛 ⋅ 𝑛

𝑚 = 1 .

• 𝑚 < 0: Then 𝑚 = −𝑥 with 𝑥 ∈ ℕℝ by Theorem 3.63. Therefore

𝑝 = −𝑛
𝑥 ∈ ℚℝ

by definition, since −𝑛 ∈ ℤℝ and 𝑥 ∈ ℕℝ. By commutativity we have

𝑞 ⋅ 𝑝 = 𝑚
𝑛 ⋅ −𝑛𝑥 = 𝑚

𝑛 ⋅ −𝑛
−𝑚 = 1 .

Therefore 𝑞 always admits a multiplicative inverse 𝑞−1 belonging to ℚℝ, proving (M3).

The set ℚℝ does not have the Cut Property or the Axiom of Completeness.

Theorem 3.69

ℚℝ is not complete.

The proof of the above Theorem replicates exactly the proof of Theorem 3.37: This is because the
proof of Theorem 3.37 only makes use of field axioms, and thus it applies to ℚℝ.

Notation 3.70

From now on we denote

ℕ ∶= ℕℝ , ℤ ∶= ℤℝ , ℚ ∶= ℚℝ ,
dropping the subscript ℝ.
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4 Properties of ℝ
Now that we established the axiomatic definition of the Real Numbers ℝ as a complete ordered
field, let us investigate some of the properties of ℝ. These will be consequence of the axioms of the
real numbers, particulaly of the Axiom of Completeness.

4.1 Archimedean Property

The Archimedean property is one of the most useful properties of ℝ, and it essentially states that
the set of natural numbers ℕ is not bounded above in ℝ.
More precisley, the Archimedean Property says two things:

1. For any 𝑥 ∈ ℝ we can always find a natural number 𝑛 ∈ ℕ such that

𝑛 > 𝑥 .

2. For any 𝑥 ∈ ℝ with 𝑥 > 0, we can always find a natural number 𝑚 ∈ ℕ such that

0 < 1
𝑚 < 𝑥 .

The situation is depicted in Figure 4.2.

Figure 4.1: For any 𝑥 > 0 we can find 𝑛, 𝑚 ∈ ℕ such that 1/𝑚 < 𝑥 < 𝑛.

Remark 4.1

The Archimedean property might sound trivial. However there are examples of ordered fields
𝐾 that satisfy:

1. ℕ ⊆ 𝐾 .
2. 𝐾 does not have the Archimedean property.
3. In particular, ℕ is bounded above in 𝐾 .

Of course such fields 𝐾 cannot be complete.

If𝐾 is complete, then𝐾 is essentiallyℝ, andwe are going to prove the Archimedean
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Property holds in ℝ.

Let us proceed with the precise statement of the Archimedean property in ℝ.
Theorem 4.2: Archimedean Property

Let 𝑥 ∈ ℝ be given. Then:

1. There exists 𝑛 ∈ ℕ such that
𝑛 > 𝑥 .

2. Suppose in addition that 𝑥 > 0. There exists 𝑛 ∈ ℕ such that

1
𝑛 < 𝑥 .

Proof

Part 1. Let 𝑥 ∈ ℝ. Suppose by contradiction that there is no 𝑛 ∈ ℕ such that

𝑛 > 𝑥 .
This means that

𝑛 ≤ 𝑥 ∀𝑛 ∈ ℕ . (4.1)

The above is saying that the set ℕ is bounded above. Since ℕ is not empty, by the Axiom of
Completeness there exists

𝛼 = supℕ .
Claim: (𝛼 − 1) is not an upper bound for ℕ.
Proof of Claim. Indeed, we have

(𝛼 − 1) < 𝛼 . (4.2)

Therefore 𝛼 −1 cannot be an upper bound for ℕ. Indeed, if by contradiction 𝛼 −1 was an upper
bound for ℕ, then we would have

𝛼 ≤ (𝛼 − 1) ,
since 𝛼 is the smallest upper bound forℕ. This contradicts (4.2). Therefore 𝛼 −1 is not an upper
bound for ℕ.
Conclusion. Since 𝛼 − 1 is not an upper bound for ℕ, there exists 𝑛0 ∈ ℕ such that

𝛼 − 1 < 𝑛0 .
The above implies

𝛼 < 𝑛0 + 1 .
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Since
(𝑛0 + 1) ∈ ℕ ,

we have obtained a contradiction, given that 𝛼 was the supremum of ℕ. Thus (4.1) is false,
meaning that there exists 𝑛 ∈ ℕ such that

𝑛 > 𝑥 .
Part 2. Suppose 𝑥 ∈ ℝ with 𝑥 > 0. We can define

𝑦 ∶= 1
𝑥 .

By Part 1 there exists 𝑛 ∈ ℕ such that

𝑛 > 𝑦 = 1
𝑥 .

Using that 𝑥 > 0, we can rearrange the above inequlaity to obtain

1
𝑛 < 𝑥 ,

which is the desired thesis.

There is another formulation of the Archimedean Property which, depending on the situation, might
be more useful. This formulation says the following: If 𝑥, 𝑦 ∈ ℝ are such that

0 < 𝑥 < 𝑦 ,
then there exists 𝑛 ∈ ℕ such that

𝑛𝑥 > 𝑦 .
In other words, if one does 𝑛 steps of size 𝑥 in the positive numbers direction, then the resulting
number 𝑛𝑥 will be larger than 𝑦 . The situation is depicted in Figure 4.2.

Figure 4.2: For 0 < 𝑥 < 𝑦 there exists 𝑛 ∈ ℕ such that that 𝑛𝑥 > 𝑦 . In the picture 𝑛 = 3.

Theorem 4.3: Archimedean Property (Alternative formulation)

Let 𝑥, 𝑦 ∈ ℝ, with 0 < 𝑥 < 𝑦 . There exists 𝑛 ∈ ℕ such that

𝑛𝑥 > 𝑦 .
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Proof

Suppose by contradiction there is no natural 𝑛 ∈ ℕ such that

𝑛𝑥 > 𝑦 .
This means that

𝑛𝑥 ≤ 𝑦 , ∀ 𝑛 ∈ ℕ . (4.3)

Define the set
𝐴 ∶= {𝑛𝑥 ∶ 𝑛 ∈ ℕ} .

Condition (4.3) is saying that 𝐴 is bounded above by 𝑦 . Morever 𝐴 is trivially non-empty. By
the Axiom of Completeness there exists

𝛼 = sup𝐴 .
Since 𝛼 is the supremum of 𝐴, by definition of supremum and of the set 𝐴, we have

𝑛𝑥 ≤ 𝛼 , ∀ 𝑛 ∈ ℕ . (4.4)

As (4.4) holds for every 𝑛 ∈ ℕ, then it also holds for (𝑛 + 1), meaning that

(𝑛 + 1)𝑥 ≤ 𝛼 .
The above implies

𝑛𝑥 ≤ 𝛼 − 𝑥 .
As 𝑛 was arbitrary, we conclude that

𝑛𝑥 ≤ 𝛼 − 𝑥 , ∀ 𝑛 ∈ ℕ .
The above is saying that (𝛼 − 𝑥) is an upper bound for 𝐴. Since 𝛼 is the supremum of 𝐴, in
particular 𝛼 is the smallest upper bound. Thus it must hold

𝛼 ≤ 𝛼 − 𝑥 .
The above is equivalent to

𝑥 ≤ 0 ,
which contradicts our assumption of 𝑥 > 0. Therefore (4.3) is false, and there exists 𝑛 ∈ ℕ such
that

𝑛𝑥 > 𝑦 ,
concluding the proof.
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4.2 Nested Interval Property

Another consequence of the axiom of completeness is the Nested Interval Property. This is yet
another way of saying the same thing: ℝ does not have gaps.

Let us look at a construction. Suppose given some closed intervals

𝐼𝑛 ∶= [𝑎𝑛 , 𝑏𝑛] = {𝑥 ∈ ℝ ∶ 𝑎𝑛 ≤ 𝑥 ≤ 𝑏𝑛} ,
where the end points are ordered in the following way:

𝑎1 ≤ 𝑎2 ≤ … ≤ 𝑎𝑛 ≤ ⋯ ≤ 𝑏𝑛 ≤ … 𝑏𝑛 ≤ 𝑏1 ,
as shown in Figure 4.3.

Figure 4.3: Nested intervals 𝐼𝑛 = [𝑎𝑛 , 𝑏𝑛].

The intervals 𝐼𝑛 are nested, meaning that

𝐼1 ⊃ 𝐼2 ⊃ 𝐼3 ⊃ … 𝐼𝑛 ⊃ …
For finite intersections we clearly have

𝑘
⋂
𝑛=1

𝐼𝑛 = 𝐼𝑘 ,

that is, intersecting the first 𝑘 intervals yields 𝐼𝑘 , the smallest interval in the sequence.

Question 4.4

Consider the infinite intersection

∞
⋂
𝑛=1

𝐼𝑛 ∶= {𝑥 ∈ ℝ ∶ 𝑥 ∈ 𝐼𝑛 , ∀ 𝑛 ∈ ℕ} .

What can we say about it? Is it empty? Is it not empty?

The answer is that the infinite intersection is not empty, because ℝ was constructed in a way that it
does not have gaps.

Theorem 4.5: Nested Interval Property

For each 𝑛 ∈ ℕ assume given a closed interval

𝐼𝑛 ∶= [𝑎𝑛 , 𝑏𝑛] = {𝑥 ∈ ℝ ∶ 𝑎𝑛 ≤ 𝑥 ≤ 𝑏𝑛} .
100



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

Suppose that the intervals are nested, that is,

𝐼𝑛 ⊃ 𝐼𝑛+1 , ∀ 𝑛 ∈ ℕ .
Then ∞

⋂
𝑛=1

𝐼𝑛 ≠ ∅ . (4.5)

Proof

By definition we have
∞
⋂
𝑛=1

𝐼𝑛 ∶= {𝑥 ∈ ℝ ∶ 𝑥 ∈ 𝐼𝑛 , ∀ 𝑛 ∈ ℕ} .

We want to prove (4.5). This means we need to find a real number 𝑥 such that

𝑥 ∈ 𝐼𝑛 , ∀ 𝑛 ∈ ℕ . (4.6)

Idea of the Proof: Condition (4.6) is saying that it should hold

𝑎𝑛 ≤ 𝑥 ≤ 𝑏𝑛 , ∀ 𝑛 ∈ ℕ .
Since 𝑎𝑛 is increasing and 𝑏𝑛 is decreasing, the point 𝑥 is being squeezed between
these two sequences. This suggests 𝑥 should be the largest (i.e. the supremum) of
all 𝑎𝑛𝑠 and smallest (i.e. the infimum) of all the 𝑏𝑛𝑠.

Define the set
𝐴 ∶= {𝑎𝑛 ∶ 𝑛 ∈ ℕ} .

The set 𝐴 is non-empty and is bounded above by any of the 𝑏𝑛 . Therefore there exists

𝑥 = sup 𝐴 .
By definition of supremum and definition of the set 𝐴, we have

𝑎𝑛 ≤ 𝑥 , ∀ 𝑛 ∈ ℕ .
On the other hand, consider an arbitrary number 𝑏𝑛 . By construction we have

𝑎𝑖 ≤ 𝑏𝑛 , ∀ 𝑖 ∈ ℕ .
Therefore 𝑏𝑛 is an upper bound for 𝐴. Since the supremum is the smallest upper bound, we
conclude that

𝑥 ≤ 𝑏𝑛 .
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The index 𝑛 was chosen arbitrarily, and therefore

𝑥 ≤ 𝑏𝑛 , ∀ 𝑛 ∈ ℕ .
In total we have

𝑎𝑛 ≤ 𝑥 ≤ 𝑏𝑛 , ∀ 𝑛 ∈ ℕ ,
showing that 𝑥 satisfies (4.6). Therefore (4.5) holds and the proof is concluded.

Important

The assumption that 𝐼𝑛 is closed is crucial in Theorem 2.59. Without such assumption the thesis
of Theorem 2.59 does not hold in general, as seen in Example 4.6 below.

Example 4.6

Question. Consider the open intervals

𝐼𝑛 ∶= (0, 1𝑛 ) .

These are clearly nested
𝐼𝑛 ⊃ 𝐼𝑛+1 , ∀ 𝑛 ∈ ℕ .

Prove that ∞
⋂
𝑛=1

𝐼𝑛 = ∅ . (4.7)

Solution. Suppose by contradiction that the intersection is non-empty. Then there exists 𝑥 ∈ ℕ
such that

𝑥 ∈ 𝐼𝑛 , ∀ 𝑛 ∈ ℕ .
By definition of 𝐼𝑛 the above reads

0 < 𝑥 < 1
𝑛 , ∀ 𝑛 ∈ ℕ . (4.8)

Since 𝑥 > 0, by the Archimedean Property in Theorem 2.57 Point 2, there exists 𝑛0 ∈ ℕ such
that

0 < 1
𝑛0

< 𝑥 .

The above contradicts (4.8). Therefore (4.7) holds.
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4.3 Revisiting Sup and inf

We now investigate some of the properties of supremum and infimum in ℝ. The first property is an
alternative characterization of the supremum, which we will often use. A sketch of such characteri-
zation is in Figure 4.4 below.

Proposition 4.7: Characterization of Supremum

Let 𝐴 ⊆ ℝ be a non-empty set. Suppose that 𝑠 ∈ ℝ is an upper bound for 𝐴. They are equivalent:

1. 𝑠 = sup𝐴
2. For every 𝜀 > 0 there exists 𝑥 ∈ 𝐴 such that

𝑠 − 𝜀 < 𝑥 .

Figure 4.4: Let 𝑠 = sup𝐴. Then for every 𝜀 > 0 there exist 𝑥 ∈ 𝐴 such that 𝑠 − 𝜀 < 𝑥 .

Proof: Proof of Proposition 2.61

Step 1. Assume that
𝑠 = sup𝐴 .

Let 𝜀 > 0 be arbitrary. We clearly have that

𝑠 − 𝜀 < 𝑠 . (4.9)

Therefore (𝑠−𝜀) cannot be an upper bound of𝐴. Indeed, if by contradiction (𝑠−𝜀)was an upper
bound, then we would have

𝑠 ≤ (𝑠 − 𝜀) ,
since 𝑠 is the smallest upper bound. The above contradicts (4.9), and therefore (𝑠 − 𝜀) is not an
upper bound for 𝐴. Hence there exists some 𝑥 ∈ 𝐴 such that

𝑠 − 𝜀 < 𝑥 ,
concluding.
Step 2. Assume that Point 2 in the statement of Proposition 2.61 holds. By assumption we have
that 𝑠 is an upper bound for 𝐴. Suppose by contradiction that

𝑠 ≠ sup𝐴 .
This is equivalent to the statement

𝑠 is not the smallest upper bound of 𝐴. (4.10)
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Hence there exists an upper bound 𝑏 of 𝐴 such that

𝑏 < 𝑠 .
Let

𝜀 ∶= 𝑠 − 𝑏 .
By assumption there exists 𝑥 ∈ 𝐴 such that

𝑠 − 𝜀 < 𝑥 .
Substituting the definition of 𝜀 we get

𝑠 − 𝑠 + 𝑏 < 𝑥 ⟹ 𝑏 < 𝑥 .
Since 𝑏 is an upper bound for 𝐴 and 𝑥 ∈ 𝐴, the above is a contradiction. Therefore (4.10) is false,
and 𝑠 is the smallest upper bound of 𝐴. Thus 𝑠 = sup𝐴.

The analogue of Proposition 2.61 is as follows. The proof is left as an exercise.

Proposition 4.8: Characterization of Infimum

Let 𝐴 ⊆ ℝ be a non-empty set. Suppose that 𝑖 ∈ ℝ is a lower bound for 𝐴. They are equivalent:

1. 𝑖 = inf𝐴
2. For every 𝜀 ∈ ℝ, with 𝜀 > 0, there exists 𝑥 ∈ 𝐴 such that

𝑥 < 𝑖 + 𝜀 .

A sketch of the characterization in Proposition 2.62 can be found in Figure 4.5 below.

Figure 4.5: Let 𝑖 = inf𝐴. Then for every 𝜀 > 0 there exist 𝑥 ∈ 𝐴 such that 𝑥 < 𝑖 + 𝜀.

With the above characterizations of supremum and infimum, it will be easier, in some cases, to
compute infimum and supremum. We now characterize infimum and supremum of an open interval
of ℝ.

Proposition 4.9

Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. Let
𝐴 ∶= (𝑎, 𝑏) = {𝑥 ∈ ℝ ∶ 𝑎 < 𝑥 < 𝑏} .
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1. We have that
inf𝐴 = 𝑎 , sup𝐴 = 𝑏 .

2. min𝐴 and max𝐴 do not exist.

Proof

Part 1. We will only prove that
inf𝐴 = 𝑎 ,

since the proof of
sup𝐴 = 𝑏

is similar.
By definition of 𝐴, we have that

𝑎 < 𝑥 , ∀ 𝑥 ∈ 𝐴 .
The above says that 𝑎 is a lower bound for 𝐴.
Claim. 𝑎 is the largest lower bound of 𝐴.
Proof of Claim. Let 𝐿 be a lower bound for 𝐴, that is,

𝐿 ≤ 𝑥 , ∀ 𝑥 ∈ 𝐴 .
We have to prove that

𝐿 ≤ 𝑎 . (4.11)

Suppose by contradiction that (4.11) does not hold, namely that

𝑎 < 𝐿 .
We want to prove that 𝐿 < 𝑏. To conclude this, first observe that the midpoint between 𝑎 and 𝑏
belongs to 𝐴:

𝑎 + 𝑏
2 ∈ 𝐴 .

Indeed, using that 𝑎 < 𝑏, we have

𝑎 + 𝑏
2 > 2𝑎

2 = 𝑎 ,

and 𝑎 + 𝑏
2 < 2𝑏

𝑏 = 𝑏 ,
showing that the midpoint between 𝑎 and 𝑏 belongs to 𝐴.
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Since 𝐿 is a lower bound for 𝐴, and 𝑎+𝑏
2 ∈ 𝐴, we have

𝐿 ≤ 𝑎 + 𝑏
2 < 𝑏 , (4.12)

where in the second inequality we used that 𝑎 < 𝑏. In particular, we have proven that 𝑎 < 𝐿 < 𝑏,
which means that 𝐿 ∈ 𝐴.
We now want to find an element of 𝐴 which is less than 𝐿. A good candidate is the midpoint
between 𝑎 and 𝐿, that is,

𝑀 ∶= 𝑎 + 𝐿
2 .

Since 𝑎 < 𝐿 < 𝑏, we have that
𝑀 ∈ 𝐴 .

Indeed, using that 𝑎 < 𝐿, we have

𝑎 = 2𝑎
2 < 𝑎 + 𝐿

2 = 𝑀 ≤ 𝑎 + 𝑏
2 .

Using that 𝐿 < 𝑏, we have

𝑀 = 𝑎 + 𝐿
2 ≤ 𝑎 + 𝑏

2 < 𝑏 .

Thus 𝑎 < 𝑀 < 𝑏, showing that 𝑀 ∈ 𝐴.

Moreover
𝑀 < 𝐿 .

This is because 𝑎 < 𝐿, and therefore

𝑀 = 𝑎 + 𝐿
2 < 2𝐿

2 = 𝐿 .

This is a contradiction, since 𝐿 is a lower bound for 𝐴 and 𝑀 ∈ 𝐴. Therefore (4.11) holds,
showing that 𝑎 is the largest lower bound of 𝐴. We conclude that 𝑎 = inf𝐴.
Part 2. Suppose by contradiction that min𝐴 exists. We have shown that if the minimum of a
set exists, then it must be

min𝐴 = inf𝐴 .
Since

inf𝐴 = 𝑎 ,
by Proposition 4.9, we would obtain that

min𝐴 = 𝑎 .
As min𝐴 ∈ 𝐴 by definition, we infer 𝑎 ∈ 𝐴. This is contradiction. Then min𝐴 does not exist.
The proof that max𝐴 does not exist is similar, and is left as an exercise.
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We can also consider intervals for which one or both of the sides are closed.

Corollary 4.10

Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. Let
𝐴 ∶= [𝑎, 𝑏) = {𝑥 ∈ ℝ ∶ 𝑎 ≤ 𝑥 < 𝑏} .

Then
min𝐴 = inf𝐴 = 𝑎 , sup𝐴 = 𝑏 ,

max𝐴 does not exist.

The proof is very simple, and is left as an exercise. Let us now compute supremum and infimum of
a set which is not an interval.

Proposition 4.11

Define the set
𝐴 ∶= {1𝑛 ∶ 𝑛 ∈ ℕ} .

Then
inf𝐴 = 0 , sup𝐴 = max𝐴 = 1 .

Proof

Part 1. We have 1
𝑛 ≤ 1 , ∀ 𝑛 ∈ ℕ .

Therefore 1 is an upper bound for 𝐴. Since 1 ∈ 𝐴, by definition of maximum we conclude that

max𝐴 = 1 .
Since the maximum exists, we conclude that also the supremum exists, and

sup𝐴 = max𝐴 = 1 .
Part 2. We have 1

𝑛 > 0 , ∀ 𝑛 ∈ ℕ ,
showing that 0 is a lower bound for 𝐴. Suppose by contradiction that 0 is not the infimum.
Therefore 0 is not the largest lower bound. Then there exists 𝜀 ∈ ℝ such that:

• 𝜀 is a lower bound for 𝐴, that is,

𝜀 ≤ 1
𝑛 , ∀ 𝑛 ∈ ℕ , (4.13)
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• 𝜀 is larger than 0:
0 < 𝜀 .

As 𝜀 > 0, by the Archimedean Property there exists 𝑛0 ∈ ℕ such that

0 < 1
𝑛0

< 𝜀 .

This contradicts (4.13). Thus 0 is the largest lower bound of 𝐴, that is, 0 = inf𝐴.
Part 3. We have that min𝐴 does not exist. Indeed suppose by contradiction that min𝐴 exists.
Then

min𝐴 = inf𝐴 .
As inf𝐴 = 0 by Part 2, we conclude min𝐴 = 0. As min𝐴 ∈ 𝐴, we obtain 0 ∈ 𝐴, which is a
contradiction.

4.4 Existence of 𝑘-th Roots

We have started our discussion in Chapter 1 by proving that

√2 ∉ ℚ . (4.14)

We have shown that (4.14) implies that the set

𝐴 ∶= {𝑞 ∈ ℚ ∶ 𝑞2 < 2}
does not have a supremum in ℚ. We then introduced the Real Numbers ℝ so that each non-empty
and bounded above set would have a supremum. As the set 𝐴 is non-empty and bounded above,
there exists 𝛼 ∈ ℝ such that

𝛼 = sup𝐴 .
We are going to prove that

𝛼2 = 2 ,
which means that 𝛼 is the square root of 2.
More in general, we can prove existence of 𝑘-th roots: Let 𝑥 ∈ ℝ with 𝑥 ≥ 0 and 𝑘 ∈ ℕ. Define the
set

𝐴 ∶= {𝑡 ∈ ℝ ∶ 𝑡𝑘 < 𝑥}
We will see that 𝐴 is non-empty and bounded above. By the axiom of completeness there exists
𝛼 ∈ ℝ such that

𝛼 = sup𝐴
In the following Theorem we will prove that

𝛼𝑘 = 𝑥 ,
meaning that 𝛼 is the 𝑘-th root of 𝑥 .
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Theorem 4.12: Existence of 𝑘-th roots

Let 𝑥 ∈ ℝ with 𝑥 ≥ 0 and 𝑘 ∈ ℕ. Define the set

𝐴 = {𝑡 ∈ ℝ ∶ 𝑡𝑘 < 𝑥} .
There exists 𝛼 ∈ ℝ such that

𝛼 = sup𝐴 .
Moreover it holds that

𝛼𝑘 = 𝑥 .

The proof of Theorem 4.12 rests on similar ideas to the ones used to prove that ℚ does not have the
cut property.

Proof: Proof of Theorem 4.12

Part 1: Uniqueness.
Suppose 𝛼1, 𝛼2 ∈ ℝ are such that

𝛼𝑘1 = 𝛼𝑘2 = 𝑥 .
If 𝛼1 ≠ 𝛼2, then

𝛼𝑘1 ≠ 𝛼𝑘2 ,
obtaining a contradiction. Therefore 𝛼1 = 𝛼2.
Part 2: Existence.
Let 𝑥 ∈ ℝ with 𝑥 ≥ 0. If 𝑥 = 0 there is nothing to prove, as

0𝑘 = 0 ,
so that 𝛼 = 0. Therefore we can assume 𝑥 > 0. Define the subset of ℝ

𝐴 ∶= {𝑡 ∈ ℝ ∶ 𝑡𝑘 < 𝑥} .
Clearly 𝐴 is non-empty and bounded above.

An upper bound is given, for example, by 𝑏 ∶= 𝑥+1. Indeed, since we are assuming
𝑥 ≥ 0, then 𝑥 + 1 ≥ 1. In particular we have

(𝑥 + 1)𝑘 ≥ 𝑥 + 1 .
Let 𝑡 ∈ 𝐴. Then

𝑡𝑘 < 𝑥 < 𝑥 + 1 < (𝑥 + 1)𝑘 ,
showing that 𝑡 < 𝑥 + 1.

By the Axiom of Completeness of ℝ, there exists 𝛼 ∈ ℝ such that

𝛼 = sup𝐴 .
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We claim that
𝛼𝑘 = 𝑥 . (4.15)

Suppose by contradiction that (4.15) does not hold. We will need the formula: For all 𝑎, 𝑏 ∈ ℝ it
holds

𝑎𝑘 − 𝑏𝑘 = (𝑎 − 𝑏)(𝑎𝑘−1 + 𝑎𝑘−2𝑏 + 𝑎𝑘−3𝑏𝑘 + … + 𝑎𝑏𝑘−2 + 𝑏𝑘−1) . (4.16)

Formula (4.16) can be easily proven by induction on 𝑘. Since we are assuming that (4.15) does
not hold, we have two cases:

• 𝛼𝑘 < 𝑥 : We know that 𝛼 is the supremum of 𝐴. We would like to violate this, by finding
a number 𝐿 which is larger than 𝛼 , but still belongs to 𝐴. This means 𝐿 has to satisfy

𝛼 < 𝐿 , 𝐿𝑘 < 𝑥 .
We look for 𝐿 of the form

𝐿𝑛 ∶= 𝛼 + 1
𝑛

for 𝑛 ∈ ℕ to be chosen later. Clearly

𝛼 < 𝐿𝑛 , (4.17)

for all 𝑛 ∈ ℕ. We now search for 𝑛0 ∈ ℕ such that

𝐿𝑘𝑛0 < 𝑥 .
Using formula (4.16) with 𝑎 = 𝛼 and 𝑏 = 𝐿𝑛0 we obtain

𝐿𝑘𝑛0 − 𝛼𝑘 = 1
𝑛0

(𝐿𝑘−1𝑛0 + 𝐿𝑘−2𝑛0 𝛼 + … + 𝐿𝑛0𝛼𝑘−2 + 𝛼𝑘−1) . (4.18)

Now notice that (4.17) implies
𝛼 𝑗 < 𝐿𝑗𝑛0

for all 𝑗 ∈ ℕ. Using this estimate on all the terms 𝛼 𝑗 appearing in the RHS of (4.18) we
obtain

𝐿𝑘𝑛0 − 𝛼𝑘 = 1
𝑛0

(𝐿𝑘−1𝑛0 + 𝐿𝑘−2𝑛0 𝛼 + … + 𝐿𝑛0𝛼𝑘−2 + 𝛼𝑘−1)

< 1
𝑛0

(𝐿𝑘−1𝑛0 + 𝐿𝑘−2𝑛0 𝐿𝑛0 + … + 𝐿𝑛0𝐿𝑘−2𝑛0 + 𝐿𝑘−1𝑛0 )

= 𝑘
𝑛0

𝐿𝑘−1𝑛0

Rearranging the above we get

𝐿𝑘𝑛0 < 𝑘
𝑛0

𝐿𝑘−1𝑛0 + 𝛼𝑘 . (4.19)
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Now note that
𝐿𝑛0 = 𝛼 + 1

𝑛0
< 𝛼 + 1 .

Therefore
𝐿𝑘−1𝑛0 < (𝛼 + 1)𝑘−1 ,

and from (4.19) we obtain

𝐿𝑘𝑛0 < 𝑘
𝑛0

(𝛼 + 1)𝑘−1 + 𝛼𝑘 .

We wanted to find 𝑛0 ∈ ℕ so that 𝐿𝑘𝑛0 < 𝑥 . Therefore we impose

𝑘
𝑛0

(𝛼 + 1)𝑘−1 + 𝛼𝑘 < 𝑥 ,

and find that the above is satisfied for

𝑛0 > 𝑘(𝛼 + 1)𝑘−1
𝑥 − 𝛼𝑘 . (4.20)

Notice that the RHS in (4.20) is a positive real number, since 𝛼𝑘 < 𝑥 by assumption.
Therefore, by the Archimedean Property of Theorem 2.57 Point 1, there exists 𝑛0 ∈ ℕ
satisfying (4.20).
We have therefore shown the existence of 𝑛0 ∈ ℕ such that

𝛼 < 𝐿𝑛0 , 𝐿𝑘𝑛0 < 𝑥 .
The above says that 𝐿𝑛0 ∈ 𝐴 and that

𝐿𝑛0 > 𝛼 = sup𝐴 ,
which is a contradiction, as sup𝐴 is an upper bound for 𝐴.

• 𝛼𝑘 > 𝑥 : We know that 𝛼 is the supremum of 𝐴. We would like to find a contradiction, by
finding an upper bound 𝐿 for 𝐴 which is smaller than 𝛼 . This means 𝐿 has to satisfy

𝐿 < 𝛼 , 𝐿𝑘 > 𝑥 .
Such 𝐿 is an upper bound for 𝐴: If 𝑡 ∈ 𝐴 then

𝑡𝑘 < 𝑥 < 𝐿𝑘 ⟹ 𝑡 < 𝐿 .

We therefore look for 𝐿 of the form

𝐿𝑛 ∶= 𝛼 − 1
𝑛

111



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

for 𝑛 ∈ ℕ to be chosen later. In this way

𝐿𝑛 < 𝛼 , (4.21)

for all 𝑛 ∈ ℕ. We now search for 𝑛0 ∈ ℕ such that

𝐿𝑘𝑛0 > 𝑥 .
Using formula (4.16) with 𝑎 = 𝐿𝑛0 and 𝑏 = 𝛼 we obtain

𝛼𝑘 − 𝐿𝑘𝑛0 = 1
𝑛0

(𝛼𝑘−1 + 𝛼𝑘−2𝐿𝑛0 + … + 𝛼𝐿𝑘−2𝑛0 + 𝐿𝑘−1𝑛0 ) . (4.22)

Now notice that (4.21) implies
𝐿𝑗𝑛0 < 𝛼 𝑗

for all 𝑗 ∈ ℕ. Using this estimate on all the terms 𝐿𝑗𝑛0 appearing in the RHS of (4.22) we
obtain

𝛼𝑘 − 𝐿𝑘𝑛0 = 1
𝑛0

(𝛼𝑘−1 + 𝛼𝑘−2𝐿𝑛0 + … + 𝛼𝐿𝑘−2𝑛0 + 𝐿𝑘−1𝑛0 )

< 1
𝑛0

(𝛼𝑘−1 + 𝛼𝑘−2𝛼 + … + 𝛼𝛼𝑘−2 + 𝛼𝑘−1)

= 𝑘
𝑛0

𝛼𝑘−1

Rearranging the above we get

𝐿𝑘𝑛0 > 𝛼𝑘 − 𝑘
𝑛0

𝛼𝑘−1 .

We wanted to find 𝑛0 ∈ ℕ so that 𝐿𝑘𝑛0 > 𝑥 . Therefore we impose

𝛼𝑘 − 𝑘
𝑛0

𝛼𝑘−1 > 𝑥 ,

and find that the above is satisfied for

𝑛0 > 𝑘𝛼𝑘−1

𝛼𝑘 − 𝑥 . (4.23)

Notice that the RHS in (4.23) is a positive real number, since 𝛼𝑘 > 𝑥 by assumption.
Therefore, by the Archimedean Property of Theorem 2.57 Point 1, there exists 𝑛0 ∈ ℕ
satisfying (4.23).
We have therefore shown the existence of 𝑛0 ∈ ℕ such that

𝐿𝑛0 < 𝛼 , 𝐿𝑘𝑛0 > 𝑥 .
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Condition 𝐿𝑘𝑛0 > 𝑥 says that 𝐿𝑛0 is an upper bound for 𝐴. At the same time it holds

𝐿𝑛0 < 𝛼 = sup𝐴 ,
which is a contradiction, as sup𝐴 is the smallest upper bound for 𝐴.

Therefore, both cases 𝛼𝑘 > 𝑥 and 𝛼𝑘 < 𝑥 lead to a contradiction. Hence 𝛼𝑘 = 𝑥 , concluding.

Definition 4.13: 𝑘-th root of a number

Let 𝑥 ∈ ℝ with 𝑥 ≥ 0 and 𝑘 ∈ ℕ. The real number 𝛼 such that

𝛼𝑘 = 𝑥
is called the 𝑘-th root of 𝑥 , and is denoted by

𝑘√𝑥 ∶= 𝛼 .

4.5 Density of ℚ in ℝ
A set 𝑆 is dense in ℝ if the elements of 𝑆 are arbitrarily close to the elements of ℝ.

Definition 4.14: Dense set

Let 𝑆 ⊆ ℝ. We say that 𝑆 is dense in ℝ if for every 𝑥 ∈ ℝ and 𝜀 > 0, there exist 𝑠 ∈ 𝑆 such that

|𝑥 − 𝑠| < 𝜀 .

In other words, the above definition is saying that 𝑆 and ℝ are tightly knitted together. An equivalent
definition of dense set is given below.

Remark 4.15

Let 𝑆 ⊆ ℝ. They are equivalent:

• 𝑆 is dense in ℝ.
• For every pair of numbers 𝑥, 𝑦 ∈ ℝ with 𝑥 < 𝑦 , there exists 𝑠 ∈ 𝑆 such that

𝑥 < 𝑠 < 𝑦 .

We now prove that ℚ is dense in ℝ.
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Theorem 4.16: Density of ℚ in ℝ

Let 𝑥, 𝑦 ∈ ℝ, with 𝑥 < 𝑦 . There exists 𝑞 ∈ ℚ such that

𝑥 < 𝑞 < 𝑦 .

Figure 4.6: Let 𝑛 ∈ ℕ be such that 1/𝑛 < 𝑦 − 𝑥 . Then take 𝑚 so that 𝑚/𝑛 ∈ (𝑥, 𝑦).

Proof

We need to find 𝑞 ∈ ℚ such that
𝑥 < 𝑞 < 𝑦 . (4.24)

By definition ofℚ, we have that 𝑞 has to be of the form 𝑞 = 𝑚/𝑛 for𝑚 ∈ ℤ and 𝑛 ∈ ℕ. Therefore
(4.24) is equivalent to finding 𝑚 ∈ ℤ and 𝑛 ∈ ℕ such that

𝑥 < 𝑚
𝑛 < 𝑦 . (4.25)

The idea is to proceed as in Figure 4.6: We take 𝑛 such that 1/𝑛 is small enough, so that we can
make 𝑚 jumps of size 1/𝑛 and end up between 𝑥 and 𝑦 .
To this end, note that 𝑦 − 𝑥 > 0 by assumption. By the Archimedean Property in Theorem 2.57
Point 2, there exists 𝑛 ∈ ℕ such that 1

𝑛 < 𝑦 − 𝑥 . (4.26)

Now, we would like to find 𝑚 ∈ ℤ such that

𝑥 < 𝑚
𝑛 .

However 𝑚 cannot be too large, because we also want to have

𝑚
𝑛 < 𝑦 .

The right thing to do, is to take 𝑚 ∈ ℤ such that

𝑚 − 1
𝑛 ≤ 𝑥 < 𝑚

𝑛 . (4.27)

Why does such 𝑚 exist? The inequality in (4.27) is equivalent to

𝑚 − 1 ≤ 𝑛𝑥 < 𝑚 .
As 𝑛𝑥 > 0, by Archimedean Property in Theorem 2.57 Point 1, there exists 𝑚 ∈ ℤ
such that

𝑛𝑥 < 𝑚
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We can then choose 𝑚′ to be the smallest element in ℤ such that

𝑛𝑥 < 𝑚′ . (4.28)

For such 𝑚′, we have that
𝑚′ − 1 ≤ 𝑛𝑥 < 𝑚′ .

Indeed, if by contradiction
𝑚′ − 1 > 𝑛𝑥 ,

then 𝑚′ −1 would be another integer such that (4.28) holds. Since 𝑚′ −1 < 𝑚′, this
contradicts the minimality of 𝑚′.

The second inequality in (4.27) implies

𝑥 < 𝑚
𝑛 ,

which is the first inequality in (4.25). Now note that (4.26) is equivalent to

𝑥 < 𝑦 − 1
𝑛 .

We can use the above, and the first inequality in (4.27) to estimate

𝑚 ≤ 1 + 𝑛𝑥
< 1 + 𝑛 (𝑦 − 1

𝑛)
= 𝑛𝑦 ,

which yields 𝑚
𝑛 < 𝑦 .

Therefore the second inequality in (4.25) is proven, concluding the proof.

We have constructed the real numbers ℝ so that they would fill the gaps of ℚ. Formally, these gaps
are the numbers in ℝ ∖ ℚ. Let us give a name to this set.

Definition 4.17: Irrational numbers

The set of irrational numbers in ℝ is

ℐ ∶= ℝ ∖ ℚ .
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Question 4.18

How many gaps does ℚ have? In other words, how many irrational numbers are out there?

The answer is quite surprising, and is a corollary of the density result of Theorem 4.16: The irrational
numbers are dense in ℝ.

Corollary 4.19

Let 𝑥, 𝑦 ∈ ℝ, with 𝑥 < 𝑦 . There exists 𝑡 ∈ ℐ such that

𝑥 < 𝑡 < 𝑦 .

Proof

Consider
𝑥̃ ∶= 𝑥 − √2 , ̃𝑦 ∶= 𝑦 − √2 .

Since 𝑥 < 𝑦 , we have
𝑥̃ < ̃𝑦 .

By Theorem 4.16 there exists 𝑞 ∈ ℚ such that

𝑥̃ < 𝑞 < ̃𝑦 .
Adding √2 to the above inequalities we get

𝑥 < 𝑡 < 𝑦 , 𝑡 ∶= 𝑞 + √2 . (4.29)

We claim that 𝑡 ∈ ℐ . Indeed, suppose by contradiction 𝑡 ∈ ℚ. Then

√2 = 𝑡 − 𝑞 ∈ ℚ ,
since 𝑡 , 𝑞 ∈ ℚ, and ℚ is closed under summation. Since √2 ∈ ℐ , we obtain a contradiction. Thus
𝑡 ∈ ℐ and (4.29) is our thesis.

4.6 Cardinality

We have proven that the sets or rational numbers ℚ and irrational numbers ℐ are both dense in ℝ,
with

ℝ = ℚ ∪ ℐ .
From this result we might think that ℝ is obtained by mixing ℚ and ℐ in equal proportions. This
is however false. We will see that ℝ has much more elements than ℚ. Therefore also the set of
irrational numbers ℐ is much larger than ℚ.
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To make the above discussion precise, we need to introduce the size of a set. For this, we need the
concept of bijective function.

Definition 4.20: Bijective function

Let 𝑋, 𝑌 be sets and 𝑓 ∶ 𝑋 → 𝑌 be a function. We say that:

1. 𝑓 is injective if it holds:

𝑓 (𝑥) = 𝑓 (𝑦) ⟹ 𝑥 = 𝑦 .

2. 𝑓 is surjective if it holds:

∀ 𝑦 ∈ 𝑌 , ∃ 𝑥 ∈ 𝑋 s.t. 𝑓 (𝑥) = 𝑦 .

3. 𝑓 is bijective if it is both injective and surjective.

In other words: A function 𝑓 ∶ 𝑋 → 𝑌 is:

1. Injective if any two different elements in 𝑋 are mapped into two different elements in 𝑌 .
2. Surjective if every element in 𝑌 has at least one element in 𝑋 associated via 𝑓 .
3. Bijective if to each element in 𝑋 we associate one and only one element in 𝑌 via 𝑓 .

Example 4.21: Injectivity

Consider the sets
𝑋 = {1, 2, 3} , 𝑌 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} .

1. The function 𝑓 ∶ 𝑋 → 𝑌 defined by

𝑓 (1) = 𝑐 , 𝑓 (2) = 𝑎 , 𝑓 (3) = 𝑒 ,
is injective.

2. The function 𝑔 ∶ 𝑋 → 𝑌 defined by

𝑔(1) = 𝑐 , 𝑔(2) = 𝑎 , 𝑔(3) = 𝑐 ,
is not injective, since

𝑔(1) = 𝑔(3) = 𝑐 , 1 ≠ 3 .
3. The function ℎ∶ ℝ → ℝ defined by

ℎ(𝑥) = 𝑥2

is not injective, since
ℎ(1) = ℎ(−1) = 1 , 1 ≠ −1 .
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4. The function 𝑙 ∶ ℝ → ℝ defined by
𝑙(𝑥) = 2𝑥

is injective, since

𝑙(𝑥) = 𝑙(𝑦) ⟹ 2𝑥 = 2𝑦 ⟹ 𝑥 = 𝑦 .

Example 4.22: Surjectivity

Consider the sets
𝑋 = {1, 2, 3, 4} , 𝑌 = {𝑎, 𝑏, 𝑐} .

1. The function 𝑓 ∶ 𝑋 → 𝑌 defined by

𝑓 (1) = 𝑐 , 𝑓 (2) = 𝑎 , 𝑓 (3) = 𝑎 , 𝑓 (4) = 𝑏 ,
is surjective.

2. The function 𝑔 ∶ 𝑋 → 𝑌 defined by

𝑔(1) = 𝑎 , 𝑔(2) = 𝑎 , 𝑔(3) = 𝑐 , 𝑔(4) = 𝑎 ,
is not surjective, since there is no element 𝑥 ∈ 𝑋 such that

𝑔(𝑥) = 𝑏 .

3. The function ℎ∶ ℝ → ℝ defined by

ℎ(𝑥) = 𝑥2

is not surjective, since there is no 𝑥 ∈ ℝ such that

ℎ(𝑥) = 𝑥2 = −1 .

4. The function 𝑙 ∶ ℝ → [0,∞) defined by

𝑙(𝑥) = 𝑥2

is surjective, since for every 𝑦 ≥ 0 there exists 𝑥 ∈ ℝ such that

𝑙(𝑥) = 𝑥2 = 𝑦 .
This is true by Theorem 4.12.
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Example 4.23: Bijectivity

1. Let 𝑋 = {1, 2, 3}, 𝑌 = {𝑎, 𝑏, 𝑐}. The function 𝑓 ∶ 𝑋 → 𝑌 defined by

𝑓 (1) = 𝑐 , 𝑓 (2) = 𝑎 , 𝑓 (3) = 𝑏 ,
is bijective, since it is both injective and surjective.

2. Let 𝑋 = {1, 2, 3}, 𝑌 = {𝑎, 𝑏}. The function 𝑔 ∶ 𝑋 → 𝑌 defined by

𝑔(1) = 𝑎 , 𝑔(2) = 𝑏 , 𝑔(3) = 𝑏 ,
is not bijective, since it is not injective: we have

𝑔(2) = 𝑔(3) = 𝑏 2 ≠ 3 .

3. Let 𝑋 = {1, 2}, 𝑌 = {𝑎, 𝑏, 𝑐}. The function ℎ∶ ℝ → ℝ defined by

ℎ(1) = 𝑎 , ℎ(2) = 𝑐 ,
is not bijective, since it is not surjective: there is no 𝑥 ∈ 𝑋 such that

ℎ(𝑥) = 𝑏 .

4. Let 𝑋 = {1, 2, 3}, 𝑌 = {𝑎, 𝑏, 𝑐}. The function 𝑙 ∶ ℝ → [0,∞) defined by

𝑙(1) = 𝑎 , 𝑙(2) = 𝑎 , 𝑙(3) = 𝑏 ,
is not bijective, as it is neither injective nor surjective.

Definition 4.24: Composition of functions

Let 𝑋, 𝑌 , 𝑍 be sets and 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑌 → 𝑍 functions. The composition of 𝑓 with 𝑔 is the
function

𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 , (𝑔 ∘ 𝑓 )(𝑥) ∶= 𝑔(𝑓 (𝑥)) .

Definition 4.25: Identity map

The identity map on a set 𝑋 is the function

id𝑋 ∶ 𝑋 → 𝑋 , id𝑋 (𝑥) = 𝑥 .
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Definition 4.26: Invertibility

Let 𝑋, 𝑌 be sets and 𝑓 ∶ 𝑋 → 𝑌 . We say that:

1. A function 𝑔 ∶ 𝑌 → 𝑋 is the inverse of 𝑓 if

𝑔 ∘ 𝑓 = id𝑋 , 𝑓 ∘ 𝑔 = id𝑌 .

2. 𝑓 is invertible if it admits an inverse 𝑔.

Proposition 4.27

Let 𝑋, 𝑌 be sets and 𝑓 ∶ 𝑋 → 𝑌 .
1. If 𝑓 is invertible, the inverse is unique. We denote it by

𝑔 ∶= 𝑓 −1 .

2. They are equivalent:

• 𝑓 is invertible.
• 𝑓 is bijective.

We are ready to define the size of a set.

Definition 4.28: Cardinality, Finite, Countable, Uncountable

Let 𝑋 be a set. The cardinality of 𝑋 is the number of elements in 𝑋 . We denote the cardinality
of 𝑋 by

|𝑋 | ∶= # of elements in 𝑋 .
Further, we say that:

1. 𝑋 is finite if there exists a natural number 𝑛 ∈ ℕ and a bijection

𝑓 ∶ {1, 2, … , 𝑛} → 𝑋 .
In particular

|𝑋 | = 𝑛 .
2. 𝑋 is countable if there exists a bijection

𝑓 ∶ ℕ → 𝑋 .
In this case we denote the cardinality of 𝑋 by

|𝑋 | = |ℕ| .
3. 𝑋 is uncountable if 𝑋 is neither finite, nor countable.
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In other words:

1. 𝑋 is finite if it can be listed as

𝑋 = {𝑥1, … , 𝑥𝑛} , 𝑥𝑖 ∶= 𝑓 (𝑖)
for some 𝑛 ∈ ℕ.

2. 𝑋 is countable if it can be listed as

𝑋 = {𝑥𝑛 ∶ 𝑛 ∈ ℕ} , 𝑥𝑛 ∶= 𝑓 (𝑛)

3. 𝑋 is uncountable if it 𝑋 cannot be listed.

Remark 4.29

The functions in Definition 4.28 are bijections. Therefore they are invertible, and points 1 and
2 are equivalent to requesting there exist bijections

𝑓 ∶ 𝑋 → {1, 2, … , 𝑛} , 𝑓 ∶ 𝑋 → ℕ ,
respectively.

Question 4.30

Is there an intermediate cardinality between finite and countable?

The answer is no, as shown in the next proposition.

Proposition 4.31

Let 𝑋 be a countable set and 𝐴 ⊆ 𝑋 . Then either 𝐴 is finite or countable.

Proof

If 𝐴 is finite, there is nothing to prove. Therefore suppose 𝐴 is not finite. Since 𝑋 is countable
there exists a bijection

𝑓 ∶ ℕ → 𝑋 .
This means 𝑋 can be listed as

𝑋 = {𝑥𝑛 ∶ 𝑛 ∈ ℕ} , 𝑥𝑛 ∶= 𝑓 (𝑛) .
Our goal is to list the elements of 𝐴. Therefore, we consider the set of indices of elements in A:

𝐼1 ∶= {𝑛 ∈ ℕ s.t. 𝑓 (𝑛) ∈ 𝐴} = {𝑛 ∈ ℕ ∶ 𝑥𝑛 ∈ 𝐴} .
Clearly, 𝐼1 ≠ ∅, since 𝑓 is bijective and 𝐴 is a non-empty subset of 𝑋 . Since 𝐼1 is discrete and
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bounded below, there exists 𝑛1 ∈ ℕ such that

𝑛1 = min 𝐼1 .
This way, 𝑥𝑛1 is the first element of 𝐴 that we encounter in the list of elements of 𝑋 :

𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, …} .
We define

𝑔(1) ∶= 𝑓 (𝑛1) = 𝑥𝑛1 .
Now, we want to find the second element of 𝐴 in the list of elements of 𝑋 . We need to make
sure that we do not pick 𝑥𝑛1 again. Therefore, we define the set of indices of elemets in 𝐴 wich
are not 𝑥𝑛1 :

𝐼2 ∶= {𝑛 ∈ ℕ ∶ 𝑛 > 𝑛1 , 𝑓 (𝑛) ∈ 𝐴}
= {𝑛 ∈ ℕ ∶ 𝑛 > 𝑛1 , 𝑥𝑛 ∈ 𝐴} .

This way 𝐼2 does not contain 𝑛1, but only successive indices. Note that 𝐼2 is non-empty, since 𝑓
is surjective and 𝐴 is an infinite subset of 𝑋 . Therefore it is well defined

𝑛2 ∶= min 𝐼2 .
Notice that by construction

𝑛1 < 𝑛2 , 𝑥𝑛2 ∈ 𝐴 .
Set

𝑔(2) ∶= 𝑓 (𝑛2) .
Iterating this procedure, we define

𝐼𝑘 ∶= {𝑛 ∈ ℕ ∶ 𝑛 > 𝑛𝑘−1 , 𝑓 (𝑛) ∈ 𝐴}
= {𝑛 ∈ ℕ ∶ 𝑛 > 𝑛𝑘−1 , 𝑥𝑛 ∈ 𝐴} .

and set
𝑛𝑘 = min 𝐼𝑘 , 𝑔(𝑘) ∶= 𝑓 (𝑛𝑘) .

Note that, by construction, we have

𝑛𝑘 > 𝑛𝑘−1 , 𝑥𝑛𝑘 ∈ 𝐴 , ∀ 𝑘 ∈ ℕ .
In this way we have defined a function

𝑔 ∶ ℕ → 𝐴 .
We have:
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• 𝑔 is injective: Suppose 𝑔(𝑘) = 𝑔(𝑠). Then 𝑓 (𝑛𝑘) = 𝑓 (𝑛𝑠). From injectivity of 𝑓 we infer
𝑛𝑘 = 𝑛𝑠 . Since 𝑛𝑘 > 𝑛𝑘−1 for all 𝑘, from the condition 𝑛𝑘 = 𝑛𝑠 we conclude that 𝑘 = 𝑠. This
shows 𝑔 is injective.

• 𝑔 is surjective: If 𝑥 ∈ 𝐴, by surjectivity of 𝑓 there exists 𝑛̃ ∈ ℕ such that 𝑓 (𝑛̃) = 𝑥 .
Therefore

𝑛̃ ∈ {𝑛 ∈ ℕ s.t. 𝑓 (𝑛) ∈ 𝐴} = 𝐼1 .
Hence, by construction, there is an index 𝑘 ∈ ℕ such that 𝑛𝑘 = 𝑛̃. Thus 𝑔(𝑘) = 𝑓 (𝑛𝑘) = 𝑥 ,
showing that 𝑔 is surjective.

Hence 𝑔 is bijective, showing that 𝐴 is countable.

Example 4.32

Question. Prove that 𝑋 = {𝑎, 𝑏, 𝑐} is finite.
Solution. Set 𝑌 = {1, 2, 3}. The function 𝑓 ∶ 𝑋 → 𝑌 defined by

𝑓 (1) = 𝑎 , 𝑓 (2) = 𝑏 , 𝑓 (3) = 𝑐 ,
is bijective. Therefore 𝑋 is finite, with |𝑋 | = 3.

Example 4.33

Question. Prove that the set of natural numbers ℕ is countable.
Solution. The function 𝑓 ∶ 𝑋 → ℕ defined by

𝑓 (𝑛) ∶= 𝑛 ,
is bijective. Therefore 𝑋 = ℕ is countable.

Example 4.34

Question. Let 𝑋 be the set of even numbers

𝑋 = {2𝑛 ∶ 𝑛 ∈ ℕ} .
Prove that 𝑋 is countable.
Solution. Define the map 𝑓 ∶ ℕ → 𝑋 by

𝑓 (𝑛) ∶= 2𝑛 .
We have that:
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1. 𝑓 is injective, because

𝑓 (𝑚) = 𝑓 (𝑘) ⟹ 2𝑚 = 2𝑘 𝑚 = 𝑘 .

2. 𝑓 is surjective: Suppose that 𝑚 ∈ 𝑋 . By definition of 𝑋 , there exists 𝑛 ∈ ℕ such that
𝑚 = 2𝑛. Therefore, 𝑓 (𝑛) = 𝑚.

We have shown that 𝑓 is bijective. Thus, 𝑋 is countable.

Example 4.35

Question. Prove that the set of integers ℤ is countable.
Solution. Define 𝑓 ∶ ℕ → ℤ by

𝑓 (𝑛) ∶= {
𝑛
2 if 𝑛 even

−𝑛 + 1
2 if 𝑛 odd

For example

𝑓 (0) = 0 , 𝑓 (1) = −1 , 𝑓 (2) = 1 , 𝑓 (3) = −2 ,
𝑓 (4) = 2 , 𝑓 (5) = −3 , 𝑓 (6) = 3 , 𝑓 (7) = −4 .

We have:

1. 𝑓 is injective: Indeed, suppose that 𝑚 ≠ 𝑛. If 𝑛 and 𝑚 are both even or both odd we have,
respectively

𝑓 (𝑚) = 𝑚
2 ≠ 𝑛

2 = 𝑓 (𝑛)

𝑓 (𝑚) = −𝑚 + 1
2 ≠ −𝑛 + 1

2 = 𝑓 (𝑛) .
If instead 𝑚 is even and 𝑛 is odd, we get

𝑓 (𝑚) = 𝑚
2 ≠ −𝑛 + 1

2 = 𝑓 (𝑛) ,
since the LHS is positive and the RHS is negative. The case when 𝑚 is odd and 𝑛 even is
similar.

2. 𝑓 is surjective: Let 𝑧 ∈ ℤ. If 𝑧 ≥ 0, then 𝑚 ∶= 2𝑧 belongs to ℕ, is even, and

𝑓 (𝑚) = 𝑓 (2𝑧) = 𝑧 .
If instead 𝑧 < 0, then 𝑚 ∶= −2𝑧 − 1 belongs to ℕ, is odd, and

𝑓 (𝑚) = 𝑓 (−2𝑧 − 1) = 𝑧 .
Therefore 𝑓 is bijective, showing that ℤ is countable.
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We have seen that the sets ℕ and ℤ are countable. What about ℚ? To study this case, we need the
following result.

Proposition 4.36

Let the set 𝐴𝑛 be countable for all 𝑛 ∈ ℕ. Define

𝐴 = ⋃
𝑛∈ℕ

𝐴𝑛 .

Then 𝐴 is countable.

Proof

Since each 𝐴𝑖 is countable, we can list their elements as

𝐴𝑖 = {𝑎𝑖𝑘 ∶ 𝑘 ∈ ℕ} = {𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3, 𝑎𝑖4, …} .
The proof that 𝐴 is countable is based on a diagonal argument by Georg Cantor, see Wikipedia
page. The idea is that we can list the elements of the sets 𝐴𝑖 in an infinite square: In the first
row we put the elements of 𝐴1, in the second row the elements of 𝐴2, and so on. Therefore
the 𝑖-th row contains the elements of 𝐴𝑖. This procedure is illustrated in Figure 4.7. Therefore
this infinite square contains all the elements of 𝐴. We then list all the elements of the square by
looking at the diagonals, as shown in Figure 4.7. This procedure defines a function 𝑓 ∶ ℕ → 𝐴.
For example the first few terms of 𝑓 are

𝑓 (1) = 𝑎11 , 𝑓 (2) = 𝑎12 , 𝑓 (3) = 𝑎21 , 𝑓 (4) = 𝑎31 .
Since 𝑓 is injective and surjective, we have that 𝐴 is countable.

Figure 4.7: The i-th row contains all the elements 𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3, … of the countable set 𝐴𝑖. We define the
function 𝑓 ∶ ℕ → 𝐴 by going throgh the square diagonally.
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Theorem 4.37: ℚ is countable

The set of rational numbers ℚ is countable.

Proof

For 𝑖 ∈ ℕ define the sets
𝐿𝑖 ∶= {𝑚𝑖 ∶ 𝑚 ∈ ℤ} .

We have that 𝑓 ∶ 𝐿𝑖 → ℤ defined by

𝑓 (𝑚𝑖 ) ∶= 𝑚
is a bijection. As ℤ is countable, we deduce that 𝐿𝑖 is countable. Therefore the set 𝐿 defined by

𝐿 ∶= ⋃
𝑖∈ℕ

𝐿𝑖

is countable by Proposition 4.36. Clearly, we have

ℚ ⊆ 𝐿 .
Since 𝐿 is countable, and ℚ is not finite, by Proposition 4.31 we conclude that ℚ is countable.

We have proven that the sets
ℕ , ℤ , ℚ ,

are all countable. What about ℝ?
Theorem 4.38: ℝ is uncountable

The set of Real Numbers ℝ is uncountable.

Proof

Suppose by contradiction ℝ is countable. Then there exists a bijection 𝑓 ∶ ℕ → ℝ, meaning
that we can list the elements of ℝ as

ℝ = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, …} , 𝑥𝑖 ∶= 𝑓 (𝑖) .
Let 𝐼1 be a closed interval such that

𝑥1 ∉ 𝐼1 .
Now, we have two possibilities:

1. If 𝑥2 ∈ 𝐼1, then we can find a closed interval 𝐼2 such that

𝑥2 ∉ 𝐼2 , 𝐼2 ⊆ 𝐼1 (4.30)
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2. If 𝑥2 ∉ 𝐼1, we define the closed interval 𝐼2 ∶= 𝐼1. By construction, (4.30) is satisfied.

To summarize, we have found closed intervals 𝐼1 and 𝐼2 such that

𝑥1 ∉ 𝐼1 , 𝑥2 ∉ 𝐼2 , 𝐼2 ⊆ 𝐼1 .
We can iterate this procedure, and construct a sequence of closed nested intervals 𝐼𝑛 such that

𝐼𝑛+1 ⊆ 𝐼𝑛 , 𝑥𝑛 ∉ 𝐼𝑛 ,
for all 𝑛 ∈ ℕ, see Figure 4.8. Since 𝑥𝑘 ∉ 𝐼𝑘 , we conclude that

𝑥𝑘 ∉
∞
⋂
𝑛=1

𝐼𝑛 , ∀ 𝑘 ∈ ℕ .

As the points 𝑥𝑘 are all the elements of ℝ, we conclude that

∞
⋂
𝑛=1

𝐼𝑛 = ∅ .

However, since each 𝐼𝑛 is closed, the Nested Interval Property of Theorem 2.59 implies that

∞
⋂
𝑛=1

𝐼𝑛 ≠ ∅ ,

yielding a contradiction. Therefore ℝ is uncountable.

Figure 4.8: The intervals 𝐼𝑛 are nested, and can be chosen so that 𝑥𝑛 ∉ 𝐼𝑛 .

As a corollary we obtain that also the irrational numbers are uncountable.

Theorem 4.39

The set of irrational numbers
ℐ ∶= ℝ ∖ ℚ

is uncountable.
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Proof

In Theorems 2.74, 2.75 we have shown that ℝ in uncountable and ℚ is countable. Suppose by
contradiction that ℐ is countable. Then

ℚ ∪ ℐ
is countable by Proposition 4.36, being union of countable sets. Since by definition

ℝ = ℚ ∪ ℐ ,
we conclude that ℝ is countable. Contradiction.
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5 Complex Numbers

In Section 4.4, we have proven the existence of √𝑥 for all for 𝑥 ≥ 0. The number √𝑥 was defined
as

√𝑥 ∶= 𝛼 , 𝛼 ∶= sup{𝑡 ∈ ℝ ∶ 𝑡2 < 𝑥} .
We then proved that

𝛼2 = 𝑥 .
This procedure is possible for any 𝑥 ≥ 0.

Question 5.1

Is there a number 𝛼 ∈ ℝ such that
𝛼2 = −1 ? (5.1)

The answer to the above question is no. This is because ℝ is an ordered field, and from axiom (MO)
it follows that:

𝑥2 ≥ 0 , ∀ 𝑥 ∈ ℝ .
Howeverwewould still like to solve equation (5.1) somehow. To do this, we introduce the imaginary
numbers or complex numbers. We define 𝑖 to be that number such that

𝑖2 = −1 .
Formally, we can also think of 𝑖 as

𝑖 = √−1 .
We can use this speacial number to define the square root of a negative real number 𝑥 < 0:

√𝑥 ∶= 𝑖√−𝑥 .
Note that √−𝑥 is properly defined in ℝ, because −𝑥 is positive when 𝑥 is negative.

5.1 The field ℂ
We would like to be able to do calculations with the newly introduced complex numbers, and inves-
tigate their properties. We can introduce them rigorously as a field, as we did for ℝ.
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Definition 5.2: Complex Numbers

The set of complex numbers ℂ is defined as

ℂ ∶= ℝ ⊕ 𝑖ℝ ∶= {𝑥 ⊕ 𝑖𝑦 ∶ 𝑥, 𝑦 ∈ ℝ} .

In the above the symbol ⊕ is used to denote the pair

𝑥 ⊕ 𝑖𝑦 = (𝑥, 𝑦)
with 𝑥, 𝑦 ∈ ℝ. This means that 𝑥 and 𝑦 play different roles.

Definition 5.3

For a complex number
𝑧 = 𝑥 ⊕ 𝑖𝑦 ∈ ℂ

we say that

• 𝑥 is the real part of 𝑧, and denote it by

𝑥 = Re(𝑧)
• 𝑦 is the imaginary part of 𝑧, and denote it by

𝑦 = Im(𝑧)
We say that

• If Re 𝑧 = 0 then 𝑧 is a purely imaginary number.
• If Im 𝑧 = 0 then 𝑧 is a real number.

In order to make the set ℂ into a field, we first have to define the two binary operations of addition
+ and multiplication ⋅,

+, ⋅ ∶ ℂ × ℂ → ℂ .
Then we need to prove that these operations satisfy all the field axioms.

Definition 5.4: Addition in ℂ

Let 𝑧1, 𝑧2 ∈ ℂ, so that
𝑧1 = 𝑥1 ⊕ 𝑖𝑦1 , 𝑧2 = 𝑥2 ⊕ 𝑖𝑦2 ,

for some 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ ℝ. We define the sum of 𝑧1 and 𝑧2 as

𝑧1 + 𝑧2 = (𝑥1 ⊕ 𝑖𝑦1) + (𝑥2 ⊕ 𝑖𝑦2) ∶= (𝑥1 + 𝑥2) ⊕ 𝑖 (𝑦1 + 𝑦2)
where the + symbol on the right hand side is the addition operator in ℝ.
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Clearly, 𝑧1 + 𝑧2 as defined above is an element of ℂ. Therefore + defines a binary operation over
ℂ.

Notation 5.5

From the above definition, we have that, for all 𝑥, 𝑦 ∈ ℝ,

(𝑥 ⊕ 𝑖0) + (0 ⊕ 𝑖𝑦) = 𝑥 ⊕ 𝑖𝑦.
To simplify notation, we will write

𝑥 ⊕ 𝑖0 = 𝑥 , 0 ⊕ 𝑖𝑦 = 𝑖𝑦
and

𝑥 ⊕ 𝑖𝑦 = 𝑥 + 𝑖𝑦 .
We will also often swap 𝑖 and 𝑦 , writing equivalently

𝑥 + 𝑖𝑦 = 𝑥 + 𝑦𝑖 .

We now want to define multiplication between complex numbers.

Remark 5.6: Formal calculation for multiplication in ℂ

How to define multiplication in ℂ? Whatever the definition may be, at least it has to give that
that

𝑖2 = 𝑖 ⋅ 𝑖 = −1 .
Keeping the above in mind, let us do some formal calculations: For 𝑧1 = 𝑥1 + 𝑖𝑦1, 𝑧2 = 𝑥2 + 𝑖𝑦2
we have

𝑧1 ⋅ 𝑧2 = (𝑥1 + 𝑖𝑦1) ⋅ (𝑥2 + 𝑖𝑦2)
= 𝑥1 ⋅ 𝑥2 + 𝑥1 ⋅ 𝑖𝑦2 + 𝑥2 ⋅ 𝑖𝑦1 + 𝑦1 ⋅ 𝑖2𝑦2
= (𝑥1 ⋅ 𝑥2 − 𝑦1 ⋅ 𝑦2) + 𝑖 (𝑥1 ⋅ 𝑦2 + 𝑥2 ⋅ 𝑦1)

Remark 5.6 motivates the following definition of multiplication.

Definition 5.7: Multiplication in ℂ

Let 𝑧1, 𝑧2 ∈ ℂ, so that
𝑧1 = 𝑥1 ⊕ 𝑖𝑦1 , 𝑧2 = 𝑥2 ⊕ 𝑖𝑦2 ,

for some 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ ℝ. Define the multiplication of 𝑧1 and 𝑧2 as

𝑧1 ⋅ 𝑧2 = (𝑥1 + 𝑖𝑦1) ⋅ (𝑥2 + 𝑖𝑦2)
∶= (𝑥1 ⋅ 𝑥2 − 𝑦1 ⋅ 𝑦2) + 𝑖 (𝑥1 ⋅ 𝑦2 + 𝑥2 ⋅ 𝑦1) ,
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where the operations + and ⋅ on the right hand side are the operations in ℝ.

Clearly, 𝑧1 ⋅ 𝑧2 as defined above is an element of ℂ. Therefore ⋅ defines a binary operation over ℂ.
Remark 5.8

To check that we have given a good definition of product, we should have that

𝑖2 = −1 ,
as expected. Indeed:

𝑖2 = (0 + 1𝑖) ⋅ (0 + 1𝑖)
= (0 ⋅ 0 − 1 ⋅ 1) + (0 ⋅ 1 + 0 ⋅ 1)𝑖 = −1 .

Important

In view of Remark 5.8, we see that he formal calculations in Remark 5.6 are compatible with the
definition of multiplication of complex numbers. Therefore, it is not necessary to memorize the
multiplication formula, but it suffices to carry out calculations as usual, and replace 𝑖2 by −1.

Example 5.9

Question. Compute 𝑧𝑤 , where

𝑧 = −2 + 3𝑖 , 𝑤 = 1 − 𝑖 .
Solution. Using the definition we compute

𝑧 ⋅ 𝑤 = (−2 + 3𝑖) ⋅ (1 − 𝑖)
= (−2 − (−3)) + (2 + 3)𝑖
= 1 + 5𝑖 .

Alternatively, we can proceed formally as in Remark 5.6. We just need to recall that 𝑖2 has to be
replaced with −1:

𝑧 ⋅ 𝑤 = (−2 + 3𝑖) ⋅ (1 − 𝑖)
= −2 + 2𝑖 + 3𝑖 − 3𝑖2
= (−2 + 3) + (2 + 3)𝑖
= 1 + 5𝑖 .
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We now want to check that
(ℂ, +, ⋅)

is a field. All the field axioms are trivial to check, except for the existence of additive and multiplica-
tive inverses.

Proposition 5.10: Additive inverse in ℂ

The neutral element of addition in ℂ is the number

0 ∶= 0 + 0𝑖 .
For any 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, the unique additive inverse is given by

−𝑧 ∶= −𝑥 − 𝑖𝑦 .

The proof is immediate and is left as an exercise. The multiplication requires more care.

Remark 5.11: Formal calculation for multiplicative inverse

Let us first carry our some formal calculations. Let

𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ , 𝑧 ≠ 0 .
First, note that

𝑧 ⋅ 1 = (𝑥 + 𝑖𝑦) ⋅ (1 + 0𝑖) = 𝑥 + 𝑖𝑦 = 𝑧 ,
and therefore 1 is the neutral element of multiplication. Thus, the inverse of 𝑧 should be a
complex number 𝑧−1 ∈ ℂ such that

𝑧 ⋅ 𝑧−1 = 1 .
We would like to define

𝑧−1 = 1
𝑥 + 𝑖𝑦 .

Such number does not belong to ℂ, as it is not of the form 𝑎 + 𝑖𝑏 for some 𝑎, 𝑏 ∈ ℝ. However it
is what the inverse should look like. Proceeding formally:

1
𝑥 + 𝑖𝑦 = 1

𝑥 + 𝑖𝑦 ⋅ 1

= 1
𝑥 + 𝑖𝑦 ⋅ 𝑥 − 𝑖𝑦

𝑥 − 𝑖𝑦
= 𝑥 − 𝑖𝑦

𝑥2 − (𝑖𝑦)2

= 𝑥 − 𝑖𝑦
𝑥2 + 𝑦2

= 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 .

The right hand side is an element of ℂ, and looks like a good candidate for 𝑧−1.
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Motivated by the above remark, we define inverses in ℂ in the following way.

Proposition 5.12: Multiplicative inverse in ℂ

The neutral element of multiplication in ℂ is the number

1 ∶= 1 + 0𝑖 .
For any 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, the unique multiplicative inverse is given by

𝑧−1 ∶= 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 .

Proof

It is immediate to check that 1 is the neutral element of multiplication in ℂ. For the remaining
part of the statement, set

𝑤 ∶= 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 .

We need to check that 𝑧 ⋅ 𝑤 = 1

𝑧 ⋅ 𝑤 = (𝑥 + 𝑖𝑦) ⋅ ( 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 )

= ( 𝑥2
𝑥2 + 𝑦2 − 𝑦 ⋅ (−𝑦)

𝑥2 + 𝑦2 ) + 𝑖 (𝑥 ⋅ (−𝑦)
𝑥2 + 𝑦2 + 𝑥𝑦

𝑥2 + 𝑦2 )
= 1 ,

so indeed 𝑧−1 = 𝑤 .

Important

It is not necessary to memorize the formula for 𝑧−1. Indeed one can just remember the trick of
multiplying by

1 = 𝑥 − 𝑖𝑦
𝑥 − 𝑖𝑦 ,

and proceed formally, as done in Remark 5.11.

Example 5.13

Question. Let 𝑧 = 3 + 2𝑖. Compute 𝑧−1.
Solution. By the formula in Propostion 5.12 we immediately get

𝑧−1 = 3
32 + 22 + −2

32 + 22 𝑖 = 3
13 − 2

13 𝑖 .
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Alternatively, we can proceed formally as in Remark 5.11

(3 + 2𝑖)−1 = 1
3 + 2𝑖

= 1
3 + 2𝑖

3 − 2𝑖
3 − 2𝑖

= 3 − 2𝑖
32 + 22

= 3
13 − 2

13 𝑖 ,

and obtain the same result.

We can now prove that ℂ is a field.

Theorem 5.14

(ℂ, +, ⋅) is a field.

Proof

We need to check that all field axioms hold. For the addition we have

• (A1) To show that + is commutative, note that

(𝑥 + 𝑖𝑦) + (𝑎 + 𝑖𝑏) = (𝑥 + 𝑎) + 𝑖(𝑦 + 𝑏)
= (𝑎 + 𝑥) + 𝑖(𝑏 + 𝑦)
= (𝑎 + 𝑖𝑏) + (𝑥 + 𝑖𝑦) ,

where we used Definition 2.78 in the first and last equality, and the commutative property
of the real numbers (which holds since by definition ℝ is a field) in the second equality.
Associativity can be checked in the same way.

• (A2) The neutral element of addition is 0, as stated in Proposition 2.80.

• (A3) Existence of additive inverses is given by Proposition 2.80.

For multiplication we have:

• (M1) Commutativity and associativity of product in ℂ can be checked using Definition 5.7
and commutativity and associativity of sum and multiplication in ℝ.

• (M2) The neutral element of multiplication is 1, as stated in Propostion 5.12.

• (M3) Existence of multiplicative inverses is guaranteed by Proposition 5.12.

Finally one should check the associative property (AM). This is left as an exercise.
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5.1.1 Division in ℂ
Suppose we want to divide two complex numbers 𝑤, 𝑧 ∈ ℂ, 𝑧 ≠ 0, with

𝑧 = 𝑥 + 𝑖𝑦 , 𝑤 = 𝑎 + 𝑖𝑏 .
We have two options:

1. Use the formula for the inverse from Proposition 5.12 and compute

𝑧−1 ∶= 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 .

Then we use the multiplication formula of Definition 5.7 to compute

𝑤
𝑧 = 𝑤 ⋅ 𝑧−1

= (𝑎 + 𝑖𝑏) ⋅ ( 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2 )

= (𝑎𝑥 + 𝑏𝑦) + 𝑖(𝑏𝑥 − 𝑎𝑦)
𝑥2 + 𝑦2

2. Proceed formally as in Remark 5.11, using the multiplication by 1 trick. We would have

𝑤
𝑧 = 𝑎 + 𝑖𝑏

𝑥 + 𝑖𝑦
= 𝑎 + 𝑖𝑏

𝑥 + 𝑖𝑦
𝑥 − 𝑖𝑦
𝑥 − 𝑖𝑦

= (𝑎𝑥 + 𝑏𝑦) + 𝑖(𝑏𝑥 − 𝑎𝑦)
𝑥2 + 𝑦2

Example 5.15

Question. Let 𝑤 = 1 + 𝑖 and 𝑧 = 3 − 𝑖. Compute 𝑤
𝑧 .

Solution. We compute 𝑤/𝑧 using the two options we have:

1. Using the formula for the inverse from Proposition 5.12 we compute

𝑧−1 = 𝑥
𝑥2 + 𝑦2 + 𝑖 −𝑦

𝑥2 + 𝑦2
= 3

32 + 12 − 𝑖 −1
32 + 12

= 3
10 + 1

10 𝑖
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and therefore

𝑤
𝑧 = 𝑤 ⋅ 𝑧−1

= (1 + 𝑖) ( 3
10 + 1

10 𝑖)

= ( 3
10 − 1

10) + ( 1
10 + 3

10) 𝑖

= 2
10 + 4

10 𝑖

= 1
5 + 2

5 𝑖

2. We proceed formally, using the multiplication by 1 trick. We have

𝑤
𝑧 = 1 + 𝑖

3 − 𝑖
= 1 + 𝑖

3 − 𝑖
3 + 𝑖
3 + 𝑖

= 3 − 1 + (3 + 1)𝑖
32 + 12

= 2
10 + 4

10 𝑖

= 1
5 + 2

5 𝑖

5.1.2 ℂ is not ordered

We have seen that (ℂ, +, ⋅) is a field. One might wonder whether ℂ is also an ordered field. It turns
out that this is not the case.

Theorem 5.16

The field (ℂ, +, ⋅) is not ordered.

Proof

Suppose that ℂ is an ordered field, that is, there exists an order relation ≤ on ℂ compatible with
the operations + and ⋅. By axiom (MO) it follows that for all elements 𝑧 ∈ ℂ, 𝑧 ≠ 0, we have that
𝑧2 > 0. But since 𝑖2 = −1 < 0, we get a contradiction.

Hence, it is not possible to compare two complex numbers.
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5.1.3 Completeness of ℂ
One might also wonder whether ℂ is complete. Our definition of completeness uses the notions
of supremum and infimum, which require an order relation. However, ℂ is not ordered, as seen in
Theorem 5.16. Therefore we cannot define infimum and supremum of subsets of ℂ, and we have to
find an alternative way to discuss completeness.

The right way to introduce completeness in ℂ is by using the notion of Cauchy sequence. In
ordered fields, this new definition of completeness is equivalent to the definition which uses the
supremum.

5.2 Complex conjugates

When computing inverses, we used the trick to multiply by 1:
𝑧−1 = 1

𝑧 ⋅ 1 = 1
𝑥 + 𝑖𝑦 ⋅ 𝑥 − 𝑖𝑦

𝑥 − 𝑖𝑦 .

The complex number 𝑥 − 𝑖𝑦 is obtained by changing the sign to the imaginary part of 𝑧 = 𝑥 + 𝑖𝑦 . We
give a name to this operation.

Definition 5.17: Complex conjugate

Let 𝑧 = 𝑥 + 𝑖𝑦 . We call the complex conjugate of 𝑧, denoted by ̄𝑧, the complex number

̄𝑧 = 𝑥 − 𝑖𝑦 .

Example 5.18

We have the following conjugates:

3 + 4𝑖 = 3 − 4𝑖 , 3 − 4𝑖 = 3 + 4𝑖 ,
−3 + 4𝑖 = −3 − 4𝑖 , −3 − 4𝑖 = −3 + 4𝑖 ,
3 = 3 , 4𝑖 = −4𝑖 .

Complex conjugates have the following properties:

Theorem 5.19

For all 𝑧1, 𝑧2 ∈ ℂ it holds:

• 𝑧1 + 𝑧2 = 𝑧1 + 𝑧2
• 𝑧1 ⋅ 𝑧2 = 𝑧1 ⋅ 𝑧2
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Proof

Let 𝑧1, 𝑧2 ∈ ℂ. Then
𝑧1 = 𝑥1 + 𝑖𝑦1 , 𝑧2 = 𝑥2 + 𝑖𝑦2 ,

for some 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ ℝ.
• Using the definition of addition in ℂ and of conjugate,

𝑧1 + 𝑧2 = (𝑥1 + 𝑖𝑦1) + (𝑥2 + 𝑖𝑦2)
= (𝑥1 + 𝑥2) + 𝑖 (𝑦1 + 𝑦2)
= (𝑥1 + 𝑥2) − 𝑖 (𝑦1 + 𝑦2)
= (𝑥1 − 𝑖𝑦1) + (𝑥2 − 𝑖𝑦2)
= 𝑥1 + 𝑖𝑦1 + 𝑥2 + 𝑖𝑦2
= 𝑧1 + 𝑧2 .

• Using the definition of multiplication in ℂ and of conjugate,

𝑧1 ⋅ 𝑧2 = (𝑥1 + 𝑖𝑦1) ⋅ (𝑥2 + 𝑖𝑦2)
= (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖 (𝑥1𝑦2 + 𝑥2𝑦1)
= (𝑥1𝑥2 − 𝑦1𝑦2) − 𝑖 (𝑥1𝑦2 + 𝑥2𝑦1)
= (𝑥1 − 𝑖𝑦1) ⋅ (𝑥2 − 𝑖𝑦2)
= 𝑧1 ⋅ 𝑧2

Example 5.20

Let 𝑧1 = 3 − 4𝑖 and 𝑧2 = −2 + 5𝑖. Then
• Let us check that

𝑧1 + 𝑧2 = 𝑧1 + 𝑧2
Indeed, we have

𝑧1 + 𝑧2 = 1 + 𝑖 ⟹ 𝑧1 + 𝑧2 = 1 − 𝑖 .
On the other hand

𝑧1 = 3 + 4𝑖 , 𝑧2 = −2 − 5𝑖 ⟹ 𝑧1 + 𝑧2 = 1 − 𝑖 .

• Let us check that
𝑧1 ⋅ 𝑧2 = 𝑧1 ⋅ 𝑧2
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Indeed,

𝑧1 ⋅ 𝑧2 = (3 + 4𝑖) ⋅ (−2 + 5𝑖)
= (−6 + 20) + (8 + 15)𝑖
= 14 + 23𝑖

so that
𝑧1 ⋅ 𝑧2 = 14 − 23𝑖

On the other hand:

𝑧1 ⋅ 𝑧2 = (3 + 4𝑖) ⋅ (−2 − 5𝑖)
= (−6 + 20) + (−15 − 8)𝑖
= 14 − 23𝑖

5.3 The complex plane

We can represent a real number 𝑥 as a point on the one-dimensional real lineℝ. The distance between
two real numbers 𝑥, 𝑦 ∈ ℝ on the real line is given by |𝑥 − 𝑦|, see Figure 5.1.

Figure 5.1: Two points 𝑥 and 𝑦 on the real line ℝ. Their distance is |𝑥 − 𝑦|.

We would like to do something similar for the complex numbers, i.e. points

𝑧 = 𝑥 + 𝑖𝑦 , 𝑥, 𝑦 ∈ ℝ .
We represent 𝑧 = 𝑥 +𝑖𝑦 in the two-dimensional plane at the point with (Cartesian) coordinates (𝑥, 𝑦).
This two-dimensional plane in which we can represent all complex numbers is called the complex
plane. The origin of such plane, with coordinates (0, 0), corresponds to the complex number

0 + 0𝑖 = 0 ,
see Figure 5.2.

5.3.1 Distance on ℂ
The Cartesian representation allows us to introduce a distance between two complex numbers. Let
us start with the distance between a complex number 𝑧 = 𝑥 + 𝑖𝑦 and 0. By Pythagoras Theorem this
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Figure 5.2: A point 𝑧 = 𝑥+𝑖𝑦 ∈ ℂ can be represented on the complex plane by the point of coordinates
(𝑥, 𝑦). The distance between 𝑧 and 0 is given by |𝑧| = √𝑧2 + 𝑦2.

distance is given by

√𝑥2 + 𝑦2 ,
see Figure 5.2. We give a name to this quantity.

Definition 5.21: Modulus

The modulus of a complex number 𝑧 = 𝑥 + 𝑖𝑦 is defined by

|𝑧| ∶= √𝑥2 + 𝑦2 .

Note that the distance between 𝑧 and 0 is always a non-negative number.

Remark 5.22: Modulus of Real numbers

A real number 𝑥 ∈ ℝ can be written as

𝑥 = 𝑥 + 0𝑖 ∈ ℂ .
Hence the modulus of 𝑥 is given by

|𝑥| = √𝑥2 + 02 = √𝑥2 .
The above coincides with the absolute value of 𝑥 . This explains why the notation for modulus
in ℂ is the same as the one for absolute value in ℝ.

We can now define the distance between two complex numbers.
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Definition 5.23: Distance in ℂ

Given 𝑧1, 𝑧2 ∈ ℂ, we define the distance between 𝑧1 and 𝑧2 as the quantity

|𝑧1 − 𝑧2| .

The geometric intuition of why the quantity |𝑧1 − 𝑧2| is defined as the distance between 𝑧1 and 𝑧2 is
given in Figure 5.3.

Figure 5.3: The difference 𝑧1 − 𝑧2 of the two points 𝑧1, 𝑧2 ∈ ℂ is given by the magenta vector. We
define |𝑧1 − 𝑧2| as the distance between 𝑧1 and 𝑧2.

Theorem 5.24

Given 𝑧1, 𝑧2 ∈ ℂ, we have

|𝑧1 − 𝑧2| = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 .

Proof

We have
𝑧1 − 𝑧2 = (𝑥1 − 𝑥2) + 𝑖(𝑦1 − 𝑦2) .

Therefore, by definition of modulus,

|𝑧1 − 𝑧2| = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 .
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Example 5.25

Question. Compute the distance between

𝑧 = 2 − 4𝑖 , 𝑤 = −5 + 𝑖 .
Solution. The distance is

|𝑧 − 𝑤| = |(2 − 4𝑖) − (−5 + 𝑖)|
= |7 − 5𝑖|
= √72 + (−5)2
= √74

5.3.2 Properties of modulus

The modulus has the following properties.

Theorem 5.26

Let 𝑧, 𝑧1, 𝑧2 ∈ ℂ. Then
1. |𝑧1 ⋅ 𝑧2| = |𝑧1| |𝑧2|
2. |𝑧𝑛 | = |𝑧|𝑛 for all 𝑛 ∈ ℕ
3. 𝑧 ⋅ ̄𝑧 = |𝑧|2

Proof

Part 1. We have

𝑧1 ⋅ 𝑧2 = (𝑥1 + 𝑖𝑦1) ⋅ (𝑥2 + 𝑖𝑦2)
= (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥2𝑦1 + 𝑥1𝑦2)

and therefore

|𝑧1 ⋅ 𝑧2| = √(𝑥1𝑥2 − 𝑦1𝑦2)2 + (𝑥2𝑦1 + 𝑥1𝑦2)2

= √𝑥21𝑥22 + 𝑦21 𝑦22 + 𝑥22𝑦21 + 𝑥21𝑦22 .
On the other hand,

|𝑧1| = √𝑥21 + 𝑦21 , |𝑧2| = √𝑥22 + 𝑦22
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so that

|𝑧1||𝑧2| = √𝑥21 + 𝑦21√𝑥22 + 𝑦22
= √𝑥21𝑥22 + 𝑦21 𝑦22 + 𝑥22𝑦21 + 𝑥21𝑦22

proving that |𝑧1 ⋅ 𝑧2| = |𝑧1| |𝑧2|.
Part 2. Exercise. It easily follows from Point 1 and induction.
Part 3. Let 𝑧 = 𝑥 + 𝑖𝑦 for some 𝑥, 𝑦 ∈ ℝ. Then,

𝑧 ⋅ ̄𝑧 = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦)
= 𝑥2 − (𝑖𝑦)2
= 𝑥2 + 𝑦2
= |𝑧|2

The modulus in ℂ satisfies the triangle inequality.

Theorem 5.27: Triangle inequality in ℂ

For all 𝑥, 𝑦 , 𝑧 ∈ ℂ,
1. |𝑥 + 𝑦| ≤ |𝑥| + |𝑦 |
2. |𝑥 − 𝑧| ≤ |𝑥 − 𝑦| + |𝑦 − 𝑧|

Proof

Part 1. Suppose that 𝑥 = 𝑎 + 𝑖𝑏 and 𝑦 = 𝑐 + 𝑖𝑑 for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ. Then,

|𝑥 + 𝑦| = |(𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑)| = √(𝑎 + 𝑐)2 + (𝑏 + 𝑑)2 .
Therefore the inequality

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦 | (5.2)

is equivalent to

√(𝑎 + 𝑐)2 + (𝑏 + 𝑑)2 ≤ √𝑎2 + 𝑏2 + √𝑐2 + 𝑑2 . (5.3)

Now note that, for 𝐴, 𝐵 ∈ ℝ, we have that

𝐴2 ≤ 𝐵2 ⟹ |𝐴| ≤ |𝐵| . (5.4)
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In the two reverse implications ⟸ below we will use (5.4):

√(𝑎 + 𝑐)2 + (𝑏 + 𝑑)2 ≤ √𝑎2 + 𝑏2 + √𝑐2 + 𝑑2

⟸ (𝑎 + 𝑐)2 + (𝑏 + 𝑑)2 ≤ (√𝑎2 + 𝑏2 + √𝑐2 + 𝑑2)
2

⟺ 𝑎2 + 2𝑎𝑐 + 𝑐2 + 𝑏2 + 2𝑏𝑑 + 𝑑2 ≤ 𝑎2 + 𝑏2 + 2√𝑎2 + 𝑏2√𝑐2 + 𝑑2 + 𝑐2 + 𝑑2

⟺ 𝑎𝑐 + 𝑏𝑑 ≤ √𝑎2 + 𝑏2√𝑐2 + 𝑑2
⟸ (𝑎𝑐 + 𝑏𝑑)2 ≤ (𝑎2 + 𝑏2) (𝑐2 + 𝑑2)
⟺ 𝑎2𝑐2 + 2𝑎𝑏𝑐𝑑 + 𝑏2𝑑2 ≤ 𝑎2𝑐2 + 𝑎2𝑑2 + 𝑏2𝑐2 + 𝑏2𝑑2
⟺ 𝑎2𝑑2 + 𝑏2𝑐2 − 2𝑎𝑏𝑐𝑑 ≥ 0
⟺ (𝑎𝑑 − 𝑏𝑐)2 ≥ 0.

This last statement is clearly true, since 𝑎𝑑 − 𝑏𝑐 ∈ ℝ. Therefore (5.3) holds, and so (5.2) follows.
Part 2. Using (5.2) we estimate

|𝑥 − 𝑧| = |𝑥 − 𝑦 + 𝑦 − 𝑧| ≤ |𝑥 − 𝑦| + |𝑦 − 𝑧|.

Remark 5.28: Geometric interpretation of triangle inequality

We finally have a justification of why the inequality

|𝑥 − 𝑧| ≤ |𝑥 − 𝑦| + |𝑦 − 𝑧|
is called triangle inequality: By drawing three points 𝑥, 𝑦 , 𝑧 ∈ ℂ in the complex plane, the
distance between 𝑥 and 𝑧 is shorter than the distance to go from 𝑥 to 𝑧 via the point 𝑦 , see
Figure 5.4.

5.4 Polar coordinates

We have seen that we can identify a complex number 𝑧 = 𝑥 + 𝑖𝑦 by a point in the complex plane
with Cartesian coordinates (𝑥, 𝑦). We can also specify the point (𝑥, 𝑦) by using the so-called polar
coordinates (𝜌, 𝜃), where

• 𝜌 is the distance between 𝑧 and the origin

𝜌 = |𝑧| = √𝑥2 + 𝑦2

• 𝜃 is the angle between the line connecting the origin and 𝑧 and the positive real axis, see
Figure 5.5.
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Figure 5.4: Let 𝑥, 𝑦 , 𝑧 ∈ ℂ. The distance between 𝑥 and 𝑧 is shorter than the distance to go from 𝑥 to
𝑧 via the point 𝑦 .

Figure 5.5: Polar coordinates (𝜌, 𝜃) for the complex number 𝑧 ∈ ℂ.
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We give such angle a name.

Definition 5.29: Argument

Let 𝑧 ∈ ℂ. The angle 𝜃 between the line connecting the origin and 𝑧 and the positive real axis
is called the argument of 𝑧, and is denoted by

𝜃 ∶= arg(𝑧) .

Warning

We always use angles in radians, not degrees. Make sure your calculator is set to radians if you
want to use it to compute angles.

Remark 5.30: Principal Value

The argument of a complex number is not uniquely defined. We can always add an integer
number of times 2𝜋 to the argument to specify the same point. We usually use the convention to
choose the argument in the interval (−𝜋, 𝜋]. This is called the principal value of the argument
function. Therefore the complex numbers in the upper half plane have a positive argument, and
the ones in the lower half plane have a negative argument.

Example 5.31

We have the following arguments:

arg(1) = 0 arg(𝑖) = 𝜋
2

arg(−1) = 𝜋 arg(−𝑖) = −𝜋
2

arg(1 + 𝑖) = 1
4𝜋 arg(−1 − 𝑖) = −3

4𝜋

We can represent any non-zero complex number in polar coordinates.

Theorem 5.32: Polar coordinates

Let 𝑧 ∈ ℂ with 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧 ≠ 0. Then
𝑥 = 𝜌 cos(𝜃) , 𝑦 = 𝜌 sin(𝜃) ,

where
𝜌 ∶= |𝑧| = √𝑥2 + 𝑦2 , 𝜃 ∶= arg(𝑧) .

The proof of Theorem 2.95 is trivial, and is based on basic trigonometry and definition of arg(𝑧).
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Complex numbers in polar form can be useful. We give a name to such polar form.

Definition 5.33: Trigonometric form

Let 𝑧 ∈ ℂ. The trigonometric form of 𝑧 is

𝑧 = |𝑧| [cos(𝜃) + 𝑖 sin(𝜃)] ,
where 𝜃 = arg(𝑧).

Example 5.34

Question. Suppose that 𝑧 ∈ ℂ has polar coordinates

𝜌 = √8 , 𝜃 = 3
4𝜋 .

Therefore, the trigonometric form of 𝑧 is

𝑧 = √8 [cos (34𝜋) + 𝑖 sin (34𝜋)] .

Write 𝑧 in cartesian form.
Solution. We have

𝑥 = 𝜌 cos(𝜃) = √8 cos (34𝜋) = −√8 ⋅ √22 = −2

𝑦 = 𝜌 sin(𝜃) = √8 sin (34𝜋) = √8 ⋅ √22 = 2 .

Therefore, the cartesian form of 𝑧 is

𝑧 = 𝑥 + 𝑖𝑦 = −2 + 2𝑖 .

As a consequence of Theorem 2.95 we obtain a formula for computing the argument.

Corollary 5.35: Computing arg(𝑧)

Let 𝑧 ∈ ℂ with 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧 ≠ 0. Then

arg(𝑧) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

arctan (𝑦𝑥 ) if 𝑥 > 0
arctan (𝑦𝑥 ) + 𝜋 if 𝑥 < 0 and 𝑦 ≥ 0
arctan (𝑦𝑥 ) − 𝜋 if 𝑥 < 0 and 𝑦 < 0
𝜋
2 if 𝑥 = 0 and 𝑦 > 0
−𝜋
2 if 𝑥 = 0 and 𝑦 < 0
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where arctan is the inverse of tan.

Proof

Using the polar coordinates formulas from Theorem 2.95, we get

𝑦
𝑥 = 𝜌 sin(𝜃)

𝜌 cos(𝜃) = tan(𝜃) .

The thesis can be obtained by carefully inverting the tangent: With reference to Figure 5.6 and
Figure 5.7, we have:

1. When 𝑥 > 0: Then 𝑧 = 𝑥 + 𝑖𝑦 belongs to the 1st or 4th quadrant. Therefore the argument
of 𝑧 is 𝜃 ∈ (−𝜋/2, 𝜋/2). Such interval coincides with the domain of tan, and therefore

𝜃 = arctan (𝑦𝑥 ) .

2. When 𝑥 < 0 and 𝑦 ≥ 0: Then 𝑧 = 𝑥 + 𝑖𝑦 lies in the 2nd quadrant. Thus, the argument of
𝑧 is 𝜃 ∈ (𝜋/2, 𝜋). Hence

𝜃 = arctan (𝑦𝑥 ) + 𝜋 .

3. When 𝑥 < 0 and 𝑦 < 0: Then 𝑧 = 𝑥 + 𝑖𝑦 lies in the 3rd quadrant. Thus, the argument of 𝑧
is 𝜃 ∈ (−𝜋, 𝜋/2). Hence

𝜃 = arctan (𝑦𝑥 ) − 𝜋 .

4. When 𝑥 = 0 and 𝑦 > 0: Then 𝑧 = 𝑖𝑦 is imaginary with 𝑦 > 0, meaning that 𝜃 = 𝜋/2.
5. When 𝑥 = 0 and 𝑦 < 0: Then 𝑧 = 𝑖𝑦 is imaginary with 𝑦 < 0, meaning that 𝜃 = −𝜋/2.

This exhausts all the cases, and the proof is concluded.

Example 5.36

Question. Compute the arguments of the complex numbers

𝑧 = 3 + 4𝑖 , ̄𝑧 = 3 − 4𝑖 , − ̄𝑧 = −3 + 4𝑖 , −𝑧 = −3 − 4𝑖 .
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Figure 5.6: The definition of arg(𝑧) depends on the position of 𝑧 in the complex plane.

Figure 5.7: Plot of the tangent function for 𝜃 between − 3𝜋
2 and 3𝜋

2 .
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Solution. Using the formula for arg in Corollary 2.98 we have

arg(3 + 4𝑖) = arctan (43)

arg(3 − 4𝑖) = arctan (−4
3) = − arctan (43)

arg(−3 + 4𝑖) = arctan (−4
3) + 𝜋 = − arctan (43) + 𝜋

arg(−3 − 4𝑖) = arctan (43) − 𝜋

5.5 Exponential form

We have seen that we can represent complex numbers in

• Cartesian form
• Trigonometric form

We now introduce a third way of representing complex numbers: the exponential form. For this, we
need Euler’s identity:

Theorem 5.37: Euler’s identity

For all 𝜃 ∈ ℝ it holds
𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃) .

Proof

The proof of this theorem uses complex power series. We have not yet introduced series. How-
ever, we carry out the proof formally, assuming that all the quantities below converge. We have
the following Taylor series at 𝑥0 = 0 (you might know them from calculus):

𝑒𝑥 = 1 + 𝑥 + 𝑥2
2! + 𝑥3

3! + 𝑥4
4! + 𝑥5

5! + 𝑥6
6! + 𝑥7

7! + …

sin(𝑥) = 𝑥
1! −

𝑥3
3! + 𝑥5

5! − 𝑥7
7! + …

cos(𝑥) = 1 − 𝑥2
2! + 𝑥4

4! − 𝑥6
6! + …

The above identities also hold for 𝑥 ∈ ℂ. Hence we can substitute 𝑥 = 𝑖𝜃 in the series for 𝑒𝑥 to
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obtain

𝑒𝑖𝜃 = 1 + 𝑖𝜃 + (𝑖𝜃)2
2! + (𝑖𝜃)3

3! + (𝑖𝜃)4
4! + (𝑖𝜃)5

5! + (𝑖𝜃)6
6! + (𝑖𝜃)7

7! …

= 1 + 𝑖𝜃 − 𝜃2
2! − 𝑖 𝜃

3
3! + 𝜃4

4! + 𝑖 𝜃
5
5! − 𝜃6

6! − 𝑖 𝜃
7
7! + …

= cos(𝜃) + 𝑖 sin(𝜃),

where in the second equality we used that 𝑖2 = −1, and where the third equality follows by
observing that all terms with an even power of 𝜃 are exactly the terms in the expansion of
cos(𝜃), and all terms with an odd power of 𝜃 are exactly the terms in the expansion of sin(𝜃)
multiplied by 𝑖.

Theorem 5.38

For all 𝜃 ∈ ℝ it holds
|𝑒𝑖𝜃 | = 1 .

Proof

From Euler’s identity in Theorem 2.100 we get

|𝑒𝑖𝜃 | = | cos(𝜃) + 𝑖 sin(𝜃)| = √cos2(𝜃) + sin2(𝜃) = 1 .

Theorem 5.39

Let 𝑧 ∈ ℂ with 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧 ≠ 0. Then
𝑧 = 𝜌𝑒𝑖𝜃 ,

where
𝜌 ∶= |𝑧| = √𝑥2 + 𝑦2 , 𝜃 ∶= arg(𝑧) .

Proof

By Theorem 2.95 we have
𝑥 = 𝜌 cos(𝜃) , 𝑦 = 𝜌 sin(𝜃) .
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Hence

𝑧 = 𝑥 + 𝑖𝑦
= 𝜌 cos(𝜃) + 𝑖𝜌 sin(𝜃)
= 𝜌𝑒𝑖𝜃 ,

where in the last line we used Euler’s identity in Theorem 2.100.

Definition 5.40: Exponential form

The exponential form of a complex number 𝑧 ∈ ℂ is

𝑧 = 𝜌𝑒𝑖𝜃 = |𝑧| 𝑒𝑖 arg(𝑧) .

Example 5.41

Question. Write the number
𝑧 = −2 + 2𝑖

in exponential form.
Solution. From Example 5.34 we know that 𝑧 = −2 + 2𝑖 can be written in trigonometric form
as

𝑧 = √8 [cos (34𝜋) + 𝑖 sin (34𝜋)] .
By Euler’s identity we hence obtain the exponential form

𝑧 = √8𝑒𝑖
3
4 𝜋 .

Remark 5.42: Periodicity of exponential

For all 𝑘 ∈ ℤ we have
𝑒𝑖𝜃 = 𝑒𝑖(𝜃+2𝜋𝑘) , (5.5)

meaning that the complex exponential is 2𝜋-periodic. As we did for the principal value of the
argument, we select 𝜃 in (5.5) so that 𝜃 ∈ (−𝜋, 𝜋].

Proof

Equation (5.5) follows immediately by Euler’s identity and periodicity of cos and sin, since

𝑒𝑖(𝜃+2𝜋𝑘) = cos(𝜃 + 2𝜋𝑘) + 𝑖 sin(𝜃 + 2𝜋𝑘)
= cos(𝜃) + 𝑖 sin(𝜃) = 𝑒𝑖𝜃 .
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The exponential form is very useful for computing products and powers of complex numbers.

Proposition 5.43

Let 𝑧, 𝑧1, 𝑧2 ∈ ℂ and suppose that

𝑧 = 𝜌𝑒𝑖𝜃 , 𝑧1 = 𝜌1𝑒𝑖𝜃1 , 𝑧2 = 𝜌2𝑒𝑖𝜃2 .
We have

𝑧1 ⋅ 𝑧2 = 𝜌1𝜌2𝑒𝑖(𝜃1+𝜃2) , 𝑧𝑛 = 𝜌𝑛𝑒𝑖𝑛𝜃 ,
for all 𝑛 ∈ ℕ.

The proof follows immediately by the properties of the exponential. Let us see some applications of
Propostion 5.43.

Example 5.44

Question. Compute (−2 + 2𝑖)4.
Solution. We have two possibilities:

1. Use the binomial theorem:

(−2 + 2𝑖)4 = (−2)4 + ( 4
1 ) (−2)3 ⋅ 2𝑖 + ( 4

2 ) (−2)2 ⋅ (2𝑖)2

+ ( 4
3 ) (−2) ⋅ (2𝑖)3 + (2𝑖)4

= 16 − 4 ⋅ 8 ⋅ 2𝑖 − 6 ⋅ 4 ⋅ 4 + 4 ⋅ 2 ⋅ 8𝑖 + 16
= 16 − 64𝑖 − 96 + 64𝑖 + 16 = −64 .

2. A much simpler calculation is possible by using the exponential form: We know that

−2 + 2𝑖 = √8𝑒𝑖
3
4 𝜋

by Example 5.41. Hence

(−2 + 2𝑖)4 = (√8𝑒𝑖
3
4 𝜋)

4
= 82𝑒𝑖3𝜋 = −64 ,

where we used that
𝑒𝑖3𝜋 = 𝑒𝑖𝜋 = cos(𝜋) + 𝑖 sin(𝜋) = −1

by 2𝜋 periodicity of 𝑒𝑖𝜃 and Euler’s identity.
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Definition 5.45: Complex exponential

The complex exponential of 𝑧 = 𝑎 + 𝑖𝑏 ∈ ℂ is defined as

𝑒𝑧 = 𝑒𝑎𝑒𝑖𝑏 .

The complex exponential behaves exactly as exponentials should.

Theorem 5.46

Let 𝑧, 𝑤 ∈ ℂ. Then
𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 , (𝑒𝑧)𝑤 = 𝑒𝑧𝑤 . (5.6)

We still do not have the technical means to prove this Theorem. The idea is to express 𝑒𝑧 as

𝑒𝑧 =
∞
∑
𝑘=0

𝑧𝑛
𝑛! , (5.7)

where the convergence is intendend in the sense of complex series. The properties at (5.6) then
follow from manipulating the series on the RHS of (5.7).

Example 5.47

Question. Compute 𝑖𝑖.
Solution. We know that

|𝑖| = 1 , arg(𝑖) = 𝜋
2 .

Hence we can write 𝑖 in exponential form

𝑖 = |𝑖|𝑒𝑖 arg(𝑖) = 𝑒𝑖 𝜋2 .
Therefore

𝑖𝑖 = (𝑒𝑖
𝜋
2 )

𝑖
= 𝑒𝑖2 𝜋

2 = 𝑒− 𝜋
2 .

5.6 Fundamental Theorem of Algebra

We started the introduction to complex numbers with the following question:

Question 5.48

Is there a number 𝑥 ∈ ℝ such that
𝑥2 = −1 ? (5.8)
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The answer is no. For this reason we introduced the complex number 𝑖, which satisfies

𝑖2 = −1 .
Therefore (5.8) has solution in ℂ, with 𝑥 = 𝑖. Moreover, note that

(−𝑖)2 = (−1)2𝑖2 = −1 .
Hence (5.8) has two solutions in ℂ, given by

𝑥1 = 𝑖 , 𝑥2 = −𝑖 .

It turns out that the setℂ is so large, that not only we are able to solve (5.8), but in fact any polynomial
equation.

Theorem 5.49: Fundamental theorem of algebra

Let 𝑝𝑛(𝑧) be a polynomial of degree 𝑛 with complex coefficients, i.e.,

𝑝𝑛(𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + … + 𝑎1𝑧 + 𝑎0,
for some coefficients 𝑎𝑛 , … , 𝑎0 ∈ ℂ with 𝑎𝑛 ≠ 0. There exist

𝑧1, … , 𝑧𝑛 ∈ ℂ
solutions to the polynomial equation

𝑝𝑛(𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + … + 𝑎1𝑧 + 𝑎0 = 0 . (5.9)

In particular, 𝑝𝑛 factorizes as

𝑝𝑛(𝑧) = 𝑎𝑛 (𝑧 − 𝑧1) (𝑧 − 𝑧2)⋯ (𝑧 − 𝑧𝑛) . (5.10)

Theorem 2.111 says that equation (5.9) admits 𝑛 complex solutions:

• We call these solutions zeros, or also roots.
• We call the expression (5.10) a factorization of the polynomial 𝑝𝑛 .

Several proofs of Theorem 2.111 exist in the literature, but they all use mathematical tools which are
out of reach for now. Therefore we will not show a proof. For example one can prove Theorem 2.111
by

• Liouville’s theorem (complex analysis)
• Homotopy arguments (general topology)
• Fundamental Theorem of Galois Theory (algebra)
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Example 5.50

Question. Find all the complex solutions to

𝑧2 = −1 (5.11)

Solution. The equation 𝑧2 = −1 is equivalent to

𝑝(𝑧) = 0 , 𝑝(𝑧) ∶= 𝑧2 + 1 .
Since 𝑝 has degree 𝑛 = 2, the Fundamental Theorem of Algebra tells us that there are two
solutions to (5.11). We have already seen that these two solutions are 𝑧 = 𝑖 and 𝑧 = −𝑖. Then 𝑝
factorizes as

𝑝(𝑧) = 𝑧2 + 1 = (𝑧 − 𝑖)(𝑧 + 𝑖) .

Example 5.51

Question. Find all the complex solutions to

𝑧4 − 1 = 0 . (5.12)

Solution The associated polynomial equation is

𝑝(𝑧) = 0 , 𝑝(𝑧) ∶= 𝑧4 − 1 .
Since 𝑝 has degree 𝑛 = 4, the Fundamental Theorem of Algebra tells us that there are 4 solutions
to (5.12). Let us find such solutions. We use the well known identity

𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏) , ∀ 𝑎, 𝑏 ∈ ℝ ,
to factorize 𝑝. We get:

𝑝(𝑧) = (𝑧4 − 1) = (𝑧2 + 1)(𝑧2 − 1) .
We know that

𝑧2 + 1 = 0
has solutions 𝑧 = ±𝑖. Instead

𝑧2 − 1 = 0
has solutions 𝑥 = ±1. Hence, the four solutions of (5.12) are given by

𝑧 = 1, −1, 𝑖, −𝑖 ,
and 𝑝 factorizes as

𝑝(𝑧) = 𝑧4 − 1 = (𝑧 − 1)(𝑧 + 1)(𝑧 − 𝑖)(𝑧 + 𝑖) .
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Definition 5.52: Multiplicity

Suppose that the polynomial 𝑝𝑛 factorizes as

𝑝𝑛(𝑧) = 𝑎𝑛(𝑧 − 𝑧1)𝑘1(𝑧 − 𝑧2)𝑘2 ⋯(𝑧 − 𝑧𝑚)𝑘𝑚

with 𝑎𝑛 ≠ 0, 𝑧1, … , 𝑧𝑚 ∈ ℂ and 𝑘1, … , 𝑘𝑚 ∈ ℕ, 𝑘𝑖 ≥ 1. In this case 𝑝𝑛 has degree

𝑛 = 𝑘1 + … + 𝑘𝑚 =
𝑚
∑
𝑖=1

𝑘𝑖 .

Note that 𝑧𝑖 is solves the equation
𝑝𝑛(𝑧) = 0

exactly 𝑘𝑖 times. We call 𝑘𝑖 the multiplicity of the solution 𝑧𝑖.

Example 5.53

The equation
(𝑧 − 1)(𝑧 − 2)2(𝑧 + 𝑖)3 = 0

has 6 solutions:

• 𝑧 = 1 with multiplicity 1
• 𝑧 = 2 with multiplicity 2
• 𝑧 = −𝑖 with multiplicity 3

5.7 Solving polynomial equations

The non-factorized version of the polynomial

𝑝(𝑧) = (𝑧 − 1)(𝑧 − 2)2(𝑧 + 𝑖)3 (5.13)

from Example 5.53 is

𝑝(𝑧) =𝑧6 − (5 − 3𝑖)𝑧5 + (5 − 15𝑖)𝑧4
+ (11 + 23𝑖)𝑧3 − (24 + 7𝑖)𝑧2 + (12 − 8𝑖)𝑧 + 4𝑖 (5.14)

Question: How do we figure out the factorization at (5.13) if we are given 𝑝 in the form at (5.13)?
More in general, consider the following question:
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Question 5.54

The Fundamental Theorem of Algebra states that

𝑝𝑛(𝑧) = 0 (5.15)

has 𝑛 complex solutions. How do we find such solutions in practice?

Answer: There is no general formula to solve (5.15) when 𝑛 ≥ 5. This is the content of the Abel-
Ruffini Theorem.

Theorem 5.55: Abel-Ruffini

There is no elementary solution formula to the polynomial equation

𝑝𝑛(𝑧) = 0 ,
with 𝑝𝑛 polynomial of degree 𝑛, with 𝑛 ≥ 5.

Similarly to the Fundamental Theorem of Algebra, the proof of the Abel-Ruffini Theorem is out of
reach for now. A proof can be carried out, for example, using Galois Theory.

There are however explicit formulas for solving (5.15) when 𝑝𝑛 has degree 𝑛 = 2, 3, 4.

5.7.1 Quadratic polynomials

Consider polynomial equations of order 𝑛 = 2, that is, equations of the form

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0 . (5.16)

When the coefficients 𝑎, 𝑏, 𝑐 are real, the solutions are given by the well-known quadratic formula.

Proposition 5.56: Quadratic formula

Let 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 ≠ 0 and consider the equation at (5.16). Define

Δ ∶= 𝑏2 − 4𝑎𝑐 ∈ ℝ .
The following hold:

1. If Δ > 0 then (5.16) has two distinct real solutions 𝑧1, 𝑧2 ∈ ℝ given by

𝑧1 = −𝑏 − √Δ
2𝑎 , 𝑧2 = −𝑏 + √Δ

2𝑎 .

2. If Δ = 0 then (5.16) has one real solution 𝑧 ∈ ℝ with multiplicity 2. Such solution is given
by

𝑧 = 𝑧1 = 𝑧2 = −𝑏
2𝑎 .
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3. If Δ < 0 then (5.16) has two distinct complex solutions 𝑧1, 𝑧2 ∈ ℂ given by

𝑧1 = −𝑏 − 𝑖√−Δ
2𝑎 , 𝑧2 = −𝑏 + 𝑖√−Δ

2𝑎 ,

where √−Δ ∈ ℝ, since −Δ > 0.
In all cases, the polynomial at (5.16) factorizes as

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 𝑎(𝑧 − 𝑧1)(𝑧 − 𝑧2) .

Example 5.57

Question. Solve the following equations:

1. 3𝑧2 − 6𝑧 + 2 = 0
2. 4𝑧2 − 8𝑧 + 4 = 0
3. 𝑧2 + 2𝑧 + 3 = 0

Solution.

1. We have that
Δ = (−6)2 − 4 ⋅ 3 ⋅ 2 = 12 > 0

Therefore the equation has two distinct real solutions, given by

𝑧 = −(−6) ± √12
2 ⋅ 3 = 6 ± √12

6 = 1 ± √3
3

In particular we have the factorization

3𝑧2 − 6𝑧 + 2 = 3 (𝑧 − 1 − √3
3 ) (𝑧 − 1 + √3

3 ) .

2. We have that
Δ = (−8)2 − 4 ⋅ 4 ⋅ 4 = 0 .

Therefore there exists one solution with multiplicity 2. This is given by

𝑧 = −(−8)
2 ⋅ 4 = 1 .

In particular we have the factorization

4𝑧2 − 8𝑥 + 4 = 4(𝑧 − 1)2 .
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3. We have
Δ = 22 − 4 ⋅ 1 ⋅ 3 = −8 < 0 .

Therefore there are two complex solutions given by

𝑧 = −2 ± 𝑖√8
2 ⋅ 1 = −1 ± 𝑖√2 .

In particular we have the factorization

𝑧2 + 2𝑧 + 3 = (𝑧 + 1 − 𝑖√2)(𝑧 + 1 + 𝑖√2) .

So far we have considered the polynomial equation

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0 , (5.17)

for 𝑎, 𝑏, 𝑐 ∈ ℝ and 𝑎 ≠ 0.
Question 5.58

What if 𝑎, 𝑏, 𝑐 ∈ ℂ?

If 𝑎, 𝑏, 𝑐 ∈ ℂ then we might have
Δ ∶= 𝑏2 − 4𝑎𝑐 ∈ ℂ .

Therefore it is not clear how to compute
√Δ .

However, we can still use the quadratic equation to solve (5.17), as outlined in the next Proposition.

Proposition 5.59: Quadratic formula with complex coefficients

Let 𝑎, 𝑏, 𝑐 ∈ ℂ, 𝑎 ≠ 0. The two solutions to

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0
are given by

𝑧1 = −𝑏 + 𝑆1
2𝑎 , 𝑧2 = −𝑏 + 𝑆2

2𝑎 ,
where 𝑆1 and 𝑆2 are the two solutions to

𝑧2 = Δ , Δ ∶= 𝑏2 − 4𝑎𝑐 .
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Remark 5.60

We want to check that the new formulas

𝑧1 = −𝑏 + 𝑆1
2𝑎 , 𝑧2 = −𝑏 + 𝑆2

2𝑎 , 𝑆21 = 𝑆22 = Δ ,

agree with the old formulas given in Proposition 2.116, when 𝑎, 𝑏, 𝑐 ∈ ℝ.
To this end, note that

Δ ∈ ℝ ,
when 𝑎, 𝑏, 𝑐 ∈ ℝ. In this case the equation

𝑧2 = Δ
has the following solutions:

• If Δ > 0 there are two real solutions

𝑆1 = −√Δ , 𝑆2 = √Δ .
• If Δ = 0 then 0 is the only solution with multiplicity 2. Hence

𝑆1 = 𝑆2 = 0 .
• If Δ < 0, there are two complex solutions

𝑆1 = −𝑖√−Δ , 𝑆2 = 𝑖√−Δ .
Therefore the solutions

𝑧1 = −𝑏 + 𝑆1
2𝑎 , 𝑧2 = −𝑏 + 𝑆2

2𝑎 ,
given in Proposition 2.116 coincide with the ones given in Proposition 2.118.

Example 5.61

Question Find all the solutions to

1
2𝑧

2 − (3 + 𝑖)𝑧 + (4 − 𝑖) = 0 . (5.18)

Solution. We have

Δ = (−(3 + 𝑖))2 − 4 ⋅ 12 ⋅ (4 − 𝑖)
= 8 + 6𝑖 − 8 + 2𝑖
= 8𝑖 .
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Therefore Δ ∈ ℂ. We have to find solutions 𝑆1 and 𝑆2 to the equation

𝑧2 = Δ = 8𝑖 . (5.19)

We look for solutions of the form 𝑧 = 𝑎 + 𝑖𝑏. Then we must have that

𝑧2 = (𝑎 + 𝑖𝑏)2 = 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 = 8𝑖 .
Thus

𝑎2 − 𝑏2 = 0 , 2𝑎𝑏 = 8 .
From the first equation we conclude that |𝑎| = |𝑏|. From the second equation we have that 𝑎𝑏 = 4,
and therefore 𝑎 and 𝑏 must have the same sign. Hence 𝑎 = 𝑏, and

2𝑎𝑏 = 8 ⟹ 𝑎 = 𝑏 = ±2 .
From this we conclude that the solutions to (5.19) are

𝑆1 = 2 + 2𝑖 , 𝑆2 = −2 − 2𝑖 .
Hence the solutions to (5.18) are

𝑧1 = 3 + 𝑖 + 𝑆1
2 ⋅ 1

2
= 3 + 𝑖 + 𝑆1

= 3 + 𝑖 + 2 + 2𝑖 = 5 + 3𝑖 ,
and

𝑧2 = 3 + 𝑖 + 𝑆2
2 ⋅ 1

2
= 3 + 𝑖 + 𝑆2

= 3 + 𝑖 − 2 − 2𝑖 = 1 − 𝑖 .
In particular, the given polynomial factorizes as

1
2𝑧

2 − (3 + 𝑖)𝑧 + (4 − 𝑖) = 1
2(𝑧 − 𝑧1)(𝑧 − 𝑧2)

= 1
2(𝑧 − 5 − 3𝑖)(𝑧 − 1 + 𝑖) .

In the above example it was a bit laborious to compute 𝑆1 and 𝑆2. In Section 5.8 and Section 5.9, we
will explore a more general method to solve problems of the form

𝑧𝑛 = Δ .
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5.7.2 Higher order polynomials

Consider now polynomial equations
𝑝𝑛(𝑧) = 0 ,

with 𝑝𝑛 of degree 𝑛 = 3, 4. Although general solution formulas exist for these cases, they are exceed-
ingly lengthy, making them impractical for manual calculations. For example, Figure 5.8 shows the
solution formula to the quartic equation

𝑧4 + 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 = 0 ,
when 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ.

Figure 5.8: Quartic formula to solve 𝑧4 + 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 = 0. Image from Wikipedia.

A more productive use of time is learning how to perform long polynomial division. A quick tutorial
is available here: Polynomial_division.pdf.

Example 5.62

Question. Divide 6𝑧3 + 5𝑧2 − 7 by 3𝑧2 − 2𝑧 − 1.
Solution. Using polynomial division, see Figure 5.9, we obtain

6𝑧3 + 5𝑧2 − 7 = (3𝑧2 − 2𝑧 − 1)(2𝑧 + 3) + (8𝑧 − 4) .

Figure 5.9: Example of polynomial long division between 6𝑧3 + 5𝑧2 − 7 and 3𝑧2 − 2𝑧 − 1.

Sometimes, it is possible to solve equations of degree higher than 2, in case it is obvious from inspec-
tion that a certain number is a solution, e.g., when 𝑧 = −1, 0, 1 is a solution.

Example 5.63

Question. Consider the equation

𝑧3 − 7𝑧2 + 6𝑧 = 0 .
1. Check whether 𝑧 = 0, 1, −1 are solutions.
2. Using your answer from Point 1, and polynomial division, find all the solutions.
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Solution.

1. By direct inspection we see that 𝑧 = 0 and 𝑧 = 1 are solutions.

2. Since 𝑧 = 0 is a solution, we can factorize

𝑧3 − 7𝑧2 + 6𝑧 = 𝑧 (𝑧2 − 7𝑧 + 6) .
We could now use the quadratic formula on the term 𝑧2 − 7𝑧 + 6 to find the remaining
two roots. However, we have already observed that 𝑧 = 1 is a solution. Therefore 𝑧 − 1
divides 𝑧2 − 7𝑧 + 6. Using polynomial long division, see Figure 5.10, we find that

𝑧2 − 7𝑧 + 6
𝑧 − 1 = 𝑧 − 6 .

Therefore the last solution is 𝑧 = 6, and
𝑧3 − 7𝑧2 + 6𝑧 = 𝑧(𝑧 − 1)(𝑧 − 6) .

Figure 5.10: Polynomial long division between 𝑧2 − 7𝑧 + 6 and 𝑧 − 1.

Example 5.64

Question. Find all the complex solutions to

𝑧3 − 7𝑧 + 6 = 0 .
Solution. It is easy to see 𝑧 = 1 is a solution. This means that 𝑧 − 1 divides 𝑧3 − 7𝑧 + 6. By
using polynomial long division, see Figure 5.11, we compute that

𝑧3 − 7𝑧 + 6
𝑧 − 1 = 𝑧2 + 𝑧 − 6 .

We are now left to solve
𝑧2 + 𝑧 − 6 = 0 .
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Using the quadratic formula, we see that the above is solved by 𝑧 = 2 and 𝑧 = −3. Therefore
the given polynomial factorizes as

𝑧3 − 7𝑧 + 6 = (𝑧 − 1)(𝑧 − 2)(𝑧 + 3) .

Figure 5.11: Polynomial long division between 𝑧3 − 7𝑧 + 6 and 𝑧 − 1.

Example 5.65

Question. Consider the equation

𝑧3 + 5𝑧2 + (5 − 𝑖)𝑧 + (4 − 4𝑖) = 0 .
1. Check whether 𝑧 = ±𝑖 and 𝑧 = 0, ±1 are solutions.
2. By using polynomial division with complex coefficients, find all the solutions.

Solution.

1. By direct inspection, we see that 𝑧 = 𝑖 is a solution.

2. Since 𝑧 = 𝑖 is a solution, we know that 𝑧 − 𝑖 divides 𝑧3 + 5𝑧2 + (5 − 𝑖)𝑧 + (4 − 4𝑖). We
now perform polynomial division by using the same method employed to divide polyno-
mials with real coefficients: We just need to be mindful of the fact that coefficients are
now complex, and thus, addition and multiplication have to be carried out in ℂ. Using
polynomial long division, see Figure 5.12, we compute that

𝑧3 + 5𝑧2 + (5 − 𝑖)𝑧 + (4 − 4𝑖) = (𝑧 − 𝑖)(𝑧2 + (5 + 𝑖)𝑧 + (4 − 4𝑖)) .
We are now left to solve the second order equation

𝑧2 + (5 + 𝑖)𝑧 + (4 − 4𝑖) = 0 .
We compute that

Δ = 𝑏2 − 4𝑎𝑐 = (5 + 1)2 − 4(4 − 4𝑖) = 4(5 + 4𝑖) .
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We now need to solve
𝑧2 = Δ .

We look for a solution in the form of 𝑧 = 𝑎 + 𝑖𝑏.
𝑧2 = (𝑎 + 𝑖𝑏)2 = 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 = 8𝑖 .

Thus
𝑎2 − 𝑏2 = 0 , 2𝑎𝑏 = 8 .

From the first equation we conclude that |𝑎| = |𝑏|. From the second equation we have that
𝑎𝑏 = 4, and therefore 𝑎 and 𝑏 must have the same sign. Hence 𝑎 = 𝑏, and

2𝑎𝑏 = 8 ⟹ 𝑎 = 𝑏 = ±2 .
From this we conclude that the solutions to (5.19) are

𝑆1 = 2 + 2𝑖 , 𝑆2 = −2 − 2𝑖 .
Hence the solutions to (5.18) are

𝑧1 = 3 + 𝑖 + 𝑆1
2 ⋅ 1

2
= 3 + 𝑖 + 𝑆1

= 3 + 𝑖 + 2 + 2𝑖 = 5 + 3𝑖 ,
and

𝑧2 = 3 + 𝑖 + 𝑆2
2 ⋅ 1

2
= 3 + 𝑖 + 𝑆2

= 3 + 𝑖 − 2 − 2𝑖 = 1 − 𝑖 .
In particular, the given polynomial factorizes as

1
2𝑧

2 − (3 + 𝑖)𝑧 + (4 − 𝑖) = 1
2(𝑧 − 𝑧1)(𝑧 − 𝑧2)

= 1
2(𝑧 − 5 − 3𝑖)(𝑧 − 1 + 𝑖) .
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Figure 5.12: Polynomial long division between 𝑧3 + 5𝑧2 + (5 − 𝑖)𝑧 + (4 − 4𝑖) and 𝑧 − 𝑖.

5.8 Roots of unity

Problem

Let 𝑛 ∈ ℕ. We want to find all complex solutions to

𝑧𝑛 = 1 . (5.20)

Note that 𝑧 = 1 is always a solution to (5.20) if 𝑛 is even. In such case also 𝑧 = −1 is a solution. If
we were only looking for solutions in ℝ, these two would be the only solutions.

However, the Fundamental Theorem of Algebra, see Theorem 2.111, tells us that there are 𝑛 complex
solutions to (5.20).

Question 5.66

Is there a way to find all 𝑛 solutions?

Example 5.67

We have seen in Example 5.51 that the solutions to

𝑧4 = 1
are

𝑧 = −1, 1, 𝑖, −𝑖 .
However, we could only compute these solutions thanks to the clever factorization

𝑧4 − 1 = (𝑧2 + 1)(𝑧2 − 1) = (𝑧 + 𝑖)(𝑧 − 𝑖)(𝑧 + 1)(𝑧 − 1) .
It is not clear if and how this trick can be generalized to solve

𝑧𝑛 = 1
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for arbitrary 𝑛 ∈ ℕ.

The trick to find all 𝑛 solutions to (5.20) is to use the exponential form.

Theorem 5.68

Let 𝑛 ∈ ℕ and consider the equation
𝑧𝑛 = 1 . (5.21)

All the 𝑛 solutions to (5.21) are given by

𝑧𝑘 = exp (𝑖2𝜋𝑘𝑛 ) , 𝑘 = 0, … , 𝑛 − 1 ,

where exp(𝑥) denotes 𝑒𝑥 .

Proof

Rewrite 1 in exponential form:

1 = |1|𝑒𝑖 arg(1) = 𝑒𝑖2𝜋𝑘 , 𝑘 ∈ ℤ .
Therefore (5.21) is equivalent to

𝑧𝑛 = 𝑒𝑖2𝜋𝑘 .
By the properties of the exponential, we see that the above is solved by

𝑧𝑘 = exp (𝑖2𝜋𝑘𝑛 ) , 𝑘 ∈ ℤ .

By choosing 𝑘 = 0, … , 𝑛 − 1 we obtain 𝑛 different solutions.

Definition 5.69

The 𝑛 solutions to
𝑧𝑛 = 1

are called the roots of unity.

Example 5.70

Question. Find all the solutions to
𝑧4 = 1 .
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Solution. The 4 solutions are given by

𝑧𝑘 = exp (𝑖2𝜋𝑘4 ) = exp (𝑖𝜋𝑘2 ) ,

for 𝑘 = 0, 1, 2, 3. We compute:

𝑧0 = 𝑒𝑖0 = 1 , 𝑧1 = 𝑒𝑖 𝜋2 = 𝑖 ,
𝑧2 = 𝑒𝑖𝜋 = −1 , 𝑧3 = 𝑒𝑖 3𝜋2 = −𝑖 .

Note that for 𝑘 = 4 we would again get the solution 𝑧 = 𝑒𝑖2𝜋 = 1.

Example 5.71

Question. Find all the solutions to
𝑧3 = 1 .

Solution. The 3 solutions are given by

𝑧𝑘 = exp (𝑖2𝜋𝑘3 ) ,

for 𝑘 = 0, 1, 2. We compute:

𝑧0 = 𝑒𝑖0 = 1, 𝑧1 = 𝑒𝑖
2𝜋
3 , 𝑧2 = 𝑒𝑖

4𝜋
3 .

We can write 𝑧1 and 𝑧2 in cartesian form:

𝑧1 = 𝑒𝑖
2𝜋
3 = cos (2𝜋3 ) + 𝑖 sin (2𝜋3 ) = −1

2 + √3
2 𝑖

and

𝑧2 = 𝑒𝑖
4𝜋
3 = cos (4𝜋3 ) + 𝑖 sin (4𝜋3 ) = −1

2 − √3
2 𝑖 .

5.9 Roots in ℂ
Let 𝑛 ∈ ℕ and 𝑐 ∈ ℂ. We want to give a meaning to

𝑛√𝑐 .
This means, we want to find all complex solutions to

𝑧𝑛 = 𝑐 .
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The Fundamental Theorem of Algebra ensures that the above equation has 𝑛 complex solutions. To
find these solutions, we pass to the exponential form.

Theorem 5.72

Let 𝑛 ∈ ℕ, 𝑐 ∈ ℂ and consider the equation

𝑧𝑛 = 𝑐 . (5.22)

All the 𝑛 solutions to (5.22) are given by

𝑧𝑘 = 𝑛√|𝑐| exp (𝑖 𝜃 + 2𝜋𝑘
𝑛 ) , 𝑘 = 0, … , 𝑛 − 1 ,

where 𝑛√|𝑐| is the 𝑛-th root of the real number |𝑐|, and 𝜃 = arg(𝑐).

Proof

Write 𝑐 in exponential form:

𝑐 = |𝑐|𝑒𝑖𝜃 = |𝑐|𝑒𝑖(𝜃+2𝜋𝑘) , 𝑘 ∈ ℤ ,
where 𝜃 = arg(𝑐). Therefore (5.22) is equivalent to

𝑧𝑛 = |𝑐|𝑒𝑖(𝜃+2𝜋𝑘) .
By the properties of the exponential, we see that the above is solved by

𝑧𝑘 = 𝑛√|𝑐| exp (𝑖 𝜃 + 2𝜋𝑘
𝑛 ) , 𝑘 ∈ ℤ .

By choosing 𝑘 = 0, … , 𝑛 − 1 we obtain 𝑛 different solutions.

Warning: The n-th root function is multi-valued

The above result and the Fundamental Theorem of Algebra tell us that

𝑧0, … , 𝑧𝑛−1
are 𝑛 solutions to

𝑧𝑛 = 𝑐 .
This means that the complex number 𝑐 has multiple 𝑛-th roots, exaclty 𝑛. In particular, the 𝑛-th
root function in ℂ is multi-valued:

𝑛√𝑐 = {𝑧0, … , 𝑧𝑛−1} .
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Example 5.73

Question. Find all the 𝑧 ∈ ℂ such that

𝑧5 = −32 .
Solution. Let 𝑐 = −32. We have

|𝑐| = | − 32| = 32 = 25 , 𝜃 = arg(−32) = 𝜋 .
The 5 solutions are given by

𝑧𝑘 = (25)
1
5 exp (𝑖𝜋 1 + 2𝑘

5 ) , 𝑘 ∈ ℤ ,

for 𝑘 = 0, 1, 2, 3, 4. We get

𝑧0 = 2𝑒𝑖
𝜋
5 𝑧1 = 2𝑒𝑖

3𝜋
5

𝑧2 = 2𝑒𝑖𝜋 = −2 𝑧3 = 2𝑒𝑖
7𝜋
5

𝑧4 = 2𝑒𝑖
9𝜋
5

Example 5.74

Question. Find all the 𝑧 ∈ ℂ such that

𝑧4 = 9 (cos (𝜋3 ) + 𝑖 sin (𝜋3 )) .
Solution. Set

𝑐 ∶= 9 (cos (𝜋3 ) + 𝑖 sin (𝜋3 )) .
The complex number 𝑐 is already in the trigonometric form, so that we can immediately obtain

|𝑐| = 9 , 𝜃 = arg(𝑐) = 𝜋
3 .

The 4 solutions are given by

𝑧𝑘 = 4√9 exp (𝑖 𝜋/3 + 2𝜋𝑘
4 )

= √3 exp (𝑖𝜋 1 + 6𝑘
12 )

for 𝑘 = 0, 1, 2, 3. We compute

𝑧0 = √3𝑒𝑖𝜋
1
12 𝑧1 = √3𝑒𝑖𝜋

7
12

𝑧2 = √3𝑒𝑖𝜋
13
12 𝑧3 = √3𝑒𝑖𝜋

19
12
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6 Sequences in ℝ
A sequence is an infinite list of real numbers. For example, the following are sequences:

• (1, 2, 3, 4, …)
• (−1, 1, −1, 1, …)
• (1, 12 ,

1
3 ,

1
4 ,

1
5 , …)

Remark 6.1

• The order of elements in a sequence matters.

For example
(1, 2, 3, 4, 5, 6, …) ≠ (2, 1, 4, 3, 6, 5, …)

• A sequence is not a set.

For example
{−1, 1, −1, 1, −1, 1, …} = {−1, 1}

but we cannot make a similar statement for the sequence

(−1, 1, −1, 1, −1, 1, …) .

• The above notation is ambiguous.

For example the sequence
(1, 2, 3, 4, …)

can continue as

(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, …) .
• In the sequence

(1, 12 ,
1
3 ,

1
4 ,

1
5 , …)

the elements get smaller and smaller, and closer and closer to 0. We say that this sequence
converges to 0, or has 0 as a limit.

We would like to make the notions of sequence and convergence more precise.
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6.1 Definition of sequence

We start with the definition of sequence of Real numbers.

Definition 6.2: Sequence of Real numbers

A sequence 𝑎 in ℝ is a function
𝑎∶ ℕ → ℝ .

For 𝑛 ∈ ℕ, we denote the 𝑛-th element of the sequence 𝑎 by

𝑎𝑛 = 𝑎(𝑛)
and write the sequence as

(𝑎𝑛)𝑛∈ℕ .

Notation 6.3

We will sometimes omit the subscript 𝑛 ∈ ℕ and simply write

(𝑎𝑛) .
In certain situations, we will also write

(𝑎𝑛)∞𝑛=1 .

Example 6.4

• In general (𝑎𝑛)𝑛∈ℕ is the sequence

(𝑎1, 𝑎2, 𝑎3, …) .

• Consider the function
𝑎∶ ℕ → ℕ , 𝑛 ↦ 2𝑛 .

This is also a sequence of real numbers. It can be written as

(2𝑛)𝑛∈ℕ
and it represents the sequence of even numbers

(2, 4, 6, 8, 10, …) .

• Let
𝑎𝑛 = (−1)𝑛

Then (𝑎𝑛) is the sequence
(−1, 1, −1, 1, −1, 1, …) .
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• ( 1
𝑛 )𝑛∈ℕ is the sequence

(1, 12 ,
1
4 ,

1
5 , …) .

6.2 Convergent sequences

We have notice that the sequence ( 1
𝑛 )𝑛∈ℕ gets close to 0 as 𝑛 gets large. We would like to say that

𝑎𝑛 converges to 0 as 𝑛 tends to infinity.

To make this precise, we first have to say what it means for two numbers to be close. For this we use
the notion of absolute value, and say that:

• 𝑥 and 𝑦 are close if |𝑥 − 𝑦| is small.
• |𝑥 − 𝑦| is called the distance between 𝑥 and 𝑦
• For 𝑥 to be close to 0, we need that |𝑥 − 0| = |𝑥| is small.

Saying that |𝑥| is small is not very precise. Let us now give the formal definition of convergent
sequence.

Definition 6.5: Convergent sequence

The real sequence (𝑎𝑛) converges to 𝑎, or equivalently has limit 𝑎, denoted by

lim𝑛→∞ 𝑎𝑛 = 𝑎 ,

if for all 𝜀 ∈ ℝ, 𝜀 > 0, there exists 𝑁 ∈ ℕ such that for all 𝑛 ∈ ℕ, 𝑛 ≥ 𝑁 it holds that

|𝑎𝑛 − 𝑎| < 𝜀 .
Using quantifiers, we can write this as

∀ 𝜀 > 0, ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑎| < 𝜀 .
The sequence (𝑎𝑛)𝑛∈ℕ is convergent if it admits limit.

Notation 6.6

We will often write
𝑎𝑛 → 𝑎

in place of
lim𝑛→∞ 𝑎𝑛 = 𝑎 .
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Remark 6.7

• Informally, Definition 2.129 says that, no matter how small we choose 𝜀 (as long as it is
strictly positive), we always have that 𝑎𝑛 has a distance to 𝑎 of less than or equal to 𝜀 from
a certain point onwards (i.e., from 𝑁 onward). The sequence (𝑎𝑛) may fluctuate wildly in
the beginning, but from 𝑁 onward it should stay within a distance of 𝜀 of 𝑎.

• In general 𝑁 depends on 𝜀. If 𝜀 is chosen smaller, we might have to take 𝑁 larger: this
means we need to wait longer before the sequence stays within a distance 𝜀 from 𝑎.

We now prove that the sequence

𝑎𝑛 = 1
𝑛

converges to 0, according to Definition 2.129.

Theorem 6.8

The sequence ( 1
𝑛 )𝑛∈ℕ converges to 0 , i.e.,

lim𝑛→∞
1
𝑛 = 0 .

We give two proofs of the above theorem:

• Long proof, with all the details.
• Short proof, with less details, but still acceptable.

Proof: Proof of Theorem 6.8 (Long version)

We have to show that

lim𝑛→∞
1
𝑛 = 0,

which by definition is equivalent to showing that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , | 1𝑛 − 0| < 𝜀 . (6.1)

Let 𝜀 ∈ ℝ with 𝜀 > 0. Choose 𝑁 ∈ ℕ such that

𝑁 > 1
𝜀 .

Such natural number 𝑁 exists thanks to the Archimedean property. The above implies

1
𝑁 < 𝜀 , (6.2)
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Let 𝑛 ∈ ℕ with 𝑛 ≥ 𝑁 . By (6.2) we have

1
𝑛 ≤ 1

𝑁 < 𝜀 .

From this we deduce
| 1𝑛 − 0| = 1

𝑛 ≤ 1
𝑁 < 𝜀

Since 𝑛 ∈ ℕ, 𝑛 ≥ 𝑁 was arbitrary, we have proven that

| 1𝑛 − 0| < 𝜀 , ∀ 𝑛 ≥ 𝑁 . (6.3)

Condition (6.3) holds for all 𝜀 > 0, for the choice of 𝑁 ∈ ℕ such that

𝑁 > 1
𝜀 .

We have hence shown (6.1), and the proof is concluded.

As the above proof is quite long and includes lots of details, it is acceptable to shorten it. For exam-
ple:

• We skip some intermediate steps.
• We do not mention the Archimedean property.
• We leave out the conclusion when it is obvious that the statement has been proven.

Proof: Proof of Theorem 6.8 (Short version)

We have to show that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , | 1𝑛 − 0| < 𝜀 .
Let 𝜀 > 0. Choose 𝑁 ∈ ℕ such that

𝑁 > 1
𝜀 .

Let 𝑛 ≥ 𝑁 . Then
| 1𝑛 − 0| = 1

𝑛 ≤ 1
𝑁 < 𝜀 .

In Theorem 6.8 we showed that
lim𝑛→∞

1
𝑛 = 0 .

We can generalise this statement to prove that

lim𝑛→∞
1
𝑛𝑝 = 0
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for any 𝑝 > 0 fixed.

Theorem 6.9

For all 𝑝 > 0, the sequence ( 1
𝑛𝑝 )𝑛∈ℕ converges to 0 , i.e.,

lim𝑛→∞
1
𝑛𝑝 = 0

Proof

Let 𝑝 > 0. We have to show that

∀𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , | 1𝑛𝑝 − 0| < 𝜀 .

Let 𝜀 > 0. Choose 𝑁 ∈ ℕ such that
𝑁 > 1

𝜀1/𝑝 . (6.4)

Let 𝑛 ≥ 𝑁 . Since 𝑝 > 0, we have 𝑛𝑝 ≥ 𝑁 𝑝 , which implies

1
𝑛𝑝 ≤ 1

𝑁 𝑝 .

By (6.4) we deduce
1
𝑁 𝑝 < 𝜀 .

Then
| 1𝑛𝑝 − 0| = 1

𝑛𝑝 ≤ 1
𝑁 𝑝 < 𝜀 .

Question 6.10

Why did we choose 𝑁 ∈ ℕ such that

𝑁 > 1
𝜀𝑝

in the above proof?

The answer is: because it works. Finding a number 𝑁 that makes the proof work requires some
rough work: Specifically, such rough work consists in finding 𝑁 ∈ ℕ such that the inequality

|𝑎𝑁 − 𝑎| < 𝜀
is satisfied.
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Important

Any rough work required to prove convergence must be shown before the formal proof (in
assignments).

Example 6.11

Question. Using the definition of convergence, prove that

lim𝑛→∞
𝑛

2𝑛 + 3 = 1
2 .

Solution.

1. Rough Work: Let 𝜀 > 0. We want to find 𝑁 ∈ ℕ such that

| 𝑛
2𝑛 + 3 − 1

2 | < 𝜀 , ∀ 𝑛 ≥ 𝑁 .

To this end, we compute:

| 𝑛
2𝑛 + 3 − 1

2 | = | −3
4𝑛 + 6 | =

3
4𝑛 + 6 .

Therefore

| 𝑛
2𝑛 + 3 − 1

2 | < 𝜀 ⟺ 3
4𝑛 + 6 < 𝜀

⟺ 𝑛 > 3
4𝜀 − 6

4 .

Looking at the above equivalences, it is clear that 𝑁 ∈ ℕ has to be chosen so that

𝑁 > 3
4𝜀 − 6

4 . (6.5)

2. Formal Proof: We have to show that

∀𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , | 𝑛
2𝑛 + 3 − 1

2 | < 𝜀 .

Let 𝜀 > 0. Choose𝑁 ∈ ℕ such that (6.5) holds. By the roughwork shown above, inequality
(6.5) is equivalent to

3
4𝑁 + 6 < 𝜀 .

Let 𝑛 ≥ 𝑁 . Then
| 𝑛
2𝑛 + 3 − 1

2 | =
3

4𝑛 + 6 ≤ 3
4𝑁 + 6 < 𝜀 ,

where in the third line we used that 𝑛 ≥ 𝑁 .
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We conclude by showing that constant sequences always converge.

Theorem 6.12

Let 𝑐 ∈ ℝ and define the constant sequence

𝑎𝑛 ∶= 𝑐 , ∀ 𝑛 ∈ ℕ .
We have that

lim𝑛→∞ 𝑎𝑛 = 𝑐 .

Proof

We have to prove that

∀𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑐| < 𝜀 . (6.6)

Let 𝜀 > 0. We have
|𝑎𝑛 − 𝑐| = |𝑐 − 𝑐| = 0 < 𝜀 , ∀ 𝑛 ∈ ℕ .

Therefore we can choose 𝑁 = 1 and (6.6) is satisfied.

6.3 Divergent sequences

The opposite of convergent sequences are divergent sequences.

Definition 6.13: Divergent sequence

We say that a sequence (𝑎𝑛)𝑛∈ℕ in ℝ is divergent if it is not convergent.

Remark 6.14

Proving that a sequence (𝑎𝑛) is divergent is more complicated than showing it is convergent:
To show that (𝑎𝑛) is divergent, we need to show that (𝑎𝑛) cannot converge to 𝑎 for any 𝑎 ∈ ℝ.
In other words, we have to show that there does not exist an 𝑎 ∈ ℝ such that

lim𝑛→∞ 𝑎𝑛 = 𝑎 .

Using quantifiers, this means

∄ 𝑎 ∈ ℝ s.t. ∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑎| < 𝜀 .
The above is equivalent to showing that

∀ 𝑎 ∈ ℝ , ∃ 𝜀 > 0 s.t. ∀𝑁 ∈ ℕ , ∃ 𝑛 ≥ 𝑁 s.t. |𝑎𝑛 − 𝑎| ≥ 𝜀 .
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Theorem 6.15

Let (𝑎𝑛) be the sequence defined by
𝑎𝑛 = (−1)𝑛 .

Then (𝑎𝑛) does not converge.

Proof

To prove that (𝑎𝑛) does not converge, we have to show that

∀ 𝑎 ∈ ℝ , ∃ 𝜀 > 0 s.t. ∀𝑁 ∈ ℕ , ∃ 𝑛 ≥ 𝑁 s.t. |𝑎𝑛 − 𝑎| ≥ 𝜀 .
Let 𝑎 ∈ ℝ. Choose

𝜀 = 1
2 .

Let 𝑁 ∈ ℕ. We distinguish two cases:

• 𝑎 ≥ 0: Choose 𝑛 = 2𝑁 + 1. Note that 𝑛 ≥ 𝑁 . Then

|𝑎𝑛 − 𝑎| = |𝑎2𝑁+1 − 𝑎|
= |(−1)2𝑁+1 − 𝑎|
= | − 1 − 𝑎|
= 1 + 𝑎
≥ 1
> 1

2 = 𝜀 ,

where we used that 𝑎 ≥ 0, and therefore

| − 1 − 𝑎| = 1 + 𝑎 ≥ 1 .

• 𝑎 < 0: Choose 𝑛 = 2𝑁 . Note that 𝑛 ≥ 𝑁 . Then

|𝑎𝑛 − 𝑎| = |𝑎2𝑁 − 𝑎|
= |(−1)2𝑁 − 𝑎|
= |1 − 𝑎|
= 1 − 𝑎
> 1
> 1

2 = 𝜀 ,

where we used that 𝑎 < 0, and therefore

|1 − 𝑎| = 1 − 𝑎 > 1 .
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We propose an alternative proof by contradiction.

Proof: Alternative proof to Theorem 6.15

Suppose by contradiction that 𝑎𝑛 → 𝑎 for some 𝑎 ∈ ℝ. Let

𝜀 ∶= 1
2 .

Since 𝑎𝑛 → 𝑎, there exists 𝑁 ∈ ℕ such that

|𝑎𝑛 − 𝑎| < 𝜀 = 1
3 ∀ 𝑛 ≥ 𝑁 .

If we take 𝑛 = 2𝑁 , then 𝑛 ≥ 𝑁 and

|𝑎2𝑁 − 𝑎| = |1 − 𝑎| < 1
2 .

If we take 𝑛 = 2𝑁 + 1, then 𝑛 ≥ 𝑁 and

|𝑎2𝑁+1 − 𝑎| = | − 1 − 𝑎| < 1
2 .

Therefore

2 = |(1 − 𝑎) − (−1 − 𝑎)|
≤ |1 − 𝑎| + | − 1 − 𝑎|
< 1

2 + 1
2 = 1 ,

which is a contradiction. Hence (𝑎𝑛) is divergent.

6.4 Uniqueness of limit

In Definition 2.129 of convergence, we used the notation

lim𝑛→∞ 𝑎𝑛 = 𝑎 .

The above notation makes sense only if the limit is unique, that is, if we do not have that

lim𝑛→∞ 𝑎𝑛 = 𝑏 ,
for some

𝑎 ≠ 𝑏 .
In the next theorem we will show that the limit is unique, if it exists.
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Theorem 6.16: Uniqueness of limit

Let (𝑎𝑛)𝑛∈ℕ be a sequence. Suppose that

lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑎𝑛 = 𝑏 .

Then 𝑎 = 𝑏.

Proof

Assume that,
lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑎𝑛 = 𝑏 .

Suppose by contradiction that
𝑎 ≠ 𝑏 .

Choose
𝜀 ∶= 1

2 |𝑎 − 𝑏| .
Therefore 𝜀 > 0, since |𝑎 − 𝑏| > 0. By the convergence 𝑎𝑛 → 𝑎,

∃ 𝑁1 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁1 , |𝑎𝑛 − 𝑎| < 𝜀 .
By the convergence 𝑎𝑛 → 𝑏,

∃ 𝑁2 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁2 , |𝑎𝑛 − 𝑏| < 𝜀 .
Define

𝑁 ∶= max{𝑁1, 𝑁2} .
Choose an 𝑛 ∈ ℕ such that 𝑛 ≥ 𝑁 . In particular

𝑛 ≥ 𝑁1 , 𝑛 ≥ 𝑁2 .
Then

2𝜀 = |𝑎 − 𝑏|
= |𝑎 − 𝑎𝑛 + 𝑎𝑛 − 𝑏|
≤ |𝑎 − 𝑎𝑛 | + |𝑎𝑛 − 𝑏|
< 𝜀 + 𝜀
= 2𝜀 ,

where we used the triangle inequality in the first inequality. Hence 2𝜀 < 2𝜀, which gives a
contradiction.
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Example 6.17

Question. Prove that

lim𝑛→∞
𝑛2 − 1
2𝑛2 − 3 = 1

2
Solution. According to Theorem 2.134, it suffices to show that the sequence

( 𝑛2 − 1
2𝑛2 − 3)𝑛∈ℕ

converges to 1
2 , since then 1

2 can be the only limit.

1. Rough Work: Let 𝜀 > 0. We want to find 𝑁 ∈ ℕ such that

| 𝑛
2 − 1

2𝑛2 − 3 − 1
2 | < 𝜀 , ∀ 𝑛 ≥ 𝑁 .

To this end, we compute:

| 𝑛
2 − 1

2𝑛2 − 3 − 1
2 | = |2 (𝑛

2 − 1) − (2𝑛2 − 3)
2 (2𝑛2 − 3) |

= | 1
4𝑛2 − 6 |

= 1
4𝑛2 − 6

= 1
3𝑛2 + 𝑛2 − 6

≤ 1
3𝑛2

which holds if 𝑛 ≥ 3, since in this case 𝑛2 − 6 ≥ 0. Therefore

| 𝑛
2 − 1

2𝑛2 − 3 − 1
2 | < 𝜀 ⟸ 1

3𝑛2 < 𝜀

⟺ 3𝑛2 > 1
𝜀

⟺ 𝑛2 > 1
3𝜀

⟺ 𝑛 > 1
√3𝜀

.

Looking at the above implications, it is clear that 𝑁 ∈ ℕ has to be chosen so that

𝑁 > 1
√3𝜀

.

Moreover we need to recall that 𝑁 has to satisfy

𝑁 ≥ 3
for the estimates to hold.

184



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

2. Formal Proof: We have to show that

∀𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , | 𝑛
2 − 1

2𝑛2 − 3 − 1
2 | < 𝜀 .

Let 𝜀 > 0. Choose 𝑁 ∈ ℕ such that

𝑁 > max { 1
√3𝜀

, 3} .

Let 𝑛 ≥ 𝑁 . Then

| 𝑛
2 − 1

2𝑛2 − 3 − 1
2 | =

1
4𝑛2 − 6

= 1
3𝑛2 + 𝑛2 − 6

≤ 1
3𝑛2

≤ 1
3𝑁 2

< 𝜀 ,
where we used that

𝑛 ≥ 𝑁 ≥ 3
which implies

𝑛2 − 6 ≥ 0 ,
in the third line. The last inequality holds, since it is equivalent to

𝑁 > 1
√3𝜀

.

6.5 Bounded sequences

An important property of sequences is boundedness.

Definition 6.18: Bounded sequence

A sequence (𝑎𝑛)𝑛∈ℕ is called bounded if there exists a constant 𝑀 ∈ ℝ, with 𝑀 > 0, such that

|𝑎𝑛 | ≤ 𝑀 , ∀ 𝑛 ∈ ℕ .
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Definition 2.135 says that a sequence is bounded, if we can find some constant 𝑀 > 0 (possibly very
large), such that for all elements of the sequence it holds that

|𝑎𝑛 | ≤ 𝑀 ,
or equivalently, that

−𝑀 ≤ 𝑎𝑛 ≤ 𝑀 .

We now show that any sequence that converges is also bounded

Theorem 6.19

Every convergent sequence is bounded.

Proof

Suppose the sequence (𝑎𝑛)𝑛∈ℕ converges and let

𝑎 ∶= lim𝑛→∞ 𝑎𝑛

By definition of convergence we have that

∀ 𝜀 > 0 , ∃𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑎| < 𝜀 .
In particular, we can choose

𝜀 = 1
and let 𝑁 ∈ ℕ be that value such that

|𝑎𝑛 − 𝑎| < 1 , ∀ 𝑛 ≥ 𝑁 .
If 𝑛 ≥ 𝑁 we have, by the triangle inequality,

|𝑎𝑛 | = |𝑎𝑛 − 𝑎 + 𝑎|
≤ |𝑎𝑛 − 𝑎| + |𝑎|
< 1 + |𝑎| .

Set
𝑀 ∶= max {|𝑎1| , |𝑎2| , … , |𝑎𝑁−1| , 1 + |𝑎|} .

Note that such maximum exists, being the set finite. Then

|𝑎𝑛 | ≤ 𝑀 , ∀ 𝑛 ∈ ℕ ,
showing that (𝑎𝑛) is bounded.

The choice of 𝑀 in the above proof says that the sequence can behave wildly for a finite number of
terms. After that, it will stay close to the value of the limit, if the latter exists.
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Example 6.20

Question. Prove that the following sequence is bounded, and find 𝑀 :

𝑎𝑛 = 1
𝑛 .

Solution. In Theorem 6.8 we have shown that

lim𝑛→∞
1
𝑛 = 0

Hence, it follows from Theorem 6.19 that the sequence (1/𝑛) is bounded.
An explicit constant 𝑀 is found as follows:

| 1𝑛 | =
1
𝑛 ≤ 1 , ∀ 𝑛 ∈ ℕ ,

since 𝑛 ≥ 1 for all 𝑛 ∈ ℕ. Therefore 𝑀 = 1.

Warning

The converse of Theorem 6.19 does not hold: There exist sequences (𝑎𝑛) which are bounded,
but not convergent.

Example 6.21

The sequence
𝑎𝑛 = (−1)𝑛

is bounded (𝑀 = 1) but not convergent.
Proof. We have proven in Theorem 6.15 that (𝑎𝑛) is not convergent. However (𝑎𝑛) is bounded,
with 𝑀 = 1, since

|𝑎𝑛 | = |(−1)𝑛 | = 1 = 𝑀 , ∀ 𝑛 ∈ ℕ .

Taking the contrapositive of the statement in Theorem 6.19 we get the following corollary:

Corollary 6.22

If a sequence is not bounded, then the sequence does not converge.

Remark 6.23

For a sequence (𝑎𝑛) to be unbounded, it means that

∀𝑀 > 0 , ∃ 𝑛 ∈ ℕ s.t. |𝑎𝑛 | > 𝑀 .
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Comment. The above is saying that no real number 𝑀 > 0 can be a bound for |𝑎𝑛 |, since there
is always an index 𝑛 ∈ ℕ such that

|𝑎𝑛 | > 𝑀 .

We can use Corollary 6.22 to show that certain sequences do not converge.

Theorem 6.24

Let 𝑝 > 0. The sequence 𝑎𝑛 = 𝑛𝑝 is unbounded, and hence divergent.

Proof

Let 𝑝 > 0. We prove that the sequence (𝑛𝑝)𝑛∈ℕ is unbounded, that is,

∀𝑀 > 0 , ∃ 𝑛 ∈ ℕ s.t. |𝑎𝑛 | > 𝑀 .
To this end, let 𝑀 > 0. Choose 𝑛 ∈ ℕ such that

𝑛 > 𝑀1/𝑝 .
Then

𝑎𝑛 = 𝑛𝑝 > (𝑀1/𝑝)𝑝 = 𝑀 .
This proves that the sequence (𝑛𝑝) is unbounded. Hence (𝑛𝑝) cannot converge, by Corollary
6.22.

Theorem 6.25

The sequence 𝑎𝑛 = log 𝑛 is unbounded, and hence divergent.

Proof

Let us show that (log 𝑛)𝑛∈ℕ is unbounded, that is,

∀𝑀 > 0 , ∃ 𝑛 ∈ ℕ s.t. |𝑎𝑛 | > 𝑀 .
To this end let 𝑀 > 0. Choose 𝑛 ∈ ℕ such that

𝑛 ≥ 𝑒𝑀+1 .
Then

|𝑎𝑛 | = | log 𝑛| ≥ |log 𝑒𝑀+1| = 𝑀 + 1 > 𝑀 .
This proves that the sequence (log 𝑛) is unbounded. Hence (log 𝑛) cannot converge, by Corollary
6.22.
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6.6 Algebra of limits

Proving convergence using Definition 2.129 can be a tedious task. In this section we discuss how to
prove convergence, starting from known convergence results.

Theorem 6.26: Algebra of limits

Let (𝑎𝑛)𝑛∈ℕ and (𝑏𝑛)𝑛∈ℕ be sequences in ℝ. Suppose that

lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑏𝑛 = 𝑏 ,

for some 𝑎, 𝑏 ∈ ℝ. Then,
1. Limit of sum is the sum of limits:

lim𝑛→∞ (𝑎𝑛 ± 𝑏𝑛) = 𝑎 ± 𝑏

2. Limit of product is the product of limits:

lim𝑛→∞ (𝑎𝑛𝑏𝑛) = 𝑎𝑏

3. If 𝑏𝑛 ≠ 0 for all 𝑛 ∈ ℕ and 𝑏 ≠ 0, then

lim𝑛→∞ (𝑎𝑛𝑏𝑛
) = 𝑎

𝑏

Proof

Let (𝑎𝑛)𝑛∈ℕ and (𝑏𝑛)𝑛∈ℕ be sequences in ℝ and let 𝑐 ∈ ℝ. Suppose that, for some 𝑎, 𝑏 ∈ ℝ
lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑏𝑛 = 𝑏 .

Proof of Point 1.
We need to show that

lim𝑛→∞(𝑎𝑛 ± 𝑏𝑛) = 𝑎 ± 𝑏 .
We only give a proof of the formula with +, since the case with − follows with a very similar
proof. Hence, we need to show that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |(𝑎𝑛 + 𝑏𝑛) − (𝑎 + 𝑏)| < 𝜀 .
Let 𝜀 > 0 and set

̃𝜀 ∶= 𝜀
2 .
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Since 𝑎𝑛 → 𝑎, 𝑏𝑛 → 𝑏, and ̃𝜀 > 0, there exist 𝑁1, 𝑁2 ∈ ℕ such that

|𝑎𝑛 − 𝑎| < ̃𝜀 , ∀ 𝑛 ≥ 𝑁1 ,
|𝑏𝑛 − 𝑏| < ̃𝜀 , ∀ 𝑛 ≥ 𝑁2 .

Define
𝑁 ∶= max{𝑁1, 𝑁2} .

For all 𝑛 ≥ 𝑁 we have, by the triangle inequality,

|(𝑎𝑛 + 𝑏𝑛) − (𝑎 + 𝑏)| = |(𝑎𝑛 − 𝑎) + (𝑏𝑛 − 𝑏)|
≤ |𝑎𝑛 − 𝑎| + |𝑏𝑛 − 𝑏|
< ̃𝜀 + ̃𝜀
= 𝜀 .

Proof of Point 2.
We need to show that

lim𝑛→∞(𝑎𝑛𝑏𝑛) = 𝑎𝑏 ,
which is equivalent to

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛𝑏𝑛 − 𝑎𝑏| < 𝜀 .
Let 𝜀 > 0. The sequence (𝑎𝑛) converges, and hence is bounded, by Theorem 6.19. This means
there exists some 𝑀 > 0 such that

|𝑎𝑛 | ≤ 𝑀 , ∀ 𝑛 ∈ ℕ .
Define

̃𝜀 = 𝜀
𝑀 + |𝑏| .

Since 𝑎𝑛 → 𝑎, 𝑏𝑛 → 𝑏, and ̃𝜀 > 0, there exist 𝑁1, 𝑁2 ∈ ℕ such that

|𝑎𝑛 − 𝑎| < ̃𝜀 , ∀ 𝑛 ≥ 𝑁1 .
|𝑏𝑛 − 𝑏| < ̃𝜀 , ∀ 𝑛 ≥ 𝑁2 .

Let
𝑁 ∶= max{𝑁1, 𝑁2} .

For all 𝑛 ≥ 𝑁 we have

|𝑎𝑛𝑏𝑛 − 𝑎𝑏| = |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏 + 𝑎𝑛𝑏 − 𝑎𝑏|
≤ |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏| + |𝑎𝑛𝑏 − 𝑎𝑏|
= |𝑎𝑛 | |𝑏𝑛 − 𝑏| + |𝑏| |𝑎𝑛 − 𝑎|
< 𝑀 ̃𝜀 + |𝑏| ̃𝜀
= (𝑀 + |𝑏|) ̃𝜀
= 𝜀 .
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Proof of Point 3.
Suppose in addition that 𝑏𝑛 ≠ 0 and 𝑏 ≠ 0. We need to show that

lim𝑛→∞
𝑎𝑛
𝑏𝑛

= 𝑎
𝑏 ,

which is equivalent to

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , | 𝑎𝑛𝑏𝑛
− 𝑎

𝑏 | < 𝜀 .

We suppose in addition that 𝑏 > 0. The proof is very similar for the case 𝑏 < 0, and is hence
omitted. Let 𝜀 > 0. Set

𝛿 ∶= 𝑏
2 .

Since 𝑏𝑛 → 𝑏 and 𝛿 > 0, there exists 𝑁1 ∈ ℕ such that

|𝑏𝑛 − 𝑏| < 𝛿 ∀ 𝑛 ≥ 𝑁1 .
In particular we have

𝑏𝑛 > 𝑏 − 𝛿 = 𝑏 − 𝑏
2 = 𝑏

2 ∀ 𝑛 ≥ 𝑁1 .
Define

̃𝜀 ∶= 𝑏2
2(𝑏 + |𝑎|) 𝜀 .

Since ̃𝜀 > 0 and 𝑎𝑛 → 𝑎, 𝑏𝑛 → 𝑏, there exist 𝑁2, 𝑁3 ∈ ℕ such that

|𝑎𝑛 − 𝑎| < ̃𝜀 , ∀ 𝑛 ≥ 𝑁2 ,
|𝑏𝑛 − 𝑏| < ̃𝜀 , ∀ 𝑛 ≥ 𝑁3 .

Define
𝑁 ∶= max{𝑁1, 𝑁2, 𝑁3} .
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For all 𝑛 ≥ 𝑁 we have

| 𝑎𝑛𝑏𝑛
− 𝑎

𝑏 | = | 𝑎𝑛𝑏 − 𝑎𝑏𝑛
𝑏𝑛𝑏

|

= 1
|𝑏𝑛𝑏|

|𝑎𝑛𝑏 − 𝑎𝑏 + 𝑎𝑏 − 𝑎𝑏𝑛 |

= 1
|𝑏𝑛𝑏|

|(𝑎𝑛 − 𝑎)𝑏 + 𝑎(𝑏 − 𝑏𝑛)|

≤ 1
|𝑏𝑛𝑏|

(|𝑎𝑛 − 𝑎||𝑏| + |𝑎||𝑏 − 𝑏𝑛 |)

< 1
𝑏
2 𝑏

( ̃𝜀 𝑏 + ̃𝜀|𝑎|)

= 2(𝑏 + |𝑎|)
𝑏2 ̃𝜀

= 𝜀 .

In the future we will refer to Theorem 2.142 as the Algebra of Limits. We now show how to use
Theorem 2.142 for computing certain limits.

Example 6.27

Question. Prove that

lim𝑛→∞
3𝑛

7𝑛 + 4 = 3
7 .

Solution. We can rewrite 3𝑛
7𝑛 + 4 = 3

7 + 4
𝑛

By Theorem 6.12 we know that

3 → 3 , 4 → 4 , 7 → 7 .
From Theorem 6.8 we know that 1

𝑛 → 0 .
Hence, it follows from Theorem 2.142 Point 2 that

4
𝑛 = 4 ⋅ 1𝑛 → 4 ⋅ 0 = 0 .

By Theorem 2.142 Point 1 we have

7 + 4
𝑛 → 7 + 0 = 7 .
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Finally we can use Theorem 2.142 Point 3 to infer

3𝑛
7𝑛 + 4 = 3

7 + 4
𝑛

→ 3
7 .

Important

The technique shown in Example 6.27 is useful to compute limits of fractions of polynomials.
To identify the possible limit, if it exists, it is often best to divide by the largest power of 𝑛 in
the denominator.

Example 6.28

Question. Prove that

lim𝑛→∞
𝑛2 − 1
2𝑛2 − 3 = 1

2 .
Solution. Factor 𝑛2 to obtain

𝑛2 − 1
2𝑛2 − 3 =

1 − 1
𝑛2

2 − 3
𝑛2

.

By Theorem 6.9 we have
1
𝑛2 → 0 .

We can then use the Algebra of Limits Theorem 2.142 Point 2 to infer

3
𝑛2 → 3 ⋅ 0 = 0

and Theorem 2.142 Point 1 to get

1 − 1
𝑛2 → 1 − 0 = 1 , 2 − 3

𝑛2 → 2 − 0 = 2 .
Finally we use Theorem 2.142 Point 3 and conclude

1 − 1
𝑛2

2 − 3
𝑛2

→ 1
2 .

Therefore

lim𝑛→∞
𝑛2 − 1
2𝑛2 − 3 = lim𝑛→∞

1 − 1
𝑛2

2 − 3
𝑛2

= 1
2 .
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We can also use the Algebra of Limits to prove that certain limits do not exist.

Example 6.29

Question. Prove that the sequence

𝑎𝑛 = 4𝑛3 + 8𝑛 + 1
7𝑛2 + 2𝑛 + 1

does not converge.
Solution. To show that the sequence (𝑎𝑛) does not converge, we divide by the largest power
in the denominator, which in this case is 𝑛2

𝑎𝑛 = 4𝑛3 + 8𝑛 + 1
7𝑛2 + 2𝑛 + 1

=
4𝑛 + 8

𝑛 + 1
𝑛2

7 + 2
𝑛 + 1

𝑛2
= 𝑏𝑛

𝑐𝑛
where we set

𝑏𝑛 ∶= 4𝑛 + 8
𝑛 + 1

𝑛2 , 𝑐𝑛 ∶= 7 + 2
𝑛 + 1

𝑛2 .
Using the Algebra of Limits Theorem 2.142 we see that

𝑐𝑛 = 7 + 2
𝑛 + 1

𝑛2 → 7 .

Suppose by contradiction that
𝑎𝑛 → 𝑎

for some 𝑎 ∈ ℝ. Then, by the Algebra of Limits Theorem 2.142 we would infer

𝑏𝑛 = 𝑐𝑛 ⋅ 𝑎𝑛 → 7𝑎 ,
concluding that 𝑏𝑛 is convergent to 7𝑎. We have that

𝑏𝑛 = 4𝑛 + 𝑑𝑛 , 𝑑𝑛 ∶= 8
𝑛 + 1

𝑛2 .

Again by the Algebra of Limits Theorem 2.142 we get that

𝑑𝑛 = 8
𝑛 + 1

𝑛2 → 0 ,

and hence
4𝑛 = 𝑏𝑛 − 𝑑𝑛 → 7𝑎 − 0 = 7𝑎 .

This is a contradiction, since the sequence (4𝑛) is unbounded, and hence cannot be convergent.
Hence (𝑎𝑛) is not convergent.
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Warning

Consider the sequence

𝑎𝑛 = 4𝑛3 + 8𝑛 + 1
7𝑛2 + 2𝑛 + 1

from the previous example. We have proven that (𝑎𝑛) is not convergent, by making use of the
Algebra of Limits.
Let us review a faulty argument to conclude that (𝑎𝑛) is not convergent. Write

𝑎𝑛 = 𝑏𝑛
𝑐𝑛

, 𝑏𝑛 ∶= 4𝑛3 + 8𝑛 + 1 , 𝑐𝑛 ∶= 7𝑛2 + 2𝑛 + 1 .

The numerator
𝑏𝑛 = 4𝑛3 + 8𝑛 + 1

and denominator
𝑐𝑛 = 7𝑛2 + 2𝑛 + 1

are both unbounded, and hence (𝑏𝑛) and (𝑐𝑛) do not converge. Onemight be tempted to conclude
that (𝑎𝑛) does not converge. However this is false in general: as seen in Example 6.28, we have

lim𝑛→∞
𝑛2 − 1
2𝑛2 − 3 = 1

2 ,

while numerator and denominator are unbounded.

Sometimes it is useful to rearrange the terms of a sequence, before applying the Algebra of Limits.

Example 6.30

Question. Define the sequence

𝑎𝑛 ∶= 2𝑛3 + 7𝑛 + 1
5𝑛 + 9 ⋅ 8𝑛 + 9

6𝑛3 + 8𝑛2 + 3 .

Prove that
lim𝑛→∞ 𝑎𝑛 = 8

15 .

Solution. The first fraction in (𝑎𝑛) does not converge, as it is unbounded. Therefore we cannot
use Point 2 in Theorem 2.142 directly. However, we note that

𝑎𝑛 = 2𝑛3 + 7𝑛 + 1
5𝑛 + 9 ⋅ 8𝑛 + 9

6𝑛3 + 8𝑛2 + 3
= 8𝑛 + 9

5𝑛 + 9 ⋅ 2𝑛3 + 7𝑛 + 1
6𝑛3 + 8𝑛2 + 3 .
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Factoring out 𝑛 and 𝑛3, respectively, and using the Algebra of Limits, we see that

8𝑛 + 9
5𝑛 + 9 = 8 + 9/𝑛

5 + 9/𝑛 → 8 + 0
5 + 0 = 8

5
and

2 + 7/𝑛2 + 1/𝑛3
6 + 8/𝑛 + 3/𝑛3 → 2 + 0 + 0

6 + 0 + 0 = 1
3

Therefore Theorem 2.142 Point 2 ensures that

𝑎𝑛 → 8
5 ⋅ 13 = 8

15 .

6.7 Fractional powers

The Algebra of Limits Theorem 2.142 can also be used when fractional powers of 𝑛 are involved.

Example 6.31

Question. Prove that

𝑎𝑛 = 𝑛7/3 + 2√𝑛 + 7
4𝑛3/2 + 5𝑛

does not converge.
Solution. The largest power of 𝑛 in the denominator is 𝑛3/2. Hence we factor out 𝑛3/2

𝑎𝑛 = 𝑛7/3 + 2√𝑛 + 7
4𝑛3/2 + 5𝑛

= 𝑛7/3−3/2 + 2𝑛1/2−3/2 + 7𝑛−3/2
4 + 5𝑛−3/2

= 𝑛5/6 + 2𝑛−1 + 7𝑛−3/2
4 + 5𝑛−3/2

= 𝑏𝑛
𝑐𝑛

where we set
𝑏𝑛 ∶= 𝑛5/6 + 2𝑛−1 + 7𝑛−3/2 , 𝑐𝑛 ∶= 4 + 5𝑛−3/2 .

We see that 𝑏𝑛 is unbounded while 𝑐𝑛 → 4. By the Algebra of Limits (and usual contradiction
argument) we conclude that (𝑎𝑛) is divergent.

We now present a general result about the square root of a sequence.
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Theorem 6.32

Let (𝑎𝑛)𝑛∈ℕ be a sequence in ℝ such that

lim𝑛→∞ 𝑎𝑛 = 𝑎 ,

for some 𝑎 ∈ ℝ. If 𝑎𝑛 ≥ 0 for all 𝑛 ∈ ℕ and 𝑎 ≥ 0, then
lim𝑛→∞√𝑎𝑛 = √𝑎 .

Proof

Let 𝜀 > 0. We the two cases 𝑎 > 0 and 𝑎 = 0:
• 𝑎 > 0: Define

𝛿 ∶= 𝑎
2 .

Since 𝛿 > 0 and 𝑎𝑛 → 𝑎, there exists 𝑁1 ∈ ℕ such that

|𝑎𝑛 − 𝑎| < 𝛿 , ∀ 𝑛 ≥ 𝑁1 .
In particular

𝑎𝑛 > 𝑎 − 𝛿 = 𝑎 − 𝑎
2 = 𝑎

2 , ∀ 𝑛 ≥ 𝑁1 ,
from which we infer

√𝑎𝑛 > √𝑎/2 , ∀ 𝑛 ≥ 𝑁1 ,
Now set

̃𝜀 ∶= (√𝑎/2 + √𝑎) 𝜀 .
Since ̃𝜀 > 0 and 𝑎𝑛 → 𝑎, there exists 𝑁2 ∈ ℕ such that

|𝑎𝑛 − 𝑎| < ̃𝜀 , ∀ 𝑛 ≥ 𝑁2 .
Let

𝑁 ∶= max{𝑁1, 𝑁2} .
For 𝑛 ≥ 𝑁 we have

|√𝑎𝑛 − √𝑎| = | (√𝑎𝑛 − √𝑎) (√𝑎𝑛 + √𝑎)
√𝑎𝑛 + √𝑎

|

= |𝑎𝑛 − 𝑎|
√𝑎𝑛 + √𝑎

< ̃𝜀
√𝑎/2 + √𝑎

= 𝜀 .
197



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

• 𝑎 = 0: In this case
𝑎𝑛 → 𝑎 = 0 .

Since 𝜀2 > 0, there exists 𝑁 ∈ ℕ such that

|𝑎𝑛 − 0| = |𝑎𝑛 | < 𝜀2 , ∀ 𝑛 ≥ 𝑁 .
Therefore

|√𝑎𝑛 − √0| = |√𝑎𝑛 | < √𝜀2 = 𝜀 , ∀ 𝑛 ≥ 𝑁 .

Let us show an application of Theorem 6.32.

Example 6.33

Question. Define the sequence

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 3𝑛 .
Prove that

lim𝑛→∞ 𝑎𝑛 = 1
2 .

Solution. We first rewrite

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 3𝑛

=
(√9𝑛2 + 3𝑛 + 1 − 3𝑛) (√9𝑛2 + 3𝑛 + 1 + 3𝑛)

√9𝑛2 + 3𝑛 + 1 + 3𝑛
= 9𝑛2 + 3𝑛 + 1 − (3𝑛)2

√9𝑛2 + 3𝑛 + 1 + 3𝑛
= 3𝑛 + 1

√9𝑛2 + 3𝑛 + 1 + 3𝑛
.

The biggest power of 𝑛 in the denominator is 𝑛. Therefore we factor out 𝑛:

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 3𝑛
= 3𝑛 + 1

√9𝑛2 + 3𝑛 + 1 + 3𝑛

=
3 + 1

𝑛

√9 + 3
𝑛 + 1

𝑛2 + 3
.
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By the Algebra of Limits we have

9 + 3
𝑛 + 1

𝑛2 → 9 + 0 + 0 = 9 .

Therefore we can use Theorem 6.32 to infer

√
9 + 3

𝑛 + 1
𝑛2 → √9 .

By the Algebra of Limits we conclude:

𝑎𝑛 =
3 + 1

𝑛

√9 + 3
𝑛 + 1

𝑛2 + 3
→ 3 + 0

√9 + 3 = 1
2 .

Example 6.34

Question. Prove that the sequence

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 2𝑛
does not converge.
Solution. We rewrite 𝑎𝑛 as

𝑎𝑛 = √9𝑛2 + 3𝑛 + 1 − 2𝑛

= (√9𝑛2 + 3𝑛 + 1 − 2𝑛)(√9𝑛2 + 3𝑛 + 1 + 2𝑛)
√9𝑛2 + 3𝑛 + 1 + 2𝑛

= 9𝑛2 + 3𝑛 + 1 − (2𝑛)2

√9𝑛2 + 3𝑛 + 1 + 2𝑛
= 5𝑛2 + 3𝑛 + 1

√9𝑛2 + 3𝑛 + 1 + 2𝑛

=
5𝑛 + 3 + 1

𝑛

√9 + 3
𝑛 + 1

𝑛2 + 2

= 𝑏𝑛
𝑐𝑛

,
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where we factored 𝑛, being it the largest power of 𝑛 in the denominator, and defined

𝑏𝑛 ∶= 5𝑛 + 3 + 1
𝑛 , 𝑐𝑛 ∶=

√
9 + 3

𝑛 + 1
𝑛2 + 2 .

Note that
9 + 3

𝑛 + 1
𝑛2 → 9

by the Algebra of Limits. Therefore

√
9 + 3

𝑛 + 1
𝑛2 → √9 = 3

by Theorem 6.32. Hence

𝑐𝑛 =
√
9 + 3

𝑛 + 1
𝑛2 + 2 → 3 + 2 = 5 .

The numerator
𝑏𝑛 = 5𝑛 + 3 + 1

𝑛
is instead unbounded. Therefore (𝑎𝑛) is not convergent, by the Algebra of Limits and the usual
contradiction argument.

6.8 Limit Tests

In this section we discuss a number of Tests to determine whether a sequence converges or not.
These are known as Limit Tests.

6.8.1 Squeeze Theorem

When a sequence (𝑎𝑛) oscillates, it is difficult to compute the limit. Examples of terms which produce
oscillations are

(−1)𝑛 , sin(𝑛) , cos(𝑛) .
In such instance it might be useful to compare (𝑎𝑛) with other sequences whose limit is known. If
we can prove that (𝑎𝑛) is squeezed between two other sequences with the same limiting value, then
we can show that also (𝑎𝑛) converges to this value.
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Theorem 6.35: Squeeze theorem

Let (𝑎𝑛) , (𝑏𝑛) and (𝑐𝑛) be sequences in ℝ. Suppose that

𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝑐𝑛 , ∀ 𝑛 ∈ ℕ ,
and that

lim𝑛→∞ 𝑏𝑛 = lim𝑛→∞ 𝑐𝑛 = 𝐿 .
Then

lim𝑛→∞ 𝑎𝑛 = 𝐿 .

Proof

Let 𝜀 > 0. Since 𝑏𝑛 → 𝐿 and 𝑐𝑛 → 𝐿 , there exist 𝑁1, 𝑁2 ∈ ℕ such that

−𝜀 < 𝑏𝑛 − 𝐿 < 𝜀 , ∀ 𝑛 ≥ 𝑁1 ,
−𝜀 < 𝑐𝑛 − 𝐿 < 𝜀 , ∀ 𝑛 ≥ 𝑁2 .

Set
𝑁 ∶= max{𝑁1, 𝑁2} .

Let 𝑛 ≥ 𝑁 . Using the assumption that 𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝑐𝑛 , we get

𝑏𝑛 − 𝐿 ≤ 𝑎𝑛 − 𝐿 ≤ 𝑐𝑛 − 𝐿 .
In particular

−𝜀 < 𝑏𝑛 − 𝐿 ≤ 𝑎𝑛 − 𝐿 ≤ 𝑏𝑛 − 𝐿 < 𝜀 .
The above implies

−𝜀 < 𝑎𝑛 − 𝐿 < 𝜀 ⟹ |𝑎𝑛 − 𝐿| < 𝜀 .

Example 6.36

Question. Prove that

lim𝑛→∞
(−1)𝑛

𝑛 = 0 .
Solution. For all 𝑛 ∈ ℕ we can estimate

−1 ≤ (−1)𝑛 ≤ 1 .
Therefore

−1
𝑛 ≤ (−1)𝑛

𝑛 ≤ 1
𝑛 , ∀ 𝑛 ∈ ℕ .

201



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

Moreover
lim𝑛→∞

−1
𝑛 = −1 ⋅ 0 = 0 , lim𝑛→∞

1
𝑛 = 0 .

By the Squeeze Theorem 2.151 we conclude

lim𝑛→∞
(−1)𝑛

𝑛 = 0 .

Example 6.37

Question. Prove that

lim𝑛→∞
cos(3𝑛) + 9𝑛2

11𝑛2 + 15 sin(17𝑛) = 9
11 .

Solution. We know that

−1 ≤ cos(𝑥) ≤ 1 , −1 ≤ sin(𝑥) ≤ 1 , ∀ 𝑥 ∈ ℝ .
Therefore, for all 𝑛 ∈ ℕ

−1 ≤ cos(3𝑛) ≤ 1 , −1 ≤ sin(17𝑛) ≤ 1 .
We can use the above to estimate the numerator in the given sequence:

−1 + 9𝑛2 ≤ cos(3𝑛) + 9𝑛2 ≤ 1 + 9𝑛2 . (6.7)

Concerning the denominator, we have

11𝑛2 − 15 ≤ 11𝑛2 + 15 sin(17𝑛) ≤ 11𝑛2 + 15
and therefore 1

11𝑛2 + 15 ≤ 1
11𝑛2 + 15 sin(17𝑛) ≤ 1

11𝑛2 − 15 . (6.8)

Putting together (6.7)-(6.8) we obtain

−1 + 9𝑛2
11𝑛2 + 15 ≤ cos(3𝑛) + 9𝑛2

11𝑛2 + 15 sin(17𝑛) ≤ 1 + 9𝑛2
11𝑛2 − 15 .

By the Algebra of Limits we infer

−1 + 9𝑛2
11𝑛2 + 15 =

− 1
𝑛2 + 9

11 + 15
𝑛2

→ 0 + 9
11 + 0 = 9

11
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and

1 + 9𝑛2
11𝑛2 − 15 =

1
𝑛2 + 9

11 − 15
𝑛2

→ 0 + 9
11 + 0 = 9

11 .

Applying the Squeeze Theorem 2.151 we conclude

lim𝑛→∞
cos(3𝑛) + 9𝑛2

11𝑛2 + 15 sin(17𝑛) = 9
11 .

Warning

Suppose that the sequences (𝑎𝑛), (𝑏𝑛), (𝑐𝑛) satisfy
𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝑐𝑛 , ∀𝑛 ∈ ℕ ,

and
𝑏𝑛 → 𝐿1 , 𝑐𝑛 → 𝐿2 , 𝐿1 ≠ 𝐿2 .

In general, we cannot conclude that 𝑎𝑛 converges.

Example 6.38

Consider the sequence

𝑎𝑛 = (1 + 1
𝑛) (−1)

𝑛 .
For all 𝑛 ∈ ℕ we can bound

−1 − 1
𝑛 ≤ (1 + 1

𝑛) (−1)
𝑛 ≤ 1 + 1

𝑛 .
However

−1 − 1
𝑛 ⟶ −1 − 0 = −1

and
1 + 1

𝑛 ⟶ 1 + 0 = 1 .
Since

−1 ≠ 1 ,
we cannot apply the Squeeze Theorem 2.151 to conclude convergence of (𝑎𝑛). Indeed, (𝑎𝑛) is a
divergent sequence.
Proof. Suppose by contradiction that 𝑎𝑛 → 𝑎. We have

𝑎𝑛 = (−1)𝑛 + (−1)𝑛
𝑛 = 𝑏𝑛 + 𝑐𝑛
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where

𝑏𝑛 ∶= (−1)𝑛 , 𝑐𝑛 ∶= (−1)𝑛
𝑛 .

We have seen in Example 6.37 that 𝑐𝑛 → 0. Therefore, by the Algebra of Limits, we have

𝑏𝑛 = 𝑎𝑛 − 𝑐𝑛 ⟶ 𝑎 − 0 = 𝑎 .
However, Theorem 6.15 says that the sequence 𝑏𝑛 = (−1)𝑛 diverges. Contradiction. Hence (𝑎𝑛)
diverges.

6.8.2 Geometric sequences

Definition 6.39: Geometric sequence

A sequence (𝑎𝑛) is called a geometric sequence if

𝑎𝑛 = 𝑥𝑛 ,
for some 𝑥 ∈ ℝ.

The value of |𝑥 | determines whether or not a geometric sequence converges, as shown in the follow-
ing theorem.

Theorem 6.40: Geometric Sequence Test

Let 𝑥 ∈ ℝ and let (𝑎𝑛) be the sequence defined by 𝑎𝑛 ∶= 𝑥𝑛 . We have:

1. If |𝑥| < 1, then
lim𝑛→∞ 𝑎𝑛 = 0 .

2. If |𝑥| > 1, then sequence (𝑎𝑛) is unbounded, and hence divergent.

Warning

The Geometric Sequence Test in Theorem 2.154 does not address the case

|𝑥 | = 1 .
This is because, in this case, the sequence

𝑎𝑛 = 𝑥𝑛
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might converge or diverge, depending on the value of 𝑥 . Indeed,
|𝑥 | = 1 ⟹ 𝑥 = ±1 .

We therefore have two cases:

• 𝑥 = 1: Then
𝑎𝑛 = 1𝑛 = 1

so that 𝑎𝑛 → 1 and (𝑎𝑛) is convergent.
• 𝑥 = −1: Then

𝑎𝑛 = 𝑥𝑛 = (−1)𝑛
which is divergent by Theorem 6.15.

To prove Theorem 2.154 we need the following inequality, known as Bernoulli’s inequality.

Lemma 6.41: Bernoulli’s inequality

Let 𝑥 ∈ ℝ with 𝑥 > −1. Then
(1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 , ∀ 𝑛 ∈ ℕ . (6.9)

Proof

Let 𝑥 ∈ ℝ, 𝑥 > −1. We prove the statement by induction:

• Base case: (6.9) holds with equality when 𝑛 = 1.
• Induction hypothesis: Let 𝑘 ∈ ℕ and suppose that (6.9) holds for 𝑛 = 𝑘, i.e.,

(1 + 𝑥)𝑘 ≥ 1 + 𝑘𝑥 .
Then

(1 + 𝑥)𝑘+1 = (1 + 𝑥)𝑘(1 + 𝑥)
≥ (1 + 𝑘𝑥)(1 + 𝑥)
= 1 + 𝑘𝑥 + 𝑥 + 𝑘𝑥2
≥ 1 + (𝑘 + 1)𝑥 ,

where we used that 𝑘𝑥2 ≥ 0. Then (6.9) holds for 𝑛 = 𝑘 + 1.
By induction we conclude (6.9).
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We are ready to prove Theorem 2.154.

Proof: Proof of Theorem 2.154

Part 1. The case |𝑥 | < 1.
If 𝑥 = 0, then

𝑎𝑛 = 𝑥𝑛 = 0
so that 𝑎𝑛 → 0. Hence assume 𝑥 ≠ 0. We need to prove that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑥𝑛 − 0| < 𝜀 .
Let 𝜀 > 0. We have

|𝑥| < 1 ⟹ 1
|𝑥| > 1 .

Therefore
|𝑥| = 1

1 + 𝑢 , 𝑢 ∶= 1
|𝑥| − 1 > 0 .

Let 𝑁 ∈ ℕ be such that
𝑁 > 1

𝜀𝑢 ,
so that 1

𝑁𝑢 < 𝜀 .
Let 𝑛 ≥ 𝑁 . Then

|𝑥𝑛 − 0| = |𝑥|𝑛

= ( 1
1 + 𝑢 )

𝑛

= 1
(1 + 𝑢)𝑛

≤ 1
1 + 𝑛𝑢

≤ 1
𝑛𝑢

≤ 1
𝑁𝑢

< 𝜀 ,
where we used Bernoulli’s inequality (6.9) in the first inequality.
Part 2. The case |𝑥 | > 1.
To prove that (𝑎𝑛) does not converge, we prove that it is unbounded. This means showing that

∀𝑀 > 0 , ∃𝑛 ∈ ℕ s.t. |𝑎𝑛 | > 𝑀 .
Let 𝑀 > 0. We have two cases:
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• 0 < 𝑀 ≤ 1: Choose 𝑛 = 1. Then
|𝑎1| = |𝑥| > 1 ≥ 𝑀 .

• 𝑀 > 1: Choose 𝑛 ∈ ℕ such that

𝑛 > log𝑀
log |𝑥| .

Note that log |𝑥| > 0 since |𝑥| > 1. Therefore

𝑛 > log𝑀
log |𝑥| ⟺ 𝑛 log |𝑥 | > log𝑀

⟺ log |𝑥 |𝑛 > log𝑀
⟺ |𝑥|𝑛 > 𝑀 .

Then
|𝑎𝑛 | = |𝑥𝑛 | = |𝑥|𝑛 > 𝑀 .

Hence (𝑎𝑛) is unbounded. By Corollary 6.22 we conclude that (𝑎𝑛) is divergent.

Example 6.42

We can apply Theorem 2.154 to prove convergence or divergence for the following sequences.

1. We have

(12)
𝑛
⟶ 0

since
| 12 | =

1
2 < 1 .

2. We have

(−12 )
𝑛
⟶ 0

since
|−12 | = 1

2 < 1 .

3. The sequence

𝑎𝑛 = (−32 )
𝑛

does not converge, since

|−32 | = 3
2 > 1 .
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4. As 𝑛 → ∞,
3𝑛

(−5)𝑛 = (−3
5)

𝑛
⟶ 0

since
|−3

5 | =
3
5 < 1 .

5. The sequence

𝑎𝑛 = (−7)𝑛
22𝑛

does not converge, since
(−7)𝑛
22𝑛 = (−7)𝑛

(22)𝑛
= (−7

4)
𝑛

and
|−7

4 | =
7
4 > 1 .

6.8.3 Ratio Test
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Theorem 6.43: Ratio Test

Let (𝑎𝑛) be a sequence in ℝ such that

𝑎𝑛 ≠ 0 , ∀ 𝑛 ∈ ℕ .
1. Suppose that the following limit exists:

𝐿 ∶= lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
| .

Then,

• If 𝐿 < 1 we have
lim𝑛→∞ 𝑎𝑛 = 0 .

• If 𝐿 > 1, the sequence (𝑎𝑛) is unbounded, and hence does not converge.

2. Suppose that there exists 𝑁 ∈ ℕ and 𝐿 > 1 such that

| 𝑎𝑛+1𝑎𝑛
| ≥ 𝐿 , ∀ 𝑛 ≥ 𝑁 .

Then the sequence (𝑎𝑛) is unbounded, and hence does not converge.

Proof

Define the sequence 𝑏𝑛 = |𝑎𝑛 |. Then,

| 𝑎𝑛+1𝑎𝑛
| = |𝑎𝑛+1|

|𝑎𝑛 |
= 𝑏𝑛+1

𝑏𝑛
Part 1. Suppose that there exists the limit

𝐿 ∶= lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
| .

Therefore

lim𝑛→∞
𝑏𝑛+1
𝑏𝑛

= 𝐿 . (6.10)

• 𝐿 < 1: Choose 𝑟 > 0 such that
𝐿 < 𝑟 < 1 .

Set
𝜀 ∶= 𝑟 − 𝐿

By the convergence at (6.10) there exists 𝑁 ∈ ℕ such that

| 𝑏𝑛+1𝑏𝑛
− 𝐿| < 𝜀 = 𝑟 − 𝐿 , ∀ 𝑛 ≥ 𝑁 .
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In particular
𝑏𝑛+1
𝑏𝑛

− 𝐿 < 𝑟 − 𝐿 , ∀ 𝑛 ≥ 𝑁 ,

which implies
𝑏𝑛+1 < 𝑟 𝑏𝑛 , ∀ 𝑛 ≥ 𝑁 . (6.11)

Let 𝑛 ≥ 𝑁 , we can use (6.11) recursively and obtain

0 ≤ 𝑏𝑛 < 𝑟𝑏𝑛−1 < … < 𝑟𝑛−𝑁 𝑏𝑁 = 𝑟𝑛 𝑏𝑁
𝑟𝑁 .

In particular, we have proven that

0 ≤ 𝑏𝑛 < 𝑟𝑛 𝑏𝑁
𝑟𝑁 , ∀ 𝑛 ∈ ℕ . (6.12)

Since |𝑟 | < 1, by the Geometric Sequence Test Theorem 2.154 we infer

𝑟𝑛 → 0 .
The Algebra of Limits the yields

𝑟𝑛 𝑏𝑁
𝑟𝑁 → 0 .

By the Squeeze Theorem 2.151 applied to (6.12), it follows that

𝑏𝑛 = |𝑎𝑛 | → 0 .
Since

− |𝑎𝑛 | ≤ 𝑎𝑛 ≤ |𝑎𝑛 | ,
and

−|𝑎𝑛 | → 0 , |𝑎𝑛 | → 0 ,
we can again apply the Squeeze Theorem 2.151 to infer

𝑎𝑛 → 0 .

• 𝐿 > 1: Choose 𝑟 > 0 such that
1 < 𝑟 < 𝐿 .

Define
𝜀 ∶= 𝐿 − 𝑟 > 0 .

By the convergence (6.10), there exists 𝑁 ∈ ℕ such that

| 𝑏𝑛+1𝑏𝑛
− 𝐿| < 𝜀 = 𝐿 − 𝑟 , ∀ 𝑛 ≥ 𝑁 .
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In particular,

−(𝐿 − 𝑟) < 𝑏𝑛+1
𝑏𝑛

− 𝐿 , ∀ 𝑛 ≥ 𝑁 ,

which implies
𝑏𝑛+1 > 𝑟 𝑏𝑛 , ∀ 𝑛 ≥ 𝑁 . (6.13)

Let 𝑛 ≥ 𝑁 . Applying (6.13) recursively we get

𝑏𝑛 > 𝑟𝑛−𝑁 𝑏𝑁 = 𝑟𝑛 𝑏𝑁
𝑟𝑁 , ∀ 𝑛 ≥ 𝑁 . (6.14)

Since |𝑟 | > 1, by the Geometric Sequence Test we have that the sequence

(𝑟𝑛)
is unbounded. Therefore also the right hand side of (6.14) is unbounded, proving that (𝑏𝑛)
is unbounded. Since

𝑏𝑛 = |𝑎𝑛 | ,
we conclude that (𝑎𝑛) is unbounded. By Corollary 6.22 we conclude that (𝑎𝑛) does not
converge.

Part 2. Suppose that there exists 𝑁 ∈ ℕ and 𝐿 > 1 such that

| 𝑎𝑛+1𝑎𝑛
| ≥ 𝐿 , ∀ 𝑛 ≥ 𝑁 .

Since 𝑏𝑛 = |𝑎𝑛 |, we infer
𝑏𝑛+1 ≥ 𝐿 𝑏𝑛 , ∀ 𝑛 ≥ 𝑁 .

Arguing as above, we obtain

𝑏𝑛 ≥ 𝐿𝑛 𝑏𝑁
𝐿𝑁 , ∀ 𝑛 ≥ 𝑁 .

Since 𝐿 > 1, we have that the sequence

𝐿𝑛 𝑏𝑁
𝐿𝑁

is unbounded, by the Geometric Sequence Test. Hence also (𝑏𝑛) is unbounded, from which we
conclude that (𝑎𝑛) is unbounded. By Corollary 6.22 we conclude that (𝑎𝑛) does not converge.

Let us apply the Ratio Test to some concrete examples.
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Example 6.44

Question. Prove that

𝑎𝑛 = 3𝑛
𝑛! → 0 ,

where we recall that 𝑛! (pronounced 𝑛 factorial) is defined by

𝑛! ∶= 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) ⋅ … ⋅ 3 ⋅ 2 ⋅ 1 .
Solution. We have

| 𝑎𝑛+1𝑎𝑛
| =

( 3𝑛+1
(𝑛 + 1)!)

(3
𝑛
𝑛! )

= 3
𝑛 + 1 ⟶ 𝐿 = 0 .

Hence, 𝐿 = 0 < 1 so 𝑎𝑛 → 0 by the Ratio Test in Theorem 2.156.

Example 6.45

Question. Prove that the sequence is divergent

𝑎𝑛 = 𝑛! ⋅ 3𝑛
√(2𝑛)!

.

Solution. We have

| 𝑎𝑛+1𝑎𝑛
| = (𝑛 + 1)! ⋅ 3𝑛+1

√(2(𝑛 + 1))!
√(2𝑛)!
𝑛! ⋅ 3𝑛

= (𝑛 + 1)!
𝑛! ⋅ 3

𝑛+1
3𝑛 ⋅ √(2𝑛)!

√(2(𝑛 + 1))!
For the first two fractions we have

(𝑛 + 1)!
𝑛! ⋅ 3

𝑛+1
3𝑛 = 3(𝑛 + 1) ,

while for the third fraction

√(2𝑛)!
√(2(𝑛 + 1))!

=
√

(2𝑛)!
(2𝑛 + 2)!

=
√

(2𝑛)!
(2𝑛 + 2) ⋅ (2𝑛 + 1) ⋅ (2𝑛)!

= 1
√(2𝑛 + 1)(2𝑛 + 2)

.
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Therefore, using the Algebra of Limits,

| 𝑎𝑛+1𝑎𝑛
| = 3(𝑛 + 1)

√(2𝑛 + 1)(2𝑛 + 2)

=
3𝑛 (1 + 1

𝑛)

√𝑛2 (2 + 1
𝑛) (2 + 2

𝑛)

=
3 (1 + 1

𝑛)

√(2 + 1
𝑛) (2 + 2

𝑛)
⟶ 3

√4
= 3

2 > 1 .

By the Ratio Test we conclude that (𝑎𝑛) is divergent.

Example 6.46

Question. Prove that the following sequence is divergent

𝑎𝑛 = 𝑛!
100𝑛 .

Solution. We have

| 𝑎𝑛+1𝑎𝑛
| = 100𝑛

100𝑛+1
(𝑛 + 1)!

𝑛! = 𝑛 + 1
100 .

Choose 𝑁 = 101. Then for all 𝑛 ≥ 𝑁 ,

| 𝑎𝑛+1𝑎𝑛
| = 𝑛 + 1

100 ≥ 𝑁 + 1
100 = 101

100 > 1 .

Hence 𝑎𝑛 is divergent by the Ratio Test.

Warning

The Ratio Test in Theorem 2.156 does not address the case

𝐿 = 1 .
This is because, in this case, the sequence (𝑎𝑛) might converge or diverge.
For example:

• Define the sequence

𝑎𝑛 = 1
𝑛 .
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We have
| 𝑎𝑛+1𝑎𝑛

| = 𝑛
𝑛 + 1 → 𝐿 = 1 .

Hence we cannot apply the Ratio Test. However we know that

lim𝑛→∞
1
𝑛 = 0 .

• Consider the sequence
𝑎𝑛 = 𝑛 .

We have |𝑎𝑛+1|
|𝑎𝑛 |

= 𝑛 + 1
𝑛 → 𝐿 = 1 .

Hence we cannot apply the Ratio Test. However we know that (𝑎𝑛) is unbounded, and
thus divergent.

If the sequence (𝑎𝑛) is geometric, the Ratio Test of Theorem 2.156 will give the same answer as the
Geometric Sequence Test of Theorem 2.154. This is the content of the following remark.

Remark 6.47

Let 𝑥 ∈ ℝ and define the geometric sequence

𝑎𝑛 = 𝑥𝑛 .
Then

| 𝑎𝑛+1𝑎𝑛
| = |𝑥𝑛+1|

|𝑥𝑛 | = |𝑥|𝑛+1
|𝑥 |𝑛 = |𝑥| → |𝑥| .

Hence:

• If |𝑥| < 1, the sequence (𝑎𝑛) converges by the Ratio Test
• If |𝑥| > 1, the sequence (𝑎𝑛) diverges by the Ratio Test.
• If |𝑥| = 1, the sequence (𝑎𝑛) might be convergent or divergent.

These results are in agreement with the Geometric Sequence Test.
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6.9 Monotone sequences

We have seen in Theorem 6.19 that convergent sequences are bounded. We noted that the converse
statement is not true. For example the sequence

𝑎𝑛 = (−1)𝑛

is bounded but not convergent, as shown in Theorem 6.15. On the other hand, if a bounded sequence
is monotone, then it is convergent.

Definition 6.48: Monotone sequence

Let (𝑎𝑛) be a real sequence. We say that:

1. (𝑎𝑛) is increasing if
𝑎𝑛 ≤ 𝑎𝑛+1 , ∀ 𝑛 ≥ 𝑁 .

2. (𝑎𝑛) is decreasing if
𝑎𝑛 ≥ 𝑎𝑛+1 , ∀ 𝑛 ≥ 𝑁 .

3. (𝑎𝑛) is monotone if it is either increasing or decreasing.

Example 6.49

Question. Prove that the following sequence is increasing

𝑎𝑛 = 𝑛 − 1
𝑛 .

Solution. We have
𝑎𝑛+1 = 𝑛

𝑛 + 1 > 𝑛 − 1
𝑛 = 𝑎𝑛 ,

where the inequality holds because

𝑛
𝑛 + 1 > 𝑛 − 1

𝑛 ⟺ 𝑛2 > (𝑛 − 1)(𝑛 + 1)
⟺ 𝑛2 > 𝑛2 − 1
⟺ 0 > −1

Example 6.50

Question. Prove that the following sequence is decreasing

𝑎𝑛 = 1
𝑛 .
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Solution. We immediately see that

𝑎𝑛 = 1
𝑛 > 1

𝑛 + 1 = 𝑎𝑛+1 .

The main result about monotone sequences is the Monotone Convergence Theorem.

Theorem 6.51: Monotone Convergence Theorem

Let (𝑎𝑛) be a sequence in ℝ. Suppose that (𝑎𝑛) is bounded and monotone. Then (𝑎𝑛) converges.
In particular,

1. If 𝑎𝑛 is increasing, then
lim𝑛→∞ 𝑎𝑛 = sup𝐴 ,

2. If 𝑎𝑛 is decreasing, then
lim𝑛→∞ 𝑎𝑛 = inf𝐴 ,

where we define 𝐴 = {𝑎𝑛 ∶ 𝑛 ∈ ℕ}.

Proof

Assume (𝑎𝑛) is bounded and monotone. Since (𝑎𝑛) is bounded, the set

𝐴 ∶= {𝑎𝑛 ∶ 𝑛 ∈ ℕ} ⊆ ℝ
is bounded below and above. By the Axiom of Completeness of ℝ there exist 𝑖, 𝑠 ∈ ℝ such that

𝑖 = inf𝐴 , 𝑠 = sup𝐴 .
We have two cases:

1. (𝑎𝑛) is increasing: We are going to prove that

lim𝑛→∞ 𝑎𝑛 = 𝑠 .

Equivalently, we need to prove that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑠| < 𝜀 . (6.15)

Let 𝜀 > 0. Since 𝑠 is the smallest upper bound for 𝐴, this means

𝑠 − 𝜀
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is not an upper bound. Therefore there exists 𝑁 ∈ ℕ such that

𝑠 − 𝜀 < 𝑎𝑁 . (6.16)

Let 𝑛 ≥ 𝑁 . Since 𝑎𝑛 is increasing, we have

𝑎𝑁 ≤ 𝑎𝑛 , ∀ 𝑛 ≥ 𝑁 . (6.17)

Moreover 𝑠 is the supremum of 𝐴, so that

𝑎𝑛 ≤ 𝑠 < 𝑠 + 𝜀 , ∀ 𝑛 ∈ ℕ . (6.18)

Putting together estimates (6.16)-(6.17)-(6.18) we get

𝑠 − 𝜀 < 𝑎𝑁 ≤ 𝑎𝑛 ≤ 𝑠 < 𝑠 + 𝜀 , ∀ 𝑛 ≥ 𝑁 .
The above implies

𝑠 − 𝜀 < 𝑎𝑛 < 𝑠 + 𝜀 , ∀ 𝑛 ≥ 𝑁 ,
which is equivalent to (6.15).

2. (𝑎𝑛) is decreasing: With a similar proof, one can show that

lim𝑛→∞ 𝑎𝑛 = 𝑖 .

This is left as an exercise.

6.9.1 Example: Euler’s Number

As an application of the Monotone Convergence Theorem we can give a formal definition for the
Euler’s Number

𝑒 = 2.71828182845904523536…

Theorem 6.52

Consider the sequence

𝑎𝑛 = (1 + 1
𝑛)

𝑛
.

We have that:

1. (𝑎𝑛) is monotone increasing,
2. (𝑎𝑛) is bounded.

In particular (𝑎𝑛) is convergent.
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Proof

Part 1. We prove that (𝑎𝑛) is increasing
𝑎𝑛 ≥ 𝑎𝑛−1 , ∀ 𝑛 ∈ ℕ ,

which by definition is equivalent to

(1 + 1
𝑛)

𝑛
≥ (1 + 1

𝑛 − 1)
𝑛−1

, ∀ 𝑛 ∈ ℕ .

Summing the fractions we get

(𝑛 + 1
𝑛 )

𝑛
≥ ( 𝑛

𝑛 − 1)
𝑛−1

.

Multiplying by ((𝑛 − 1)/𝑛)𝑛 we obtain

(𝑛 − 1
𝑛 )

𝑛
(𝑛 + 1

𝑛 )
𝑛
≥ 𝑛 − 1

𝑛 ,

which simplifies to

(1 − 1
𝑛2 )

𝑛
≥ 1 − 1

𝑛 , ∀ 𝑛 ∈ ℕ . (6.19)

Therefore (𝑎𝑛) is increasing if and only if (6.19) holds. Recall Bernoulli’s inequality from Lemma
9.157: For 𝑥 ∈ ℝ, 𝑥 > −1, it holds

(1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 , ∀ 𝑛 ∈ ℕ .
Appliying Bernoulli’s inequality with

𝑥 = − 1
𝑛2

yields

(1 − 1
𝑛2 )

𝑛
≥ 1 + 𝑛 (− 1

𝑛2 ) = 1 − 1
𝑛 ,

which is exactly (6.19). Then (𝑎𝑛) is increasing.
Part 2. We have to prove that (𝑎𝑛) is bounded, that is, that there exists 𝑀 > 0 such that

|𝑎𝑛 | ≤ 𝑀 , ∀ 𝑛 ∈ ℕ .
To this end, introduce the sequence (𝑏𝑛) by setting

𝑏𝑛 ∶= (1 + 1
𝑛)

𝑛+1
.

The sequence (𝑏𝑛) is decreasing.
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To prove (𝑏𝑛) is decreasing, we need to show that

𝑏𝑛−1 ≥ 𝑏𝑛 , ∀ 𝑛 ∈ ℕ .
By definition of 𝑏𝑛 , the above reads

(1 + 1
𝑛 − 1)

𝑛
≥ (1 + 1

𝑛)
𝑛+1

, ∀ 𝑛 ∈ ℕ .

Summing the terms inside the brackets, the above is equivalent to

( 𝑛
𝑛 − 1)

𝑛
≥ (𝑛 + 1

𝑛 )
𝑛
(𝑛 + 1

𝑛 ) .

Multiplying by (𝑛/(𝑛 + 1))𝑛 we get

( 𝑛2
𝑛2 − 1)

𝑛
≥ (𝑛 + 1

𝑛 ) .

The above is equivalent to

(1 + 1
𝑛2 − 1)

𝑛
≥ (1 + 1

𝑛) . (6.20)

Therefore (𝑏𝑛) is decreasing if and only if (6.20) holds for all 𝑛 ∈ ℕ. By choosing

𝑥 = 1
𝑛2 − 1

in Bernoulli’s inequality, we obtain

(1 + 1
𝑛2 − 1)

𝑛
≥ 1 + 𝑛 ( 1

𝑛2 − 1)
= 1 + 𝑛

𝑛2 − 1
≥ 1 + 1

𝑛 ,

where in the last inequality we used that

𝑛
𝑛2 − 1 > 1

𝑛 ,

which holds, being equivalent to 𝑛2 > 𝑛2 − 1. We have therefore proven (6.20), and
hence (𝑏𝑛) is decreasing.
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We now observe that For all 𝑛 ∈ ℕ

𝑏𝑛 = (1 + 1
𝑛)

𝑛+1

= (1 + 1
𝑛)

𝑛
(1 + 1

𝑛)

= 𝑎𝑛 (1 + 1
𝑛)

> 𝑎𝑛 .
Since (𝑎𝑛) is increasing and (𝑏𝑛) is decreasing, in particular

𝑎𝑛 ≥ 𝑎1 , 𝑏𝑛 ≤ 𝑏1 .
Therefore

𝑎1 ≤ 𝑎𝑛 < 𝑏𝑛 ≤ 𝑏1 , ∀ 𝑛 ∈ ℕ .
We compute

𝑎1 = 2 , 𝑏1 = 4 ,
from which we get

2 ≤ 𝑎𝑛 ≤ 4 , ∀ 𝑛 ∈ ℕ .
Therefore

|𝑎𝑛 | ≤ 4 , ∀ 𝑛 ∈ ℕ ,
showing that (𝑎𝑛) is bounded.
Part 3. The sequence (𝑎𝑛) is increasing and bounded above. Therefore (𝑎𝑛) is convergent by the
Monotone Convergence Theorem 2.163.

Thanks to Theorem 6.52 we can define the Euler’s Number 𝑒.
Definition 6.53: Euler’s Number

The Euler’s number is defined as

𝑒 ∶= lim𝑛→∞ (1 + 1
𝑛)

𝑛
.

Setting 𝑛 = 1000 in the formula for (𝑎𝑛), we get an approximation of 𝑒:
𝑒 ≈ 𝑎1000 = 2.7169 .
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6.10 Special limits

In this section we investigate limits of some sequences to which the Limit Tests do not apply.

Theorem 6.54

Let 𝑥 ∈ ℝ, with 𝑥 > 0. Then
lim𝑛→∞

𝑛√𝑥 = 1 .

Proof

Step 1. Assume 𝑥 ≥ 1. In this case
𝑛√𝑥 ≥ 1 .

Define
𝑏𝑛 ∶= 𝑛√𝑥 − 1 ,

so that 𝑏𝑛 ≥ 0. By Bernoulli’s Inequality we have

𝑥 = (1 + 𝑏𝑛)𝑛 ≥ 1 + 𝑛𝑏𝑛 .
Therefore

0 ≤ 𝑏𝑛 ≤ 𝑥 − 1
𝑛 .

Since 𝑥 − 1
𝑛 ⟶ 0 ,

by the Squeeze Theorem we infer 𝑏𝑛 → 0, and hence

𝑛√𝑥 = 1 + 𝑏𝑛 ⟶ 1 + 0 = 1 ,
by the Algebra of Limits.
Step 2. Assume 0 < 𝑥 < 1. In this case

1
𝑥 > 1 .

Therefore
lim𝑛→∞

𝑛√1/𝑥 = 1 .
by Step 1. Therefore

𝑛√𝑥 = 1
𝑛√1/𝑥

⟶ 1
1 = 1 ,

by the Algebra of Limits.
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Theorem 6.55

Let (𝑎𝑛) be a sequence such that 𝑎𝑛 → 0. Then
sin(𝑎𝑛) → 0 , cos(𝑎𝑛) → 1 .

Proof

Assume that 𝑎𝑛 → 0 and set
𝜀 ∶= 𝜋

2 .
By the convergence 𝑎𝑚 → 0 there exists 𝑁 ∈ ℕ such that

|𝑎𝑛 | < 𝜀 = 𝜋
2 ∀ 𝑛 ≥ 𝑁 . (6.21)

Step 1. We prove that
sin(𝑎𝑛) → 0 .

By elementary trigonometry we have

0 ≤ | sin(𝑥)| = sin |𝑥 | ≤ |𝑥| , ∀ 𝑥 ∈ [−𝜋
2 ,

𝜋
2 ] .

Therefore, since (6.21) holds, we can substitute 𝑥 = 𝑎𝑛 in the above inequality to get

0 ≤ | sin(𝑎𝑛)| ≤ |𝑎𝑛 | , ∀ 𝑛 ≥ ℕ .
Since 𝑎𝑛 → 0, we also have |𝑎𝑛 | → 0. Therefore | sin(𝑎𝑛)| → 0 by the Squeeze Theorem. This
immediately implies sin(𝑎𝑛) → 0.
Step 2. We prove that

cos(𝑎𝑛) → 1 .
Inverting the relation

cos2(𝑥) + sin2(𝑥) = 1 ,
we obtain

cos(𝑥) = ±√1 − sin2(𝑥) .
We have that cos(𝑥) ≥ 0 for −𝜋/2 ≤ 𝑥 ≤ 𝜋/2. Thus

cos(𝑥) = √1 − sin2(𝑥) , ∀ 𝑥 ∈ [−𝜋
2 ,

𝜋
2 ] .

Since (6.21) holds, we can set 𝑥 = 𝑎𝑛 in the above inequality and obtain

cos(𝑎𝑛) = √1 − sin2(𝑎𝑛) , ∀ 𝑛 ≥ 𝑁 .
By Step 1 we know that sin(𝑎𝑛) → 0. Therefore, by the Algebra of Limits,

1 − sin2(𝑎𝑛) ⟶ 1 − 0 ⋅ 0 = 1 .
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Using Theorem 6.32 we have

cos(𝑎𝑛) = √1 − sin2(𝑎𝑛) ⟶ √1 = 1 ,
concluding the proof.

Theorem 6.56

Suppose (𝑎𝑛) is such that 𝑎𝑛 → 0 and 𝑎𝑛 ≠ 0. Then,

lim𝑛→∞
sin(𝑎𝑛)

𝑎𝑛
= 1 .

Proof

The following elementary trigonometric inequality holds:

sin(𝑥) < 𝑥 < tan(𝑥) , ∀ 𝑥 ∈ [0, 𝜋2 ] .

Note that sin 𝑥 > 0 for 0 < 𝑥 < 𝜋/2. Therefore we can divide the above inequality by sin(𝑥)
and take the reciprocals to get

cos(𝑥) < sin(𝑥)
𝑥 < 1 , ∀ 𝑥 ∈ (0, 𝜋2 ] .

If −𝜋/2 < 𝑥 < 0, we can apply the above inequality to −𝑥 to obtain

cos(−𝑥) < sin(−𝑥)
−𝑥 < 1 .

Recalling that cos(−𝑥) = cos(𝑥) and sin(−𝑥) = − sin(𝑥), we get

cos(𝑥) < sin(𝑥)
𝑥 < 1 , ∀ 𝑥 ∈ ( − 𝜋

2 , 0] .

Thus

cos(𝑥) < sin(𝑥)
𝑥 < 1 , ∀ 𝑥 ∈ [−𝜋

2 ,
𝜋
2 ] ∖ {0} . (6.22)

Let
𝜀 ∶= 𝜋

2 .
Since 𝑎𝑛 → 0, there exists 𝑁 ∈ ℕ such that

|𝑎𝑛 | < 𝜀 = 𝜋
2 , ∀ 𝑛 ≥ 𝑁 .
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Since 𝑎𝑛 ≠ 0 by assumption, the above shows that

𝑎𝑛 ∈ [ − 𝜋
2 ,

𝜋
2 ] ∖ {0} , ∀ 𝑛 ≥ ℕ .

Therefore we can substitute 𝑥 = 𝑎𝑛 into (6.22) to get

cos(𝑎𝑛) <
sin(𝑎𝑛)

𝑎𝑛
< 1 , ∀ 𝑛 ≥ 𝑁 .

We have
cos(𝑎𝑛) → 1

by Theorem 6.55. By the Squeeze Theorem we conclude that

lim𝑛→∞
sin(𝑎𝑛)

𝑎𝑛
= 1 .

Warning

You might be tempted to apply L’Hôpital’s rule (which we did not cover in these Lecture Notes)
to compute

lim𝑥→0
sin(𝑥)

𝑥 .

This would yield the correct limit

lim𝑥→0
sin(𝑥)

𝑥 = lim𝑥→0
(sin(𝑥))′

(𝑥)′ = lim𝑥→0 cos(𝑥) = 1 .

However this is a circular argument, since the derivative of sin(𝑥) at 𝑥 = 0 is defined as the
limit

lim𝑥→0
sin(𝑥)

𝑥 .

Theorem 6.57

Suppose (𝑎𝑛) is such that 𝑎𝑛 → 0 and 𝑎𝑛 ≠ 0. Then,

lim𝑛→∞
1 − cos(𝑎𝑛)

(𝑎𝑛)2
= 1

2 , lim𝑛→∞
1 − cos(𝑎𝑛)

𝑎𝑛
= 0 .
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Proof

Step 1. By Theorem 6.55 and Theorem 6.56, we have

cos(𝑎𝑛) → 1 , sin(𝑎𝑛)
𝑎𝑛

→ 1 .

Therefore

1 − cos(𝑎𝑛)
(𝑎𝑛)2

= 1 − cos(𝑎𝑛)
(𝑎𝑛)2

1 + cos(𝑎𝑛)
1 + cos(𝑎𝑛)

= 1 − cos2(𝑎𝑛)
(𝑎𝑛)2

1
1 + cos(𝑎𝑛)

= ( sin(𝑎𝑛)𝑎𝑛
)
2 1

1 + cos(𝑎𝑛)
⟶ 1 ⋅ 1

1 + 1 = 1
2 ,

where in the last line we use the Algebra of Limits.
Step 2. We have

1 − cos(𝑎𝑛)
𝑎𝑛

= 𝑎𝑛 ⋅ 1 − cos(𝑎𝑛)
(𝑎𝑛)2

⟶ 0 ⋅ 12 = 0 ,

using Step 1 and the Algebra of Limits.

Example 6.58

Question. Prove that

lim𝑛→∞ 𝑛 sin (1𝑛 ) = 1 . (6.23)

Solution. By Theorem 6.56 with 𝑎𝑛 = 1/𝑛, we get

𝑛 sin (1𝑛 ) =
sin (1𝑛 )

1
𝑛

⟶ 1 .

Example 6.59

Question. Prove that

lim𝑛→∞ 𝑛2 (1 − cos (1𝑛 )) = 1
2 . (6.24)
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Solution. By Theorem 6.57 with 𝑎𝑛 = 1/𝑛, we have

𝑛2 (1 − cos (1𝑛 )) =
1 − cos (1𝑛 )

1
𝑛2

⟶ 1
2 .

Example 6.60

Question. Prove that

lim𝑛→∞

𝑛 (1 − cos (1𝑛 ))

sin (1𝑛 )
= 1

2 .

Solution. Using (6.24)-(6.23) and the Algebra of Limits

𝑛 (1 − cos (1𝑛 ))

sin (1𝑛 )
=

𝑛2 (1 − cos (1𝑛 ))

𝑛 sin (1𝑛 )

⟶ 1/2
1 = 1

2 .

Example 6.61

Question. Prove that

lim𝑛→∞ 𝑛 cos (2𝑛 ) sin (2𝑛 ) = 2 .
Solution. We have

cos (2𝑛 ) ⟶ 1 ,
by Theorem 6.55 applied with 𝑎𝑛 = 2/𝑛. Moreover

sin (2𝑛 )
2
𝑛

⟶ 1 ,

by Theorem 6.56 applied with 𝑎𝑛 = 2/𝑛. Therefore

𝑛 cos (2𝑛 ) sin (2𝑛 ) = 2 ⋅ cos (2𝑛 ) ⋅
sin (2𝑛 )

2
𝑛

⟶ 2 ⋅ 1 ⋅ 1 = 2 ,
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where we used the Algebra of Limits.

Example 6.62

Question. Prove that

lim𝑛→∞
𝑛2 + 1
𝑛 + 1 sin (1𝑛 ) = 1 .

Solution. Using (6.23) and the Algebra of Limits,

𝑛2 + 1
𝑛 + 1 sin (1𝑛 ) =

⎛
⎜⎜
⎝

1 + 1
𝑛2

1 + 1
𝑛

⎞
⎟⎟
⎠
⋅ (𝑛 sin (1𝑛 ))

⟶ 1 + 0
1 + 0 ⋅ 1 = 1 .
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7 Sequences in ℂ
The theory for sequences in ℂ is very similar to that of sequences in ℝ. In ℝ, we said that a sequence
(𝑎𝑛) converges to some number 𝑎 ∈ ℝ if for all 𝜀 > 0, it holds

|𝑎𝑛 − 𝑎| < 𝜀
for all 𝑛 suffieciently large. The definition of convergence in ℂ is essentially the same, with the
absolute value replaced by the complex modulus.

Definition 7.1: Sequence of Complex numbers

A sequence 𝑎 in ℂ is a function
𝑎∶ ℕ → ℂ .

For 𝑛 ∈ ℕ, we denote the 𝑛-th element of the sequence 𝑎 by

𝑎𝑛 = 𝑎(𝑛)
and write the sequence as

(𝑎𝑛)𝑛∈ℕ or (𝑎𝑛) .

In the following we define convergent sequences in ℂ.
Definition 7.2: Convergent sequence in ℂ

We say that a sequence (𝑎𝑛) in ℂ converges to 𝑎 ∈ ℂ, or equivalently has limit 𝑎, denoted by

lim𝑛→∞ 𝑎𝑛 = 𝑎 or 𝑎𝑛 → 𝑎 ,

if it holds:
∀ 𝜀 > 0, ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑎| < 𝜀 .

If there exists 𝑎 ∈ ℂ such that lim𝑛→∞ 𝑎𝑛 = 𝑎, we say that the sequence (𝑎𝑛) is convergent.

Important

In Definition 7.2 we still take 𝜀 to be real. This makes sense, since

|𝑧| = √𝑥2 + 𝑦2 ∈ ℝ
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for all 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ.

Example 7.3

Question. Using Definition 7.2, prove that

lim𝑛→∞
(3 + 𝑖)𝑛 − 7𝑖

𝑛 = 3 + 𝑖 .

Solution.
Part 1. Rough Work. Let 𝜀 > 0. We need to clarify for which values of 𝑛 the following holds:

| (3 + 𝑖)𝑛 − 7𝑖
𝑛 − (3 + 𝑖)| < 𝜀 .

We have

| (3 + 𝑖)𝑛 − 7𝑖
𝑛 − (3 + 𝑖)| = | − 7𝑖|

𝑛 = 7
𝑛 .

Therefore 7
𝑛 < 𝜀 ⟺ 𝑛 > 7

𝜀 .
Part 2. Formal Proof. We want to prove that for all 𝜀 > 0 there exists 𝑁 ∈ ℕ such that

| (3 + 𝑖)𝑛 − 7𝑖
𝑛 − (3 + 𝑖)| < 𝜀 , ∀ 𝑛 ≥ 𝑁 .

Let 𝜀 > 0. Choose 𝑁 ∈ ℕ such that
𝑁 > 7

𝜀 .
The above is equivalent to

7
𝑁 < 𝜀 .

For 𝑛 ≥ 𝑁 we have

| (3 + 𝑖)𝑛 − 7𝑖
𝑛 − (3 + 𝑖)| = 7

𝑛 ≤ 7
𝑁 < 𝜀 .

Boundedness plays an important role for complex sequences.

Definition 7.4: Bounded sequence in ℂ

A sequence (𝑎𝑛) in ℂ is called bounded if there exists a constant 𝑀 ∈ ℝ, with 𝑀 > 0, such that

|𝑎𝑛 | ≤ 𝑀 , ∀ 𝑛 ∈ ℕ .

As it happens in ℝ, we have that complex sequences which converge are also bounded.
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Theorem 7.5

If a sequence (𝑎𝑛) in ℂ converges, then the sequence is bounded.

The proof is identical to the one in ℝ, and is hence omitted. Similarly to real sequences, we can
define divergent complex sequences.

Definition 7.6: Divergent sequences in ℂ

We say that a sequence (𝑎𝑛) in ℂ is divergent if it is not convergent.

As a corollary of Theorem 7.5 we have the following.

Corollary 7.7

Let (𝑎𝑛) be a complex sequence. If (𝑎𝑛) is not bounded, then it is divergent.

7.1 Algebra of limits in ℂ
Most of the results about limits that we have shown in ℝ also hold in ℂ. The first result is the Algebra
of Limits.

Theorem 7.8: Algebra of limits in ℂ

Let (𝑎𝑛) and (𝑏𝑛) be sequences in ℂ. Suppose that

lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑏𝑛 = 𝑏 ,

for some 𝑎, 𝑏 ∈ ℂ. Then,
1. Limit of sum is the sum of limits:

lim𝑛→∞ (𝑎𝑛 ± 𝑏𝑛) = 𝑎 ± 𝑏

2. Limit of product is the product of limits:

lim𝑛→∞ (𝑎𝑛𝑏𝑛) = 𝑎𝑏

3. If 𝑏𝑛 ≠ 0 for all 𝑛 ∈ ℕ and 𝑏 ≠ 0, then

lim𝑛→∞ (𝑎𝑛𝑏𝑛
) = 𝑎

𝑏
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The proof of Theorem 7.8 follows word by word the proof of the Algebra of Limits for sequences in
ℝ: one just needs to replace the absolute value by the complex modulus.

We can use the Algebra of Limits to compute limits of complex sequences.

Example 7.9

Question. Compute the limit of

𝑎𝑛 = (2 − 𝑖)𝑛2 + 6𝑖𝑛 − 5 − 3𝑖
(6 + 3𝑖)𝑛2 + 11𝑖 .

Solution. Factor 𝑛2, the largest power of 𝑛 in the denominator,

𝑎𝑛 =
(2 − 𝑖) + 6𝑖

𝑛 − 5
𝑛2 − 3𝑖

𝑛2
(6 + 3𝑖) + 11𝑖

𝑛2
⟶ 2 − 𝑖

6 + 3𝑖 ,

where we used the Algebra of Limits. Finally,

2 − 𝑖
6 + 3𝑖 =

(2 − 𝑖)(6 − 3𝑖)
(6 + 3𝑖)(6 − 3𝑖) = 1

5 − 4
15 𝑖 .

7.2 Convergence to zero

One of the results that cannot hold for complex sequences is the Squeeze Theorem. Indeed the chain
of inequalities

𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝑐𝑛
would not make sense in ℂ, since there is no order relation.

We can however prove the following (weaker) result.

Theorem 7.10

Let (𝑎𝑛) be a sequence in ℂ and suppose that

lim𝑛→∞ |𝑎𝑛 | = 0 .

Then
lim𝑛→∞ 𝑎𝑛 = 0 .
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Proof

Assume that |𝑎𝑛 | → 0. We need to show that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 0| < 𝜀 .
Let 𝜀 > 0. Since |𝑎𝑛 | → 0, there exists 𝑁 ∈ ℕ such that

||𝑎𝑛 | − 0| < 𝜀 , ∀ 𝑛 ≥ 𝑁 .
Let 𝑛 ≥ 𝑁 . Then,

|𝑎𝑛 − 0| = |𝑎𝑛 |
= |𝑎𝑛 | − 0
= ||𝑎𝑛 | − 0|
< 𝜀 .

Note that the sequence |𝑎𝑛 | is real. Therefore the convergence of |𝑎𝑛 | can be studied using convergence
results in ℝ.

Example 7.11

Question. Prove that 𝑎𝑛 → 0, where

𝑎𝑛 = (12 + 1
3 𝑖)

𝑛
.

Solution. We have

|𝑎𝑛 | = |(12 + 1
3 𝑖)

𝑛
|

= | 12 + 1
3 𝑖|

𝑛

= (√(12)
2
+ (13)

2
)
𝑛

= (√
13
36)

𝑛
.

Since

|√
13
36 | < 1 ,

by the Geometric Sequence Test for real sequences, we conclude that

|𝑎𝑛 | → 0 .
Hence 𝑎𝑛 → 0 by Theorem 7.10.
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Although the Squeeze Theorem cannot be used for complex sequences, sometimes it can be used to
deal with real terms in a complex sequence.

Example 7.12

Question. Consider the sequence

𝑎𝑛 ∶= 2𝑖 cos(3𝑛)𝑛 + (7 − 𝑖)𝑛2
3𝑛2 + 2𝑖𝑛 + sin(2𝑛) .

Prove that
lim𝑛→∞ 𝑎𝑛 = 7

3 − 1
3 𝑖 .

Solution. We divide by the largest power in the denominator, to get

𝑎𝑛 =
2𝑖 cos(3𝑛)

𝑛 + (7 − 𝑖)

3 + 2𝑖
𝑛 + sin(2𝑛)

𝑛2
.

Notice that
−1 ≤ cos(3𝑛) ≤ 1 , ∀ 𝑛 ∈ ℕ ,

and thus

−2
𝑛 ≤ 2 cos(3𝑛)

𝑛 ≤ 2
𝑛 , ∀ 𝑛 ∈ ℕ .

Since
−2
𝑛 ⟶ 0 , 2

𝑛 ⟶ 0 ,
by the Squeeze Theorem we conclude that also

2 cos(3𝑛)
𝑛 → 0 .

In particular we have shown that

| 2𝑖 cos(3𝑛)𝑛 | = |2 cos(3𝑛)𝑛 | → 0 .

Using Theorem 7.10 we infer
2𝑖 cos(3𝑛)

𝑛 → 0 .
Similarly,

− 1
𝑛2 ≤ sin(2𝑛)

𝑛2 ≤ − 1
𝑛2 , ∀ 𝑛 ∈ ℕ .

Since
− 1
𝑛2 ⟶ 0, 1

𝑛2 ⟶ 0,

233



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

by the Squeeze Theorem we conclude

sin(2𝑛)
𝑛2 ⟶ 0.

Finally, we have

| 2𝑖𝑛 | = 2
𝑛 ⟶ 0 ,

and therefore 2𝑖
𝑛 ⟶ 0

by Theorem 7.10. Using the Algebra of Limits in ℂ we conclude

𝑎𝑛 =
2𝑖 cos(3𝑛)

𝑛 + (7 − 𝑖)

3 + 2𝑖
𝑛 + sin(2𝑛)

𝑛2
⟶ 0 + (7 − 𝑖)

3 + 0 + 0 = 7
3 − 1

3 𝑖 .

7.3 Geometric sequence Test and Ratio Test in ℂ
The Geometric Sequence Test and Ratio Test can be generalized to complex sequences.

Theorem 7.13: Geometric sequence Test in ℂ

Let 𝑥 ∈ ℂ and let (𝑎𝑛)𝑛∈ℕ be the geometric sequence in ℂ defined by

𝑎𝑛 ∶= 𝑥𝑛 .
We have:

1. If |𝑥| < 1, then
lim𝑛→∞ 𝑎𝑛 = 0 .

2. If |𝑥| > 1, then sequence (𝑎𝑛) is unbounded, and hence divergent.

The proof can be obtained as in the real case, replacing the absolute value by the modulus.
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Example 7.14

Question. Prove that 𝑎𝑛 → 0, where

𝑎𝑛 = (−1 + 4𝑖)𝑛
(7 + 3𝑖)𝑛 .

Solution. We first rewrite

𝑎𝑛 = (−1 + 4𝑖)𝑛
(7 + 3𝑖)𝑛 = (−1 + 4𝑖

7 + 3𝑖 )
𝑛

Then, we compute

|−1 + 4𝑖
7 + 3𝑖 | = | − 1 + 4𝑖|

|7 + 3𝑖|

= √(−1)2 + 42

√72 + 32

= √17
√58

= √
17
58

< 1
By the Geometric Sequence Test 𝑎𝑛 → 0.

Example 7.15

Question. Prove that 𝑎𝑛 diverges, where

𝑎𝑛 = (−5 + 12𝑖)𝑛
(3 − 4𝑖)𝑛 .

Solution. We first rewrite

𝑎𝑛 = (−5 + 12𝑖)𝑛
(3 − 4𝑖)𝑛 = (−5 + 12𝑖

3 − 4𝑖 )
𝑛
.

We compute

|−5 + 12𝑖
3 − 4𝑖 | = | − 5 + 12𝑖|

|3 − 4𝑖|

= √52 + (−12)2

√32 + (−4)2
= 13

5
> 1 .
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By the Geometric Sequence Test, the sequence 𝑎𝑛 diverges.

Example 7.16

Question. Prove that 𝑎𝑛 diverges, where

𝑎𝑛 = exp ( 𝑖𝜋2 𝑛) .

Solution. We have
|𝑎𝑛 | = |𝑒

𝑖𝜋
2 𝑛 | = 1 ,

and hence the Geometric Sequence Test cannot be applied. However, we can see that

𝑎𝑛 = (𝑖, −1, −𝑖, 1, 𝑖, −1, −𝑖, 1, …) ,
that is, 𝑎𝑛 assumes only the values {𝑖, −1, −𝑖, 1}, and each of them is assumed infinitely many
times. Therefore 𝑎𝑛 is oscillating, and thus divergent.

We now provide the statement of the Ratio Test in ℂ.
Theorem 7.17: Ratio Test in ℂ

Let (𝑎𝑛) be a sequence in ℂ such that

𝑎𝑛 ≠ 0 , ∀ 𝑛 ∈ ℕ .
1. Suppose that the following limit exists:

𝐿 ∶= lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
| .

Then,

• If 𝐿 < 1 we have
lim𝑛→∞ 𝑎𝑛 = 0 .

• If 𝐿 > 1, the sequence (𝑎𝑛) is unbounded, and hence does not converge.

2. Suppose that there exists 𝑁 ∈ 𝑁 and 𝐿 > 1 such that

| 𝑎𝑛+1𝑎𝑛
| ≥ 𝐿 , ∀ 𝑛 ≥ 𝑁 .

Then the sequence 𝑎𝑛 is unbounded, and hence does not converge.
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The proof of Theorem 7.17 follows word by word the proof of the Ratio Test Theorem in ℝ, and only
two minor modifications are needed:

• Replace the absolute value with the complex modulus,
• Instead of the Squeeze Theorem, use Theorem 7.10.

Example 7.18

Question. Study the convergence / divergence of the sequence

𝑎𝑛 = (4 − 3𝑖)𝑛
(2𝑛)! .

Solution. We compute

| 𝑎𝑛+1𝑎𝑛
| = | (4 − 3𝑖)𝑛+1

(2(𝑛 + 1))!
(2𝑛)!

(4 − 3𝑖)𝑛 |

= |4 − 3𝑖|𝑛+1
|4 − 3𝑖|𝑛 ⋅ (2𝑛)!

(2𝑛 + 2)!
= |4 − 3𝑖|

(2𝑛 + 2)(2𝑛 + 1)

= √42 + (−3)2
(2𝑛 + 2)(2𝑛 + 1)

= 5
(2𝑛 + 2)(2𝑛 + 1)

=
5
𝑛2

(2 + 2
𝑛) (2 + 1

𝑛)
⟶ 𝐿 = 0 .

Since 𝐿 = 0 < 1, by the Ratio Test in ℂ we infer 𝑎𝑛 → 0.

7.4 Convergence of real and imaginary part

A complex number 𝑧 ∈ ℂ can be written as

𝑧 = 𝑎 + 𝑏𝑖
for some 𝑎, 𝑏 ∈ ℝ, where

• 𝑎 is the real part of 𝑧,
• 𝑏 the imaginary part of 𝑧.
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We can prove that a complex sequence converges if and only if both the real parts and the imaginary
parts converge.

Theorem 7.19

Let (𝑧𝑛)𝑛∈ℕ be a sequence in ℂ. For 𝑛 ∈ ℕ, let 𝑎𝑛 , 𝑏𝑛 ∈ ℝ such that

𝑧𝑛 = 𝑎𝑛 + 𝑏𝑛𝑖 .
Let 𝑧 = 𝑎 + 𝑏𝑖, with 𝑎, 𝑏 ∈ ℝ. Then

lim𝑛→∞ 𝑧𝑛 = 𝑧 ⟺ lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑏𝑛 = 𝑏.

Proof

Part 1. Suppose that
lim𝑛→∞ 𝑧𝑛 = 𝑧 .

To prove that 𝑎𝑛 → 𝑎 we need to show that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑎𝑛 − 𝑎| < 𝜀 .
Let 𝜀 > 0. Since 𝑧𝑛 → 𝑧, there exists 𝑁 ∈ ℕ such that

|𝑧𝑛 − 𝑧| < 𝜀 , ∀ 𝑛 ≥ 𝑁 .
Let 𝑛 ≥ 𝑁 . Then

|𝑎𝑛 − 𝑎| = √(𝑎𝑛 − 𝑎)2

≤ √(𝑎𝑛 − 𝑎)2 + (𝑏𝑛 − 𝑏)2
= |(𝑎𝑛 − 𝑎) + (𝑏𝑛 − 𝑏) 𝑖|
= |(𝑎𝑛 + 𝑏𝑛𝑖) − (𝑎 + 𝑏𝑖)|
= |𝑧𝑛 − 𝑧|
< 𝜀 .

The proof for 𝑏𝑛 → 𝑏 is similar.
Part 2. Suppose that

lim𝑛→∞ 𝑎𝑛 = 𝑎 , lim𝑛→∞ 𝑏𝑛 = 𝑏 .
To prove that 𝑧𝑛 → 𝑧 we need to show that

∀ 𝜀 > 0 , ∃ 𝑁 ∈ ℕ s.t. ∀ 𝑛 ≥ 𝑁 , |𝑧𝑛 − 𝑧| < 𝜀 .
Let 𝜀 > 0. Since 𝑎𝑛 → 𝑎, there exists 𝑁1 ∈ ℕ such that

|𝑎𝑛 − 𝑎| < 𝜀
2 , ∀ 𝑛 ≥ 𝑁1 .
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Since 𝑏𝑛 → 𝑏, there exists 𝑁2 ∈ ℕ such that

|𝑏𝑛 − 𝑏| < 𝜀
2 , ∀ 𝑛 ≥ 𝑁2 .

Let
𝑁 ∶= max {𝑁1, 𝑁2} .

Let 𝑛 ≥ 𝑁 . By the triangle inequality,

|𝑧𝑛 − 𝑧| = |(𝑎𝑛 + 𝑏𝑛𝑖) − (𝑎 + 𝑏𝑖)|
= |(𝑎𝑛 − 𝑎) + (𝑏𝑛 − 𝑏) 𝑖|
≤ |𝑎𝑛 − 𝑎| + |𝑏𝑛 − 𝑏| ⋅ |𝑖|
= |𝑎𝑛 − 𝑎| + |𝑏𝑛 − 𝑏|
< 𝜀

2 + 𝜀
2

= 𝜀 .

Example 7.20

Question. Consider the complex sequence

𝑧𝑛 ∶= (4𝑛 + 3𝑛2𝑖) (2𝑛2 + 𝑖)
5𝑛4 .

Show that
lim𝑛→∞ 𝑧𝑛 = 6

5 𝑖 .
Solution. We find the real and imaginary parts of 𝑧𝑛

𝑧𝑛 = (4𝑛 + 3𝑛2𝑖) (2𝑛2 + 𝑖)
5𝑛4

= 8𝑛3 + 4𝑛𝑖 + 6𝑛4𝑖 + 3𝑛2𝑖2
5𝑛4

= 8𝑛3 − 3𝑛2
5𝑛4 + 6𝑛4 + 4𝑛

5𝑛4 𝑖
= 𝑎𝑛 + 𝑏𝑛𝑖 .
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Using the Algebra of Limits for real sequences we have that

𝑎𝑛 = 8𝑛3 − 3𝑛2
5𝑛4 =

8
𝑛 − 3

𝑛2
5 ⟶ 0 − 0

5 = 0 ,

𝑏𝑛 = 6𝑛4 + 4𝑛
5𝑛4 =

6 + 4
𝑛3

5 ⟶ 6 + 0
5 = 6

5 .

By Theorem 7.19 we conclude

lim𝑛→∞ 𝑧𝑛 = lim𝑛→∞ 𝑎𝑛 + 𝑖 lim𝑛→∞ 𝑏𝑛 = 0 + 6
5 𝑖 =

6
5 𝑖 .
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8 Series

A series is the sum of all terms in a sequence (𝑎𝑛):
𝑎1 + 𝑎2 + 𝑎3 + … + 𝑎𝑛 + …

Since we are dealing with infinitely many terms, we need to be careful. For example, consider the
series ∞

∑
𝑛=1

(−1)𝑛 = −1 + 1 − 1 + 1 − 1 + 1 − … (8.1)

If we sum the terms in pairs, we obtain

∞
∑
𝑛=1

(−1)𝑛 = (−1 + 1) + (−1 + 1) + (−1 + 1) + … = 0 .

If we reorder the terms, we obtain a different result
∞
∑
𝑛=1

(−1)𝑛 = (1 + 1) − 1 + (1 + 1) − 1 + …

= (2 − 1) + (2 − 1) + …
= 1 + 1 + …
= ∞ .

We can also swap terms pairwise, and then sum each pair, starting from the second term. This way
we obtain

∞
∑
𝑘=1

(−1)𝑛 = (−1 + 1) + (−1 + 1) + (−1 + 1) + …

= (1 − 1) + (1 − 1) + (1 − 1) + …
= 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + …
= 1 .

If we do one more swap, and start summing each pair starting from the third term, we get

∞
∑
𝑘=1

(−1)𝑛 = 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + …

= 1 + (1 − 1) + (1 − 1) + (1 − 1) + …
= 1 + 1 + (−1 + 1) + (−1 + 1) + …
= 2 .
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With similar arguments, we see that we can rearrange terms so that
∞
∑
𝑛=1

(−1)𝑛 = 𝑚 ,

for each 𝑚 ∈ ℤ. This example shows that commutativity of the sum does not hold when summing
infinitely many terms: The result of the sum depends on the order in which we sum. This means we
need a good definition of convergence for series.

8.1 Convergent series

We will develop the theory of series for sequences in ℂ. All the results for complex series will also
hold for series in ℝ. Some results will only hold for series in ℝ: this will be the case for comparison
tests in which the order relation of ℝ is needed.

We start by defining partial sums.

Definition 8.1: Partial sums

Let (𝑎𝑛) be a sequence in ℂ. The 𝑘-th partial sum of (𝑎𝑛) is

𝑠𝑘 ∶= 𝑎1 + 𝑎2 + … + 𝑎𝑘 =
𝑘
∑
𝑛=1

𝑎𝑛

This sequence (𝑠𝑘)𝑘∈ℕ is called the sequence of partial sums.

We can use the sequence of partial sums to define convergence of a series.

Definition 8.2: Convergent series

Let (𝑎𝑛) be a sequence in ℂ. We denote the series of (𝑎𝑛)𝑛∈ℕ by

∞
∑
𝑛=1

𝑎𝑛

We say that this series converges to 𝑠 ∈ ℂ if

lim𝑘→∞

𝑘
∑
𝑛=1

𝑎𝑛 = lim𝑘→∞ 𝑠𝑘 = 𝑠 .

In this case we write ∞
∑
𝑛=1

𝑎𝑛 = 𝑠 .
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Definition 8.3: Divergent series

Let (𝑎𝑛) be a sequence in ℂ. The series
∞
∑
𝑛=1

𝑎𝑛

is divergent if the sequence of partial sums (𝑠𝑘) is divergent.

Example 8.4

Question. Prove that
∞
∑
𝑛=1

1
𝑛(𝑛 + 1) = 1 .

Solution. The idea to prove convergence is to split the general term into the sum of two
fraction:

1
𝑛(𝑛 + 1) = 𝐴

𝑛 + 𝐵
𝑛(𝑛 + 1)

= 𝐴(𝑛 + 1) + 𝐵𝑛
𝑛(𝑛 + 1)

= (𝐴 + 𝐵)𝑛 + 𝐴
𝑛(𝑛 + 1) .

In order for the LHS and RHS to be the same, we need to impose

(𝐴 + 𝐵)𝑛 + 𝐴 = 1 ,
which holds if and only if

𝐴 + 𝐵 = 1, 𝐴 = 1 ⟹ 𝐴 = 1, 𝐵 = −1 .
Therefore, we conclude that 1

𝑛(𝑛 + 1) = 1
𝑛 − 1

𝑛 + 1 .
We can now compute the partial sums 𝑠𝑘 as follows:

𝑠𝑘 =
𝑘
∑
𝑛=1

1
𝑛(𝑛 + 1)

=
𝑘
∑
𝑛=1

(1𝑛 − 1
𝑛 + 1)

= 1
1 − 1

2 + 1
2 − 1

3 + 1
3 − 1

4 + … + 1
𝑘 − 1

𝑘 + 1
= 1 − 1

𝑘 + 1 .
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Therefore,
lim𝑘→∞ 𝑠𝑘 = lim𝑘→∞ (1 − 1

𝑘 + 1) = 1 ,

which means that the series converges to 1, that is,
∞
∑
𝑛=1

1
𝑛(𝑛 + 1) = 1 .

A series of this kind is called a telescopic series, since we can fold the entire partial sum
together, in such a way that only two terms remain.

Let us go back to the series considered in (8.1).

Example 8.5

Question. Prove that the following series diverges

∞
∑
𝑛=1

(−1)𝑛 .

Solution. The partial sums 𝑠𝑘 are given by

𝑠𝑘 =
𝑘
∑
𝑛=1

(−1)𝑛 = {−1 if 𝑛 is odd
0 if 𝑛 is even.

Therefore 𝑠𝑘 diverges, so also the series ∑(−1)𝑛 diverges.

In general, it is a difficult taks to compute the exact sum of a series. Therefore, we will mainly focus
our effort on determining whether a series converges or not.

The following Theorem shows that if the terms in the sequence do not converge to 0, then the series
cannot converge.

Theorem 8.6: Necessary Condition for Convergence

Let (𝑎𝑛) be a sequence in ℂ. If the series

∞
∑
𝑛=1

𝑎𝑛

converges, then
lim𝑛→∞ 𝑎𝑛 = 0 .
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Proof

Suppose that
∞
∑
𝑛=1

𝑎𝑛

converges. By definition of convergent series there exists some 𝑠 ∈ ℂ such that

lim𝑘→∞ 𝑠𝑘 = lim𝑘→∞

𝑘
∑
𝑛=1

𝑎𝑛 = 𝑠 .

Then also
lim𝑘→∞ 𝑠𝑘−1 = 𝑠 .

Hence, by the Algebra of Limits in ℂ, we have that

lim𝑘→∞ (𝑠𝑘 − 𝑠𝑘−1) = lim𝑘→∞ 𝑠𝑘 − lim𝑘→∞ 𝑠𝑘−1 = 𝑠 − 𝑠 = 0 .

Noting that
𝑠𝑘 − 𝑠𝑘−1 = 𝑎𝑘 , ∀ 𝑘 ∈ ℕ ,

we obtain
lim𝑘→∞ 𝑎𝑘 = lim𝑘→∞ (𝑠𝑘 − 𝑠𝑘−1) = 0 .

Important

Theorem 8.6 is saying that, if
lim𝑛→∞ 𝑎𝑛 ≠ 0 ,

then the series ∞
∑
𝑛=1

𝑎𝑛

does not converge.

Example 8.7

Consider the series ∞
∑
𝑛=1

(−1)𝑛 . (8.2)

We have that
lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞(−1)

𝑛 ≠ 0 ,
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being (𝑎𝑛) divergent. Therefore the series at (8.2) diverges by Theorem 8.6.

Example 8.8

Question. Discuss converge/divergence for the following series

∞
∑
𝑛=1

𝑛
5𝑛 + 11 .

Solution. We have
𝑎𝑛 ∶= 𝑛

5𝑛 + 11 = 1
5 + 11

𝑛
⟶ 1

5 ≠ 0 .

Hence, the series ∑𝑎𝑛 diverges.

Important

Theorem 8.6 says that if ∑∞
𝑛=1 𝑎𝑛 converges, then

𝑎𝑛 → 0 .
The converse is false: In general the condition 𝑎𝑛 → 0 does not guarantee convergence of the
associated series, as shown in the example below.

Example 8.9

Question. Discuss convergence/divergence for the following series

∞
∑
𝑛=1

𝑎𝑛 , 𝑎𝑛 ∶= 1
√𝑛 + 1 + √𝑛

.

Solution. By the Algebra of Limits we have

lim𝑛→∞ 𝑎𝑛 = 0 .

Therefore, we cannot conclude anything yet: The series might converge or diverge. Let us
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compute the partial sums:

𝑠𝑘 =
𝑘
∑
𝑛=1

1
√𝑘 + 1 + √𝑘

=
𝑘
∑
𝑛=1

1
√𝑘 + 1 + √𝑘

⋅ √𝑘 + 1 − √𝑘
√𝑘 + 1 − √𝑘

=
𝑘
∑
𝑛=1

√𝑘 + 1 − √𝑘

= √2 − √1 + √3 − √2 + … + √𝑘 + 1 − √𝑘
= √𝑘 + 1 − 1 .

We have shown that the partial sums are

𝑠𝑘 =
𝑘
∑
𝑛=1

𝑎𝑛 = √𝑘 + 1 − 1 .

Therefore (𝑠𝑘) is divergent, and so the series ∑𝑎𝑛 is divergent.

Remark 8.10

It is customary to sum a series starting at 𝑛 = 1. However one could start the sum at any 𝑛 = 𝑁
with 𝑁 ∈ ℕ. This does not affect the convergence of the series, in the sense that

∞
∑
𝑛=1

𝑎𝑛 converges ⟺
∞
∑
𝑛=𝑁

𝑎𝑛 converges.

In case of convergence, we would of course have

∞
∑
𝑛=𝑁

𝑎𝑛 =
∞
∑
𝑛=1

𝑎𝑛 − (𝑎1 + … + 𝑎𝑁−1) .

Example 8.11

Question. Prove that
∞
∑
𝑛=7

1
𝑛(𝑛 + 1) = 1

7 .
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Solution. We have seen that ∞
∑
𝑛=1

1
𝑛(𝑛 + 1) = 1 .

Hence also the series ∞
∑
𝑛=7

1
𝑛(𝑛 + 1)

converges. In this case, the partial sums are given by

𝑠𝑘 =
𝑘
∑
𝑛=7

1
𝑛(𝑛 + 1)

=
𝑘
∑
𝑛=7

(1𝑛 − 1
𝑛 + 1)

= 1
7 − 1

8 + 1
8 − 1

9 + … + 1
𝑘 − 1

𝑘 + 1
= 1

7 − 1
𝑘 + 1 .

Therefore ∞
∑
𝑛=7

1
𝑛(𝑛 + 1) = lim𝑘→∞ 𝑠𝑘 = 1

7 .

8.2 Geometric series

Definition 8.12: Geometric Series in ℂ
Let 𝑥 ∈ ℂ. The geometric series of ratio 𝑥 is the series

∞
∑
𝑛=0

𝑥𝑛 .

Geometric series are one of the few types of series that can be explicitly computed, as stated in the
following theorem.
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Theorem 8.13: Geometric Series Test

Let 𝑥 ∈ ℂ. We have:

1. If |𝑥| < 1, then the geometric series of ratio 𝑥 converges, with

∞
∑
𝑛=0

𝑥𝑛 = 1
1 − 𝑥 . (8.3)

2. If |𝑥| ≥ 1, then the geometric series of ratio 𝑥 diverges.

Important

Recall that the Geometric Sequence Test does not cover the case |𝑥 | = 1, since in general the
sequence

𝑎𝑛 = 𝑥𝑛
could be convergent or divergent. However, the Geometric Series Test does cover the case
|𝑥| = 1, in which case

∞
∑
𝑛=0

𝑥𝑛

diverges.

Proof

Part 1. Suppose that |𝑥 | < 1. Let us compute the partial sums:

𝑠𝑘 =
𝑘
∑
𝑛=0

𝑥𝑛

=
𝑘
∑
𝑛=0

𝑥𝑛 ⋅ 1 − 𝑥
1 − 𝑥

=
𝑘
∑
𝑛=0

𝑥𝑛 − 𝑥𝑛+1
1 − 𝑥

= 1 − 𝑥
1 − 𝑥 + 𝑥 − 𝑥2

1 − 𝑥 + … + 𝑥𝑛 − 𝑥𝑛+1
1 − 𝑥

= 1 − 𝑥𝑘+1
1 − 𝑥 .
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We have therefore shown that

𝑠𝑘 =
𝑘
∑
𝑛=0

𝑥𝑛 = 1 − 𝑥𝑘+1
1 − 𝑥 , ∀ 𝑘 ∈ ℕ . (8.4)

Notice that (8.4) could have also been proven by induction:

1. Base case: For 𝑘 = 0, we get that

𝑠0 = 𝑥0 = 1 = 1 − 𝑥1
1 − 𝑥 ,

showing that (8.4) holds.

2. Induction step: Let 𝑘 ∈ ℕ ∪ {0} and suppose that

𝑠𝑘 = 1 − 𝑥𝑘+1
1 − 𝑥 .

Then,

𝑠𝑘+1 = 𝑠𝑘 + 𝑥𝑘+1

= 1 − 𝑥𝑘+1
1 − 𝑥 + 𝑥𝑘+1

= 1 − 𝑥𝑘+1 + (1 − 𝑥)𝑥𝑘+1
1 − 𝑥

= 1 − 𝑥𝑘+1 + 𝑥𝑘+1 − 𝑥𝑘+2
1 − 𝑥

= 1 − 𝑥𝑘+2
1 − 𝑥 ,

concluding the proof of the inductive step.

By the Principle of Induction, formula (8.4) holds for all 𝑘 ∈ ℕ. Since |𝑥| < 1, by the Geometric
Sequence Test we infer

lim𝑘→∞ 𝑥𝑘 = 0 .
Hence

∞
∑
𝑛=0

𝑥𝑛 = lim𝑘→∞ 𝑠𝑘

= lim𝑘→∞
1 − 𝑥𝑘+1
1 − 𝑥

= lim𝑘→∞
1 − 𝑥 ⋅ 𝑥𝑘
1 − 𝑥

= 1
1 − 𝑥 ,
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where the last equality follows from the Algebra of Limits.
Part 2. Suppose |𝑥| ≥ 1. Then

lim𝑛→∞ 𝑥𝑛 ≠ 0 . (8.5)

Indeed, suppose by contradiction that 𝑥𝑛 → 0. Hence, for 𝜀 = 1/2, there exists 𝑁 ∈ ℕ such that

|𝑥𝑛 − 0| < 𝜀 = 1
2 , ∀ 𝑛 ≥ ℕ .

However
|𝑥𝑛 − 0| = |𝑥𝑛 | = |𝑥|𝑛 ≥ 1 ,

which yields

1 < 𝜀 = 1
2 ,

contradiction. Then (8.5) holds and the series

∞
∑
𝑛=0

𝑥𝑛

diverges by the Necessary Condition in Theorem 8.6.

Let us apply the Geometric Series Test of Theorem 8.13 to some examples.

Example 8.14

Question. Discuss convergence/divergence of the following series. If the series converges,
compute the limit.

∞
∑
𝑛=0

(12)
𝑛
,

∞
∑
𝑛=0

(−3
2)

𝑛
,

∞
∑
𝑛=0

(−34 )
𝑛
,

∞
∑
𝑛=0

(−1)𝑛 .

Solution.

1. Since | 12 | < 1, by the GST we have

∞
∑
𝑛=0

(12)
𝑛
= 1

1 − 1
2

= 2
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2. Since |−32 | = 3
2 > 1, by the GST the series

∞
∑
𝑛=0

(−3
2)

𝑛

diverges.

3. Since |−34 | = 3
4 < 1, we have

∞
∑
𝑛=0

(−34 )
𝑛
= 1

1 − −3
4

= 1
7
4

= 4
7

4. Since | − 1| = 1, the series
∞
∑
𝑛=0

(−1)𝑛

diverges.

Remark 8.15

If the sum of a Geometric Sries does not start at 𝑛 = 0, we need to tweak the summation formula
at (8.3). For example, if |𝑥 | < 1, and we start the series at 𝑛 = 1, we get

∞
∑
𝑛=1

𝑥𝑘 = 1
1 − 𝑥 − 1 = 𝑥

1 − 𝑥 .

Example 8.16

Question. Prove that
∞
∑
𝑛=1

(12)
𝑛
= 1 .

Solution. We have that

∞
∑
𝑛=1

(12)
𝑛
=

∞
∑
𝑛=0

(12)
𝑛
− 1

= 1
1 − 1

2
− 1 = 1 .
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The Geometric Series Test of Theorem 8.13 can be applied to complex geometric series as well.

Example 8.17

Question. Discuss convergence/divergence of the following series. If the series converges,
compute the limit.

∞
∑
𝑛=0

1
(1 + 𝑖)𝑛 ,

∞
∑
𝑛=0

(1 − 5𝑖
3 + 3𝑖)

𝑛
,

∞
∑
𝑛=0

( 2 + 𝑖
3 − 2𝑖)

𝑛
.

Solution.

1. We have
1

(1 + 𝑖)𝑛 = ( 1
1 + 𝑖)

𝑛

and
| 1
1 + 𝑖 | =

1
√12 + 12

= 1
√2

< 1 .

Therefore, the series converges by the Geometric Series Test, and

∞
∑
𝑛=0

1
(1 + 𝑖)𝑛 = 1

1 − 1
1 + 𝑖

= 1 − 𝑖 .

2. Since

| 1 − 5𝑖
3 + 3𝑖 | =

|1 − 5𝑖|
|3 + 3𝑖|

= √(1)2 + (−5)2
3√12 + 12

= √26
3√2

= √13
3 > 1 ,

the series diverges by the Geometric Series Test.

3. We have

| 2 + 𝑖
3 − 2𝑖 | =

|2 + 𝑖|
|3 − 2𝑖|

= √22 + 12
√32 + (−2)2

= √
5
13 < 1 .
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Therefore the series converges by the Geometric Series Test, and

∞
∑
𝑛=0

( 2 + 𝑖
3 − 2𝑖)

𝑛
= 1

1 − 2 + 𝑖
3 − 2𝑖

= 1
3 − 2𝑖 − (2 + 𝑖)

3 − 2𝑖
= 3 − 2𝑖

1 − 3𝑖
= 3 − 2𝑖

1 − 3𝑖
1 + 3𝑖
1 + 3𝑖

= 3 − 2𝑖 + 9𝑖 − 6𝑖2
1 − 9𝑖2

= 9
10 + 7

10 𝑖

8.3 Algebra of Limits for Series

We have proven the Algebra of Limit Theorem for sequences in ℂ. A similar results holds for series
as well.

Theorem 8.18: Algebra of Limits for Series

Let (𝑎𝑛)𝑛∈ℕ and (𝑏𝑛)𝑛∈ℕ be sequences in ℂ and let 𝑐 ∈ ℂ. Suppose that

∞
∑
𝑛=1

𝑎𝑛 = 𝑎 ,
∞
∑
𝑛=1

𝑏𝑛 = 𝑏 .

Then:

1. The sum of series is the series of the sums:

∞
∑
𝑛=1

(𝑎𝑛 ± 𝑏𝑛) = 𝑎 ± 𝑏 .

2. The product of a series with a number obeys

∞
∑
𝑛=1

𝑐 ⋅ 𝑎𝑛 = 𝑐 ⋅ 𝑎 .
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Proof

Part 1. We prove the formula with the + sign, since in the other case the proof is the same. To
this end, define the partial sums

𝑠𝑘 ∶=
𝑘
∑
𝑛=1

𝑎𝑛 , 𝑡𝑘 ∶=
𝑘
∑
𝑛=1

𝑏𝑛 , 𝑣𝑘 ∶=
𝑘
∑
𝑛=1

(𝑎𝑛 + 𝑏𝑛) .

We can write

𝑣𝑘 =
𝑘
∑
𝑛=1

(𝑎𝑛 + 𝑏𝑛)

= (𝑎1 + 𝑏1) + … + (𝑎𝑘 + 𝑏𝑘)
= (𝑎1 + … + 𝑎𝑘) + (𝑏1 + … + 𝑏𝑘)
= 𝑠𝑘 + 𝑡𝑘 .

By assumption 𝑠𝑘 → 𝑎 and 𝑡𝑘 → 𝑏. Hence, by the Algebra of Limits in ℂ, we infer
∞
∑
𝑛=1

(𝑎𝑛 + 𝑏𝑛) = lim𝑘→∞ 𝑣𝑘

= lim𝑘→∞ (𝑠𝑘 + 𝑡𝑘)
= lim𝑘→∞ 𝑠𝑘 + lim𝑘→∞ 𝑡𝑘
= 𝑎 + 𝑏 .

Part 2. Denote the partial sums by

𝑠𝑘 ∶=
𝑘
∑
𝑛=1

𝑎𝑛 , 𝑡𝑘 ∶=
𝑘
∑
𝑛=1

𝑐 ⋅ 𝑎𝑛 .

We can write

𝑡𝑘 =
𝑘
∑
𝑛=1

𝑐 ⋅ 𝑎𝑘

= 𝑐 ⋅ 𝑎1 + 𝑐 ⋅ 𝑎2 + … + 𝑐 ⋅ 𝑎𝑘
= 𝑐 ⋅ (𝑎1 + 𝑎2 + … + 𝑎𝑘) =
= 𝑐 ⋅ 𝑠𝑘 .

By assumption 𝑠𝑘 → 𝑎, so that the Algebra of Limits in ℂ allows to conclude
∞
∑
𝑛=1

𝑐 ⋅ 𝑎𝑛 = lim𝑘→∞ 𝑡𝑘

= lim𝑘→∞ 𝑐 ⋅ 𝑠𝑘
= 𝑐 ⋅ 𝑎 .
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Let us apply the Algebra of Limits for Series to a concrete example.

Example 8.19

Question. Prove that
∞
∑
𝑛=0

(2 (13)
𝑛
+ (23)

𝑛
) = 6 .

Solution. Note that

∞
∑
𝑛=0

(13)
𝑛
= 1

1 − 1
3

= 3
2 ,

∞
∑
𝑛=0

(23)
𝑛
= 1

1 − 2
3

= 3 ,

by theGeometric Series Test. Therefore, we can apply theAlgebra of Limit for Series to conclude
that

∞
∑
𝑛=0

(2 (13)
𝑛
+ (23)

𝑛
) = 2 ⋅

∞
∑
𝑛=0

(13)
𝑛
+

∞
∑
𝑛=0

(23)
𝑛

= 2 ⋅ 32 + 3 = 6

Important

The Algebra of Limits Theorem 8.18 does not discuss product and quotient of series. The situa-
tion becomes more complicated in this case: Indeed, we have

(𝑎1 + 𝑎2) ⋅ (𝑎2 + 𝑏2) = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏1 .
Therefore, in general, we can expect

(
∞
∑
𝑛=0

𝑎𝑛) ⋅ (
∞
∑
𝑛=0

𝑏𝑛) ≠
∞
∑
𝑛=0

𝑎𝑛 ⋅ 𝑏𝑛 . (8.6)

A way to compute

(
∞
∑
𝑛=0

𝑎𝑛) ⋅ (
∞
∑
𝑛=0

𝑏𝑛)

is through the so-called Cauchy Product of two series. We do not cover the latter, and the
interested reader can refer to Page 82 in [1].
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Similarly, we expect that
∞
∑
𝑛=0

𝑎𝑛
∞
∑
𝑛=0

𝑏𝑛
≠

∞
∑
𝑛=0

𝑎𝑛
𝑏𝑛

. (8.7)

Let us give two examples to show that formulas (8.6) and (8.7) hold.

Example 8.20

1. We know that ∞
∑
𝑛=0

(12)
𝑛
= 1

1 − 1
2

= 2 . (8.8)

Therefore

(
∞
∑
𝑛=0

(12)
𝑛
) ⋅ (

∞
∑
𝑛=0

(12)
𝑛
) = 2 ⋅ 2 = 4 .

However ∞
∑
𝑛=0

(12)
𝑛
⋅ (12)

𝑛
=

∞
∑
𝑛=0

(14)
𝑛
= 1

1 − 1
4

= 4
3 .

Hence

(
∞
∑
𝑛=0

(12)
𝑛
) ⋅ (

∞
∑
𝑛=0

(12)
𝑛
) ≠

∞
∑
𝑛=0

(12)
𝑛
⋅ (12)

𝑛
.

2. Using (8.8) we have
∞
∑
𝑛=0

(12)
𝑛

∞
∑
𝑛=0

(12)
𝑛 = 2

2 = 1 .

On the other hand

∞
∑
𝑛=0

(12)
𝑛

(12)
𝑛 =

∞
∑
𝑛=0

1 ,
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which does not converge by the Necessary Condition, since 1 does not converge to 0.
Therefore ∞

∑
𝑛=0

(12)
𝑛

∞
∑
𝑛=0

(12)
𝑛 ≠

∞
∑
𝑛=0

(12)
𝑛

(12)
𝑛 .

8.4 Non-negative series

We now investigate series of which all terms are non-negative. To be precise:

Definition 8.21: Non-negative series

Let (𝑎𝑛) be a sequence in ℝ. We call the series

∞
∑
𝑛=1

𝑎𝑛

a non-negative series if
𝑎𝑛 ≥ 0 , ∀ 𝑛 ∈ ℕ .

The key remark for non-negative series is that the partial sums are increasing.

Lemma 8.22

Let (𝑎𝑛) be a sequence in ℝ with
𝑎𝑛 ≥ 0 , ∀ 𝑛 ∈ ℕ .

Define the partial sums as

𝑠𝑘 ∶=
𝑘
∑
𝑛=1

𝑎𝑛 .

The sequence (𝑠𝑘) is increasing.
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Proof

For all 𝑘 ∈ ℕ we have

𝑠𝑘+1 =
𝑘+1
∑
𝑛=1

𝑎𝑛 = 𝑠𝑘 + 𝑎𝑘+1 ≥ 𝑠𝑘 ,

where we used that 𝑎𝑘+1 ≥ 0. Therefore (𝑠𝑘) is increasing.

Therefore, if we have a series with non-negative terms

∞
∑
𝑛=1

𝑎𝑛

there are only 2 options:

1. ∑∞
𝑛=1 𝑎𝑛 converges,

2. ∑∞
𝑛=1 𝑎𝑛 diverges to +∞.

This is because the partial sums (𝑠𝑘) are increasing. Therefore we have either:

1. (𝑠𝑘) is bounded above: Then 𝑠𝑘 converges by the Monotone Convergence Theorem
2. (𝑠𝑘) is not bounded above: Therefore 𝑠𝑘 diverges to +∞.

We present 4 test for the convergence of non-negative series:

1. Cauchy Condensation Test
2. Comparison Test
3. Limit Comparison Test
4. Ratio Test (positive series only)

8.4.1 Cauchy Condensation Test

Let us start with the study of the two non-negative series:

∞
∑
𝑛=1

1
𝑛2 ,

∞
∑
𝑛=1

1
𝑛 .

Question 8.23

Do the above series converge or diverge?

Answer: the first series converges, while the second diverges. We prove it in the next two theo-
rems.
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Theorem 8.24

The following series converges
∞
∑
𝑛=1

1
𝑛2 .

Proof

For 𝑘 ∈ ℕ define the sequence of partial sums

𝑠𝑘 ∶=
𝑘
∑
𝑛=1

1
𝑛2 .

Note that

𝑠𝑘 = 1 + 1
22 + 1

32 + 1
42 + … + 1

𝑘2
= 1 + 1

2 ⋅ 2 + 1
3 ⋅ 3 + 1

4 ⋅ 4 + … + 1
𝑘 ⋅ 𝑘

< 1 + 1
2 ⋅ 1 + 1

3 ⋅ 2 + 1
4 ⋅ 3 + … + 1

𝑘 ⋅ (𝑘 − 1)
= 1 + (12 − 1

3) + (13 − 1
4) + … + ( 1

𝑘 − 1 − 1
𝑘 )

= 1 + 1 − 1
𝑘

= 2 − 1
𝑘

< 2 ,
showing that 𝑠𝑘 is bounded above. Recall that 𝑠𝑘 is increasing, by Lemma 8.22. Therefore, by
the Monotone Convergence Theorem, we conclude that 𝑠𝑘 converges. Hence the series

∞
∑
𝑛=1

1
𝑛2

is convergent.

Theorem 8.25: Harmonic series

The harmonic series ∞
∑
𝑛=1

1
𝑛

is divergent.
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Proof

For 𝑘 ∈ ℕ define the sequence of partial sums

𝑠𝑘 ∶=
𝑘
∑
𝑛=1

1
𝑛 .

Note that
𝑠2 = 1 + 1

2
while

𝑠4 = 1 + 1
2 + (13 + 1

4)

> 1 + 1
2 + (14 + 1

4)

= 1 + 1
2 + 2 (14)

= 1 + 1
2 + 1

2
= 1 + 2 (12)

Similarly

𝑠4 = 1 + 1
2 + (13 + 1

4) + (15 + 1
6 + 1

7 + 1
8)

> 1 + 1
2 + (14 + 1

4) + (18 + 1
8 + 1

8 + 1
8)

= 1 + 1
2 + 2 (14) + 4 (18)

= 1 + 1
2 + 1

2 + 1
2

= 1 + 3 (12)
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Proceeding in a similar way, for 𝑘 ∈ ℕ we have

𝑠2𝑘 = 1 + 1
2 + (13 + 1

4) + (15 + 1
6 + 1

7 + 1
8)

+ … + ( 1
2𝑘−1 + 1 + … + 1

2𝑘 )

> 1 + 1
2 + (14 + 1

4) + (18 + 1
8 + 1

8 + 1
8)

+ … + ( 1
2𝑘 + … + 1

2𝑘 )

= 1 + 1
2 + 2 (14) + 4 (18) + … + 2𝑘−1 ( 1

2𝑘 )

= 1 + 1
2 + 1

2 + 1
2 + … + 1

2
= 1 + 𝑘 (12)

Hence
𝑠2𝑘 > 1 + 𝑘 (12) , ∀ 𝑘 ∈ ℕ ,

showing that 𝑠2𝑘 is unbounded. Therefore 𝑠𝑘 is unbounded, and 𝑠𝑘 does not converge. We
conclude that the series ∞

∑
𝑛=1

1
𝑛

is divergent.

The proofs of the above theorems inspire the Cauchy Condensation Test.

Theorem 8.26: Cauchy Condensation Test

Let (𝑎𝑛) be a sequence in ℝ. Suppose that (𝑎𝑛) is non-negative and decreasing, that is,

𝑎𝑛 ≥ 𝑎𝑛+1 , ∀ 𝑛 ∈ ℕ .
They are equivalent:

1. The following series converges
∞
∑
𝑛=1

𝑎𝑛 .
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2. The following series converges

∞
∑
𝑛=0

2𝑛𝑎2𝑛 = 𝑎1 + 2𝑎2 + 8𝑎8 + 16𝑎16 + …

Proof

For 𝑘 ∈ ℕ denote the partial sums by

𝑠𝑘 ∶=
𝑘
∑
𝑛=1

𝑎𝑛 , 𝑡𝑘 ∶=
𝑘
∑
𝑛=0

2𝑛𝑎2𝑛 .

Since 𝑎𝑛 ≥ 0, it is immediate to check that the sequences (𝑠𝑘) and (𝑡𝑘) are increasing.
Part 1. Assume that the series ∞

∑
𝑛=0

2𝑛𝑎2𝑛

diverges. Hence the sequence (𝑡𝑘) diverges and therefore (𝑡𝑘) is not bounded above.

Indeed, suppose (𝑡𝑘) was bounded above. Since (𝑡𝑘) is increasing, we would con-
clude that (𝑡𝑘) is convergent by the Monotone Convergence Theorem. Contradic-
tion.

We want to estimate 𝑠𝑘 from below. To this end, we notice that

𝑠2 = 𝑎1 + 𝑎2
≥ 1

2𝑎1 + 𝑎2
= 1

2 (𝑎1 + 2𝑎2)

= 1
2 𝑡1 ,

where we used that 𝑎𝑛 ≥ 0, and so 𝑎1 > 𝑎1/2. Moreover

𝑠4 = 𝑎1 + 𝑎2 + (𝑎3 + 𝑎4)
≥ 𝑎1 + 𝑎2 + (𝑎4 + 𝑎4)
= 𝑎1 + 𝑎2 + 2𝑎4
≥ 1

2 𝑎1 + 𝑎2 + 2𝑎4
= 1

2 (𝑎1 + 2𝑎2 + 4𝑎4)

= 1
2 𝑡2 ,
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where we used also that (𝑎𝑛) is decreasing. Similar reasoning yields

𝑠8 = 𝑎1 + 𝑎2 + (𝑎3 + 𝑎4) + (𝑎5 + 𝑎6 + 𝑎7 + 𝑎8)
≥ 𝑎1 + 𝑎2 + (𝑎4 + 𝑎4) + (𝑎8 + 𝑎8 + 𝑎8 + 𝑎8)
= 𝑎1 + 𝑎2 + 2𝑎4 + 4𝑎8
≥ 1

2 𝑎1 + 𝑎2 + 2𝑎4 + 4𝑎8
= 1

2 (𝑎1 + 2𝑎2 + 4𝑎4 + 8𝑎8)

= 1
2 𝑡3 .

where again we used that (𝑎𝑛) is decreasing, and 𝑎𝑛 ≥ 0. Iterating, we obtain that for all 𝑘 ∈ ℕ
it holds:

𝑠2𝑘 = 𝑎1 + 𝑎2 + (𝑎3 + 𝑎4) + (𝑎5 + 𝑎6 + 𝑎7 + 𝑎8)
+ … + (𝑎2𝑘−1 + … + 𝑎2𝑘 )

≥ 𝑎1 + 𝑎2 + (𝑎4 + 𝑎4) + (𝑎8 + 𝑎8 + 𝑎8 + 𝑎8)
+ … + (𝑎2𝑘 + … + 𝑎2𝑘 )

= 𝑎1 + 𝑎2 + 2𝑎4 + 4𝑎8 + … + 2𝑘−1𝑎2𝑘
≥ 1

2 𝑎1 + 𝑎2 + 2𝑎4 + 4𝑎8 + … + 2𝑘−1𝑎2𝑘
= 1

2 (𝑎1 + 2𝑎2 + 4𝑎4 + 8𝑎8 + … + 2𝑘𝑎2𝑘 )

= 1
2 𝑡𝑘 .

We have shown that
𝑠2𝑘 ≥ 1

2 𝑡𝑘 , ∀ 𝑘 ∈ ℕ .
Since (𝑡𝑘) is not bounded above, we infer that (𝑠2𝑘 ) is not bounded above. In particular (𝑠𝑘) is
not bounded, and hence divergent. Thus the series

∞
∑
𝑛=1

𝑎𝑛

diverges.
Part2. Suppose that the series

∞
∑
𝑛=0

2𝑛𝑎2𝑛

converges. Hence the sequence (𝑡𝑘) converges, and therefore (𝑡𝑘) is bounded. This means that
there exists 𝑀 > 0 such that

|𝑡𝑘 | ≤ 𝑀 , ∀ 𝑛 ∈ ℕ .
264



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

Since 𝑡𝑘 ≥ 0, the above reads
𝑡𝑘 ≤ 𝑀 , ∀ 𝑛 ∈ ℕ .

Fix 𝑘 ∈ ℕ and let 𝑚 ∈ ℕ be such that

𝑘 ≤ 2𝑚+1 − 1 .
In this way

𝑠𝑘 ≤ 𝑠2𝑚+1−1 .
We have

𝑠2𝑚+1−1 = 𝑎1 + (𝑎2 + 𝑎3) + (𝑎4 + 𝑎5 + 𝑎6 + 𝑎7)
+ … + (𝑎2𝑚 + … + 𝑎2𝑚+1−1)

≤ 𝑎1 + (𝑎2 + 𝑎2) + (𝑎4 + 𝑎4 + 𝑎4 + 𝑎4)
+ … + (𝑎2𝑚 + … + 𝑎2𝑚 )

= 𝑎1 + 2𝑎2 + 4𝑎4 + … + 2𝑚𝑎2𝑚
= 𝑡𝑚 ,

where we used that (𝑎𝑛) is decreasing. We have then shown

𝑠𝑘 ≤ 𝑠2𝑚+1−1 ≤ 𝑡𝑚 ≤ 𝑀 .
Since 𝑀 does not depend on 𝑘, we conclude that

𝑠𝑘 ≤ 𝑀 , ∀ 𝑘 ∈ ℕ .
As 𝑠𝑘 ≥ 0, we conclude that 𝑠𝑘 is bounded. Recalling that (𝑠𝑘) is increasing, by the Monotone
Convergence Theorem we infer that (𝑠𝑘) converges. This proves that the series

∞
∑
𝑛=1

𝑎𝑛

is convergent, ending the proof.

Thanks to the Cauchy Condensation Test of Theorem 8.26 we can prove the following result.

Theorem 8.27: Convergence of 𝑝-series

Let 𝑝 ∈ ℝ. Consider the 𝑝-series
∞
∑
𝑛=1

1
𝑛𝑝 .

We have:
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1. If 𝑝 > 1 the 𝑝-series converges.
2. If 𝑝 ≤ 1 the 𝑝-series diverges.

Proof

The series in question is
∞
∑
𝑛=1

𝑎𝑛 , 𝑎𝑛 ∶= 1
𝑛𝑝 .

Note that (𝑎𝑛) is decreasing and non-negative. Hence, by the Cauchy Condensation Test of
Theorem 8.26, the 𝑝-series converges if and only if

∞
∑
𝑛=0

2𝑛𝑎2𝑛

converges. We have
∞
∑
𝑛=0

2𝑛𝑎2𝑛 =
∞
∑
𝑛=0

2𝑛−𝑛𝑝 =
∞
∑
𝑛=0

(21−𝑝)𝑛 ,

and the latter is a Geometric Series of ratio

𝑥 ∶= 21−𝑝 .
By the Geometric Series Test, we have convergence if and only if

|𝑥| < 1 ,
which is equivalent to

21−𝑝 < 1 = 20 ⟺ 1 − 𝑝 < 0
⟺ 𝑝 > 1 .

Therefore ∞
∑
𝑛=1

1
𝑛𝑝

converges if and only if 𝑝 > 1, ending the proof.

The following is another notable application of the Cauchy Condensation Test.
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Theorem 8.28

Let 𝑝 ∈ ℝ. Consider the series
∞
∑
𝑛=2

1
𝑛 (log 𝑛)𝑝

.

We have:

1. If 𝑝 > 1 the series converges.

2. If 𝑝 ≤ 1 the series diverges.

Proof

The series in question is
∞
∑
𝑛=2

𝑎𝑛 , 𝑎𝑛 ∶= 1
𝑛 (log 𝑛)𝑝

.

Note that (𝑎𝑛) is non-negative and decreasing. Therefore we can apply the Cauchy Condensa-
tion Test to conclude that the above series is convergent if and only if the series

∞
∑
𝑛=1

2𝑛𝑎2𝑛

is convergent. We have

2𝑛𝑎2𝑛 = 2𝑛 1
2𝑛 (log 2𝑛)𝑝

= 1
𝑛𝑝 log 2

so that ∞
∑
𝑛=1

2𝑛𝑎2𝑛 = 1
log 2

∞
∑
𝑛=1

1
𝑛𝑝 .

The latter is a 𝑝-series, which by Theorem 8.27 converges if and only if 𝑝 > 1. Hence

∞
∑
𝑛=2

1
𝑛 (log 𝑛)𝑝

converges if and only if 𝑝 > 1, and the proof is concluded.

8.4.2 Comparison Test

Another really useful result to study the convergence of non-negative series is the Comparison
Test.
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Theorem 8.29: Comparison test

Let (𝑎𝑛)𝑛∈ℕ and (𝑏𝑛)𝑛∈ℕ be non-negative sequences. Suppose that there exists 𝑁 ∈ ℕ such that

𝑎𝑛 ≤ 𝑏𝑛 , ∀ 𝑛 ≥ 𝑁 .
They hold:

∞
∑
𝑛=1

𝑏𝑛 converges ⟹
∞
∑
𝑛=1

𝑎𝑛 converges,

∞
∑
𝑛=1

𝑎𝑛 diverges ⟹
∞
∑
𝑛=1

𝑏𝑛 diverges.

Proof

Part 1. Define the partial sums starting at 𝑛 = 𝑁

𝑠𝑘 ∶=
𝑘
∑
𝑛=𝑁

𝑎𝑘 , 𝑡𝑘 ∶=
𝑘
∑
𝑛=𝑁

𝑏𝑘 .

Suppose that
∞
∑
𝑛=1

𝑏𝑛

converges. Hence also the series
∞
∑
𝑛=𝑁

𝑏𝑛

converges. Then (𝑡𝑘) is a convergent sequence, which implies that (𝑡𝑘) is bounded, and hence
bounded above. Moreover, by assumption

𝑠𝑘 = 𝑎𝑁 + 𝑎𝑁+1 + … + 𝑎𝑘
≤ 𝑏𝑁 + 𝑏𝑁+1 + … + 𝑏𝑘
= 𝑡𝑘 ,

which reads
𝑠𝑘 ≤ 𝑡𝑘 , ∀ 𝑘 ≥ 𝑁 .

Therefore (𝑠𝑘) is bounded above, being (𝑡𝑘) bounded above. Recall that 𝑠𝑘 is increasing, by
Lemma 8.22. By the Monotone Convergence Theorem we conclude that 𝑠𝑘 is convergent, show-
ing that the series

∞
∑
𝑛=𝑁

𝑎𝑛
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converges. Hence also the series
∞
∑
𝑛=1

𝑎𝑛

converges, concluding the proof of Point 1.
Part 2. Note that Point 2 is the contrapositive of Point 1, and hence it holds.

Let us give two applications of the Comparison Test.

Example 8.30

Question. Discuss convergence/divergence of the following series:

∞
∑
𝑛=1

1
𝑛2 + 3𝑛 − 1 , (8.9)

∞
∑
𝑛=0

3𝑛 + 6𝑛 + 1
𝑛 + 1

2𝑛 . (8.10)

Solution.

1. Since 3𝑛 − 1 ≥ 0 for all 𝑛 ∈ ℕ, we get

1
𝑛2 + 3𝑛 − 1 ≤ 1

𝑛2 , ∀ 𝑛 ∈ ℕ .

By Theorem 8.27 the 𝑝-series
∞
∑
𝑛=1

1
𝑛2

converges. Therefore also the series at (8.9) converges by the Comparison Test in Theo-
rem 8.29.

2. Note that
3𝑛 + 6𝑛 + 1

𝑛 + 1
2𝑛 ≥ 3𝑛

2𝑛 = (32)
𝑛
, ∀ 𝑛 ∈ ℕ .

Since | 32 | =
3
2 > 1, the series

∞
∑
𝑛=0

(32)
𝑛

diverges by the Geometric Series Test in Theorem 8.13. Therefore, by the Comparison
Test, also the series at (8.10) diverges.
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8.4.3 Limit Comparison Test

To apply the Comparison Test to the series

∞
∑
𝑛=1

𝑎𝑛 ,

one needs to find another sequence (𝑏𝑛) such that

𝑎𝑛 ≤ 𝑏𝑛 , ∀ 𝑛 ≥ 𝑁 ,
or

𝑏𝑛 ≤ 𝑎𝑛 , ∀ 𝑛 ≥ 𝑁 .
This is not always possible. However, one might be able to show that

lim𝑛→∞
𝑎𝑛
𝑏𝑛

= 𝐿

for some 𝐿 ∈ ℝ. In this case, the series of (𝑎𝑛) and (𝑏𝑛) can still be compared, in the sense specified
in the Theorem below.

Theorem 8.31: Limit Comparison Test

Let (𝑎𝑛) and (𝑏𝑛) be sequences such that

𝑎𝑛 ≥ 0 , 𝑏𝑛 > 0 , ∀ 𝑛 ∈ ℕ .
Suppose there exists 𝐿 ∈ ℝ such that

𝐿 = lim𝑛→∞
𝑎𝑛
𝑏𝑛

.

They hold:

1. If 0 < 𝐿 < ∞, then

∞
∑
𝑛=1

𝑎𝑛 converges ⟺
∞
∑
𝑛=1

𝑏𝑛 converges.

2. If 𝐿 = 0, then
∞
∑
𝑛=1

𝑏𝑛 converges ⟹
∞
∑
𝑛=1

𝑎𝑛 converges,

∞
∑
𝑛=1

𝑎𝑛 diverges ⟹
∞
∑
𝑛=1

𝑏𝑛 diverges.
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Proof

Part 1. Suppose that 0 < 𝐿 < 1. Set
𝜀 ∶= 𝐿

2 .
Since 𝜀 > 0 and 𝑎𝑛/𝑏𝑛 → 𝐿, there exists 𝑁 ∈ ℕ such that

| 𝑎𝑛𝑏𝑛
− 𝐿| < 𝜀 , ∀ 𝑛 ≥ 𝑁 .

The above is equivalent to

𝐿 − 𝜀 < 𝑎𝑛
𝑏𝑛

< 𝜀 + 𝐿 , ∀ 𝑛 ≥ 𝑁 .

Since 𝜀 = 𝐿/2, we get
𝐿
2 < 𝑎𝑛

𝑏𝑛
< 3𝐿

2 , ∀ 𝑛 ≥ 𝑁 ,

or equivalently,
𝐿
2 𝑏𝑛 < 𝑎𝑛 < 3𝐿

2 𝑏𝑛 , ∀ 𝑛 ≥ 𝑁 .
We are now ready to prove the main claim:

1. Suppose that
∞
∑
𝑛=1

𝑎𝑛

converges. Then also
∞
∑
𝑛=𝑁

𝑎𝑛

converges, since we are only discarding a finite number of terms. As

𝐿
2 𝑏𝑛 ≤ 𝑎𝑛 , ∀ 𝑛 ≥ 𝑁 ,

it follows from the Comparison Test in Theorem 8.29 that the series

∞
∑
𝑛=𝑁

𝐿
2 𝑏𝑛 .

converges. Since 𝐿/2 is a constant, we also conclude that

∞
∑
𝑛=1

𝑏𝑛

converges.

271



Numbers Sequences and Series Dr. Silvio Fanzon – S.Fanzon@hull.ac.uk

2. Suppose that
∞
∑
𝑛=1

𝑏𝑛

converges. Then also
∞
∑
𝑛=𝑁

3𝐿
2 𝑏𝑛

converges. Since

𝑎𝑛 < 3𝐿
2 𝑏𝑛 , ∀ 𝑛 ≥ 𝑁 ,

by the Comparison Test we infer that

∞
∑
𝑛=𝑁

𝑎𝑛

converges. Therefore, also
∞
∑
𝑛=1

𝑎𝑛
converges.

Part 2. Suppose that 𝐿 = 0. Note that the second condition is the contrapositive of the first.
Hence we only need to show that

∞
∑
𝑛=1

𝑏𝑛 converges ⟹
∞
∑
𝑛=1

𝑎𝑛 converges.

Let 𝜀 = 1. Since 𝑎𝑛/𝑏𝑛 → 0, there exists 𝑁 ∈ ℕ such that

| 𝑎𝑛𝑏𝑛
− 0| < 𝜀 = 1 , ∀ 𝑛 ≥ 𝑁 .

Therefore
𝑎𝑛 < 𝑏𝑛 , ∀ 𝑛 ≥ 𝑁 .

The thesis follows immediately by the Comparison Test in Theorem 8.29.

Important

It might happen that

lim𝑛→∞
𝑎𝑛
𝑏𝑛

= ∞ .
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In this case, we can still apply the Limit Comparison Test to the series

∞
∑
𝑛=1

1
𝑏𝑛/𝑎𝑛

,

since in this case

lim𝑛→∞
𝑏𝑛
𝑎𝑛

= 0 .

Let us give a few applications of the Limit Comparison Tets.

Example 8.32

Question. Prove that the following series converges

∞
∑
𝑛=1

2𝑛3 + 5𝑛 + 1
7𝑛6 + 2𝑛 + 5 .

Solution. Set
𝑎𝑛 ∶= 2𝑛3 + 5𝑛 + 1

7𝑛6 + 2𝑛 + 5 , 𝑏𝑛 ∶= 1
𝑛3 .

We have

𝐿 ∶= lim𝑛→∞
𝑎𝑛
𝑏𝑛

= lim𝑛→∞
2𝑛3 + 5𝑛 + 1
7𝑛6 + 2𝑛 + 5/

1
𝑛3

= lim𝑛→∞
2𝑛6 + 5𝑛4 + 𝑛3
7𝑛6 + 2𝑛 + 5

= lim𝑛→∞

2 + 5
𝑛2 + 1

𝑛3
7 + 2

𝑛5 + 5
𝑛6

= 2
7 .

The series ∞
∑
𝑛=1

1
𝑛3

converges, being a 𝑝-series with 𝑝 = 3 > 1. Since 𝐿 = 2
7 > 0, also the series

∞
∑
𝑛=1

2𝑛3 + 5𝑛 + 1
7𝑛6 + 2𝑛 + 5

converges, by the Limit Comparison Test.
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Example 8.33

Question. Prove that the following series diverges

∞
∑
𝑛=1

𝑛 + cos(𝑛)
𝑛2 .

Solution. Since sin(𝑛) is bounded, we expect the terms in the series to behave like 1/𝑛 for large
𝑛. Hence we set

𝑎𝑛 ∶= 𝑛 + cos(𝑛)
𝑛2 , 𝑏𝑛 = 1

𝑛 .
We compute

𝐿 ∶= 𝑎𝑛
𝑏𝑛

= lim𝑛→∞
𝑛 + cos(𝑛)

𝑛2 /
1
𝑛

= lim𝑛→∞
𝑛2 + 𝑛 cos(𝑛)

𝑛2
= lim𝑛→∞ (1 + cos(𝑛)

𝑛 )

Note that

−1 ≤ cos(𝑛) ≤ 1 ⟹ −1
𝑛 ≤ cos(𝑛)

𝑛 ≤ 1
𝑛 .

As both − 1
𝑛 → 0 and 1

𝑛 → 0, by the Squeeze Theorem

cos(𝑛)
𝑛 ⟶ 0 .

Hence

𝐿 = lim𝑛→∞ (1 + cos(𝑛)
𝑛 ) = 1 .

The harmonic series ∑∞
𝑛=1

1
𝑛 diverges. Since 𝐿 = 1 > 0, the series

∞
∑
𝑛=1

𝑛 + cos(𝑛)
𝑛2 .

diverges by the Limit Comparison Test.
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Example 8.34

Question. Prove that the following series converges

∞
∑
𝑛=1

(1 − cos (1𝑛 )) .

Solution. Since
cos (1𝑛 ) ≤ 1 ,

the above is a non-negative series. Recall the limit

lim𝑛→∞
1 − cos(𝑎𝑛)

(𝑎𝑛)2
= 1

2 ,

where (𝑎𝑛) is a sequence in ℝ such that 𝑎𝑛 → 0 and

𝑎𝑛 ≠ 0 ∀ 𝑛 ∈ ℕ .
In particular, for 𝑎𝑛 = 1/𝑛, we obtain

lim𝑛→∞ 𝑛2 (1 − cos (1𝑛 )) = 1
2 .

Set
𝑏𝑛 ∶= 1 − cos (1𝑛 ) , 𝑐𝑛 ∶= 1

𝑛2 .
We have

𝐿 ∶= lim𝑛→∞
𝑏𝑛
𝑐𝑛

= lim𝑛→∞ 𝑛2 (1 − cos (1𝑛 )) = 1
2 .

Note that the series ∑∞
𝑛=1

1
𝑛2 converges, being a 𝑝-series with 𝑝 > 2. Therefore, since 𝐿 = 1/2 >

0, also the series
∞
∑
𝑛=1

(1 − cos (1𝑛 ))

converges, by the Limit Comparison Test.

Sometimes the Limit Comparison Test fails, but the Comparison Test works.

Example 8.35

Question. Prove that the following series converges

∞
∑
𝑛=1

1 + sin(𝑛)
𝑛2 .
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Solution. Since
sin(𝑛) ≥ −1 ,

the above is a non-negative series. As sin(𝑛) is bounded, the series behaves similarly to

∞
∑
𝑛=1

1
𝑛2 .

However
1 + sin(𝑛)

𝑛2 /
1
𝑛2 = 1 + sin(𝑛)

does not converge. Hence, we cannot use the Limit Comparison Test. In alternative, we note
that 1 + sin(𝑛)

𝑛2 ≤ 2
𝑛2 , ∀ 𝑛 ∈ ℕ .

The series ∞
∑
𝑛=1

2
𝑛2

converges, being a 𝑝-series with 𝑝 = 2 > 1. Therefore also

∞
∑
𝑛=1

1 + sin(𝑛)
𝑛2

converges, by the Comparison Test of Theorem 8.29.

8.4.4 Ratio Test for positive series

The Ratio Test can be generalized to series. Notice that in this case the terms of the series need to
be positive.

Theorem 8.36: Ratio Test for positive series

Let (𝑎𝑛) be a sequence in ℝ such that

𝑎𝑛 > 0 , ∀ 𝑛 ∈ ℕ .
1. Suppose that the following limit exists:

𝐿 ∶= lim𝑛→∞
𝑎𝑛+1
𝑎𝑛

.

They hold:
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• If 𝐿 < 1 then ∑∞
𝑛=1 𝑎𝑛 converges.

• If 𝐿 > 1 then ∑∞
𝑛=1 𝑎𝑛 diverges.

2. Suppose that there exists 𝑁 ∈ ℕ and 𝐿 > 1 such that

𝑎𝑛+1
𝑎𝑛

≥ 𝐿 , ∀ 𝑛 ≥ 𝑁 .

Then the series ∑∞
𝑛=1 𝑎𝑛 diverges.

Proof

Part 1. Let
𝐿 ∶= lim𝑛→∞

𝑎𝑛+1
𝑎𝑛

.

• Suppose that 𝐿 < 1. Therefore there exists 𝑟 such that

𝐿 < 𝑟 < 1 .
Define

𝜀 ∶= 𝑟 − 𝐿 ,
so that 𝜀 > 0. By the convergence 𝑎𝑛+1/𝑎𝑛 → 𝐿 there exists 𝑁 ∈ ℕ such that

| 𝑎𝑛+1𝑎𝑛
− 𝐿| < 𝜀 = 𝑟 − 𝐿 , ∀ 𝑛 ≥ 𝑁 .

In particular 𝑎𝑛+1
𝑎𝑛

− 𝐿 < 𝑟 − 𝐿 , ∀ 𝑛 ≥ 𝑁 ,
which implies

𝑎𝑛+1 < 𝑟 𝑎𝑛 , ∀ 𝑛 ≥ 𝑁 .
Applying 𝑛 − 𝑁 times the above estimate we get

0 < 𝑎𝑛 < 𝑟 𝑎𝑛−1 < … < 𝑟𝑛−𝑁 𝑎𝑁 , ∀ 𝑛 ≥ 𝑁 . (8.11)

Note that the series of 𝑟𝑛−𝑁 𝑎𝑁 converges, since

∞
∑
𝑛=𝑁

𝑟𝑛−𝑁 𝑎𝑁 = 𝑎𝑁
∞
∑
𝑘=0

𝑟𝑘 = 𝑎𝑁 1
1 − 𝑟 ,

where the last equality follows because ∑∞
𝑘=0 𝑟𝑘 is a geometric series and 0 < 𝑟 < 1. Since

(8.11) holds, by the Comparison Test in Theorem 8.29 we conclude that the series

∞
∑
𝑛=𝑁

𝑎𝑛
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converges. Therefore also the series
∞
∑
𝑛=1

𝑎𝑛

converges, ending the proof in the case 𝐿 < 1.
• Suppose 𝐿 > 1: Then, by the Ratio Test for sequences, it follows that 𝑎𝑛 diverges. There-
fore

lim𝑛→∞ 𝑎𝑛 ≠ 0 ,

and the series ∑∞
𝑛=1 diverges by the Necessary Condition, see Theorem 8.6.

Part 2. Suppose there exists 𝐿 > 1 and 𝑁 ∈ ℕ such that

𝑎𝑛+1
𝑎𝑛

≥ 𝐿 , ∀ 𝑛 ≥ 𝑁 .

By the Ratio Test for sequences it follows that 𝑎𝑛 diverges. Therefore ∑∞
𝑛=1 diverges by the

Necessary Condition.

Example 8.37

Question. Discuss convergence/divergence of the following series

∞
∑
𝑛=1

𝑎𝑛 , 𝑎𝑛 = (𝑛!)2
(2𝑛)! .

Solution. We compute

lim𝑛→∞
𝑎𝑛+1
𝑎𝑛

= lim𝑛→∞
((𝑛 + 1)!)2
(2(𝑛 + 1))!/

(𝑛!)2
(2𝑛)!

= lim𝑛→∞
(𝑛 + 1)2

(2𝑛 + 2)(2𝑛 + 1)

= lim𝑛→∞

(1 + 1
𝑛)

2

(2 + 2
𝑛) (2 + 1

𝑛)
= 1

4 .

Since 𝐿 = 1/4 < 1, by the Ratio Test we conclude that ∑𝑎𝑛 converges.
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Important

Like with the Ratio Test for sequences, the case 𝐿 = 1 is not covered by Theorem 8.36. This is
because, in this case, the series

∞
∑
𝑛=1

𝑎𝑛

might be convergent or divergent, as shown in the next example.

Example 8.38

1. Consider the series ∞
∑
𝑛=1

1
𝑛 .

Setting 𝑎𝑛 = 1/𝑛, we have

𝐿 = lim𝑛→∞
𝑎𝑛+1
𝑎𝑛

= lim𝑛→∞
1

𝑛 + 1/
1
𝑛

= lim𝑛→∞
𝑛

𝑛 + 1 = 1 .

Therefore 𝐿 = 1 and we cannot apply the Ratio Test. However the series in question
diverges, being the harmonic series.

2. Consider the series ∞
∑
𝑛=1

1
𝑛2 .

Setting 𝑎𝑛 = 1/𝑛2, we have

𝐿 = lim𝑛→∞
𝑎𝑛+1
𝑎𝑛

= lim𝑛→∞
1

(𝑛 + 1)2/
1
𝑛2

= lim𝑛→∞
𝑛2

𝑛2 + 2𝑛 + 1 = 1 .

Therefore 𝐿 = 1 and we cannot apply the Ratio Test. However the series in question
diverges, being a 𝑝-series with 𝑝 = 2 > 1.

The Ratio Test can often be combined with other convergence tests, as seen in the following exam-
ple.
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Example 8.39

Question. Using the Cauchy Condensation Test and the Ratio Test, prove that the following
series converges

∞
∑
𝑛=1

log(𝑛)
𝑛2 .

Solution. Set 𝑎𝑛 = log 𝑛/𝑛2. By the Cauchy Condensation Test, we know that ∑𝑎𝑛 converges
if and only if ∑2𝑛𝑎2𝑛 converges. We have:

∞
∑
𝑛=0

2𝑛𝑎2𝑛 =
∞
∑
𝑛=0

2𝑛 log(2
𝑛)

(2𝑛)2

= log(2)
∞
∑
𝑛=0

𝑛
2𝑛

= log(2)
∞
∑
𝑛=0

𝑏𝑛 , 𝑏𝑛 ∶= 𝑛
2𝑛 .

Apply the Ratio Test to the series ∑𝑏𝑛
𝑏𝑛+1
𝑏𝑛

= 𝑛 + 1
2𝑛+1 /

𝑛
2𝑛 = 𝑛 + 1

2𝑛 ⟶ 1
2 < 1 .

Therefore, ∑𝑏𝑛 converges by the Ratio Test, so that also ∑2𝑛𝑎2𝑛 converges. We conclude that
∑𝑎𝑛 converges by the Cauchy Condensation Test.

8.5 General series

In the previous section we presented several tests for non-negative series. For non-negative series
we showed that the partial sums (𝑠𝑘) are increasing, see Lemma 8.22. This makes non-negative terms
series relatively easy to study.

When a series contains both positive and negative terms, the partial sums (𝑠𝑘)might oscillate, making
the series harder to study. In this section we present some tests for general series in ℂ.

8.5.1 Absolute Convergence Test

To study general series, we introduce a stronger notions of convergence, known as absolute con-
vergence.
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Definition 8.40: Absolute convergence

Let (𝑎𝑛) be a sequence in ℂ. The series ∑∞
𝑛=1 𝑎𝑛 is said to converge absolutely if the following

non-negative series converges
∞
∑
𝑛=1

|𝑎𝑛 | .

Let us show that absolute convergence implies convergence.

Theorem 8.41: Absolute Convergence Test

Let (𝑎𝑛) be a sequence in ℂ. If the series ∑∞
𝑛=1 𝑎𝑛 converge absolutely, then the series converges.

Before proceeding with the proof, we introduce some notation.

Notation 8.42: Positive and negative part

For a number 𝑥 ∈ ℝ, we define

𝑥+ ∶= {𝑥 if 𝑥 ≥ 0
0 if 𝑥 < 0 𝑥− ∶= {−𝑥 if 𝑥 < 0

0 if 𝑥 ≥ 0
These are called the positive part and negative part of 𝑥 , respectively. Note that

𝑥+ ≥ 0 , 𝑥− ≥ 0 .
Moreover they hold

𝑥 = 𝑥+ − 𝑥− , |𝑥| = 𝑥+ + 𝑥− .
The above relations are easy to check, and the proof is omitted. In particular, it holds that

𝑥+ ≤ |𝑥| , 𝑥− ≤ |𝑥| .

Proof: Proof of Theorem 8.41

Part 1. Suppose first that (𝑎𝑛) is a sequence in ℝ such that

∞
∑
𝑛=1

|𝑎𝑛 |

converges. Since
0 ≤ 𝑎+𝑛 ≤ |𝑎𝑛 | , ∀ 𝑛 ∈ ℕ ,

we can use the Comparison Test for non-negative series (Theorem 8.29) and conclude that the
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series ∞
∑
𝑛=1

𝑎+𝑛 .

converges. Similarly, we have

0 ≤ 𝑎−𝑛 ≤ |𝑎𝑛 | , ∀ 𝑛 ∈ ℕ .
Therefore also the series ∞

∑
𝑛=1

𝑎−𝑛

converges by the Comparison Test. Since

𝑎𝑛 = 𝑎+𝑛 − 𝑎−𝑛 , ∀ 𝑛 ∈ ℕ ,
we can use the Algebra of Limits for series (Theorem 8.18) to conclude that

∞
∑
𝑛=1

𝑎𝑛 =
∞
∑
𝑛=1

(𝑎+𝑛 − 𝑎−𝑛 ) =
∞
∑
𝑛=1

𝑎+𝑛 −
∞
∑
𝑛=1

𝑎−𝑛

converges.
Part 2. Suppose now that (𝑎𝑛) is a sequence in ℂ such that

∞
∑
𝑛=1

|𝑎𝑛 |

converges. Let 𝑥𝑛 , 𝑦𝑛 ∈ ℝ denote the real and imaginary part of 𝑎𝑛 . Therefore

|𝑥𝑛 | = √𝑥2𝑛 ≤ √𝑥2𝑛 + 𝑦2𝑛 = |𝑎𝑛 | , ∀ 𝑛 ∈ ℕ .
Therefore the series ∞

∑
𝑛=1

|𝑥𝑛 |

converges by the Comparison Test for non-negative series (Theorem 8.29). Since (𝑥𝑛) is a real
sequence, from Part 1 of the proof we have that the series

∞
∑
𝑛=1

𝑥𝑛

converges. Arguing in the same way for the imaginary part 𝑦𝑛 we conclude that also

∞
∑
𝑛=1

𝑦𝑛
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converges. Finally, by the Algebra of Limits in ℂ, we get

∞
∑
𝑛=1

𝑎𝑛 =
∞
∑
𝑛=1

(𝑥𝑛 + 𝑖𝑦𝑛) =
∞
∑
𝑛=1

𝑥𝑛 + 𝑖
∞
∑
𝑛=1

𝑦𝑛 ,

proving that ∑∞
𝑛=1 𝑎𝑛 converges.

Example 8.43

Question. Discuss absolute convergence of the series

∞
∑
𝑛=1

(−1)𝑛 1𝑛 .

Solution. The series does not converge absolutely, since

∞
∑
𝑛=1

|(−1)𝑛 1𝑛 | =
∞
∑
𝑛=1

1
𝑛

does not converge, being the harmonic series.

Example 8.44

Question. Prove that the following series converges

∞
∑
𝑛=1

𝑎𝑛 , 𝑎𝑛 = (−1)𝑛 𝑛
2 − 5𝑛 + 2

𝑛4 .

Solution. We have

|𝑎𝑛 | =
|𝑛2 − 5𝑛 + 2|

𝑛4 = 𝑛2 + 5𝑛 + 2
𝑛4 ,

for 𝑛 sufficiently large (e.g. 𝑛 ≥ 10). Note that

𝑛2 + 5𝑛 + 2
𝑛4 /

1
𝑛2 = 𝑛4 + 5𝑛3 + 2𝑛2

𝑛4
= 1 + 5

𝑛 + 2
𝑛2 ⟶ 1

The series ∑1/𝑛2 converges, being a 𝑝-series with 𝑝 = 2. Hence, also

∞
∑
𝑛=1

𝑛2 + 5𝑛 + 2
𝑛4
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converges, by the Limit Comparison Test for non-negative series (Theorem 8.31). This shows
∑ |𝑎𝑛 | converges, which means that ∑𝑎𝑛 converges absolutely. In particular, ∑𝑎𝑛 converges by
the Absolute Convergence Test.

8.5.2 Ratio Test for general series

As an application of the Absolute Convergence Test, we obtain the Ratio Test for general series.

Theorem 8.45: Ratio Test for general series

Let (𝑎𝑛) be a sequence in ℂ, such that

𝑎𝑛 ≠ 0 ∀ 𝑛 ∈ ℕ .
1. Suppose that the following limit exists:

𝐿 ∶= lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
| .

They hold:

• If 𝐿 < 1 then ∑∞
𝑛=1 𝑎𝑛 converges absolutely, and hence converges.

• If 𝐿 > 1 then ∑∞
𝑛=1 𝑎𝑛 diverges.

2. Suppose that there exists 𝑁 ∈ ℕ and 𝐿 > 1 such that

| 𝑎𝑛+1𝑎𝑛
| ≥ 𝐿 , ∀ 𝑛 ≥ 𝑁 .

Then the series ∑∞
𝑛=1 𝑎𝑛 diverges.

Proof

Part 1. Let
𝑏𝑛 ∶= |𝑎𝑛 | ,

so that

𝐿 ∶= lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
| = lim𝑛→∞

𝑏𝑛+1
𝑏𝑛

.

• Suppose that 𝐿 < 1. Since (𝑏𝑛) is a sequence with non-negative terms, we have that

∞
∑
𝑛=1

𝑏𝑛
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converges by the Ratio Test for non-negative series, see Theorem 8.36. Since, by definition

∞
∑
𝑛=1

𝑏𝑛 =
∞
∑
𝑛=1

|𝑎𝑛 |

also the latter series converges, i.e., ∑∞
𝑛=1 𝑎𝑛 converges absolutely. In particular ∑∞

𝑛=1 𝑎𝑛
converges, by the Absolute Convergence Test in Theorem 8.41.

• Suppose that 𝐿 > 1. Then the sequence (𝑎𝑛) diverges by the Ratio Test for sequences.
Hence the series ∞

∑
𝑛=1

𝑎𝑛

diverges by the Necessary Condition in Theorem 8.6.

Part 2. If there exists 𝑁 ∈ ℕ and 𝐿 > 1 such that

| 𝑎𝑛+1𝑎𝑛
| ≥ 𝐿 , ∀ 𝑛 ≥ 𝑁 ,

then the sequence (𝑎𝑛) diverges by the Ratio Test for sequences, and we conclude as above.

Example 8.46

Question. Prove that the series converges

∞
∑
𝑛=1

𝑎𝑛 , 𝑎𝑛 = (4 − 3𝑖)𝑛
(𝑛 + 1)! .

Solution. We have

𝐿 ∶= lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
|

= lim𝑛→∞ | (4 − 3𝑖)𝑛+1
((𝑛 + 1) + 1)!/

(4 − 3𝑖)𝑛
(𝑛 + 1)! |

= lim𝑛→∞
5

𝑛 + 2 = 0 .

As 𝐿 = 0 < 1, we conclude that ∑𝑎𝑛 converges absolutely, by the Ratio Test. Hence, ∑𝑎𝑛
converges by the Absolute Convergence Test.
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8.5.3 Exponential function and Euler’s Number

We have already encountered the exponential function in the Euler’s identity

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃) , 𝜃 ∈ ℝ .
We have also defined the exponential of 𝑧 = 𝑎 + 𝑖𝑏 ∈ ℂ as

𝑒𝑧 = 𝑒𝑎𝑒𝑖𝑏 .
We have also anticipated that

𝑒𝑧 =
∞
∑
𝑛=0

𝑧𝑛
𝑛! .

Using the Ratio Test for general series, we can give a precise meaning to the above expression. We
start by studying convergence of the exponential series.

Theorem 8.47: Exponential series

Let 𝑧 ∈ ℂ. The exponential series
∞
∑
𝑛=0

𝑧𝑛
𝑛!

converges absolutely.

Proof

Set 𝑎𝑛 = 𝑧𝑛/𝑛!. Then

𝐿 = lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
|

= lim𝑛→∞ | 𝑧𝑛+1
(𝑛 + 1)!/

𝑧𝑛
𝑛! |

= lim𝑛→∞
|𝑧|

𝑛 + 1 = 0 .

Therefore the series converges absolutely by the Ratio Test in Theorem 8.45.

Definition 8.48: Exponential function

Define the exponential function

exp∶ ℂ → ℂ , exp(𝑧) ∶=
∞
∑
𝑛=0

𝑧𝑛
𝑛!
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for 𝑧 ∈ ℂ. We denote
𝑒𝑧 ∶= exp(𝑧) , 𝑒 ∶= 𝑒1 .

Remark 8.49

1. Using the definition of 𝑒𝑧 , one can show that

𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 , (𝑒𝑧)𝑤 = 𝑒𝑧𝑤 ,
for all 𝑧, 𝑤 ∈ ℂ.

2. This way, we see that the new definition of exponential agrees with the old one:

𝑒𝑧 = 𝑒𝑎+𝑖𝑏 = 𝑒𝑎𝑒𝑖𝑏 .

3. We had also defined

𝑒 ∶= lim𝑛→∞ (1 + 1
𝑛)

𝑛
.

Using the binomial theorem one can prove that

lim𝑛→∞ (1 + 1
𝑛)

𝑛
=

∞
∑
𝑛=0

1
𝑛! .

8.5.4 Conditional convergence

Some series do not converge absolutely, but still converge. Such series are said to converge condi-
tionally.

Definition 8.50: Conditional convergence

Let (𝑎𝑛) be a sequence in ℂ. We say that the series

∞
∑
𝑛=1

𝑎𝑛

converges conditionally if it converges, but it does not converge absolutely.

In practice, conditional convergence means that the convergence of the series depends on the or-
der in which we perform the summation. Changing the order of summation of a series is called
rearrangement.
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Definition 8.51: Rearrangement of a series

Let (𝑎𝑛) be a sequence in ℂ. Then:
1. A permutation is a bijection 𝜎 ∶ ℕ → ℕ.
2. A rearrangement of the series ∑∞

𝑛=1 𝑎𝑛 is a series

∞
∑
𝑛=1

𝑎𝜎(𝑛)

for some permutation 𝜎 .

If a series of complex numebers converges absolutely, then all its rearrangements converge to the
same limit.

Theorem 8.52

Let (𝑎𝑛) be a sequence in ℂ such that
∞
∑
𝑛=1

|𝑎𝑛 |

converges. For any permutation 𝜎 we have

∞
∑
𝑛=1

𝑎𝜎(𝑛) =
∞
∑
𝑛=1

𝑎𝑛 .

For a proof, see Theorem 3.55 in [3]. A very surprising result is the following: If a series of real num-
bers converges conditionally, then the series can be rearranged to converge to any real number.

Theorem 8.53: Riemann rearrangement Theorem

Let (𝑎𝑛) be a real sequence such that the series

∞
∑
𝑛=1

𝑎𝑛

converges conditionally. Let
𝐿 ∈ ℝ or 𝐿 = ±∞ .

There exists a permutation 𝜎 such that the corresponding rearrangement ∑∞
𝑛=1 𝑎𝜎(𝑛) converges

conditionally to 𝐿, that is,
∞
∑
𝑛=1

𝑎𝜎(𝑛) = 𝐿 .
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For a proof, we refer the reader to Theorem 3.54 in [3].

In simpler terms, the last two Theorems are saying that:

1. If a series converges absolutely, then all the rearrangements converge to the same number:

• Absolute convergence ⟹ Commutativity holds for infinite sums

2. If a series converges conditionally, then we can rearrange the terms to converge to any real
number, or even diverge:

• Conditional convergence ⟹ Commutativity does not hold for infinite sums

8.5.5 Dirichlet and Alternating Series Tests

There are very few conditional convergence tests available. We present the Dirichlet Test and the
Alternating Series Test.

Theorem 8.54: Dirichlet Test

Let (𝑐𝑛) be a sequence in ℂ and (𝑞𝑛) a sequence in ℝ. Suppose that

• 𝑞𝑛 is decreasing,
• 𝑞𝑛 → 0,
• 𝑞𝑛 ≥ 0 for all 𝑛 ∈ ℕ.
• Suppose there exists 𝑀 > 0 such that

|
𝑘
∑
𝑛=1

𝑐𝑛 | ≤ 𝑀 , ∀ 𝑘 ∈ ℕ .

Then the following series converges
∞
∑
𝑛=1

𝑐𝑛𝑞𝑛 .

Proof

Define the partial sums

𝑠𝑘 ∶=
𝑘
∑
𝑛=1

𝑐𝑛 , ∀ 𝑘 ∈ ℕ .

By assumption it holds
|𝑠𝑘 | ≤ 𝑀 , ∀ 𝑘 ∈ ℕ . (8.12)
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Note that

𝑐1 = 𝑠1
𝑐2 = 𝑠2 − 𝑠1

……
𝑐𝑛 = 𝑠𝑛 − 𝑠𝑛−1 .

Therefore

𝑘
∑
𝑛=1

𝑐𝑘𝑞𝑘 = 𝑐1𝑞1 + 𝑐2𝑞2 + … + 𝑐𝑘𝑞𝑘

= 𝑠1𝑞1 + (𝑠2 − 𝑠1)𝑞2 + … + (𝑠𝑘 − 𝑠𝑘−1)𝑞𝑘
= 𝑠1(𝑞1 − 𝑞2) + 𝑠2(𝑞2 − 𝑞3) + … + 𝑠𝑘−1(𝑞𝑘−1 − 𝑞𝑘) + 𝑠𝑘𝑞𝑘

= (
𝑘−1
∑
𝑛=1

𝑠𝑛(𝑞𝑛 − 𝑞𝑛+1)) + 𝑠𝑘𝑞𝑘

Since (𝑠𝑘) is bounded and 𝑞𝑘 → 0, we conclude that

𝑠𝑘𝑞𝑘 → 0 .
Further, notice that

𝑞𝑛 − 𝑞𝑛+1 ≥ 0 ,
since 𝑞𝑛 is decreasing. Therefore, using (8.12), we get

|𝑠𝑛 ||𝑞𝑛 − 𝑞𝑛+1| = |𝑠𝑛 |(𝑞𝑛 − 𝑞𝑛+1)
≤ 𝑀(𝑞𝑛 − 𝑞𝑛+1)

for all 𝑛 ∈ ℕ. Note that
𝑘−1
∑
𝑛=1

𝑀(𝑞𝑛 − 𝑞𝑛+1) = 𝑀(𝑞1 − 𝑞𝑘) .

Since 𝑞𝑘 → 0 as 𝑘 → ∞, we conclude that

∞
∑
𝑛=1

𝑀(𝑞𝑛 − 𝑞𝑛+1) = 𝑀𝑞1 .

Hence, by the Comparison Test for non-negative series, we infer that

∞
∑
𝑛=1

|𝑠𝑛 ||𝑞𝑛 − 𝑞𝑛+1| .
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In particular the series
∞
∑
𝑛=1

𝑠𝑛(𝑞𝑛 − 𝑞𝑛+1)

converges by the Absolute Convergence Test. Since we have shown

𝑘
∑
𝑛=1

𝑐𝑛𝑞𝑛 = (
𝑘−1
∑
𝑛=1

𝑠𝑛(𝑞𝑛 − 𝑞𝑛+1)) + 𝑠𝑘𝑞𝑘

and 𝑠𝑘𝑞𝑘 → 0, we conclude that ∑∞
𝑛=1 𝑐𝑛𝑞𝑛 converges.

Example 8.55

Question. Let 𝜃 ∈ ℝ, with
𝜃 ≠ 2𝑘𝜋 , ∀ 𝑘 ∈ ℤ .

Prove that the below series are conditionally convergent

∞
∑
𝑛=1

𝑒𝑖𝜃𝑛
𝑛 ,

∞
∑
𝑛=1

cos(𝜃𝑛)
𝑛 ,

∞
∑
𝑛=1

sin(𝜃𝑛)
𝑛 .

Solution.

1. Recalling the Euler’s Identity

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃) ,
we obtain that ∞

∑
𝑛=1

𝑒𝑖𝜃𝑛
𝑛 =

∞
∑
𝑛=1

cos(𝑛𝜃)
𝑛 + 𝑖

∞
∑
𝑛=1

sin(𝑛𝜃)
𝑛 .

Therefore, the series ∑𝑒𝑖𝜃𝑛/𝑛 converge conditionally if and only if ∑ cos(𝜃𝑛)/𝑛 and
∑ sin(𝜃𝑛)/𝑛 converge conditionally. It is then sufficient to study ∑𝑒𝑖𝜃𝑛/𝑛.

2. The series ∑𝑒𝑖𝜃𝑛/𝑛 does not converge absolutely, since

∞
∑
𝑛=1

| 𝑒
𝑖𝜃𝑛
𝑛 | =

∞
∑
𝑛=1

1
𝑛

diverges, being the Harmonic Series.

3. Set 𝑐𝑛 = 𝑒𝑖𝜃𝑛 , 𝑞𝑛 = 1/𝑛, so that
∞
∑
𝑛=1

𝑒𝑖𝜃𝑛
𝑛 =

∞
∑
𝑛=1

𝑐𝑛𝑞𝑛 .
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We have that 𝑞𝑛 is decreasing, 𝑞𝑛 → 0 and 𝑞𝑛 ≥ 0. Let us prove that there exists 𝑀 > 0
such that

|
𝑘
∑
𝑛=1

𝑒𝑖𝜃𝑛 | ≤ 𝑀 , ∀ 𝑘 ∈ ℕ . (8.13)

Note that
1 − 𝑒𝑖𝜃 ≠ 0 ,

since 𝜃 ≠ 2𝑘𝜋 for all 𝑘 ∈ ℤ. Therefore we can use the Geometric Series (truncated)
summation formula to get

𝑘
∑
𝑛=1

𝑒𝑖𝜃𝑛 =
𝑘
∑
𝑛=1

(𝑒𝑖𝜃 )𝑛

= 1 − 𝑒𝑖(𝑘+1)𝜃
1 − 𝑒𝑖𝜃 − 1

= 𝑒𝑖𝜃 1 − 𝑒𝑖𝑘𝜃
1 − 𝑒𝑖𝜃

Taking the modulus

|
𝑘
∑
𝑛=1

𝑒𝑖𝜃𝑛 | = |𝑒𝑖𝜃 1 − 𝑒𝑖𝑘𝜃
1 − 𝑒𝑖𝜃 | = |𝑒𝑖𝜃 | | 1 − 𝑒𝑖𝑘𝜃

1 − 𝑒𝑖𝜃 |

= |1 − 𝑒𝑖𝑘𝜃 |
|1 − 𝑒𝑖𝜃 | ≤ |1| + |𝑒𝑖𝑘𝜃 |

|1 − 𝑒𝑖𝜃 | = 2
|1 − 𝑒𝑖𝜃 | ,

where we used the triangle inequality. Since the RHS does not depend on 𝑘, we can set

𝑀 = 2
|1 − 𝑒𝑖𝜃 | ,

so that (8.13) holds. Therefore, ∑𝑒𝑖𝜃𝑛/𝑛 converges by the Dirichlet Test.

4. We have shown that ∑𝑒𝑖𝜃𝑛/𝑛 converges, but not absolutely. Hence, it converges condi-
tionally.

As a corollary of the Dirichlet Test we obtain the Alternate Convergence Test.

Theorem 8.56: Alternate Convergence Test

Let (𝑞𝑛) be a sequence in ℝ such that

• 𝑞𝑛 is decreasing,
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• 𝑞𝑛 → 0,
• 𝑞𝑛 ≥ 0 for all 𝑛 ∈ ℕ.

The following series converges
∞
∑
𝑛=1

(−1)𝑛𝑞𝑛

Proof

Define the sequence 𝑐𝑛 ∶= (−1)𝑛 . Then,
𝑘
∑
𝑛=1

𝑐𝑛 = {0 if 𝑘 even
−1 if 𝑘 odd

Hence

|
𝑘
∑
𝑛=1

𝑐𝑛 | ≤ 1 , ∀ 𝑘 ∈ ℕ .

By the Dirichlet Test we have convergence of

∞
∑
𝑛=1

𝑐𝑛𝑞𝑛 =
∞
∑
𝑛=1

(−1)𝑛𝑞𝑛 .

Example 8.57

Question. Prove that the series converges conditionally

∞
∑
𝑛=1

(−1)𝑛 1𝑛 .

Solution. The series does not converge absolutely, since

∞
∑
𝑛=1

|(−1)𝑛 1𝑛 | =
∞
∑
𝑛=1

1
𝑛

diverges, being the Harmonic Series. Set 𝑞𝑛 = 1/𝑛, so that

∞
∑
𝑛=1

(−1)𝑛 1𝑛 =
∞
∑
𝑛=1

(−1)𝑛𝑞𝑛 .

Clearly, 𝑞𝑛 ≥ 0, 𝑞𝑛 → 0 and 𝑞𝑛 is decreasing. Hence, the series converges by the Alternating
Series Test. Thus, the series converges conditionally.
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8.5.6 Abel’s Test

The Abel Test is another test for conditional convergence. It looks similar to the Dirichlet Test,
however notice that the Abel Test only deals with real sequences.

Theorem 8.58: Abel’s Test

Let (𝑎𝑛) and (𝑞𝑛) be sequences in ℝ. Suppose that

• 𝑞𝑛 is monotone and bounded,
• The series ∑𝑎𝑛 converges.

Then the following series converges
∞
∑
𝑛=1

𝑎𝑛𝑞𝑛 .

The proof is similar to the one of the Dirichlet Test. We decided to omit it.

Example 8.59

Question. Prove that the series converges conditionally

∞
∑
𝑛=1

(−1)𝑛
𝑛 (1 + 1

𝑛)
𝑛
.

Solution. Set
𝑎𝑛 ∶= (−1)𝑛

𝑛 , 𝑞𝑛 ∶= (1 + 1
𝑛)

𝑛
.

We have seen that 𝑞𝑛 is monotone increasing and bounded (recall that 𝑞𝑛 → 𝜀). Moreover, the
series ∑∞

𝑛=1 𝑎𝑛 converges by the Alternating Series Test, as seen in Example 8.57. Hence the
series ∑∞

𝑛=1 𝑎𝑛𝑞𝑛 converges by the Abel Test.
However, the series in question does not converge absolutely. Indeed,

| (−1)
𝑛

𝑛 (1 + 1
𝑛)

𝑛
| = 1

𝑛 𝑞𝑛 ≥ 1
𝑛 𝑞1 = 2

𝑛 ,

since (𝑞𝑛) is increasing. As the series ∑2/𝑛 diverges, by the Comparison Test we conclude that
also ∞

∑
𝑛=1

| (−1)
𝑛

𝑛 (1 + 1
𝑛)

𝑛
|

diverges. Therefore, the series in the example converges conditionally.
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