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Welcome

These are the Lecture Notes of Differential Geometry 661955 for 2024/25 at the University of Hull.
I will use this material during lectures. If you have any question or find any typo, please email me
at

S.Fanzon@hull.ac.uk

Up to date information about the course, Tutorials and Homework will be published on the Univer-
sity of Hull Canvas Website

canvas.hull.ac.uk/courses/73612

Revision Guide
A Revision Guide to prepare for the Exam is available at

silviofanzon.com/2024-Differential-Geometry-Revision

Digital Notes

Digital version of these notes available at

silviofanzon.com/2024-Differential-Geometry-Notes

Readings
We will study curves and surfaces in R3, as well as some general topology. The main textbooks
are:

« Pressley [7] for differential geometry,
« Manetti [6] for general topology.

Other good readings are the books:


mailto: S.Fanzon@hull.ac.uk
https://canvas.hull.ac.uk/courses/73612
https://www.silviofanzon.com/2024-Differential-Geometry-Revision
https://www.silviofanzon.com/2024-Differential-Geometry-Notes/
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« do Carmo [3], a classic and really nice textbook
« Abate, Tovena [1], for a more in depth analysis

I will assume some knowledge from Analysis and Linear Algebra. A good place to revise these topics
are the books by Zorich [9, 10].

Visualization

It is important to visualize the geometrical objects and concepts we are going to talk about in this
module. Chapter 5 contains a basic Python tutorial to plot curves and surfaces. This part of the
notes is not examinable.

If you want to have fun plotting with Pyhton, I recommend installation through Anaconda or Mini-
conda. The actual coding can then be done through Jupyter Notebook. Good references for scientific
Python programming are [4, 5].

If you do not want to mess around with Python, you can still visualize pretty much everything we
will do in this module using

« Desmos
« CalcPlot3D

! You are not expected to purchase any of the above books. These lecture notes will cover
100% of the topics you are expected to known in order to excel in the Homework and Final
Exam.



https://www.anaconda.com
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://jupyter.org
https://www.desmos.com
https://c3d.libretexts.org/CalcPlot3D/index.html

1. Curves

Curves are 1D objects in the 2D or 3D space. For example in two dimensions one could think of
a straight line, a hyperbole or a circle. These can be all described by an equation in the x and y
coordinates: respectively

y=2x+1, y=¢€, x’+y>=1.
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Figure 1.1.: Plotting straight line y = 2x + 1



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

2.5 A

2.0 A

1.5+

y-axis

1.0

0.5 A

0.0

—ll.O —(|).5 0.0 0.5 1.0
X-axis

Figure 1.2.: Plot of hyperbole y = ¢*
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Figure 1.3.: Plot of unit circle of equation x? + y? = 1
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The aim of this course is to study curves by differentiating them.

Question

In what sense do we differentiate the above curves?

J

It is clear that we need a way to mathematically describe the curves. One way of doing it is by means
of Cartesian equations. This means that the curve is described as the set of points (x, y) € R?> where

the equation

is satisfied, where

is some given function, and

fley) =c,
f:R®>R.
ceR
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some given value. In other words, the curve is identified with the subset of R? given by
C={(x.)eR®: f(xy)=c}.
For example, in the case of the straight line, we would have
fle,y)=y—-2x, c=1.

while for the circle
flo,y)=x>+y% ,c=1.

But what about for example a helix in 3 dimensions? It would be more difficult to find an equation
of the form

fxy.2)=0

to describe such object.

15
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Figure 1.4.: Plot of a 3D Helix

Problem

We need a unified and convenient way to describe curves.

This can be done via parametrization.

10
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1.1. Parametrized curves

Rather than Cartesian equations, a more useful way of thinking about curves is viewing them as the
path traced out by a moving point. If y(¢) represents the position a point in R" at time ¢, the whole
curve can be identified by the function

Yy : RoR", y=y(®.

This motivates the following definition of parametrized curve, which will be our main definition
of curve.

Definition 1.1: Parametrized curve
A parametrized curve in R” is a function

y : (a,b) > R".
where

—0<a<b< o,

A few remarks:
«+ The symbol (a,b) denotes an open interval
(a,b)={teR : a<t<b}.

+ The requirement that
—c0<a<b<

means that the interval (a, b) is possibly unbounded.
« For each t € (a,b) the quantity y(¢) is a vector in R™.
« The components of y(t) are denoted by

Y(t) = (Y1(t)’ e Yn(t)) p
where the components are functions
v ¢ (a,b) >R,

foralli=1,...,n.

1.2. Parametrizing Cartesian curves

At the start we said that examples of curves in R? were the straight line, the hyperbole and the circle,
with equations
y=2x+1, y=¢€, x’+y>=1.
11
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We saw that these can be represented by Cartesian equations

fey)=c

for some function f : R? — Rand value ¢ € R. Curves that can be represented in this way are called
level curves. Let us give a precise definition.

Definition 1.2: Level curve
A level curve in R" is a set C C R" which can be described as
C={(x1,.... %) €R" : f(x1,...,%,) =c}

for some given function
f:R'>R

and value
ceR.

We now want to represent level curves by means of parametrizations.
Definition 1.3
Suppose given a level curve C C R". We say that a curve

y : (@b) >R

parametrizes C if

C={(n O 1al®) © 1€ (@b)}.

Question

Can we represent the level curves we saw above by means of a parametrization y?

The answer is YES, as shown in the following examples.

Example 1.4: Parametrizing the straight line
The straight line
y=2x+1

is a level curve with
C={xy)eR® : flx,y)=c},
where
fle,y) i=y—2x, c:=1.

How do we represent C as a parametrized curve y? We know that the curve is 2D, therefore

12
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we need to find a function
y : (ab) > R?

with componenets
r® =@ r.®).

The curve y needs to be chosen so that it parametrizes the set C, in the sense that

C={(n®,r(®) : te(ab)}. (11)

Thus we need to have
(x, ) =(1:12)- (12)
How do we define such y? Note that the points (x, y) in C satisfy

(x,y)eC &= y=2x+1.
Therefore, using (1.2), we have that
n=x, Yp=y=2x+1

from which we deduce that y must satisfy

y2(t) = 2y (1) + 1 (13)
for all t € (a,b). We can then choose
n®:=t,
and from (1.3) we deduce that
)/z(t) =2t+1.
This choice of y works:
C={(x,2x+1) : x€R} (1.4)
={t,2t+1) : —oo<t < oo} (1.5)
={(n®,r2(1) : —oo <t <o}, (1.6)

where in the second line we just swapped the symbol x with the symbol . In this case we have
to choose the time interval as

(a’ b) = (_Oo’ OO) .

In this way y satisfies (1.1) and we have successfully parametrized the straight line C.

13
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Remark 1.5: Parametrization is not unique
Let us consider again the straight line
C={(x,y) €R? : 2x+1=y}.
We saw thaty : (=00, 00) — R? defined by
y(@®) = (2t +1)
is a parametrization of C. But of course any y satisfying
r2(8) = 21 (1) + 1
would yield a parametrization of C. For example one could choose
n=2t, p®=2p@)+1=4+1.
In general, any time rescaling would work: the curve y defined by
n®=nt, p®=2n@)+1=2n+1

parametrizes C for all n € N. Hence there are infinitely many parametrizations of C.

Example 1.6: Parametrizing the circle

The circle C is described by all the points (x, y) € R? such that
x?+ y2 =1.

Therefore if we want to find a curve
Y=0r)
which parametrizes C, this has to satisfy
n@? +y@? =1

for all t € (a,b).
How to find such curve? We could proceed as in the previous example, and set

n@ =t.

Then (1.7) implies
@) =V1-1t%,

from which we also deduce that
-1<t<1

14

(17)
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are the only admissible values of t. However this curve does not represent the full circle C, but
only the upper half, as seen in the plot below.
Simlarly, another solution to (1.7) would be y with

n®=t, yp@=-1-+,

for t € [—1,1]. However this choice does not parametrize the full circle C either, but only the
bottom half, as seen in the plot below.
How to represent the whole circle? Recall the trigonometric identity

cos(t)? + sin(t)? = 1
for all t € R. This suggests to choose y as
1) :=cos(t),  y(t) := sin(t)

for t € [0,27). This way y satisfies (1.7), and actually parametrizes C, as shown below.
Note the following:

« If we had chosen t € [0, 4] then y would have covered C twice.

« If we had chosen t € [0, 7], then y would have covered the upper semi-circle

« If we had chosen t € [r, 27], then y would have covered the lower semi-circle

« Similarly, we can choose t € [/6,7/2] to cover just a portion of C, as shown below.

1.00 A

0.75 A

0.50 A

0.25 A

0.00

-1.0 -0.5 0.0 0.5 1.0

Figure 1.5.: Upper semi-circle
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Figure 1.6.: Lower semi-circle
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Figure 1.8.: Plotting a portion of C

Finally we are also able to give a mathematical description of the 3D Helix.
Example 1.7: Parametrizing the helix

The Helix plotted above can be parametrized by
Y : (—00,00) — R3

defined by
y1() = cos(t), y,(t) = sin(t), y3(t) =1t.

The above equations are in line with our intuition: the helix can be drawn by tracing a circle
while at the same time lifting the pencil.

1.3. Smooth curves

Let us recall the definition of parametrized curve.

17



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Definition 1.8: Parametrized curve
A parametrized curve in R” is a function

y : (a,b) > R".
where

(a,b)={teR : a<t<b},

with
—o<a<b< oo,

The components of y(¢) € R" are denoted by

r® =1, ... 0),

where the components are functions
i (@b) >R,

foralli=1,...,n.

J

As we already mentioned, the aim of the course is to study curves by differentiating them. Let us
see what that means for curves.

Definition 1.9: Smooth functions

A scalar function f : (a,b) > Ris called smooth if the derivative

arf
at"

exists for alln > 1 and ¢ € (a,b).

We will denote the first, second and third derivatives of f as follows:

af . d*f . d&f
= —, f::—z, f:—3
dt dt dt

f:

18



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Example 1.10

The function f(x) = x* is smooth, with

df d*f

— =4x’, — =12x?
dt R X
a3 d*
—f:24x, —f=24,
at’ dt*

df

o =0 forall n>5.

Other examples smooth functions are polynomials, as well as

f(t) = cos(t), f(t)=sin(t), f(t) =¢.

Definition 1.11

Lety : (a,b) - R" with
Y®) = @10, ....y,@®)

be a parametrized curve. We say that y is smooth if the components
Y: : (ab) >R

are smooth for alli = 1,...,n. The derivatives of y are

dy (dkh dkyn)
dtk  \atk T qrk

for all k € IN. As a shorthand, we will denote the first derivative of y as

(|
Vi di > di

and the second by

&y (d*n dy,
Vo= “ e ae )

J

In Figure 1.9 we skectch a smooth and a non-smooth curve. Notice that the curve on the right is
smooth, except for the point x.

We will work under the following assumption.

19
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v r

N/

ShooTH & Now- sheeTH ¢~
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THE PomT X

Figure 1.9.: Example of smooth and non-smooth curves

Assumption

All the parametrized curves in this lecture notes are assumed to be smooth.

Example 1.12

The circle
y(@) = (cos(t), sin(t))

is a smooth parametrized curve, since both cos(t) and sin(¢) are smooth functions. We have
¥ = (= sin(t), cos(®)).
For example the derivative of y at the point (0, 1) is given by
y(r/2) = (=sin(r/2), cos(n/2)) = (~1,0).

The plot of the circle and the derivative vector at (—1,0) can be seen in Figure 1.10.

1.4. Tangent vectors

Looking at Figure 1.10, it seems like the vector
y(z/2) = (=1,0)
is tangent to the circle at the point
r(z/2)=(0.1).
Is this a coincidence? Not that all. Let us look at the definition of derivative at a point:

rt+9)-y®)

o) = 1
140) lim 5

20
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Figure 1.10.: Plot of Circle and Tangent Vector at (0, 1)
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If we just look at the quantity
y(+6)—y®
)
for non-negative 3, we see that this vector is parallel to the chord joining y(¢) to y(t + ), as shown
in Figure 1.11 below. As § — 0, the length of the chord tends to zero. However the direction of the
chord becomes parallel to that of the tangent vector of the curve y at y(t). Since

5) —
y(t+ ; 140) L

as § — 0, we see that y(t) is parallel to the tangent of y at y(¢), as showin in Figure 1.11.

Figure 1.11.: Approximating the tangent vector
The above remark motivates the following definition.
Definition 1.13: Tangent vector
Lety : (a,b) » R" be a parametrized curve. The tangent vector to y at the point y(t) is defined

as

o

Example 1.14: Tangent vector to helix

The helix is described by the parametric curve
Yy :R—>R3
with
Y1(®) = cos(®), y,() =sin(®), y;@) =t
This is plotted in Figure 1.12 below. The tangent vector at point y(¢) is given by
y(®) = (= sin(?), cos(t), 1).

For example in Figure 1.12 we plot the tangent vector at time t = /2, that is,

y(r/2) =(-1,0,1).

22
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The above looks very similar to the tangent vector to the circle. Except that there is a z com-
ponent, and that component is constant and equal to 1. Intuitively this means that the helix is
lifting from the plane xy with constant speed with respect to the z-axis. We will soon give a
name to this concept.

-1.0

-0.5 —05

0.5 _
1.0 1.0

0.0

Figure 1.12.: Plot of Helix with tangent vector

Remark 1.15: Avoiding potential ambiguities

Sometimes it will happen that a curve self intersects, meaning that there are two time instants
t; and t, and a point p € R" such that

p=yt) =y().

In this case there is ambiguity in talking about the tangent vector at the point p: in principle
there are two tangent vectors y(t;) and y(t,), and it could happen that

yt) #=y(t).

Thus the concept of tangent at p is not well-defined. We need then to be more precise and talk
about tangent at a certain time-step ¢, rather than at some point p. We however do not amend
Definition 1.13, but you should keep this potential ambiguity in mind.

23
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Example 1.16: The Lemniscate, a self intersecting curve

For example consider y : [0,27] — R? defined as
Y1(t) = sin(t), y,(t) = sin(t) cos(t).

Such curve is called Lemniscate, see Wikipedia page, and is plotted in Figure 1.13 below. The
orgin (0,0) is a point of self-intersection, meaning that

y(0) =y(r) = (0,0).
The tangent vector at point y(t) is given by
7(®) = (cos(t), cos?() — sin®(t))
and therefore we have two tangents at (0, 0), that is,

y(0)=(@1,1), y(n) = (=1, 1).

1.5. Length of curves

For a vector v € R* with components

its length is defined by

The above is just an extension of the Pythagoras theorem to R?, and the length of v is computed
from the origin.

Figure 1.14.: Interpretation of |v| in R?

24
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Figure 1.13.: The Lemniscate curve
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If we have a second vector u € R, then the quantity

measures the length of the difference between u and v.

e —g-1l

Figure 1.15.: Interpretation of |u — v| in R?

We would like to define the concept of length of a curve. Intuitively, one could proceed by approx-
imation as in the figure below.

¥k,)

rit,) 15(6,) - 5 @)

Tl

¥ly)

Figure 1.16.: Approximating the length of y

In formulae, this means choosing some time instants
£y, - sty € (a,b).

The length of the segment connecting y(#;_;) to y() is given by

ly(&) —y@-1l -
Thus
Ly) = Y ly®) -yl - (1.8)
i=1
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Intuitively, if we increase the number of points f;, the quantity on the RHS of (1.8) should approximate
L(y) better and better. Let us make this precise.

Definition 1.17: Partition
A partition & of the interval [a, b] is a vector of time instants
P =(ty,...,ty) € [a,b]™!

with
h=a<th <..<t, 1 <t,=b.

If & is a partition of [a, b], we define its maximum length as

P| := max |t; —t;_4].
1] 5= max i~

Note that | 9| measures how fine the partition 2 is.

Definition 1.18: Length of approximating polygonal curve

Supposey : (a,b) — R" is a parametrized curve and & a partition of [a, b]. We define the length
of the polygonal curve connecting the points

Y(tO)’ y(tl)’ A Y(tm)
as

Ly, P) = Y ly@) —yG)l -
i=1

J

If | 2| becomes smaller and smaller, that is, the partition & is finer and finer, it is reasonable to say
that
Ly, %)

is approximating the length of y. We take this as definition of length.
Definition 1.19: Rectifiable curve and length

Supposey : (a,b) > R" is a parametrized curve. We say that y is rectifiable if the limit

Ly) = lim Ly,
2] b . )

exists finite. In such case we call L(y) the length of y.

This definition definitely corresponds to our geometrical intuition of length of a curve.
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Question 1.20

How do we use such definition in practice to compute the length of a given curve y?

Thankfully, when y is smooth, the length L(y) can be characterized in terms of y. Indeed, when § is
small, then the quantity
ly( +8) —y(®I

is approximating the length of y between y(¢) and y(t+8). Multiplying and dividing by § we obtain

Iyt +3) —y®I
é

which for small § is close to

ly@®1 6.

We can now divide the time interval (a,b) in steps &y, ..., t, with |t; — ;,_;| < § and obtain

)~y il = XYl
It — i1

= ly@®)l 6

It = tial

since ¢ is small. Therefore

Ly) = ). Iy@) -yl = Y, ly®)l 6.
i=1 i=1

1

The RHS is a Riemann sum, therefore
b
1)~ | o dr.
a

The above argument can be made rigorous, as we see in the next theorem.

¥(b)

b(ﬁi—s)
15

Vi) L) s &I FEas

x (1w e
Figure 1.17.: Approximating L(y) viay
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Theorem 1.21: Characterizing the length of y

Assumey : [a,b] > R" is a parametrized curve, with [a, b] bounded. Then y is rectifiable and

b
L) =j WOl di (19)

Proof

Step 1. The integral in (1.9) is bounded.
Since y is smooth, in particular y is continuous. Since [a, b] is bounded, then y is bounded, that
is
sup [y@®)| <C
tela,b]

for some constant C > 0. Therefore

b
j WOl dt < Cb - a) < oo.

Step 2. Writing (1.9) as limit.
Recalling that
Ly)= lim L(y,%),
Y 1]—0 Y
whenever the limit is finite, in order to show (1.9) we then need to prove

b
Ly. ) - [ WOl dr

as || — 0. Showing the above means proving that: for every ¢ > 0 there exists a > 0 such
that, if & is a partition of [a, b] such that |2| < &, then

b

j WOl dt - Ly, P)| < e (1.10)

Step 3. First estimate in (1.10).
This first estimate is easy, and only relies on the Fundamental Theorem of Calculus. To be more

precise, we will show that each polygonal has shorter length than f: ly@®)| dt. To this end, take
an arbitrary partition & = (4, ..., t,) of [a, b]. Then for each i = 1,...,m we have

I

< j Lol d

lig

ly @) =yl =

ki
J y(@)dt
ti_g

where we used the Fundamental Theorem of calculus, and usual integral properties. Therefore
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by definition

Ly, ?) = Y. ly(t) -y (o)l
i=1

m
<] wola
i=1 Jti-1

b

=J W@l dr.

We have then shown )

Ly, ) sj Ol dr (111)

a

for all partitions .
Step 4. Second estimate in (1.10).
The second estimate is more delicate. We need to carefully construct a polygonal so that its

length is close to [ || dt. This will be possible by uniform continuity of y. Indeed, note that y
is continuous on the compact set [a, b]. Therefore it is uniformly continuous by the Heine-Borel
Theorem. Fix ¢ > 0. By uniform continuity of y there exists § > 0 such that

=<8 = @O -yl < 7. (112)
Let & = (4, ..., ;) be a partition of [a, b] with | 2| < . Recall that

|21 = max [t —t4].
i=1,...m

Therefore the condition || < § implies
It —t4] <8 (113)

foreachi=1,...,m. Foralli=1,...,mand s € [t,_q,%]| we have

L

y(t) — i) = j v di

tig
t;

- L 7(5) + () 7)) dt
i—1 t’_
= (6~ () + L (O - p(s)dt

The idea now is that the integral on the RHS can be made arbitrarily small by choosing a suf-
ficiently fine partition, thanks to the uniform continuity of y on the compact interval [a, b]. In
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details, taking the absolute value of the above equation yields

ki
ly () —y @G-l = |6 — i)y (s) +J (@) —y(s)dt (114)
tioy
We can now use the reverse triangle inequality
[l = Iyl < I =l
for all x, y € R?, which implies
lx + vl = lx = =) = Ix] - Iyl
for all x,y € R*. Applying the above to (1.14) we get
ki
ly () =y G-l = @& — ) [y (9] - J (@ —y(s))dt (115)
lig
By standard properties of integral we also have
i 4
| go-sonal < | wo-yola.
li—y lioy
so that (1.15) implies
b
ly (&) —y@i—Dl = @ — ti-1) ()l - J ly(@®) =y ()l dt. (1.16)
tig

Since t, s € [t;,_1, 1], then
lt—sl <l —tiql<6

where the last inequality follows by (1.13). Thus by uniform continuity (1.12) we get
®) - Ol < 57—
—a

We can therefore further estimate (1.16) and obtain

ki
ly (&) =yl = @ — ti-1) [y ()l - L ly(®) —y(s)l dt
£

dt.
b—a

> (= ti-) [y (Ol = (& = t-1)
Dividing the above by t; — t;_; we get

ly (@) — ¥l

5 £
> -
e 2ol
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Integrating the above over s in the interval [¢;_1,#;] we get

1

@) -y G0l > | Ol ds— ).

tig

Summing overi=1,...,m we get

b
L(P.y) zj W)l ds— e (117)

since
m

Dlti—ti)=tn—tg=b—a.
i=1

Conclusion.

Putting together (1.11) and (1.17) we get

b b
j Wl ds — e < L(P.p) < [ I ds

which implies (1.10), concluding the proof.

Thanks to the above theorem we have now a way to compute L(y). Let us check that we have given
a meaningful definition of length by computing L(y) on known examples.

Example 1.22: Length of the Circle
Question. Compute the length of the circle of radius R

y(@®) = (xy + Rcos(t), yp + Rsin(2),0).
Solution. We compute

y(@®) = (—Rsin(¢), R cos(t), 0)

lr Ol = V2@ + V() = R

2

2
Ly) = L ly@®)| dt = L Rdt = 2nR.
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Example 1.23: Length of the Helix
Question. Compute the length of the Helix
y(@®) = (Rcos(t), Rsin(t), Ht), t€(0,2x).
Solution. We compute
¥(®) = (<Rsin(0), Reos(®, H)  [§(®)] = VR + H?
Ly) = j:” W@l du = 2R + H?

Note that if H > 0 then

27\ R? + H2 > 27R,

showing that the length of one full turn of the Helix is larger than the length of a disk. This might
seem counterintuitive as it looks like one turn of the Helix can be superimposed to the circle by
squashing the Helix on the plane. However this squashing action clearly causes a bit of shrinkage,
as shown in the above estimate.

1.6. Arc-length

We have just shown in Theorem 1.21 that the length of a smooth curvey : [a,b] —» R" with [a,b]
bounded is given by

b
1) = | o dr.
a
Using this formula, we introduce the notion of length of a portion of y.

Definition 1.24: Arc-Length of a curve

The arc-length alongy : (a,b) — R® from t; to t is

t
st @b R, s()= L i )ld.

33



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

r

©
S = S (ko) ide
o

rle)

Figure 1.18.: Arc-length of y starting at y(t;)

Remark 1.25

A few remarks:
« Arc-length is well-defined

Indeed, y is smooth, and so y is continuous. WLOG assume ¢ > ;. Then
t
s = [ W@ dr < 0= 10) max O] <.
ty Te[to’t]

« We always have
S(to) =0.
« We have
t>ty = s(t)>0
and
t<ty = s()<0.
« Choosing a different starting point changes the arc-length by a constant:

For example define § as the arc-length starting from £,
t
50) := | 150l dr.
b
Then by the properties of integral

t
o) = j o)l dr

t

f
_ L @l de + | Iyl de

ty

fy
- L @l dr + 5.
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Hence

with .
fy
ci= | W@l ar.
)
Note that c is the arc-length of y between the starting points y(t,) and y(%).

« The arc-length is a differentiable function, with

t
)= 5 | 1ol dr = o

Since y is continuous, the above follows by the Fundamental Theorem of Cal-
culus.

Example 1.26: Arc-length of Circle
Question. Consider the circle of radius R, parametrized by
y(@®) = (Rcos(t), Rsin(t),0).

Compute the arc-length function of y.
Solution. We have
y(@®) = (=Rsin(t), Rcos(2),0),  [y@®)] = R.

Therefore, for any fixed t;, we have

t t
)= | ol dr = [ Rdr ==,

In particular we see that § = R is constant.

Example 1.27: Arc-length of Logarithmic Spiral

Question. Compute the arc-length of

MO (ek cos(t), ! sin(t), 0).
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Solution. The arc-length starting from f; is

y@®) = e (k cos(t) — sin(?), k sin(t) + cos(t), 0)
PO = (k2 + 1)t

/ 2
kk+ 1(ekt _ ekto)_

t
s = L (Ol dr =

—— Log Spiral
15 A

10 -

_10 .

_15 -

_20 .

-15 -10 =5 0 5 10 15 20 25

Figure 1.19.: Plot of Logarithmic Spiral with k = 0.1
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1.7. Scalar product in R”

Let us start by defining the scalar product in R?.

Definition 1.28: Scalar product in R?

Let u, v € R? and denote by 6 € [0, 7] the angle formed by u and v. The scalar product between
u and v is defined by

u-v = [uf|v|cos(9).

Figure 1.20.: Vectors u and v in R? forming angle 0

Remark 1.29

1. Two vectors in the plane form two complementary angles. To avoid ambiguity, we choose
the smallest of the two angles. This is enforced in Definition 1.28 by requiring that 6 €
[0, z].

2. The scalar product is maximized for 6 = 0, for which we have
u-v = [uf|v] cos(6) = [ul[v].
3. It is instead minimized for 6 = x, for which
u - v = [uf|v] cos(6) = —[ullv].
4. For each u,v € R? the Cauchy-Schwarz inequality holds:
—[ulivl <w-v < |uflv]

The above is immediate from the observation that | cos(0)| < 1.
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5. The observations in points 2-3 imply that the Cauchy-Schwarz inequality is sharp, in the
sense that both inequalities are attained.

6. Usually the Cauchy-Schwarz inequality is written in the equivalent form

- v] < fullv]

7. By the above observations it follows that equality holds if and only if u and v are parallel.

Definition 1.30: Orthogonal vectors

Let u,v € R?. We say that u and v are orthogonal if

u-v=_0

Proposition 1.31: Bilinearity and symmetry of scalar product

Letu,v,w € R? and 1 € R. Then
« Symmetry: It holds

« Bilinearity: They hold
Aa-v)=(Au)-v=u-(1v),

u-(v+tw)=u-v+u-w.

J

The above proposition is saying that the scalar product is bilinear and symmetric. We leave the
proof to the reader: only the condition

u-(v+w)=u-v+u-w.
is non-trivial, due to the presence of 3 vectors.

Proposition 1.32: Scalar products written wrt euclidean coordinates

Denote by
e; =(1,0), e;=(0,1)

the euclidean basis of R2. Let u, v € R? and denote by
u = (ug,uy) = ujeq + ugey

v =, %) = vie; + e,
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their coordinates with respect to ey, e5. Then

u-V=u1v2+u2v2.

Proof

Note that
el'elzl, 82‘62:1, el'e2:e2~e1:0.

Using the bilinearity of scalar product we have

u-v=(ue; +uyey) - (vieg +vre;)
= uivieq - €4 + Uivpeq - €9 + Usvies - €1 + UyV€o - €9

= v + Upvy .
The above proposition provides a natural way to define a scalar product in R".
Definition 1.33: Scalar product in R”
Let u, v € R" and denote their coordinates by

u= (.., tty), V=0, W)

We define the scalar product between u and v by

n
u-v ::Zuiv,-.
i=1

The scalar product in R" is still bilinear and symmetric, as detailed in the following proposition:
Proposition 1.34: Bilinearity and symmetry of scalar product in R*
Letu,v,w € R" and A € R. Then

« Symmetry: It holds

« Bilinearity: They hold
Au-v)=Au)-v=u-(1v),

u-(v+w)=u-v+u-w.

J

The proof of the above proposition is an easy check, and is left to the reader for exercise. We can
now define orthogonal vectors in R".
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Definition 1.35
Let u,v € R". We say that u and v are orthogonal if

u-v=0.

Proposition 1.36: Differentiating the scalar product
Lety,n : (a,b) — R" be parametrized curves. The scalar map
y-n:(ab)—>R

is smooth, and
i(}'"l) =y-n+y-n
dt

for all t € (a,b).

Proof

Denote by
Y =0 =0 n)
the coordinates of y and 5. Clearly the map

n
Loy m= )y
i=1

is smooth, being sum and product of smooth functions.
Concerning the formula, by definition of scalar product and linearity of the derivative we have

(&)

(i)

| =

d —_
Z¥m=

9

Il
™M=
&.lm_

Il
—_

t

M=

4 Yini + Yithi

1

=y-n+y-n,

Il
—_

where in the second to last equality we used the product rule of differentiation.
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1.8. Speed of a curve

Given a curve y we defined the tangent vector at y(¢) to be

y@®).

The tangent vector measures the change of direction of a curve. Therefore the magnitude of y can
be interpreted as the rate of change, i.e. speed, of the curve.

Definition 1.37: Speed of a curve

Lety : (a,b) > R" be a curve. We define the speed of y at the point y(¢) by

ly@I -

Remark 1.38

The derivative of the arc-length s gives the speed of y:

t
xocﬁmmw::smqwm

Definition 1.39: Unit-speed curve
Acurvey : (a,b) — R? is unit-speed if

ly®Ol=1, vie(ab).

J

The reason why we introduce unit-speed curves is because they make calculations easy. A crucial
identity which allows to simplify calculations for unit-speed curves is given in the next proposi-
tion.

Proposition 1.40

Lety : (a,b) > R" be a unit-speed curve. Then

Yy v=0, vte(ab).

Proof

Let us consider the identity

HORTOEDWAHOR 1Ol (118)

i=1
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Since y is unit-speed we have

YOI =1 vie(ab).

and therefore p
(o) =0 vie@b). (119)

We can differentiate the LHS of (1.18) to get
G D=7 v+y-y=277. (1:20)

where we used Proposition 1.36 and symmetry of the scalar product. Differentiating (1.18) and
using (1.19)-(1.20) we conclude

2y -y =0 Vvte(ab),

which gives the thesis.

Remark 1.41

Proposition 1.40 is saying that if y is unit-speed, then its tangent vector y is always orthogonal
to the second derivative y. This information will be used in the next Chapter to define the
Frenet Frame: an orthonormal basis of vectors which moves smoothly along the curve. The
Frenet frame will be crucial for studing local behavior of curves.

¥-&=o0

Figure 1.21.: If y is unit-speed then y and y are orthogonal

1.9. Reparametrization

As we have observed in the Examples of Chapter 1, there is in general no unique way to parametrize
a curve. However we would like to understand when two parametrizations are related. In other
words, we want to clarify the concept of equivalence of two parametrizations. First we need some

notation:
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Notation

1. Let X,Y, Z be sets and
f: X->Y, g:Y>Z

two maps. The composition of f and g is the map
gef: X=>2Z, (g°f)x) :=g(f(x)
2. The identity map on X is denoted by
Idy: X - X, Idy(x) :=x, VxeX.

The identity in R will just be denoted by Id.

3. The function f : X — Y is invertible if there exists a function g : Y — X such that

gef=Ildx, fog=Idy,

The map g, if it exists, is called the inverse of f and is denoted by
g:=f"

4. It is elementary to check that the inverse is unique if it exists.

Definition 1.42: Diffeomorphism

Let ¢ : (a,b) — (a, b). We say that ¢ is a diffeomorphism if the following conditions are
satisfied:

1. ¢ is invertible: There exists a map
¢+ @b) - (ab)

such that
g lop=god !l =1d,
where Id : R — R is the identity map on R, that is,

Id(t) =t, VteR.

2. ¢ is smooth,

3. ¢~ !is smooth.
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Definition 1.43: Reparametrization

Lety : (a,b) > R3. A reparametrization of y is a curve § : (a,b) — R® such that

&) =y(®), vte(ab),

for ¢ : (a,b) — (a,b) diffeomorphism. We call both ¢ and ¢! reparametrization maps.

Remark 1.44

Since ¢ is invertible with smooth inverse, y is a reparametrization of y

y® =y@@ O =y(¢'®). Vie(ab).

Remark 1.45

1. Given a parametrized curve y, this identifies a 1D shape I' ¢ R” defined by

[i={y@®): te(ab).
I is called the support of y.
2. A reparametrization y is just an equivalent way to describe I'.

3. For y and y to be reparametrizations of each other, there must exist a smooth rule
¢ (the diffeomorphism) to switch from one to another, according to formula (?@egq-
reparametrization). This concept is sketched in Figure 1.22.

Figure 1.22.: Sketch of 1D shape I" parametrized by y and y. We can switch parametrization by means
of the diffeomorphism ¢.
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Example 1.46: Change of orientation

The map ¢ : (@ b) — (a,b) defined by

P@t) :=—t
is a diffeomoprhism. The inverse of ¢ is given by ¢~ : (a,b) — (&, b) defined by
A OESS

Note that ¢ can be used to reverse the orientation of a curve.

Example 1.47: Reversing orientation of circle

Consider the unit circle parametrized as usual by y : [0,27] — R? defined as
y(@®) := (cos(?),sin(?)).
To reverse the orientation we can reparametrize y by using the diffeomorphism
o) :=—t.

This way we obtainy :=y ¢ : [0,27] — [0,27],

y@®) =y($®)
= (cos(—t), sin(—t))
= (cos(t), — sin(t)),

where in the last identity we used the properties of cos and sin. Notice that in this way, for
example,

y(r/2)=(0.1), y(r/2)=(0,-1).

Figure 1.23.: Unit circle with usual parametrization y, and with reversed orientation y

O
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Example 1.48: Change of speed

Let k > 0. The map ¢ : (a,b) — (a,b) defined by
Pt) ==kt
is a diffeomoprhism. The inverse of ¢ is given by ¢~ : (a,b) — (&, b) defined by
1y =L.
50 =7
Note that ¢ can be used to change the speed of a curve:

« If k > 1 the speed increases ,
« If 0 < k < 1 the speed decreases.

Example 1.49: Doubling the speed of Lemniscate

Recall the Lemniscate
y(@) := (sin(¢), sin(¢) cos(t)), t€][0,2x].
We can double the speed of the Lemniscate by using the Using the diffeomorphism
o) :=2t.
This way we obtainy :=y ¢ : [0,7] — [0,27] with
y(@) = y($()) = (sin(2t), sin(2t) cos(2t)) .

In this case we have that

(®) = 2y((1)).

The above follows by chain rule. Indeed, ¢ = 2, so that

P = 4 660N = Jren) = 560,
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Figure 1.24.: Lemniscate curve

1.10. Unit-speed reparametrization

For a curve y we wish to find a reparametrization y which is unit-speed:
lrl=1, vte(ab).

We will see that this is possible if and only if the curve y is regular, in the sense of Definition 1.50
below.

Definition 1.50: Regular curve

Lety : (a,b) > R" be a parametrized curve. We say that:

1. y(t) is a regular point if

y({o) = 0.
2. A point y(%) is singular if it is not regular.
3. y is regular if every point of y is regular, that is,

ly@®l=0, vte(ab).

J

Note that when y(#;) = 0, this means the curve is stopping at time £,. Before making an example, let
us prove a useful lemma about diffeomorphisms.

Lemma 1.51
Let¢ : (a,b) - (a, b) be a diffeomorphism. Then

dt)#0 Vie(ab).
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Proof
We know that ¢ is smooth with smooth inverse

yi=¢7': @b) > (ab).
In particular it holds

Y(pt) =t, Vte(ab).
We can differentiate both sides of the above expression to get

d
SWGO) = 1. (121

We can differentiate the LHS by chain rule

£ Y@O) = JHO) 0.

From (1.21) we then get . .
Yge)g) =1, vte(ab).

As the RHS is non-zero, we must have that both the elements in the LHS product are non-zero.
In particular we conclude

ft) =0, Vte(ab).
Example 1.52: A curve with one singular point
Consider the parabola
F:={xy)eR?: y=x% -1<x<1}.
Both curvesy,p : (-1,1) — R?
y® =19, 0@ =)

are parametrizations of I'. However 5 is not a reparametrization of y.

Indeed, suppose by contradiction there exist a diffeomorphism

¢: (-1,1) > (-1,1)

such that
n®) =y(®), vte(-1,1).

Substituting the definitions of y and  we obtain

(#3,1%) = (p(1), p()?), Vte(-1,1),
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which forces
pt) =13, vte(-1,1).
Note that f is invertible in (—1, 1) with inverse

) =x.

However ¢! is not smooth at t = 0, and therefore ¢ is not a diffeomorphism.
Alternatively we could have just noticed that

poy =3 —  H0)=0,
and therefore ¢ cannot be a diffeomorphism due to Lemma 1.51.
To understand what is going on with the two parametrizations, let us look at the derivatives:
y®O =(121), A7) =32 61%).
We notice a difference:

« y is a regular parametrization, as the first component of y is non-zero and so y # 0.
« nis regular if and only if t # 0.

If we animate the plots of the above parametrizations we see that:
« The point y(¢) moves with constant horizontal speed

« The point 5(¢) is decelerating for ¢ < 0, it stops at ¢ = 0, and then accelerates again for
> 0.

Figure 1.25.: Parabola T’

The previous example shows that, altough y and 7 describe the same parabola I, they are not
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reparametrizations of each other. We have seen that this is due to the fact that y is regular, while 5
is not. Indeed we can prove that regularity is invariant by reparametrization.

Proposition 1.53: Regularity is invariant for reparametrization
Lety : (a,b) —» R" be a parametrized curve and suppose that y is regular, that is,
y@® =0, vte(ab).

Then every reparametrization of y is also regular.

Proof

Lety : (ab) - R" be a reparametrization of y. Then there exist ¢ : (&,b) — (a,b) diffeomor-
phism such that )
YO =y(®), vte(@b).

By the chain rule we have

r(®) = % ¥($(®) = P($)().
As ¢ is a diffeomorphism, by Lemma 1.51 it holds
gy =0, vte@b),

Therefore .
YO0 <= yl@®)=0. (1.22)

Since y is regular we infer )
y(@@®) =0, vie(@b).

From (1.22) we conclude that y is regular.

Example 1.54
Let us go back to the parabola
F:={(xy)eR?: y=x% -1<x<1},
with the two parametrizations y,n : [~1,1] — R? with
y® =19, 0@ =)

We have that
vy =(,2t), nt) =Gt 6t).

Therefore
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« y is a regular parametrization,
« n(t) is regular only for ¢ # 0.

Proposition 1.53 implies that 7 is not a reparametrization of y.

We now define unit-speed reparametrizations:

Definition 1.55: Unit-speed reparametrization

Lety : (a,b) — R". A unit-speed reparametrization of y is a reparametrization y : (a,b) —
R™ which is unit-speed, that is, . }
¥ =1, vte(ab)

The next Theorem states that a curve is regular if and only if it has a unit-speed reparametrization.
For the proof, it is crucial to recall the definition of arc-length of a curve y : (a,b) — R", which is
given by

t
) = | el dr.
f
for some arbitrary t; € (a,b) fixed. Notice that

80 = ly@®l -

Therefore
y regular < () #0.

In this case the arc-length s is a diffeomorphism by the Inverse Function Theorem. As it turns out,
all the unit-speed reparametrizations of y are of the form

Y=v°V, ¢:=is‘1+c

The above statements will be proved in Theorem 1.56 and Theorem 1.57 below.
Theorem 1.56: Existence of unit-speed reparametrization
Let y be a curve. They are equivalent:

1. y is regular,
2. y admits unit-speed reparametrization.

Proof
Step 1. Direct implication. Assumey : (a,b) - R" is regular, that is,
y@® =0, vte(ab).
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Lets : (a,b) > R be the arc-length of y starting at any point #, € (a,b). By the Fundamental
Theorem of Calculus we have

NOR 110] (1.23)

so that
s@) >0, Vvte(ab).

The above condition and the Inverse Function Theorem guarantee the existence of a smooth
inverse

st (@b) > (ab)
for some @ < b. Define the reparametrization map ¢ as
§i=s"
and the corresponding reparametrization y of y as
V@b R, yi=yed.
We claim that y is unit-speed. Indeed, by definition
Vi=yed = y=yedl=yes,

or in other words
y(®) =y(@®), vte(ab).
By chain rule

y(®) = y(s()) () = y(s)) Iy @)

where in the last equality we used (1.23). Taking the absolute value of the above yields

@l = @) @I - (1.24)

Since y is regular, we have
ly@®l =0, vte(ab).

Therefore we can divide (1.24) by |y(#)| and obtain
@) =1, vte(ab).
By invertibility of s, the above holds if and only if
lF®ol=1, vte@b),

showing that y is a unit-speed reparametrization of y.
Step 2. Reverse implication. Suppose there exists a unit-speed reparametrization of y denoted by

7:@h-R', y=yed
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By chain rule

¥ = (1) §(t) .

Taking the norm

[F O] = ly (@)l @)l

Since y is unit-speed we obtain
PO 190 =1, vie(@b). (1.25)
Hence none of terms on the LHS can be zero, meaning that
y@®) =0, Vvte(@b).

As ¢ is invertible, we also have
y@® =0, vte(ab),

proving that y is regular.

The proof of Theorem 1.56 told us that, if y is regular, then

5 _ -1

Y=Ye°s
is a unit-speed reparametrization of y. In the next proposition we show that the arc-length s is
essentially the only unit-speed reparametrization of a regular curve.

Theorem 1.57: Characterization of unit-speed reparametrizations

Lety : (a,b) > R" be a regular curve. Lety : (4,b) — R" be a reparametrization of y, that is,
y(®) =y($@), Vvie(ab)
for some diffeomorphism ¢ : (a,b) — (a, b). We have
1. If'y is unit-speed, there exists ¢ € R such that

¢@) = +s@t) +c, Vte(ab). (1.26)

2. If ¢ is given by (1.26), then y is unit-speed.

Proof

Step 1. First Point. Assume y is a unit-speed reparametrization of y: such y exists by Theorem
1.56, since y is assumed to be regular. This means there exists a reparametrization map ¢ such
that

y(@®) =y(p®), Vvte(ab).
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Differentiating the above we get ) .
y(®) =y($(®) $@0).

Taking the norms we then have

Y@l = Jr(¢1) )
= [r(@)| 16
=g,

where in the last equality we used that y is unit-speed, and so
Irl=1.
To summarize, so far we have proven that
YOl =16, vt e (ab).
Therefore . ,
s = [ @l dr= [ golar.
to to
By the Fundamental Theorem of Calculus we get
0 =g vte(ab) (1.27)

As ¢ is a diffeomorphism, by Lemma 1.51 we have

ft)=0 vte(ab).
By continuity of ¢ and the Mean Value Theorem we conclude that either

dt)>0 Vie(ab).

or
f) <0 Vte(ab).

Therefore (1.27) reads either .
s@)=¢@) vte(ab)
or '
5@) = —¢@) Vvte(ab)
Integrating the last two equations we get
¢=+s+c

for some ¢ € R, concluding the proof.
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Step 2. Second Point. Let y be reparametrization of y

y(®) =y(¢®), Vite(ab) (1.28)

with
¢ :=xs+c

for some ¢ € R. Differentiating (1.28) we get
y(®) = y(¢0)$()
= £ ($(0)s()
= 2y(¢() Iy @l

where in the last equality we used the Fundamental Theorem of Calculus and definition of s.
Taking the absolute values

ly @1 = ly (@l ly DI -
Since y is regular we have |y(t)| # 0. Hence we can divide by |y(#)| and obtain that

ly(@@)l =1, vie(ab).

As ¢ is invertible, the above is equivalent to

lFr®]=1 vie@b),

proving that y is a unit-speed reparametrization.

Definition 1.58: Arc-length reparametrization

Let y be regular. The arc-length reparametrization of y is

y=yest,

with s~! inverse of the arc-length function of y.

Notation: Arc-length parameter

In the following we will use the letters

1. s to denote the arc-length parameter
2. t to denote an arbitrary parameter

Accordingly the parameter of the arc-length function is ¢
s=s()
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and the parameter of the inverse / := s ! of the arc-length is s

¥ =90s)

As the arc-length function allows to transition from an arbitrary parameter ¢ to the arc-length
parameter s, the inverse of s will also be denoted by

t =t(s)

J

The above notation might seem confusing, but it actually makes a lot of sense in the long run, as cal-
culations get heavier. Accordingly we have the following notation for the arc-length reparametriza-
tion.

Notation: Arc-length reparametrization

Lety : (a,b) > R" be aregular curve and s : (a,b) — (a4, b) its arc-length function. Denote by
yi=yes
the arc-length reparametrization of y. According to the above notations, we will write
y@) =y(s®), te(ab)

and also

7(s) =y(@(s)), se(@b)

Example 1.59: Arc-length reparametrization of Circle
Question. The circle of radius R > 0 is

y(@®) = (xp + Rcos(t), yp + sin(t),0).

Reparametrize y by arc-length.
Solution. The arc-length of y starting from t, = 0 is

t
) = | 17l du= &
The inverse is t(s) = s/R. The arc-length reparametrization of y is

y(s) =y(@(s)) = (xo + Rcos(%),yo + sin(%),O) .
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Example 1.60: Reparametrization by arc-length
Question. Consider the curve
y(@) = (5cos(t), 5sin(¢), 12t) .

Prove that y is regular, and reparametrize it by arc-length.
Solution. y is regular because

y(@) = (—5sin(t), 5 cos(t), 12), ly®l=13+0

The arc-length of y starting from t;, = 0, and its inverse, are

t
0= | el di=13t, 9= .

The arc-length reparametrization of y is

Y(s) =y((s)) = (5 cos(%) ,55in<1—33> , %s) .

Warning

In some cases unit-speed reparametrization and arc-length are impossible to characterize in
terms of elementary functions. This can happen even for very simple curves.

Example 1.61: Twisted cubic
Define the twisted cubicy : R — R> by

y@®) = .15 8%).

Therefore
y@® =(,2t,3t2) %0,

meaning that y is regular. In particular

Iyl = V1 + 482 + 9%,
so that the arc-length of y is

t
s(t) = J V1 +472 +9r4dr. (1.29)
t

Since y is regular, by Theorem 1.57 we know that y admits the unit-speed reparametrization

}~l ::}Ios_l
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with s~! the inverse of the arc-length function. It can be shown that the integral at (1.29) cannot
be written in terms of elementary functions. Therefore there are not explicit formulas for s and
s71. As a consequence the unit-speed parametrization y cannot be computed explicitly in this
case.

Figure 1.26.: Plot of Twisted Cubic for t between -2 and 2

1.11. Closed curves

So far we have seen examples of:

1. Curves which are infinite, or unbounded. This is for example the parabola

y@® :=tt?), VteR,
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2. Curves which are finite and have end-points, such as the semi-circle
y(@®) := (cos(t),sin(t)), Vte[0,x],

3. Curves which form loops, such as the circle
y() :=(cos(t),sin(¥)), Vtel0,2n].

However there are examples of curves which are in between the above types.

Example 1.62

For example consider the curvey : R — R?
Y =@ -1, —t) vteR.

This curve has two main properties:

unbounded. A point which starts at y(1) = (0, 0) goes towards infinity.

is a closed loop starting at y(—1) = (0,0) and returnning at y(1) = (0, 0).

1. y is unbounded: If define y as the restriction of y to the time interval [1, o), then ¥ is

2. y contains a loop: If we define y as the restriction of y to the time interval [-1, 1], theny

Figure 1.27.: Plot of curve y(t) = (2 — 1,13 — 1) for t € [-2,2]

The aim of this section is to make precise the concept of looping curve. To do that, we need to

define periodic curves.
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Definition 1.63: Periodic curve
Lety : R — R" be a parametrized curve, and let T € R. We say that y is T-periodic if

y® =y@t+T), VvteR.

Note that every curve is 0-periodic. Therefore to define a closed curve we need to rule out this
case.

Definition 1.64: Closed curve
Lety : R — R" be a parametrized curve. We say that y is closed if they hold

1. y is not constant,
2. y is T-periodic for some T # 0.

Remark 1.65

The following basic observations hold:
1. If y is T-periodic, then a point moving around y returns to its starting point after time T.

This is exactly the definition of T-periodicity: let p = y(a) be the point in
question, then

ya+T)=y(a)=p
by periodicity. Thus y returns to p after time T.

2. Ify is T-periodic, then y is determined by its restriction to any interval of length |T|.

3. Conversely, suppose thaty : [a,b] > R" satisfies

dky dky
y(@) =y(®), ﬁ(a) = ﬁ(b) (1.30)

for all k € IN. Set
T:=b—a.

Then y can be extended to a smooth T-periodic curvey : R — R" defined by

¥ =y®. fmt-[=4o-0, veer.
b—a
The above means that y(¢) is defined by y(f) where { is the unique point in [a, b] such that
t=t+k(b-a)

with k € Z defined by

t—a
k:= ,
b—aJ

see figure below. In this way y is T-periodic and smooth.

60



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Note that assumption (1.30) must hold for all k € IN for the extension y to be
smooth. As a counterexample consider f(x) := x? for x € [~1,1]. As seen by
plotting f, it is clear that f cannot be extended to a smooth periodic function.
And indeed in this case (1.30) is violated, because

fCD=fW)=1, f(-D=-2=2=f"(1)
showing that the periodic extension is continuous but not differentiable.
4. Ify is T-periodic, then it is also (—T)-periodic.

Because if y is T-periodic then

r@O=y(-D+D=yt-1)

where in the first equality we used the trivial identity t = (¢t — T) + T, while in
the second equality we used T-periodicity of y.

5. If y is T-periodic for some T # 0, then it is T-periodic for some T > 0.
This is an immediate consequence of Point 4.
6. If'y is T-periodic then y is (kT)-periodic, for all k € Z.
By point 4 we can assume WLOG that k > 0. We proceed by induction:

« The statement is true for k = 1, since y is T-periodic.
« Assume now that y is kT-periodic. Then

Y@+ (k+ D7) =y((t+T) +kT)
=yt+7) (by kT-periodicity)
=y(@®) (by T-periodicity)
showing that y is (k + 1)T-periodic.
By induction we conclude that y is (kT)-periodic for all k € IN.

7. If'y is Tj-periodic and T,-periodic then y is (k;T; + kyT)-periodic, for all ki, k, € Z.
By Point 6 we know that y is k;T;-periodic and k,T,-periodic. Set T := k;T; +
kyT,. We have

Y@+ 1) =yt + kT1) + k)
=yt +KkT) (by kyT5-periodicity)
=y(@®) (by k; T;-periodicity)

showing that y is (k;T; + k,T5)-periodic.
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YT YN

a7 b t+T t+2T  t=1+3T

Figure 1.28.: The points ¢ € R and f € [a,b] from Point 3 in Remark 1.65. In this skecth t = f + 3T,
withT =b —a.

Definition 1.66

Let y be a closed curve. The period of y is the smallest T > 0 such that y is T-periodic, that is

Period of y :=min{T : T >0, y is T-periodic}.

We need to show that the above definition is well-posed, i.e., that there exists such smallest T > 0.

Proposition 1.67

Let y be a closed curve. Then there exists a smallest T > 0 such that y is T-periodic. In other
words, the set
S:={T: T>0, y is T-periodic}.

admits positive minumum
P=minS, P>0.

Proof
We make 2 observations about the set S:

« Sincey is closed, we have that y is T-periodic for some T # 0. By Remark 1.65 Point 5, we
know that T can be chosen such that T > 0. Therefore

S+0Q.
« S is bounded below by 0. This is by definition of S.
Thus, by the Axiom of Completeness of the Real Numbers, the set S admits an infimum
P =infS.
The proof is concluded if we show that:
P =minS.

Since P = inf S, the above is equivalent to showing that
Claim: P€ S
Proof of claim. To prove that P € S, by definition of S we need to show that

1. y is P-periodic
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2. P>0
Since P = inf S, there exists an infimizing sequence {T,;},cny C S such that
T,—>P.
WLOG we can choose T,, decreasing, that is, such that
Ty,>T,>...>T,>..>0.
Proof of Point 1. As T,, € S, by definition y is T,,-periodic. Then
y@®) =ylt+T,), VieR, neN.
Since T, — P, we can take the limit as n — oo and use the continuity of y to obtain

y@® =lim y¢+T,)=y(t+P), VteR,
n—oo

showing that y is P-periodic.
Proof of Point 2. We have shown that y is P-periodic. Therefore

PeS = P>0.

Suppose by contradiction that
P=0.

Fix t € R. Since T,, > 0, we can find unique
t,e[0,T,], k,eZ,

such that
t=t,+k,T,,,

as shown in the figure below. Indeed, it is sufficient to define
t
k, := [T—nl €Z, t,:=t—k,T,.

Since T,, € S, we know that y is T,,-periodic. Remark 1.65 Point 6 implies that y is also k,T,-
periodic, since k,, € Z. Thus

Y(t) = Y(tn + knTn) (deﬁnition of tn)
=y(t) (by k,,T,,-periodicity) .

Therefore
y® =yt), vneN. (1.31)
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Also notice that
0<t,<T,, VvVneN.

by construction. Since T,, — 0, by the Squeeze Theorem we conclude that
, >0 asn—>oo.
Using the continuity of y, we can pass to the limit in (1.31) and obtain
y(®) = lim y(t,) = y(0).
Since t € R was arbitrary, we have shown that

y@®) =y(0), VvteR.

Therefore y is constant. This is a contradiction, as we were assuming that y is closed, and, in
particular, not constant.

Figure 1.29.: For each ¢ € R there exist unique k, € Z and t, € [0,T,] such thatt =  + k,T,,. In this
skecth k, = 3.

Example 1.68: Examples of closed curves

1. The circumference

y(@®) = (cos(t),sin(t)), teR

is not costant and is 2z-periodic. Thus y is closed. The period of y is 27.

2. The Lemniscate
y(@) = (sin(t), sin(t) cos(t)), teR

is not costant and is 2zz-periodic. Thusy is closed. The period of y is 27.
3. Consider again the curve from Example 1.62
y@® :=(@*-1,t3-1t), teR.

According to our definition, y is not periodic. Therefore y is not closed. However there
is a point of self-intersection on y, namely

p :=1(0,0),
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for which we have

p=y(=1)=y(1).

The last curve in the above example motivates the definition of self-intersecting curve.
Definition 1.69: Self-intersecting curve

Lety : R - R" be a parametrized curve. We say thaty is self-intersecting at a point p on the
curve if

1. There exist two times a # b such that
p=y(@=y®),

2. If'y is closed with period T, then b — a is not an integer multiple of T.

Remark 1.70

The second condition in the above definition is important: if we did not require it, then any
closed curve would be self-intersecting. Indeed consider a closed curvey : R - R" and let T
be its period. Then by Point 6 in Remark 1.65 we have

y(@) =y(a+kT), VaceR keZ.

Therefore every point y(a) would be of self-intersection. Point 2 in the above definition rules
this example out. Indeed set b := a + kT, then

b—a=kT,

meaning that b — a is an integer multiple of T.

Example 1.71
Let us go back to the curve of Example 1.62, that is,
Y@ =@ -1,t3-1t), teR.

We have that y is not periodic, and therefore not closed. However p = (0,0) is a point of
self-intersection on y, since we have

p=y(1)=y().
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Example 1.72: The Limacon

Define the parametrized curvey : R — R? by
Y@ = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)), Vte€R.

Such curve, plotted bolow, is called limagon (French for snail). This curve is non constant and
2r-periodic. Therefore it is closed. The period of y is 27z. Moreover we have

y(a@) =y(b) = (0,0).

with a = 27/3 and b = 47 /3. Note that

4T 2w 21
b—a=—-—==
3 3 3

which is not an integer multiple of the period 2. Therefore y is self-intersecting at (0, 0).

Figure 1.30.: Limacon curve
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2. Curvature and Torsion

We have seen how to describe curves and reparametrized them. Now we want to look at local
properties of curves:

« How much does a curve twist?
« How much does a curve bend?

We will measure two quantities:

« Curvature: measures how much a curve y deviates from a straight line.
« Torsion: measures how much a curve y deviates from a plane.

For example a 2D spiral is curved, but still lies in a plane. Instead the Helix both deviates from a
straight line and pulls away from any fixed plane.

2.1. Curvature

We start with an informal discussion. Suppose y is a straight line
y@)=a+tv

with a,v € R3. Whichever the definition of curvature will be, we expect the curvature of a straight
line to be zero. The tangent vector to y is constant

y@® =v.

If we further derive the tangent vector, we obtain

y=0.
Thus y seems to be a good candidate for the definition of curvature of y at the point y(z).
Suppose now thaty : (a,b) — R? is a planar curve with unit-speed. We have proven that in this
case
7 =0,
that is, the vector y is orthogonal to the tangent y at all times. Now let n(t) be the unit vector

orthogonal to y(t) at the point y(¢). The amount that the curve y deviates from its tangent at y(#)
after time ¢ is

[y(t +1%) —y(®)] - n@), (2.1)
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Flt+b)
M)

rt) This 0l cfance
Ka-’vm L“
(rere) -50) )em

Figure 2.1.: Amount that y deviates from tangent is [y(t + ;) — y()] - n(¢)

as seen in Figure Figure 2.1.
Equation (2.1) is what we take as measure of curvature. Since
y®-y@) =0 and y(@)-n()=0,

we conclude that y(s) is parallel to n(¢). Since n(t) is a unit vector, there exists a scalar x(¢) such
that

7® =« n@).
Taking the norms of the above and recalling that |n| = 1 gives
k() = lF @I
Now, approximate y at t with its second order Taylor polynomial:

Yt +1) =y(®) + ¥ty + @t& +o(tg)

where the remainder o(t2) is such that

Therefore, discarding the remainder,

, y(©)
Y+ 1) ~y@® = ¥+ -2t
Multiplying by n(#) we get

Yt +1)—y®) -n@) = y) -n(t)y + wtg -

Recalling that
r® - n@) =0, y@) nl)=x@),
we then obtain
[yt +0) =y O] n(®) = 5 O
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Important
The amount that y deviates from a straight line is proportional to

k() = [y@l -

We take this as definition of curvature for a general unit-speed curve in R".

Definition 2.1: Curvature of unit-speed curve

The curvature of a unit-speed curvey : (a,b) — R® is

k() = [y @l -

Note that k(¢) is a function of the parameter ¢: The curvature of y can change from point to point.
Example 2.2: Curvature of the Circle
Question. Compute the curvature of the circle of radius R > 0

) = (x +Rcos<£> +sin<£) 0)

y 0 R B )’0 R 5 .
Solution. First, check that y is unit-speed:
¥® = (=sin(%).cos(5).0) . w@I=1
R R
Now, compute second derivative and curvature
.. 1 t 1 . ( t ) )
=\-5 el P =1.0),
v < RCOS(R> R™\R

KO = FOl = 7.

Question: How do we define curvature for arbitrary curves?

Answer: When y is regular we can use unit-speed reparametrizations to define «.

Definition 2.3: Curvature of regular curve

Lety : (a,b) » R3 be a regular curve and y be a unit-speed reparametrization of y, withy =ye¢
and ¢ : (a,b) — (a,b). Letk : (a,b) — R be the curvature of y. The curvature of y is

k(t) = k(1)) .

J

In order for the above definition to make sense, we need to check that the curvature x does not change
if we choose a different unit-speed reparametrization. This is shown in the next Proposition.
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Proposition 2.4: « is invariant for unit-speed reparametrization

Consider the setting of Definition 2.3. If y is another unit-speed reparametrization of y, with
Y =7 ° ¥, then
k(1) = k(¢(D) = k(Y (®), Vi€ (ab)

where )
SORES 0]

is the curvature of y.

Proof

Since y and y are both reparametrizations of y

r@®) =y(®) =yW®)

Using that ¢ is invertible we obtain

YO =7CE®), &:=yo97, (2.2)
and ¢ is a diffeomorphism, being composition of diffeomorphisms. Differentiating (2.2)
Y() = yEWHEQD). (2.3)
Taking the norms and recalling that y and y are unit-speed, we get
EBl =1, vt.

Since ¢ is continuous we infer

Et)=1 or &)=-1.

In both cases

S
IIl
[«

Differentiating (2.3) we then obtain

r(®) = FEDE®) + yED)ED)
= pE@)E),

where we used that £ = 0. Taking the norms and using again that || = 1

lr@] = )| -

Recalling that & = 1/ o ¢! and the definitions of ¥ and & we conclude

R0 = [y @0 = [y @ @®)] = kG ©).
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Remark 2.5: Computing curvature of regular y

1. Compute the arc-length s(¢) of y and its inverse ¢(s).

2. Compute the arc-length reparametrization
y(s) =y ((s)).

3. Compute the curvature of y

&) = )] -

4. The curvature of y is

k() = k(s(®)).

Important

When y is regular and has values in R3, there is a way to compute x without reparametrizing,
To see this, we will first need the notion of cross product, or vector product.

J

Before proceeding with the next example, let us give a short overview of the Hyperbolic func-

tions.
Definition 2.6: Hyperbolic functions
The hyperbolic functions are defined by:

« Hyperbolic cosine: The even part of the function ¢, that is,

cosh(t) =

el +e! e’ +1 _ 1+e 2

2 2t 2et
« Hyperbolic sine: The odd part of the function ¢, that is,

el o1 1-¢Y

el —
sinh(t) = = o =

» Hyperbolic tangent:

sinh(t) _ el —et _ et — 1

tanh(t) =

« Hyperbolic cotangent: The reciprocal of tanh for t # 0,

cosh(t t et 2t
coth(t) = ()_e+e e +1
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« Hyperbolic secant: The reciprocal of cosh

« Hyperbolic cosecant: The reciprocal of sinh for t # 0,

1 2 2¢t

cosh(t) e +et 2 4+1’

sech(t) =

1 2 2¢!

sinh(t) e —et % -1

csch(t) =

For a plot cosh, sinh, tanh, see Figure 2.2 below.

10

—— cosh(z)
— sinh(z)
—— tanh(z)

-10

-3 -2 -1 0 1 2 3

Figure 2.2.: Plot of cosh, sinh, tanh.

Theorem 2.7: Properties of Hyperbolic Functions
Identities:
2 .12 2 2
cosh®(t) — sinh“(t) = 1 sech”(t) + tanh“(t) = 1
Derivatives:
sinh(t)” = cosh(t) cosh(t)’ = sinh(t)
tanh(t)’ = sechz(t) sech(t)’ = —sech(t) tanh(t)
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Integrals:
t
J sinh(u) du = cosh(t) — cosh(ty)
t
‘
J cosh(u) du = sinh(t) — sinh(t;)
)

t
J- tanh(u) du = log(cosh(#)) — log(cosh(ty))
)

Definition 2.8

The catenary is the shape of a heavy chain suspended at its ends. The chain is only subjected
to gravity, see Figure 2.3. This shape looks similar to a parabola, but it is not a parabola. This
was first noted by Galilei, see this Wikipedia page. The profile of the hanging chain can be
obtained via a minimization problem, and one can show it is of the form

y(@®) = (¢, cosh(t)), teR.

See Figure 2.4 for a plot of y.

Example 2.9: Curvature of the Catenary

Question. Consider the Catenary curve
y®) = (t,cosh(t)), teR.

1. Prove that y is regular.

2. Compute the arc-length reparametrization of y.
3. Compute the curvature of y.

4. Compute the curvature of y.

Solution.

1. y is regular because
y(@®) = (1, sinh(z))

¥l = \J1 + sinh?() = cosh() > 1

2. The arc-length of y starting att; = 0 is

t t
s(t) = L ly)| du = L cosh(u) du = sinh(t)

73


https://en.wikipedia.org/wiki/Catenary

Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

where we used that sinh(0) = 0. Moreover,

s=sinh(t) < s=

= e -2s¢—1=0
Substitute y = €’ to obtain

el —2sl —1=0 = y2—25y—1:0
=  y,=st\1+s2.

Notice that

y+=s+\/1+5223+J57=s+|s|20

by definition of absolute value. Therefore,

=y, =s+VJl1+s* = t(s):log(s+\/1+sz)

The arc-length reparametrization of y is
y(s) =y(t(s)) = (log (s +41+ 52) N1+ sz)

3. Compute the curvature of y

B 1
y(s)=( ,— )
1452 1452

(1 +52)3/2 (1 +52)3/2
K9 = o)l = —

1+ s2

4. Recalling that s(t) = sinh(¢), the curvature of y is

k() = R(s(1) = ———— = ———.
1+ sinh“(t)  cosh®(t)

2.2. Vector product in R?

The discussion in this section follows [3]. We start by defining orientation for a vector space.
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Figure 2.3.: The catenary is the shape of a heavy chain suspended at its ends. Image from Wikipedia.

_1 1

Figure 2.4.: Plot of the catenary curve y(t) = (¢, cosh(t)).
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Definition 2.10: Same orientation

Consider two ordered basis of R3
B=(by.by.by), B=(by,byby).

We say that B and B have the same orientation if the matrix of change of basis has positive
determinant, that is, if
detP >0

where P € R¥3 is such that )
B=P7!BP.

When two basis B and B have the same orientation, we write
B~ B.

The above is clearly an equivalence relation on the set of ordered basis. Therefore the set of ordered
basis of R® can be decomposed into equivalence classes. Since the determinant of the matrix of
change of basis can only be positive or negative, there are only two equivalence classes.

Definition 2.11: Orientation

The two equivalence classes determined by ~ on the set of ordered basis are called orientations.

Definition 2.12: Positive orientation

Consider the standard basis of R
E = (e, ez e3)

where we set
€1 :(1,0,0), 62:(0,1,0), 632(0,0,1).

Then:

« The orientation corresponding to E is called positive orientation of R>.
« The orientation corresponding to the other equivalence class is called negative orienta-
tion of R®.

For a basis B of R® we say that:

« Bis a positive basis if it belongs to the class of E.
« Bis a negative basis if it does not belong to the class of E.
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Example 2.13

Since we are dealing with ordered basis, the order in which vectors appear is fundamental. For
example, we defined the equivalence class of

E =(ej, ey e3),

to be the positive orientation of R. In particular e is a positive basis.
Consider instead
E=(ez e €3).

The matrix of change of variables between E and E is

0 1 0
P =(eylejles)=| 1 0 0
0 0 1
and clearly
detP=-1<0.

Thus E does not belong to the class of E, and is therefore a negative basis.

We are now ready to define the vector product in R>.
Definition 2.14: Vector product in R

Let u, v € R®. The vector product of u and v is the unique vector
uxveR?
which satisfies the property:
uy U U3
(uxv)-w=|vw v v |, YweR3. (2.4)

W Wy ws

Here |A| denotes the determinant of the matrix A = (a;);j, and w;, v, w; are the components of
u,v,w,ie.

w

wsYue V=Y we e,
i=1

with (ey, e, e3) standard basis of R>.

The following proposition gives an explicit formula for computing u x v.

77



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Proposition 2.15

Letw,v € R3. Then

Uy U
uxv=| 2 73 ey + e;. (2.5)

Vi w2

Proof

Denote by (u x v); the i-th component of u x v with respect to the standard basis, that is,

3
uxv= Z(uxv)iei.
i=1

We can use (2.4) with w = e; to obtain

Uy Uy Uus
Uy U
(uxv)-e;=|v v w |= "
1 0 0 2 %

where we used the Laplace expansion for computing the determinant of the 3 x 3 matrix. As
the standard basis is orthonormal, by bilinearity of the scalar product we get

3
(u><v)-e1:Z(uxv)iei-elz(uxv)i.
i=1

Therefore we have shown

Uy U
(uxv); = e
V2 V3
Similarly we obtain
uq Uy Us u u
(uxv)y=|v wn w|=-— vl v3
0 1 0 L
and
U Uy U
( 3 1 2 3 w
u X V)3 =W Vo V3 = v v 5
0 0 1 LR

from which we conclude.
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Notation

In some cases we will denote formula (2.5) by

i j k
uUxXv=\|u U U
i w2 V3

Let us collect some crucial properties of the vector product.

Proposition 2.16

The vector product in R? satisfies the following properties: For all u,v € R
L uxv=-vxu
2. uxv =0 ifand only if u and v are linearly dependent
3. (uxv)-u=0,(uxv)-v=0

4. ForallweR3 a,beR
(au+bw)xv=auxv+bwxw

5. Forall x,y € R3 it holds

u-x Vv-x
(uxv)-(xxy)= u-y vy (2.6)
6. Denote by 6 the angle between v and w
0 :=cos_1< L ) .
Ivilwl
The following identity holds
[ux vl = [ul|v|? sin®(6) (2.7)
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Proof

« For point (1) we have

uy U U
(uxv)-w=|v w v
wp W W3

Vi V2 V3
=W U U

W w2 w3
=—(vxu)w

where we used that swapping two rows in a matrix changes the sign of the determinant.
Since w is arbitrary, we conclude point (1).

« Let A € R¥?3 be a matrix. Points (2)-(3) follow from the fact that
det(A) =0
if and only if at least 2 rows or columns of A are linearly dependent.

« Point (4) can be easily verified by direct calculation.

« Point (5) can be obtained as follows: Check by hand that formula (2.6) holds for the vectors
of the standard basis eq, e,, e5; Then write the vectors v, w, X,y in coordinates with
respect to the standard basis; Using the linearity of the vector product obtained in point
(4), conclude that (2.6) holds for v, w, x,y.

« By definition of 8 we have
v-w = [v]|w] cos(6)

Applying (2.6) with x = v and y = w we conclude

u-u v-u

haxvl? = (xv)-axvy = | U0 VY

= [ulIvl? ~ fu- vf?

= JalPIvI? — hal?[vI? cos*(6)
= JulPIvIP(1 — cos*(6))

= [ul?|vI? sin®(6)

Remark 2.17: Geometric interpretation of vector product

Let u, v € R? be linearly independent. We make some observations:
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1. Property 3 in Proposition 2.16 says that
(uxv)-u=0, (uxv)-v=0.
Therefore u x v is orthogonal to both u and v.
2. In particular u x v is orthogonal to the plane generated by u and v.

3. Since u and v are linearly independent, Property 2 in Proposition 2.16 says that

uxv=0

4. Therefore we have
(uxv)-(uxv)=uxv[’>0

5. On the other hand, using the definition of u x v with w = v x w yields

(25 Uy Us
(uxv)-(uxv)= v vy
(uxv); (uxv), (uxv)s

6. Therefore the determinant of the matrix
(ulvlu x v)

is positive. This shows that
(u,v,uxv)

is a positive basis of R>.

7. Let 0 be the angle between v and w and A the area of the parallelogram with sides u and
v, see Figure 2.5. Basic trigonometry gives that

A = [ul|v] sin(6).

Using (2.6) we have
[ax v = [ul|v]sin(®) = A

We have therefore proven the following theorem.

Theorem 2.18: Geometric Properties of vector product

Let u,v € R® be linearly independent. Then

« u x v is orthogonal to the plane spanned by u, v
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S X
x| = A
v L
l -
\Nu“&
/v

A= sl wlgng

Figure 2.5.: For u, v linearly independent, uxv is orthogonal to the plane generated by u, v. Moreover
|u x v| is the area of the parallelogram with sides u, v, and (u, v, u x v) is a positive basis
of R®

« |u xv| is the area of the parallelogram with sides u, v
« The triple (u, v,u x v) is a positive basis of R3

We conclude with noting that the cross product is not associative, and with a useful proposition for
differentiating the cross product of curves in R>.

Theorem 2.19

For all u, v, w € R3 it holds:

(uxv)xw=Q@u-w)v—(v-wu (2.8)

Proof

Observe that both sides of (2.8) are linear in u, v, w.Therefore it is sufficient to verify (2.8) for
the standard basis vectors e;. This can be checked by direct calculation.

Theorem 2.20

Lety,n : (a,b) — R3. Then, the curve Y x1n is smooth, and

d . .
E(YXn)=yxr1+yxr1- (2.9)

The proof is omitted. It follows immediately from formula (2.5).
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2.3. Curvature formula in R?

Given a unit-speed curve
Yy : (ab) > R?

we defined its curvature as
k() = [y@)| .

When y is regular we defined the curvature as

k(t) :=k(s(t))
where )
i(s) := [y(s)

is the curvature of the arc-length reparametrizationy :=y o s™!

ofy.

Ify is a regular curve in R? the following formula can be used to compute k without passing through
Y-

Theorem 2.21: Curvature formula
Lety : (a,b) — R3 be regular. The curvature of y is

(i < HOFOL
el

(2.10)

J

We delay the proof of the above Proposition, as this will get easier when the Frenet-Serret equa-
tions are introduced. For a proof which does not make use of the Frenet-Serret equations see Propo-
sition 2.1.2 in [7].

For now we use (2.10) to compute the curvature of specific curves.
Example 2.22: Curvature of the Straight Line
Question. Consider the straight line
y@) =a+tv,
for some a, v € R3 fixed, with v = 0.

1. Prove that y is regular.
2. Compute the curvature of y.

Solution.

1. y is regular because
Y@ =v=0.
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2. We have |y| = |v| and y = v. Thus,
Yyxy=vx0=0,

and the curvature is L
ly <yl 0

k() =
Iy’

Example 2.23: Curvature of the Helix

Question. Consider the Helix of radius R > 0 and rise H,
y(@®) = (Rcos(t), Rsin(t), Ht) .

1. Prove that y is regular.
2. Compute the curvature of y.

Solution.
1. y is regular because

y(@®) = (—Rsin(t), Rcos(t), H)

ly@®l = VRZ + H >R >0

2. Compute the curvature using the formula:
y(t) = (R cos(t), —R sin(t), 0)
¥ x¥ = (RH sin(t), —RH cos(t), R?)
ly x ¥l = RVR? + H?

R (OL3 (ORI
yo R+ H?

Remark 2.24

We notice the following:

1. If H = 0 then the Helix is just a circle of radius R. In this case the curvature is
1
K==

R

which agrees with the curvature computed for the circle of radius R.
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2. If R = 0 then the Helix is just parametrizing the z-axis. In this case the curvature is
k=0,

which agrees with the curvature of a straight line.

Example 2.25: Calculation of curvature

Question. Define the curve

y(@®) = (% cos(t), 1 — 2sin(t), % cos(t)) .

1. Prove that y is regular.
2. Compute the curvature of y.

Solution.

1. y is regular because

. 8 . 6 . .

Yy = — sin(t), —2 cos(t), —z sin(t) ) , lyl=2=0.
2. Compute the curvature using the formula:

. (8 . 6 T
Y= ( - cos(t), 2 sin(t), c cos(t)) ly xyl =4

i = (~2,0.9) e L
vy 575 2"

2.4. Signed curvature of plane curves

In this section we assume to have plane curves, that is, curves with values in R2. In this case we
can give a geometric interpretation for the sign of the curvature. This cannot be done in higher
dimension.

Definition 2.26

Lety : (a,b) — R? be unit-speed. We define the signed unit normal to y at y(t) as the unit
vector n(t) obtained by rotating y(¢) anti-clockwise by an angle of /2.
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Definition 2.27

Lety : (a,b) — R? be unit-speed. The signed curvature of y at y(t) is the scalar x,(t) such
that
7(®) = k()n()

Remark 2.28
Notice that since n is a unit vector and y is unit-speed, then
s = O] = ().
We deduce that the signed curvature is related to the curvature by

k(1) = +x(2) .

Remark 2.29

It can be shown that the signed curvature is the rate at which the tangent vector y of the curve
y rotates. The signed curvature is:

« positive if y is rotating anti-clockwise
« negative if y is rotating clockwise

In other words,

« kg > 0 means the curve is turning left,
« kg < 0 means the curve is turning right.

A rigorous justification of the above statement is found in Proposition 2.2.3 in [7].

J

For curves which are not unit-speed, we define the signed curvature as the signed curvature of the
unit-speed reparametrization.

Definition 2.30

Lety : (a,b) — R? be regular and let ¥ be a unit-speed reparametrization of y. The signed
curvature of y at y(¢) is the scalar ,(¢) such that

¥ = k(tn(),

where n(t) is the unit vector obtained by rotating y(t) anti-clockwise by an angle /2.

The signed curvature completely determines plane curves, in the sense of the following theorem.
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Theorem 2.31: Characterization of plane curves
Let ¢ : R — R be smooth. Then:
1. There exists a unit-speed curve y : R — R? such that its signed curvature k; satisfies

K(t) = ¢(t), VteR.

2. Suppose that ¥ : R — R? is a unit-speed curve such that its signed curvature &, satisfies
k() = o), VteR.

Then

-~
Il
~

up to rotations and translations.

We do not prove the above theorem. For a proof, see Theorem 2.2.6 in [7].

2.5. Space curves

We will now deal with space curves, that is, curves with values in R3. There are several issues
compared to the plane case:

« A 3D counterpart of the signed curvature is not available, since there is no notion of turning
left or turning right.

« We have seen in the previous section that the signed curvature completely characterizes plane
curves. In 3D however curvature is not enough to characterize curves: there exist y and n
space curves such that

kW =«" but y=n,

that is, y and n have same curvature but are different curves.
Example 2.32: Different curves, same curvature

Question Let y be a circle
y(@®) = (2 cos(t), 2 sin(¢),0),
and n be a helix of radius S > 0 and rise H > 0

n(t) = (Scos(t), S sin(t), Ht).

Find S and H such that y and  have the same curvature.
Solution. Curvatures of y and 5 were already computed:
1 S
==, l=——.
52 + H?

>

2

87



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Imposing that k¥ = k7, we get

1__S . progsog2
2 S2+H?

Choosing S =1 and H = 1 yields & = «".

J

Therefore curvature is not enough for characterizing space curves, and we need a new quantity. As
we did with curvature, we start by considering the simpler case of unit-speed curves. We will also
need to assume that the curvature is never zero.

We start by introducing the principal normal, which is just the unit vector obtained by renormalizing

Y.

Definition 2.33: Principal normal vector

Lety : (a,b) — R3 be unit-speed, with k # 0. The principal normal vector to y at y(t) is

n(t) = %

Remark 2.34
The principal normal is a unit vector orthogonal to y, that is,

In®I=1,  y-n=o0.

Proof

For y unit-speed we defined the curvature as

k() =@l .

Therefore 1
@l

In addition for y unit-speed it holds that y - = 0. Therefore

Inf = [yl =1

. 1. .
y n=-yy=0.
K
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L.
hit) = ® ¥ (%)

b)

rt)

Figure 2.6.: Principal normal vector n(t) to y at y(z).

Question 2.35

Why is the principal normal interesting? Because it can tell the difference beween a plane curve
and a space curve, see Figure 2.7.

P
@D &

: G

Figure 2.7.: Left: Principal normal to a circle. Note that n always points towards the origin 0. Right:
Principal normal to a helix. Note that n points towards the z-axis, but never towards the
same point.

We now introduce the binormal vector b as the vector product of y and n. By the properties of vector
product we will see that the triple

(y.n,b)

forms a positive orthonormal basis of R®.

Definition 2.36: Binormal vector

Lety : (a,b) — R® be unit-speed, with k # 0. The binormal vector to y at y(t) is

b(t) =y(t) xn(z).
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To each unit-speed curve y : (a,b) — R? with non-vanishing curvature, we can associate a triple of

vectors, known as the Frenet frame.

Definition 2.37: Frenet frame

Lety : (a,b) — R3 be unit-speed, with k # 0. The Frenet frame of y at y(t) is the triple

(@), n(t), b(1);.

Notation

Fory : (a,b) — R unit-speed the tangent vector is often denoted by
ti=y

Therefore the Frenet frame of y can be equivalently written as

(t,n,b).

The Frenet frame is a positive orthonormal basis of R3, in the following sense.

Definition 2.38: Orthonormal basis

Let v, vy, v3 be vectors in R3. We say that the triple

{vi, vy, vs}

is orthonormal if
il =1, v-v;=0, fori=j.

Theorem 2.39: Frenet frame is orthonormal basis

Lety: (a,b) — R3 be unit-speed, with x # 0. The Frenet frame

{t(®), n(»), b(1)}

is a positive orthonomal basis of R> for each t € (a, b).

Proof

Since y is unit-speed we have
ly@®l=1.
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Moreover we have already observed that
In@®l =1, y@-n@)=0.

As b is defined by
b ::YXn,

by the properties of the vector product, see Proposition 2.16, it follows that
b-y=0, b-n=0.
By the calculation in Remark 2.17 Point 8, we have that
bl” = ly?Inl* ~1j -nf* = 1.

This shows that the vectors {y, n, b} are orthonormal. By the properties of the vector product,
see Remark 2.17 Point 6, we also know that

(¥.n,b)

is a positive basis of R>.

By using unit-speed reparametrizations we can also compute the Frenet frame for regular curves
with non-vanishing curvature. In doing so, we need to be aware of the following:

Warning

The Frenet frame depends on the orientation of the curve, see next Definition and Proposition.

Definition 2.40

Lety : (a,b) — R3 be regular and y be a reparametrization with
y=v-¢. ¢: (@b~ @b.

We say that

1. y is orientation preserving if§>0
2. y is orientation reversing if ¢ < 0
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Proposition 2.41: Frenet frame of reparametrization
Let y be unit-speed, with k = 0. Let y be a unit-speed reparametrization with
y=ve¢, ¢:(ab)—>(@ab).

Then ¢ is constant, with either

Denote by
(t’ n) b) b (~’ ﬁ’ B)

the Frenet frames of y and y, respectively. We have:

1. If y is orientation preserving then ¢ = 1 and

2. Ify is orientation reversing then ¢ = —1 and

t:—iogb, n:ﬁo¢, b:—bo(}S

Proof
Differentiating y =y ° ¢ gives . .

y(©) = y($(6) ¢(2) (2.11)
Taking the norms in (2.11) and recalling that y and y are unit speed yields |#| = 1. By continuity
of ¢ either

=1 or $=-1 (2.12)

Differentiating (2.11) one more time

7O = y(9®) F*®) +y($(1)) $(t)

; (2.13)
=y($(®)
where we used (2.12). By definition
t:=vy, t =)7
Therefore (2.11) reads .
t() = t(¢(1)) ¢(1) (2.14)
By Proposition 1.4 the curvatures k, K of y,y are related by
k(1) = k($(1)) . (2.15)
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Dividing both sides of (2.13) by k() and using (2.15) gives

1o 1 =
5 VO = 5 16
1 (2.16)
= @) 1O
By definition the principal normals are
1. ~ 1=
n:=-y, n:=-y
K K
and therefore (2.16) reads
n(t) = 1($()) (2.17)
Recall the definition of binormal
b=txn, b=txn
Using (2.14) and (2.17) then gives
b(t) = t(t) x n(t)
= H($(1)) x [(H(1)) $(2)

= b(¢(1)) (1)

To summarize, we have shown the following relations between the Frenet frames of y and y

(1) = €($(1)) $(1)
n(t) = 1($(1) (2.18)
b(1) = b($(1)) §(2)

We can finally conclude:

1. If § is orientation preserving then ¢ > 0. By (2.12) we infer ¢ = 1, so that the equations
at (2.18) read .
t=te¢, n=He¢p, b=bog

2. If y is orientation reversing then ¢ < 0. By (2.12) we infer ¢ = —1, so that the equations
at (2.18) read

t=—te, n=Top b=-bog.

In conclusion, the Frenet frame is not invariant under reparametrization. However the Frenet vectors
stay the same, up to changing the sign of tangent and binormal:
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t=+fop n=Hop b=1bog

Let us conclude the section with an example, where we compute the Frenet frame of the Helix.

Example 2.42: Frenet frame of Helix
Question. Consider the Helix of radius R > 0 and rise H

y(@®) = (Rcos(t), Rsin(t),tH), teR.

1. Compute the arc-length reparametrization y of y.
2. Compute the Frenet frame of y.

Solution.

1. The arc-length of y starting at #, = 0, and its inverse, are

y(@®) = (=Rsin(¢), Rcos(t), H)

lvl=p  p:=R:+H?
t

o) = j Bl du=pt,  t(s)= S
0 p

The arc-length reparametrization y of y is

yY(s) =y((s)) = (R cos (£>,Rsin (£> , E) .
p p

p
2. Compute the tangent vector to y and its derivative

)=y = % (—Rsin(i) ,Rcos (%) ,H)
2 N

The curvature of y is

~ = < R
k(s) = [y = [t(s)| = —5—— .
(s) =yl = It FOTE
The principal normal vector and binormal are

n(s) = E = (—cos (i),—sin(i),o)
K p p
l;(s):ixﬁ: l(Hsin(i),—Hcos(i),R) .
P p p
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For the choice of R = 1 and H = 1 the Frenet frame is plotted in Figure 2.8.

Note: If we had reparametrized y by —s instead of s, we would have obtained the Frenet frame
(-t.5,-b)

in accordance with Proposition 2.41.

y
Figure 2.8.: Frenet frame of the Helix withR=1and H = 1.

It is of course possible to derive formulas to compute the Frenet frame of a regular curve. These are
obtained by using the arc-length reparametrization. We give the formulas without proof.

Theorem 2.43: General Frenet frame formulas

The Frenet frame of a regular curve y is

(S A L) AT A 2L
W iy #I]

2.6. Torsion

For space curves with non-vanishing curvature we can define another scalar quantity, known as
torsion. Such quantity allows to measure by how much a curve fails to be planar.

The torsion can be defined by computing the derivative of the binormal vector b.
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Proposition 2.44
Lety: (a,b) — R3 be unit-speed, with xk # 0. Then

b(t) = —r(t)n(1), (2.19)

for some 7(¢) € R.

Proof

By definition b = t x n. Using the formula of derivation of the cross product (2.9) we have

- d
b=—(txn
dt( )
=txn+txn
=txn,
where we used that, by definition of n,

ixn=lixi=0.
K

This shows )
b=yxn. (2.20)

By the properties of the cross product we have that t x n is orthogonal to both t and n. Thus
(2.20) implies that .
b-t=0.

Further, observe that

%(b-b)zb-b+b~fn:2]5~b.

On the other hand, since b is a unit vector, we have
d d 2 d
£b-b) = S(bl) = S =0

Therefore .
b-b=0.

showing that b is orthogonal to b. We also shown that b is orthogonal to t. Since the Frenet
frame

(t,n,b)

is an orthonormal basis of R?, and b is orthogonal to both t and b, we conclude that bis parallel
to n. Therefore there exists 7(¢) € R such that

b = —z(t)n(t).
concluding the proof.
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The scalar 7 in equation (2.19) is called the torsion of y.

Definition 2.45: Torsion of unit-speed curve with x # 0

Lety: (a,b) — R3 be unit-speed, with x # 0. The torsion of y is the unique scalar 7(t) such
that _
b(t) = —(t)n(t).

In particular,

() = =b@®) - n().

Warning

We defined the torsion only for space curves y : (a,b) — R® which are unit-speed and have
non-vanishing curvature, that is, such that

ly@Ol=1, x@=Ily®OI=0,  Vie(ab).

J

As we did for curvature, we can extend the definition of torsion to regular curves y with non-
vanishing curvature.

Definition 2.46: Torsion of regular curve with x # 0

Lety : (a,b) — R be a regular curve with k # 0. Let y be a unit-speed reparametrization of y
withy =yepand$: (a,b) — (a,b). Let 7 : (a,b) — R be the torsion of y. The torsion of y is

() = T(¢(1)).

J

As usual, we need to check that the above definition of torsion does not depend on the choice of
unit-speed reparametrization y.

Proposition 2.47:  is invariant for unit-speed reparametrization

Consider the setting of Definition 2.47. Lety is another unit-speed reparametrization of y, with
Y =Y . Then
() = 7(¢(1)) = (Y (1)

where 7 is the torsion of y.

Proof

The curves y and y are unit-speed, therefore they are defined their Frenet frames

tHb), (Lab)
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Since y and y are both reparametrization of y
y@®) =y® =y ®)
Using that ¢ is invertible we obtain
O =yE®), Ei=yeg!

with & diffeomorphims. The above formula is saying thaty is a reparametrization of y. As both
y and y are unit-speed, we can apply Proposition 2.41 and infer that the Frenet frames are linked
by the formulas

t=xtof, A=nof, b=+b-¢ (2.21)

and ¢ satisfies '
E=41.

Differentiating the third equation in (2.21) gives
b(®) = + S HED) =+ EOI®D = bE) (222

where we used that £ = £1. The torsions of y and y are computed by

#=-b-Hi, +=-b-n
Using the second equation in (2.21) and (2.22) allows to infer
#(1) = —b(1) - 7(t) = ~b(EW)) - AEM) = #E®))
Recalling that £ = / « ¢~ we conclude
(1) = T(Y(®))

as required.

As with the curvature, there is a general formula to compute the torsion without having to
reparametrize.

Theorem 2.48: Torsion formula

Lety: (a,b) — R3 be regular, with x # 0. The torsion of y is

_ vOxy®) ¥®)

— (2.23)
ly(®) x ¥ (@I

(t)
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We delay the proof of the above Proposition, as this will get easier when the Frenet-Serret equa-
tions are introduced. For a proof which does not make use of the Frenet-Serret equations, see the
proof of Proposition 2.3.1in [7].

For now we use (2.23) to compute the curvature of specific curves.
Example 2.49: Torsion of the Helix with formula
Question. Consider the Helix of radius R > 0 and rise H > 0

y(®) = (Rcos(t), Rsin(t), Ht), te€R.

1. Prove thaty is regular with non-vanishing curvature.
2. Compute the torsion of y.

Solution.

1. y is regular with non-vanishing curvature, since

WOl =VR+HE>R>0, x=—F >0

~ R*+H?
2. We compute the torsion using the formula:

y(@®) = (—Rsin(#), Rcos(t), H)

y(@) = (—Rcos(t), —R sin(¢), 0)

y(@) = (Rsin(t), —R cos(t), 0)

¥ x¥ = (RH sin(t), —RH cos(t), R?)

ly x 7l = RVR? + H?
¥ x¥) ¥ =RH
_Gxn¥_ H

O R

J

As a consequence of the above example, we can immediately infer curvature and torsion formulas
for the circle.

Example 2.50: Curvature and Torsion of the Circle

The Circle of radius R > 0 is
y(@®) := (Rcos(t), Rsin(t),0).

The curvature and torsion of the Helix of radius R and rise H > 0 are
=R __H
R*+ H?’ R*+H?
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For H = 0 the Helix coincides with the Circle y. Therefore we can set H = 0 in the above
formulas to obtain the curvature and torsion of the Circle

l, 7=0.
R

J

From the above example we notice that the torsion of the circle is 0. This is true in general for space
curves which are contained in a plane: we will prove this result in general.

Let us summarize our findings about curvature and torsion.
Important: Summary
Recall that:

1. Curvature k is defined only for regular curves.
2. Torsion 7 is defined only for regular curves with non-vanishing .
3. Both x and 7 are invariant under unit-speed reparametrizations

The two strategies for computing k and 7 are summarized in the diagram in Figure 2.9.

~ unit speed?

Compute Frenet

frame {t,n,b} Can you
Yes compute arc-length
le—"] . .
{ reparametrization?
& =[5l = [I2] | No
T=-b-n Use formulas
Warning _ [l > 4l
: 711
£ is only defined
for regular _ (¥ x4)-%
7 is only defined for I >+l

regular vy with £ # 0

Figure 2.9.: How to compute k and 7 for regular curve y.

We have already made an example in which we compute curvature and torsion of the Helix using
the general formulas

_ ly>¥l _ <Py
K=—0p, T=——"">—.
12 2
Iyl ly < ¥l
We provide an example where we compute curvature and torsion by making use of the Frenet
frame.
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Example 2.51: Curvature and torsion of Helix with Frenet frame

Consider the helix of radius R > 0 and rise H given by
y(@®) = (Rcos(t), Rsin(t),tH),

for t € R. We want to compute curvature and torsion by following the diagram at Figure 2.9.

We ask the first question:
Is y unit-speed?

We have already computed in Example 1.42 that
Wl=p,  p:i=VR+H?.
This shows that y is regular but not unit-speed. We ask the second question in the diagram:
Can we find the arc-length reparametrization of y?

We have already computed the arc-length reparametrization of y in Example 1.42. This is given

by
y(s) = <Rcos <£>,Rsin<£) , E) .
p p)’ p

The next step in the diagram is
Compute Frenet frame {t, n, b} and curvature , torsion ¢

From Example 1.42, the Frenet frame and curvature of y are
(—R sin (i) ,Rcos (i) ,H)
P P
() =)o)
P P

-2
Il
D=

=2}
Il
|
o)
e}
w«

b= l(Hsin(i),—Hcos<£),R>
P P P
~ ; R R
K=|t|= — = ——
p2 R2+H2

we are left to compute the torsion using formula
#=-b &

Indeed, we have




Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

The torsion is then

|z

__H
p? R4+ H?'

which of course agrees with the calculation for 7 in Example 2.49.

- b-fi=

Example 2.52: Calculation of torsion
Question. Compute the torsion of the curve

y@®) = ( cos(t), 1 — 2sin(t), = cos(t))
Solution. Resuming calculations from Example 2.25,

Y= (E sin(t), 2 cos(t), = sm(t))

(% 7)-F = o2 sin() = = sin(t) = 0
(0 = M _
Iy %71

Example 2.53: Twisted cubic

Question. Lety : R — R? be the twisted cubic

y@®) = 15 8%).

1. Isy regular/unit-speed? Justify your answer.
2. Compute the curvature and torsion of y.
3. Compute the Frenet frame of y.

Solution.
1. y is regular, but not-unit speed, because
y(®) = (1,2t,3t%)
POl =V1+42+0t>1 ()] = V14 =1

2. Compute the following quantities

= (0,2, 6t) v x ¥l = 2v1+9t% + 94
¥ =(0,0,6) ¥ xy)-¥ =12
¥ xy = (6t%,—6t,2)
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Compute curvature and torsion using the formulas:

H = ly vl 241 + 92 + 9t
P U+ 4+ 9rh)3/2
230
Iy xyl? 1ot ort

()

3. By the Frenet frame formulas and the above calculations,

t= L . (1,2¢,3t%)
Pl 1+ a2 + o
.y
=YX _ ! (3t%,-3t,1)

b=—>=
v >¥l 1+ 92 + op

(-9t —2t,1 — 9t 613 + 3t)
n=bxt=

J1+ 962 + 94 1 + 412 + o4

2.7. Frenet-Serret equations

For unit-speed curves y : (a,b) — R® with non-vanishing curvature we introduced the Frenet
frame

{t,n,b}.

We proved that the Frenet frame is a positive orthonormal basis of R?. We also used such basis to
compute curvature x and torsion 7 of y:

k:=|t], 7:=-b-n.

In this section we show that the Frenet frame satisfies a linear system of ODEs known as the Frenet-
Serret equations. In order to do this, we first need prove that the Frenet frame

(t,n,b)
is right-handed. Such property holds in general for any positive basis of R® of the form

(u,v,w), W= uxv.
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Proposition 2.54: Frenet frame is right-handed

Lety : (a,b) — R? be unit-speed, with k # 0. Then

b=txn, n=bxt, t=nxb. (2.24)

Proof

The first equation in (2.24) is true by definition of b. For the remaining 2 equations, recall
formula (2.8):
(uxv)xw=@ -w)v—(v-wu, (2.25)

which holds for all u,v,w € R3. Applying (2.25) to

yields

txn)xt=(t-t)n—(n- )t
=|tf'n-0

=n,
where we used that t is a unit vector and n - t = 0. Therefore, by definition of b, we have
bxt=(txn)xt=n
obtaining the second equation in (2.24). Now we apply (2.25) to
u=t, v=n, w=n,
to get

(txn)xn=(t-n)n—(n-n)t
=0 - |nf*t
=t

where we used that n is a unit vector and t - n = 0. Therefore, by definition of b and anti-
commutativity of the vector product, we have

nxb=-bxn=—(txn)xn=t,

obtaining the last equation in (2.24).
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Theorem 2.55: Frenet-Serret equations

Lety : (a,b) — R be unit-speed with k # 0. The Frenet frame of y solves the Frenet-Serret
equations

t=kn
n=—«xt+rzb
b=—-mn
Proof
The first Frenet-Serret equation
t=xn (2.26)

is just the definition of n. The third Frenet-Serret equation
b=-rn (2.27)
holds by Proposition 2.44. Now, recall that in Proposition 2.54 we have proven
b=txn, n=bxt, t=nxb. (2.28)
Differentiating the second equation in (2.28) and using (2.26)-(2.27) we get

n=bxt+bxt
=(—tnxt)+bxxn
=7(txn) —k(nxb)
=1b —«t,

where in the last equality we used the first and third equations in (2.28). The above is exactly
the second Frenet-Serret equation.

Remark 2.56: Vectorial form of Frenet-Serret equations

We can write the Frenet-Serret ODE sysyem in vectorial form. Introduce the vector of the Frenet
frame

I'=(t,n,b)

This way T is a 9 dimensional time-dependent vector

I: (ab) >R
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Also define the block matrix

0 kI 0
A=| —«I 0 I |,
0 -l 0
where we denoted
0 0 O 1 0 O
0:={ 0 0 O , I:={ 0 1 0
0 0 O 0 0 1

This way A is a 9 x 9 time-dependent matrix
A: (a,b) » R
It is immediate to check that the Frenet-Serret equations can be written as
I'=AT
Note: The matrix A is anti-symmetric, that is
AT =-A.

This observation will be crucial in proving the Fundamental Theorem of Space Curves, which is
stated in the next section.

Alternative Notation: With a little abuse of notation we can also write the Frenet-Serret
equations as

I'=AT

where A is the 3 x 3 time-dependent matrix

0 Kk O
A: (ab)->R¥>, A= -« 0 7|,
0 -1t 0

and where we think I’ as a 3 dimensional vector, with each component being a function t,n and
b.
Note that the block in poisition (i, j) of A is obtained by multiplying by I the entry (i, j) of A.

2.8. Fundamental Theorem of Space Curves

The most important consequence of the Frenet-Serret equations is that they allow to fully charac-
terize space curves in terms of curvature and torsion. This is known as the Fundamental Theorem of
Space Curves which can be informally stated as:

If we prescribe two functions k(t) > 0 and 7(t), there exists a unit-speed curve y(¢) which
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has curvature x(t) and torsion 7(t). Moreover y is the only curve with such curvature
and torsion, up to rigid motions.

A rigid motion is a rotation about the origin, followed by a translation. Therefore the Theorem is
saying that there exists a unique y with curvature x and torsion 7, up to rotations and translations.

Let us give the analytic definition of rigid motion.

Definition 2.57: Rigid motion

A rigid motion of R® is a map M : R*> — R of the form
M(v) =Rv+p, veR3,

where p € R, and R € SO(3) rotation matrix,

SOB3)={ReR¥3 : RTR=1, det(R) = 1}.

In the above definition I is the identity matrix in R®
1 0 O
I=1 0 1 0
0 0 1
It is also useful to introduce the set of orthogonal matrices

03) :={AeR¥3 : ATA=1

Notice that for A € O(3) we have
det(A) = +1

Therefore rotations are orthogonal matrices with deteminant 1.
Proof. We have
1 = det(I) = det(AT A) = det(A) det(AT) = det(A)?
and therefore det(A) = +1.

The precise statement of the Fundamental Theorem of Space Curves is as follows.

Theorem 2.58: Fundamental Theorem of Space Curves

Letx,7 : (a,b) — R be smooth, with k > 0. Then:

1. There exists a unit-speed curvey : (a,b) — R® with curvature «(t) and torsion z(t).

2. Suppose thaty : (a,b) — R? is a unit-speed curve whose curvature & and torsion 7 satisfy

k@) =«x@), 7@t)=1(t), Vte(ab).
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There exists a rigid motion M : R®> — R3 such that

Y@ = My®)), vt e (ab).

In other words, curvature and torsion fully characterize space curves. This result is the 3D counter-
part of Theorem 1.31, which said that signed curvature characterizes 2D curves.

The proof of Theorem 2.58 is rather lengthy and technical. We delay it to the end of the chapter, see
Section (Section 2.11). For now, let us show a simple application of Theorem 2.58.

Example 2.59: Application of FTSC
Question. Consider the curve
y(®) = (V3¢ — sin(t), 3 sin(t) + £, 2 cos(t)) .
1. Calculate the curvature and torsion of y.
2. The helix of radius R and rise H is parametrized by
n() = (Rcos(t), Rsin(t), Ht).
Recall that n has curvature and torsion
Prove that there exist a rigid motion M : R®> — R® such that

y(®) =M@n@), vieR. (2:29)

Solution.
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1. Compute curvature and torsion with the formulas

y(®) = (V3 — cos(t), V3 cos(t) + 1, ~2ssin(t))

j(t) = (sin(t), —3 sin(t), —2 cos(t))

#(t) = (cos(t), V3 cos(t), 2 sin(t))

y(® x7(t) = (=2 (V3 + cos(t)) . 2 (V3 cos(t) - 1), —4sin(t))
() x @I = 32

@I =38
@ xy@®)-¥®) = -8
o A1

3 3
s *
N SR
ly=pl” 32 4
2. Equating x = ¥ and 7 = 7, we obtain

R 1 H 1

RR+H? 4 R+H*® 4
Rearranging both equalities we get
R®+H?=4R, R*+H®=-4H,
from which we find the relation R = —H. Substituting into R? + H? = —4H, we get
H=-2, R=-H=2.

For these values of R and H we have k = ¥ and r = 7. By the FTSC, there exists a rigid
motion M : R? — R? satisfying (2.29).

2.9. Applications of Frenet-Serret

We now state and prove two results which directly follow from the Frenet-Serret equations. They
state, respectively:

1. A curve has torsion 7 = 0 if and only if it is contained in a plane.

2. A curve has constant curvature k > 0 and torsion 7 = 0 if and only if it is part of a circle.
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Before proceeding, we recall the definition plane in R3.

Remark 2.60: Equation of a plane

The general equation of a plane 7 in R? is given by

my={xeR®: x-P=d},

for some vector P € R? and scalar d € R. Note that:

1. If d = 0, the condition
x-P=0

is saying that the plane 7, contains all the points x in R® which are orthogonal to P. In
particular & contains the origin 0.

2. If d # 0, then & is the translation of &y by the quantity d in direction P.

In both cases, P is the normal vector to the plane, as shown in Figure 2.10.

Figure 2.10.: The plane 7, is the set of points of R® orthogonal to P. The plane 74 is obtained by
translating m, by a quantity d in direction P.

Theorem 2.61: Curves contained in a plane - Part I

Lety : (a,b) — R3 be regular with k # 0. They are equivalent:

1. The torsion of y satisfies
(t) =0, Vte(ab).

2. y is contained in a plane: There exists a vector P € R® and a scalar d € R such that

y@)-P=d, vte(ab).

Idea of the proof: The third Frenet-Serret equation states that

b=-mn
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Therefore r = 0 if and only if b = 0, which means that b is constant. Now, b is orthogonal to the
other two vectors t, n of the Frenet-Frame. Since b is constant, this means t, n span a constant plane
which has b as normal vector. This tells us y is contained in the plane

Yy -b=d
for suitable d € R. Let’s prove this!
Proof
Without loss of generality we can assume that y is unit-speed.

Proof. If we were to consider y a unit-speed reparametrization of y, then y would
still be contained in the same plane as y is contained. Moreover curvature and
torsion are invariante under reparametrization, and so y would still have non-zero
curvature and identically zero torsion.

Asy is unit-speed, it is well defined the Frenet frame
{t(t), n(), b(1)} .
Step 1. Suppose 7 = 0 for all ¢. By the third Frenet-Serret equation
b=-{tn=0,
so that b(t) is constant. As by definition
b=txn,

we conclude that the vectors t(¢) and n(¢) always span the same plane, which has constant nor-
mal vector b. Intuition suggests that y should be contained in such plane, see Figure Figure 2.11.
Indeed

Ly -my=p-b+jb=o,
where we used that b = 0 and that the Frenet frame is orthonormal, i.e.
Yy -b=t-b=0.
Thus y - b has zero derivative, meaning it is constant: there exists d € R such that
Y@ -b=d, vte(ab). (2.30)

This shows that y is conatained in a plane orthogonal to b, and the first part of the proof is
concluded.
Step 2. Suppose that y is contained in a plane. Hence there exists P € R® and d € R such that

Y@ -P=d, vte(ab).
We can differentiate the above equation twice to obtain
y - P=0, y-P=0,
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where we used that P and d are constant. The first equation says that y(¢) is orthogonal to P.
By the first Frenet-Serret equation we have

7@ =t =x®n®).
Therefore the already proven relation y - P = 0 implies
k@)n@)-P=0.
As we are assuming k # 0, we deduce that
nt)-P=0, Vvte(ab).

In conclusion, we have shown that P is orthogonal to both y(¢) and n(t). Since b(¢) is orthogonal
to both y(¢) and n(t), we conclude that b(t) is parallel to P. Hence, there exists A(¢) € R such
that

b(t) = A®)P, Vte(ab).

Since |b| = 1 and P is constant, from (2.31) we conclude that A(t) is constant and non-zero. Thus
b(t) = AP, Vi€ (ab), (2.31)
for some A # 0. Differentiating (2.31) we obtain
bt) =0, Vte(ab),
meaning that the binormal b is a constant vector. By definition of torsion
®)=-b-n@t) =0, vte(ab),

as required.

& cortoined in

plare o(Thogona]
kb

Figure 2.11.: If b is constant, then y lies in the plane spanned by y and n. Note that b is the unit
normal to such plane.
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As a corollary of Step 1 in the proof of Theorem 2.61 we obtain the following statement.

Theorem 2.62: Curves contained in a plane - Part II

Lety : (a,b) — R® be regular, with k # 0 and 7 = 0. Then, the binormal b is a constant vector,
and y is contained in the plane of equation

(x-y()-b=0.

Proof
Following the proof of Step 1 of Theorem 2.61, we get to the conclusion (2.30) that y satisfies
Y@ -b=d, vte(ab).

As the above equation holds for each t, we can fix an arbitrary f, € (a,b) and find that the
constant d is

d=yt) b

Hence we obtain

(r(®)—y())-b=0, Vi€ (ab).

The above is says that y is contained in the plane (orthogonal to b) with equation

(x—y(p))-b=0

Example 2.63: A planar curve

Question. Consider the curve
y® =@t 2t,tY), t>0.
1. Prove thaty is regular.
2. Compute the curvature and torsion of y.
3. Prove thaty is contained in a plane. Compute the equation of such plane.
Solution.
1. y is regualar because y(t) = (1,2,4t3) # 0.
2. Compute the following quantities
Iyl =5 + 161* ¥ X7 = 12(2t%, —%,0)
¥ =12(0,0,£%) ly x ¥l = 1252
¥ =24(0,0,0) ¥ xy)-¥=0
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Compute curvature and torsion with the formulas

K(t) = YX}’ = IZ\Etz
> 5+ 16t
(= DY
ly x ¥l

3. ¥ lies in a plane because 7 = 0. The binormal is

Y <y 1
b=—-=—(2-10).
ly =<yl 5

At ty = 0 we have y (0) = 0. The equation of the plane containing y is then x - b = 0,
which reads

—x—-—=y= — 2x—y=0.

We now state and prove the second result anticipated at the beginning of this section.
Theorem 2.64: Curves contained in a circle
Lety : (a,b) — R® be unit-speed. They are equivalent:

1. y is contained in a circle of radius R > 0.

2. There exists R > 0 such that

szi,rmzm vte(ab).

J

Theorem 2.64 is actually a consequence of the Fundamental Theorem of Space Curves Theorem 2.58,
and of the fact that we have computed that for a circle of radius R one has

Therefore, by Theorem 2.58, every unit-speed curve y with constant curvature and torsion must be
equal to a circle, up to rigid motions.

Nevertheless, we still give a proof of Theorem 2.64, to show yet another explicit application of the
Frenet-Serret equations.

Proof

Step 1. Suppose the image of y is contained in a circle of radius R. Then, up to a rotation and
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translation, y is parametrized by
y(@®) = (Rcos(t), Rsin(t),0) .

We have already seen that in this case

concluding the proof.
Step 2. Suppose that

k() = 1—12, (t)=0, vte(ab),

for some constant R > 0. Since y is unit-speed, it is well defined the Frenet frame

{t,n,b}.
Due to the assumptions on k and 7 the Frenet-Serret equations read
. 1
t=kn=—n
R

r’1=—1<t+rb:—lt
R
b=-mn=0

In particular b = 0 and so b is a constant vector. As seen in the proof Thoerem 2.61, this implies
that y is contained in a plane 7 orthogonal to b, see Figure 2.11. As ¢ is constant we get

d . 1
— (@ +Rn)=y+Rn=t-R=t=0,
¥ +Rm) =y +Ra R
where we used that y = t and the second Frenet-Serret equation. Therefore
Y@ +Rn@)=p, te(ab),
for some constant point p € R®. In particular

ly(®) = pl = |-Rn()| = R,

since n is a unit vector and R > 0. The above shows that y is contained in a sphere of radius R
and center p. In formulas:

yHes ={xeR®: |[x—p|=R}.

The intersection of & with the plane 7 is a circle € with some radius r > 0 (note that € might
be a single point, in which case r = 0). As we have shown

YEm, yYES,

we conclude that

YEXNS =F. (2.32)
Therefore y parametrizes part of €. This immediately implies that r > 0.
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Proof. If r = 0 then € is a single point, meaning that y is constant. But theny = 0
which contradicts the assumption that y is unit speed.

Since € is a circle of radius r > 0, Step 1 of the proof implies that the curvature and torsion of
y satisfy

As by assumption ¥ = 1/R, we conclude that R = r. Therefore the circle % has radius R and the
thesis follows by (2.32).

Example 2.65

Question. Consider the curve
y@® = ( cos(t),1— sm(t),—% cos(t)) .

1. Prove that y is unit-speed.
2. Compute Frenet frame, curvature and torsion of y.
3. Prove thaty is part of a circle.

Note: As seen in the plot in Figure 2.12, y is just a Circle which has been rotated an translated.
Solution.

1. y is unit-speed because
. 4 . 3 .
y@® = (—— sin(t), — cos(t), = sm(t))

||Y(t)|| sm 2(t) + cos?(t) + 2—5 sin®(t) = 1

2. Asy is unit-speed, the tangent vector is t(t) = y(¢). The curvature, normal, binormal and
torsion are

t(t) = (—% cos(t), sin(t), = cos(t))
k(t) = ||t(t)” — cosz(t) +sin(f) + g cos?(t) = 1
n(t) = (t) (t) = (—E cos(t), sin(t), = cos(t))

b(t) = (&) x n(t) = (—%,0,—%)
b=0
T = —B~n: 0
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3. The curvature of y is constant and the torsion is zero. Therefore y is contained in a circle
of radius

0.4

0.2

0.0

[ -0.2

08 [ —0.4

73.00
. d__zg..Sd' 7
G o.od)-25)'5&'751 Oy

Figure 2.12.: Plot of the curve in Example above

2.10. Proof: Curvature and torsion formulas

Another consequence of the Frenet-Serret equations is that they allow us to finally prove the cur-
vature and torsion formulas given in Theorem 2.21 and Theorem 2.48. For reader’s convenience we

recall these two results.
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Proposition 2.66: Curvature and torsion formulas

Lety : (a,b) — R3 be a regular curve. The curvature k() of y at y(¢) is given by

ly x ¥l
w0 = L1 (2:33)
Iyl
If k > 0 the torsion 7(¢) of y at y(¢) is given by
G <) -7
=X (2:34)
ly < ¥l

Proof

By assumption y is regular. Denote by y = y o s~! the arc-length reparametrization. As y is
unit-speed, it is well defined its Frenet frame

{ts).5(s).b(s)} . =7

The Frenet-Serret equations are

Bl
[
| bat
Ao
-,
+
Y
o

T
Il

|
Nt
=N

where K and 7 are the curvature and torsion of y.
Part 1. Differentiating y =y o s we get

¥(®) = y(s(1)) 5(t) = ¥(s(2)) 5()
Differentiating once more
70 = L [t 5]
=15 + 18 (2.35)
L~ 2

=RAE+1t§

where in the last line we used the first Frenet-Serret equation. We are also omitting the depen-
dence on the point for brevity. We compute

y@) xy(t) = £ x [ 7 % + 5]

w

=P REtxA+sstxt (2.36)
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where we used that b = f x & by definition, and that  x ¥ = 0 by the properties of the cross
product. Taking the norms in (2.36) gives

W © x ¥ Ol = Iy OF #(s®))
where we used that “f)” = 1 and $(t) = Jy(t)|. Rearranging we get
ly@ xy@

r®F

Recalling that the curvature x of y at t is defined as

k(1) = k(s(1))

K(s()) =

we conclude (2.33).
Part 2. Differentiating the second line in (2.35) we get

() = [t(s(t))sz(t) +H(s() 5t) |
=% + 2t + B+ EF
=18 + 365+ 5
Therefore, using (2.36), we get

¥xy)-¥= l;] ts® +3tss+ts]

Okb-t+3:%5kb-t+35kb-1 (2.37)

A
T

2

PRb-

-2

where the second term is zero by the first Frenet-Serret equation
b-t=kb-H=0,

asb -7 = 0, and the thrid term is zero because b - t = 0. To compute t we differentiate the first
Frenet-Serret formula

Substituting in (2.37) we get

¥ x§)-¥ =3 &b
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where we used that b - & = 0. Using the second Frenet-Serret equation we get

where we used that b-f = 0 and b - b = 1. Recalling that § = |y|, and using the already proven

formula (2.33), we get
2

(xp) ¥ =8 &7
Y
o6 WP
=yl — % T
Iy
Ca2 -
=lyxyl” ©
Rerranging we get

y®*xy®)-¥®)
OOl
Recalling that the torsion 7 of y at t is defined as

(1) = 7(s(t))

(s(t) =

we conclude (2.34).

2.11. Proof: Fundamental Theorem of Space Curves

In this section we prove the Fundamental Theorem of Space Curves Theorem 2.58. For reader’s con-
venience we recall the statement.

Theorem 2.67: Fundamental Theorem of Space Curves

Letx,7 : (a,b) = R be smooth functions, with x > 0. Then:
1. There exists a unit-speed curve y : (a,b) — R® with curvature x(t) and torsion 7(t).
2. Suppose thaty : (a,b) — R? is a unit-speed curve whose curvature & and torsion 7 satisfy
k@) =«k@), @) =1(t), Vte(ab).
Then there exists a rigid motion M : R? — R3 such that
Y =My®), Vvte(ab).
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The proof relies on the following classical existence Theorem for linear systems of ODEs. For a proof
see Page 162 in [8].

Theorem 2.68: Existence and uniqueness for linear ODE systems
Assume given a point #, € (a,b), a vector uy € R” and two functions
A: (a,b) > R, f:(ab) >R
of class C¥. There exists a unique function
u: (a,b) > R"
of class C¥*1 which solves the Cauchy problem

ua=Au+f
u(ty) =y

J

We will also need the following 4 Propositions. The first Proposition states that orthogonal matrices
preserve scalar product and length.

Proposition 2.69: Orthogonal matrices preserve scalar product and length

Let A € O(3) and v, w € R3. Then
Av-Aw=v-w (2.38)

and also

lAv] = |v] (2.39)

Proof

Forv,wG]R3
Av-Aw=ATAv-w=v-w

where we used the properties of scalar product and that ATA = I. In particular the above
implies

|Av]| = VAV - Av = v v =|v|

concluding the proof.

We now inverstigate how the cross product behaves under linear transformations, i.e., how the cross
product of two vector changes under matrix multiplication.
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Proposition 2.70: Linear transformations of cross product
Let A € R¥3 be invertible and v, w € R3. Then
N,
Av x Aw = det(A) (A ) (vxw) (2.40)
In particular for R € SO(3) we have

RvxRw = R(vxw) (2.41)

Proof

Part 1. Recall that the inverse of a matrix A is computed by

P

_ T
= ot (cof A)

where cof M is the matrix of cofactors. By linearity of the cross product we only need to verify
(2.40) on the vectors of the orthonormal basis e, e,, e3. Let us verify (2.40) for v = e; and
w = e,. Writing Ae; and Ae, in coordinates

3 3
Aeq = Z mjre;, Aey = Zmizei
i=1 i=1

for some coefficients m;;,m;; € R. By the formula for computing the vector product (2.5) and
definition of cofactor matrix

3 3
Aeq x Aey = Z mj1e; X Z mjse;
i=1 j=1

=2

i<j

my My

e; X ej
mjl m]’z

3
D (cof A)jze;
i=1
= (cof A)es
= (det A) (A_I)T e
= (det A) (A (e, x e2)

Calculations for the other cases are similar.
Part 2. For R € SO(3) it holds det(R) = 1. Moreover R'R = I, so that

RI=R — (R =R
Therefore (2.41) follows from (2.40).
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We need to clarify how unit-speed curves and Frenet frame behave under rigid motions.

Proposition 2.71: Frenet Frame under rigid motions

Lety : (a,b) — R® be unit-speed and M : R*> — R® be a rigid motion, i.e. such that
M(v)=Rv+p
for some R € SO(3) and p € R>. Define the curve
v:@h) >R, ) =My®).
Then y is unit-speed. Moreover the Frenet frame of y is obtained by rotating the Frenet frame
ofy by R
t=Rt, n=Rn, b =Rb, (2.42)

J

Proof
Differentiating y = M(y) = Ry + p gives
YO =Ry®). ) =Rj®)

Taking the norms in y = Ry gives

vl =Ryl = Il = 1

where we used that rotations preseve norms, see (2.39), and the assumption of y unit-speed.
This concludes the proof that y is unit-speed.
Let us now prove (2.42). The relationy = Ry reads

t=Rt,

which gives the first equation in (2.42). Since y = R ¥, by (2.39) we deduce

rl =Rl =¥l
Therefore, by definition of principal normal,
~_ ¥ _Ry_
n=-——=-——= >
y| ¥l

obtaining the second equation in (2.42). Finally, by definition of binormal and the first two
equations in (2.42), )
b=txfA=RtxRn=R(txn)=Rb

where in the third equality we used (2.41). The proof is concluded.
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The last Proposition concerns the evolution of orthonormal systems of vectors.
Proposition 2.72: Evolution of orthonormal systems of vectors
Let A: (a,b) = R®? be smooth and anti-symmetric, that is,

AT(t) = —A@W), vie(ab).

Let uj,uy,u3 : (a,b) —» R3 be smooth functions satisfying the following ODE

L u
W |=A| w (2.43)
us uj

Suppose that for some t;, € (a,b) the vectors

u(t), uyty), wus(ty),

are orthonormal. Then the vectors
ui(t), uy®), wus(),

are orthonormal for all values of ¢ € (a,b).

Proof
For each pair i, j define
/11']' =g u]-
Further, define
1 ifi=j
bl e
0 ifi#j

Note that uy, uy, uz are orthonormal for all ¢ if and only if

1 ifi=j
Aij(t) = & = {0 i (2.44)

for all t. Hence the proof is concluded if we show (2.44).

In order to do so, first note that the ODE in (2.43) reads

3
W=y apug,  i=1273 (2.45)
k=1
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Differentiating /4;; yields

/‘lij = —u- llj

dt

:1'1i~uj+ui-1'1j

3 3
= Z a;jiay u]' + Z (ijui s Uy
k=1 k=1
3 3
= Z aifMij + Z B Aife
k=1 k=1

where in the last two equalities we used (2.45) and the definition of 4;;. The above calculation
shows that 4;; solves the ODE

3 3
Aij = Z QA + Z ajkAik (2-46)
k=1 k=1

We claim that §;; solves (2.46). Indeed the LHS is Sij = 0, while the RHS is

3 3
Z aik5kj + Z ajkéik = aij + aﬁ =0
k=1 k=1

where we used that g;; = —g;; because AT =—A by assumption. Thus §; solves (2.46). Moreover
we notice that at t =,

k) = wilto) - wyto) = &

because the vectors w;(t)), uy(ty), us(ty) are orthonormal by assumption. Since ; is also a
solution to (2.46), by the uniqueness of solutions to ODE systems in Theorem 1.68, we conclude
that (2.44) holds for all t. The proof is concluded.

We are finally ready to prove the Fundamental Theorem of Space Curves.
Proof: Proof of Theorem 1.67
Suppose given two smooth functions k, 7 : (a,b) - R with k > 0.

Part 1. Existence ofy.
Consider the Frenet-Serret system of ODEs

(2.47)

Il
=
T B e~

t
i
b
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where the matrix A is

0 Kk 0
A=l —x 0 1
0 -1 0

This is a linear system of 9 equations in 9 unknowns (the coordinates of t,n,b). Therefore
Theorem 1.68 guarantess the existence of a smooth solution (t, n, b) such that

tt)) =e;, n(fp) =ey, b)) =e;3 (2.48)

for some fixed t; € (a,b), where e, e,, e3 are the vectors of the standard basis of R3. Since the
matrix A is anti-symmetric, and the basis {e;, e,, es} is orthonormal, by Proposition 2.73 we
deduce that

(t,n,b) are orthonormal for all ¢ € (a,b)

As both b and t x n are unit vectors orthogonal to t and n, we conclude that
b=Atxn
for some continuous function A such that A(t) = +1. Substituting ¢t = #; and recalling (2.48)

gives
b(ty) = Aty) t(ty) x n(ty) = e3 = A(ty) e x e,

As e x e = e3, we conclude that A(t;) = 1. By continuity of A we then have A = 1, so that
b=txn (2.49)

Define the curvey : (a,b) — R3 by

t

y(@®) :=L t(u)du

We now make a few observations:
1. By the Fundamental Theorem of Calculus we have
y=t

showing that t is the tangent vector to y.
2. In particular y is unit-speed, since |t| = 1.
3. Using the first equation in (2.47) gives

y=t=xn
which shows that k is the curvature of y, and n the principal normal.
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4. By (2.49) we deduce that b is the binormal to y
5. Using the third equation in (2.47) gives
b=-rn
showing that 7 is the torsion of y

We have therefore constructed a unit-speed curve y with curvature k and torsion 7.
Part 2. Uniqueness up to rigid motions.
Suppose that ¥ : (a,b) — R is a unit-speed curve with curvature & = x and torsion 7 = 7.
Denote by 5
(t,n,b), (t,1,b)

the Frenet frames of y and y respectively. Since the above vectors are orthonormal for each ¢,
there exists a rotation R € SO(3) such that

t(p) = Rt(ty), 1) = Rn(tp), l~’(1‘0) = Rb(t) (2.50)

Notice that R can always be found (for fixed time!) since the vectors are orthonormal. Define

p :=Y() — Ry()
We now define the rigid motion
M(v) :=Rv+p
By construction
M(y(t)) = y(to) (2:51)
Define the new curve
Y =My (®)

By Proposition 1.71 we know thaty is unit-speed, given thaty is unit-speed. Moreover the Frenet
frame of y satisfies

t=Rt, A=Rn, b=RDb (2.52)

From the above relations we deduce that (t, A, f)) solves the Frenet-Serret equations at (2.47).
Since y has curvature k and torsion 7, we also know that (t, 11, b) solves the Frenet-Serret equa-
tions at (2.47). By evaluating (2.52) at tj, and comparing with (2.50), we also have that

t(ty) = Hty), 0lt) = lty), blty) = blty)

By applying the uniqueness in Theorem 1.68 to the ODE system (2.47), we conclude that
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and therefore there exists a constant ¢ € R? such that
Y@ =y@)+c, Vte(ab)
By (2.51) and definition of y, it holds
Y(to) = My (o)) =y (%)
from which we deduce that ¢ = 0. We have therefore proven that
Y=vy
Recalling the definition of y we conclude that
r(®) = My(®)

proving uniqueness up to rigid motions.
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3. Topology

So far we have worked in R”, where for example we have the notions of open set, continuous function
and compact set. Topology is what allows us to extend these notions to arbitrary sets.

Definition 3.1: Topological space

Let X be a set and I a collection of subsets of X. We say that  is a topology on X if the
following 3 properties hold:

« (A1) The sets @, X belong to 7,

o (A2) If {A;}ics is an arbitrary family of elements of 7, then

UAZ»GFJ”.

e (A3)IfA,BeJ then AnBe TJ.
Further, we say:
« The pair (X, J) is a topological space.

« The elements of X are called points.
« The sets in the topology I are called open sets.

Remark 3.2
The intersection property of 7, Property (A3) in Definition 3.1, is equivalent to the following:

e (A3)If Ay,...,Ap € T for some M € N, then

M
ﬂAneP].
n=1

The equivalence between (A3) and (A3’) can be immediately obtained by induction.
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Warning
Notice:

«+ The union property (A2) of I holds for an arbitrary number of sets, even uncountable!
« The intersection property (A3’) of I holds only for a finite number of sets.

There are two main examples of topologies that one should always keep in mind. These are:

« Trivial topology: The topology with the smallest possible number of sets.
« Discrete topology: The topology with the highest possible number of sets.

Definition 3.3: Trivial topology
Let X be a set. The trivial topology on X is the collection of sets

Ttrivial *= {2, X}.

Proof: Jiiyial 1S @ topology on X
To prove Jyivial is a topology on X, we need to check the axioms:

« (A1) By definition of J;iyial, we have @, X € Tivial-

 (A2) Assume {A;};c; is an arbitrary family of elements of Ji;;yia- There are two possibili-
ties

— If all the sets A; are empty, then | J; A; = @ € Tivial-
- If A; = X for at least one index i, then | J; A; = X € Tivial-

In both cases, | J; A; € Tiivial SO that (A2) holds.

» (A3) Assume A, B € J;ivial- We have 3 cases:

- A=B=0. Then An B =0 € Tyivial-
- A=Xand B=@. Then An B =@ € Jiivial-
- A=B=X.Then An B =X € Tyivial-

In all the 3 cases we have A n B € J;ivial> S0 that (A3) holds.

Therefore Jyyiyial is a topology on X.

Definition 3.4: Discrete topology

Let X be a set. The discrete topology on X is the collection of all subsets of X

Tdiscrete ‘= {A 1 AC X},
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Proof: Jjiscrete 1S @ topology on X

To prove Jgjscrete 1S @ topology on X, we need to check the axioms:

« (A1) We have @, X € T giscrete> Since @ and X are subsets of X.

« (A2) The arbitrary union of subsets of X is still a subset of X. Therefore | J A; € Tgiscrete
whenever A; € Jgiscrete for alli € I.

« (A3) The intersection of two subsets of X is still a subset of X. Therefore An B € T giscrete
whenever A, B € Jgiscrete-

Therefore I giscrete is @ topology on X.

We anticipated that topology is the extension of familiar concepts of open set, continuity, etc. that
we have in R". Let us see how the usual definition of open set of R" can fit in our new abstract
framework of topology.

Definition 3.5: Open set of R"
Let A C R™. We say that the set A is open if it holds:

Vx€A, Ir>0st B(x)CA, (3.2)
where B,(x) is the ball of radius r > 0 centered at x

B(x) :={yeR": |y—x|<r},

and the Euclidean norm of x € R" is defined by

See Figure 3.1 for a schematic picture of an open set.

B, (x)

Figure 3.1.: The set A C R" is open if for every x € A there exists r > 0 such that B,(x) C A.
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Definition 3.6: Euclidean topology of R"

The Euclidean topology on R” is the collection of sets

Feudid :=1A : ACR", A isopen}.

Proof: Jg,iq is a topology on R*

To prove Jeyclid is a topology on R”, we need to check the axioms:

+ (A1) We have @, R" € Jq1iq: Indeed @ is open because there is no point x for which (3.1)
needs to be checked. Moreover, R" is open because (3.1) holds with any radius r > 0.

« (A2) Let A; € Teyeliq for alli € I. Define the union A = | J; A;. We need to check that A
is open. Let x € A. By definition of union, there exists an index iy € I such that x € A; .
Since A;, is open, by (3.1) there exists r > 0 such that B,(x) C A; . As A; C A, we conclude

that B.(x) C A, so that A € T qid-

+ (A3) Let A,B € Joyclid- We need to check that A n B is open. Let x € A n B. Therefore
x € Aand x € B. Since A and B are open, by (3.1) there exist 1,7, > 0 such that B, (x) C A
and B,,(x) C B. Setr := min{r,r,}. Then

B.(x)CB,(x)CA, B(x)CB,(x)CB,
Hence B,(x) C A n B, showing that A n B € Tgyclid-

This proves that J¢,iq is a topology on R™.
Let us make a basic, but useful, observation: balls in R" are open for the Euclidean topology.
Proposition 3.7: B,.(x) is an open set of T¢yclid

Let R" be equipped with the Euclidean topology Jgyclig- Let r > 0 and x € R". Then B,(x) €

tojeuclid-

Proof

To prove that B.(x) € Joyclid» We need to show that B,(x) satisfies (3.1). Therefore, lety € B,(x).
In particular
Ix—yl<r. (3-2)
Define
e:i=r—|x—yl.

Note that ¢ > 0 by (3.2). We claim that
B.(y) € B/(x), (3:3)
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see Figure 3.2. Indeed, let z € B,(y). By triangle inequality we have
lz—x|<l|x-yl+ly-zl <|x-yl+e=r,

where we used that |y — z| < ¢ and the definition of . Hence z € B,(x), proving (3.3). Thus,
B,(x) satisfies (3.1), ending the proof.

lx—yll

Figure 3.2.: The ball B.(y) is contained in B,(x) if¢ :=r — |[x — y].

3.1. Closed sets

The opposite of open sets are closed sets.

Definition 3.8: Closed set

Let (X, 9) be a topological space. A set C C X is closed if
C°eT,

where C° := X \ C is the complement of C in X.

In words, a set is closed if its complement is open.
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Warning

There are sets which are neither open nor closed. For example consider R equipped with Eu-
clidean topology. Then the interval
A :=10,1)

is neither open nor closed.
Note: For the moment we do not have the tools to prove this. We will have them shortly.

J

We could have defined a topology starting from closed sets. We would have had to replace the proper-
ties (A1)-(A2)-(A3) with suitable properties for closed sets, as detailed in the following proposition.

Proposition 3.9

Let (X, 9) be a topological space. Properties (A1)-(A2)-(A3) of I are equivalent to (C1)-(C2)-
(C3), where

« (C1) @, X are closed.
« (C2) If G is closed for all i € I, then ();¢; C; is closed.
« (C3) If Cy, Cy are closed then C; u G, is closed.

Proof
We have 3 points to check:
1. The equivalence between (A1) and (C1) is clear, since

=X, X'=0.

2. Suppose G; is closed for all i € I. Therefore Cy is open for all i € I. By De Morgan’s laws

we have that .
(Ne) -Ya

i€l i€l
showing that
ﬂ G isclosed < U Cf is open.
iel i€l

Therefore (A2) and (C2) are equivalent.

3. Suppose C;, C, are closed. Therefore Cf, C5 are open. By De Morgan’s laws we have that
(CuG) =CnCS

showing that
CiuGCy isclosed <«  Cf{nCj isopen.

Therefore (A3) and (C3) are equivalent.

134



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

As a consequence of the above proposition, we can define a topology by declaring what the closed
sets are. We then need to verify that (C1)-(C2)-(C3) are satisfied by such topology. Let us make an
example.

Example 3.10: The Zariski topology

Let (K, +, ) be a field. Define
X :=K" :={(ay,...,a,) : a; € K}.
Consider the ring of polynomials with coefficients in the field
Klxq,..., x,] .

Therefore f € K[xy, ..., x,] has the form
kl kn
flets s %) = 4ixg + oo+ A",

where A4, ..., A, are given elements of K and kq,...,k, € IN. For a collection of polynomials
I Cc K[x,...,%,| define

V(D) :={(ay,...,a,) eK" : f(ay,...,a,) =0, ¥V fel}.
The set V(1) is called an algebraic set. Define
€ :={V() : ICcK[x,...,x,;]}.

The collection ¥ is known as the Zariski topology on the space K". This topology provides
a natural framework for studying Affine Varieties — generalized surfaces obtained by gluing
together algebraic sets of the form V(I). The area of mathematics studying these objects is
known as Algebraic Geometry. For more information, see this Wikipedia page and this paper.
An example of affine variety is the Quadrifolium, which is the curve defined by the polar
coordinates equation r = sin(26), see Figure 3.3. It can be easily seen that the Quadrifolium is
an affine variety in R?, which can be described by using just one algebraic set, namely V((x? +
¥?)’ = 4x?y?).

Question. Prove that € satisfies (C1), (C2) and (C3).

Solution. Easy check, left by exercise.

3.2. Comparing topologies

Consider the situation where you have two topologies 77 and 9, on the same set X. We would like
to have some notions of comparison between 7 and 7,.
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<

Figure 3.3.: The Quadrifolium is an affine variety with algebraic set V((x? + y?)? — 4x%y?).

Definition 3.11: Comparing topologies

Let X be a set and let 97, I, be topologies on X.
1. I is finer than 7, if 7, C 7.
2. 7 is strictly finer than 7, if 75, € 9.

3. J1 and 9, are the same topology if 77 = 7.

Example 3.12: Comparing Jiivial and T giscrete

Let X be a set. Then Jyivial € Tdiscrete-

J

Another interesting example is given by the cofinite topology on R. The sets in this topology are
open if they are either empty, or coincide with R with a finite number of points removed.

Example 3.13: Cofinite topology on R

Question. The cofinite topology on R is the collection of sets
T eofinite :=1U CR : U° is finite, or U¢ = R}.

1. Prove that (R, Tcofinite) is a topological space.
2. Prove that T¢ofinite € Teuclid-
3. Prove that Teofinite * Teuclid-

Solution. Part 1. Show that the topology properties are satisfied:
(A1) We have @ € T ofinite> since @° = R. We have R € T ygnite because R¢ = @ is finite.
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(A2) Let U; € Teofinite for alli € I, and define U := | J;; U;. By the De Morgan’s laws we have
U® = (Uier U)° = mier UF -
We have two cases:
1. There exists iy € I such that Ul(c) is finite. Then
U = netUf € Uz(c) ’
and therefore U° is finite, showing that U € T oanite-
2. None of the sets Uf is finite. Therefore Uf = R for alli € I, from which we deduce

Ut = r‘iEIUiC =R nd U € Jcofinite -

In both cases, we have U € I gnite, SO that (A2) holds.
(A3)Let U,V € I ofinite- Set A=U nV. Then

A =Uu Ve,
We have 2 possibilities:
1. US, V¢ finite: Then A° is finite, and A € T ofinite-
2. U =Ror V¢ = R: Then A° =R, and A € T yinite-

In all cases, we have shown that A € T ,apite, SO that (A3) holds.
Part 2. Let U € T ygnite- We have two cases:

« U° is finite. Then U® = {xq, ..., x,} for some points x; € R. Up to relabeling the points, we

can assume that x; < x; when i < j. Therefore,

n
U:{xls---»xn}c:U(xi»xi+1)a Xo 1= 00, Xpyp f= .
i=0

The sets (x;, %, 1) are open in Jgyid, and therefore U € Ty ciig-

« U° =R. Then U = @, which belongs to Jg,1iq by (A1).

In both cases, U € T¢yclig- Therefore T ofinite S Zeuclid-
Part 3. consider the interval U = (0,1). Then U € Jyqiq- However U€ is neither R, nor finite.
Thus U € T cofinite-
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3.3. Convergence

We have generalized the notion of open set to arbitrary sets. Next we generalize the notion of
convergence of sequences.

Definition 3.14: Convergent sequence

Let (X, J) be a topological space. Consider a sequence {x,} C X and a point x € X. We say
that x,, converges to x; in the topology &, if the following property holds:

vUeT st xpeU, AIN=NU) e N s.t.

x, €U,Vn>N. (3:4)

The convergence of x; to x; is denoted by x, — x;.

J

Let us analyze the definition of convergence in the topologies we have encountered so far. We will
have that:

« Trivial topology: Every sequence converges to every point.

« Discrete topology: A sequence converges if and only if it is eventually constant.

« Euclidean topology: Topological convergence coincides with classical notion of conver-
gence.

We now precisely state and prove the above claims.

Proposition 3.15: Convergent sequences in Jijvial

Let X be equipped with Jiyiyial- Let {x,} € X, xy € X. Then x, — x;.

Proof

To show that x;, — x; we need to check that (3.4) holds. Let U € Jiyial With x5 € U. We have
two cases:

« U = @: There is nothing to prove, since x; cannot be in U.

« U= X: Take N = 1. Since U = X, we have x;, € U for alln > 1.

Thus (3.4) holds for all the sets U € Jy;vial, showing that x, — x;.

Warning

Proposition 1.15 shows the topological limit may not be unique!
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Proposition 3.16: Convergent sequences in Jgjscrete

Let X be equipped with Tgiscrete- Let {x,} € X, xy € X. They are equivalent:

1. X, — X in the topology T giscrete-
2. {x,} is eventually constant: IN € N s.t. x, =x), Vn>N

Proof

Part 1. Assume that x,;, — x;. Let U = {xp}. Then U € T giscrete- Since x, — xp, by (3.4) there
exists N € IN such that
x, €U, Vn2>N.

As U = {xp}, we infer x, = x; for all n > N. Hence x,, is eventually constant.
Part 2. Assume that x, is eventually equal to x, that is, there exists N € IN such that

X, =%, VYn>N. (3-5)
Let U € I be an open set such that x; € U. By (3.5) we have that
x, €U, Vvn>N.

Since U was arbitrary, we conclude that x, — x;.

Before proceeding to examining convergence in the Euclidean topology, let us recall the classical
definition of convergence in R".

Definition 3.17: Classical convergence in R”
Let {x,,} C R" and %, € R". We say that x,, converges x, in the classical sense if |x, — x| = 0,

that is,
Ve>0,AINeN, st |x,—%xp| <e,¥vn>N.

Proposition 3.18: Convergent sequences in Joyclid

Let R” be equipped with T qiq- Let {x,} CR", x5 € R". They are equivalent:

1. X, — X, in the topology Jeyclid-
2. X, — X, in the classical sense.

Proof

Part 1. Assume x, — X, with respect to Jgyciq- Fix ¢ > 0 and define U := B.(xq). By
Proposition 3.7, we have U € . Moreover xq € U. As x,, — X, with respect to Jyiq, there
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exists N € N such that
x, €U, Vn2>N.

As U = B,(xy), the above reads
Ix, —xo|l <&, V¥n>N,

showing that x,, — X, in the classical sense.

Part 2. Assume x,, — X, in the classical sense. Let U € J,iq be an arbitrary set such that
Xy € U. By definition of Euclidean topology, this means that there exists » > 0 such that
B.(xg) CU. As x,, = X, in the classical sense, there exists N € N such that

|x, —xo|l <r, V¥n>N.
By definition of B,(xy), and since B,(x() C U, the above is equivalent to
x, € B(x)) CU, VvVn>N.

As U is arbitrary, we infer x,, — x with respect to Jeyclid-

Notation

Since classical convergence in R" agrees with topological convergence with respect to Teyelids
we will just say that x,, — x; in R” without ambiguity.

We conclude with a useful proposition which relates convergences when multiple topologies are
present.

Proposition 3.19

Let X be a set and 97, 7, be topologies on X. Suppose that 7, C J7. Let {x,;} C X and x; € X.
We have
X, =X in 97 = x,—>x in J,.

Proof

Assume x, — x in J7. We need to prove that x,, — x, in 7,. Therefore, let U € J, be such
that xy € U. Since 9, C I, we have that U € 7. As x, — x; in I, there exists N € N such
that

x, €U, Vn>N. (3.6)

Since U € 95, condition (3.6) shows that x,, > xg in 75.
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3.4. Metric spaces

We will now define a class of topological spaces known as metric spaces.
Definition 3.20: Distance and Metric space

Let X be a set. A distance on X is a function d : X x X — R such that, for all x,y,z € X they
hold:

« (M) Positivity: d(x,y) > 0and d(x,y) =0 < x=1y
« (M2) Symmetry: d(x,y) = d(y, x)
« (M3) Triangle Inequality: d(x,z) < d(x,y) + d(y,z)

The pair (X, d) is called a metric space.

Definition 3.21: Euclidean distance on R"

The Euclidean distance over R" is defined by

" 1/2
dx,y) :=[x-y| = (Z |x; _Yi|2) , Vx,yeR".
i=1

Proposition 3.22

Let d be the Euclidean distance on R". Then (R", d) is a metric space.

Proof

It is trivial that d satisfies (M1) and (M2). To show (M3), recall the triangle inequality in R™:
Ix+yl <lxl+1lyl, vxyeR".

Using the above, we obtain

dx,y) = |x—yl
=lx-2z)+ -yl
<l|x—zl+]z-yl
=d(x,z) +d(z,y).

Thus, d satisfies (M3) and (R", d) is a metric space.

141



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Definition 3.23: p-distance on R"

Let p € [1, ). The p-distance over R" is

1

n P
dy(x.y) := (Z I —yz-|”> .

i=1
Note that d, coincides with the Euclidean distance. For p = oo we set

doo(x,y) = max. I — il

Proposition 3.24

Let d,, be the p-distance over R", with p € [1,00]. Then (]R",dp) is a metric space.

Proof

Properties (M1)-(M2) hold trivially. The triangle inequality is also trivially satisfied by d,,. We
are left with checking the triangle inequality for d,, with p € [1, ). To this end, define

1
n »
Ixlp = <Z|Xi|p) :
i=1

Minkowski’s inequality, see Wikipedia page, states that
Ix+yl, <Ixlp +lyl,, vxyeR".
Therefore

dp(x,y) =[x -yl
=lx-2)+ -y,
<lx—zl, +lz -yl
=dy(x,2) +dp(z,y),

proving that d, satisfies (M3). Hence (R",d),) is a metric space.

A metric d on a set X naturally induces a topology which is compatible with the metric.
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Definition 3.25: Topology induced by the metric

Let (X, d) be a metric space. The set A C X is open if it holds
VxeU,3areR,r>0 st B(x)CU,
where B,(x) is the ball centered at x of radius r, defined by
B (x)={yeX : d(x,y) <r}.
The topology induced by the metric d is the collection of sets

Iy =1{U : UC X, U open}.

J

The proof that I is a topology on X follows, line by line, the proof that the Euclidean topology
T euclid 18 indeed a topology, see proof immediately below Definition 3.6. This is left as an exercise.

Remark 3.26: Topology induced by Euclidean distance
Consider the metric space (R?,d) with d the Euclidean distance. Then
Ti = Teuclid »

where T yid is the Euclidean topology on R™.

The proof is trivial, since the metric d is the Euclidean distance.
Example 3.27: Discrete distance
Question. Let X be a set. The discrete distance is the function d : X x X — R defined by

0 ifx=y
d(x,y) :=
(r.3) 1 ifx=y

1. Prove that (X, d) is a metric space.
2. Prove that 73 = T giscrete-

Solution. See Question 3 in Homework 3.

The following proposition tells us that balls in a metric space X are open sets. Moreover balls are
the building blocks of all open sets in X. The proof is left as an exercise.
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Proposition 3.28
Let (X, d) be a metric space, 7 the topology induced by d. Then:

« Forall x € X,r > 0 we have B.(x) € 3.
« U € 9 if and only if 31 family of indices s.t.

U:UB}}(xi)’ x€X, n>0.
iel

We now define the concept of equivalent metrics.
Definition 3.29: Equivalent metrics
Let X be a set and d;, dy be metrics on X. We say that d; and d, are equivalent if

T, - g
Jdl—sz.

The following proposition gives a sufficent condition for the equivalence of two metrics.

Proposition 3.30

Let X be a set and d;, d; be metrics on X. Suppose that there exists a constant ¢ > 0 such that
—dy(x.)) S di(xy) S ad(ry). VryEX.

Then d; and d, are equivalent metrics.

The proof of Proposition 3.30 is trivial, and is left as an exercise.
Example 3.31

Let p > 1. The metrics d, and do, on R" are equivalent.
Proof Follows from Proposition 3.30 and the estimate

do(X,y) S dp(x,y) Sndeo(x,y), Vx,y€R".

Warning

If two metrics are equivalent, that does not mean they have the same balls. For example the
balls of the metrics d;, dy and d,, on R" look very different, see Figure 3.4.

We can characterize the convergence of sequences in metric spaces.
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. K
NP,

Figure 3.4.: Balls B,(0) for the metrics dy, d, d; in RR2,

Proposition 3.32: Convergence in metric space

Suppose (X, d) is a metric space and I the topology induced by d. Let {x,} C X and x; € X.
They are equivalent:

1. x, — xo with respect to the topology 7.
2. d(x,,%9) > 0inR.
3. For all € > 0 there exists N € IN such that

X, € B.(x), vn>N.

The proof is similar to the one of Proposition 1.18, and it is left as an exercise.

3.5. Interior, closure and boundary

We now define interior, closure and boundary of a set A contained in a topological space.
Definition 3.33: Interior of a set
Let (X, 9) be a topological space, A C X. The interior of A is

IntA := U U.

UCA
UeT

Remark 3.34

The definition of Int A is well-posed, since @ C A and @ € J . Therefore the union is taken over
a non-empty family.

Proposition 3.35: Int A is the largest open set contained in A

Let (X, 9) be a topological space, A C X. Then Int A is the largest open set contained in A, that
is:
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1. Int A is open.

2. IntACA.

3. fVeT andV C A, thenV C Int A.
4. Aisopenif and only if A = Int A.

Proof

1. Int A is open, since it is union of open sets, see property (Az2).
2. Int A C A, since Int A is union of sets contained in A.

3. Suppose V € 7 and V C A. Therefore

VC U U=IntA.

UCA
UeT

4. Suppose that A is open. Then

Ac | U=mtA.

UCA
UeT

As we already know that Int A C A, we conclude that A = Int A.
Conversely, suppose that A = Int A. Since Int A is open, then also A is open.

Definition 3.36: Closure of a set

Let (X, 9) be a topological space, A C X. The closure of A is

A= ﬂ C.
ACC
C closed

Remark 3.37

The definition of A is well-posed, since A C X, and X is closed. Therefore the intersection is
taken over a non-empty family.

146



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Proposition 3.38: A is the smallest closed set containing A

Let (X, ) be a topological space, A C X. Then A is the smallest closed set containing A, that
is:

1. Ais closed.

2. ACA. _

3. If Vis closed A CV, then A cVv.
4. Aisclosed if and only if A = A.

Proof

1. Ais closed, since it is intersection of closed sets, see property (Cz).
2. AC ;\ since A is intersection of sets which contain A.

3. Suppose V is closed and A C V. Therefore

A= () ccv.
ACC
C closed

4. Suppose that A is closed. Then
A= () CcaA,
ACC
Cclosed
showing that ACA. Aswe already know that A C A, we conclude that A = A,
Conversely, suppose that A = A. Since A is closed, then also A is closed.
Lemma 3.39

Let (X, J) be a topological space, A C X. They are equivalent:

1. Xy € Z
2. For every U € I such that x, € U, it holds

UnA=09.

Proof

We prove the contronominal statement:

xer = 3IUeT st. xpeU, UnA=09.
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Let us check the two implications hold:

« Suppose x, ¢ A. Then xy € U := (A)°. Note that U is open, since U° = A is closed. Since
A C A, we have .
AnU=An(Af =0.

« Assume there exists U € J such that xy € U and U n A = @. Therefore A C U°. Since U
is open, U° is closed. Then
A= () ccue.
ACC
C closed

Since x, ¢ U¢, we conclude that x, ¢ A.

Definition 3.40: Boundary of a set
Let (X, 9) be a topological space, A C X. The boundary of A is

A := A\IntA.

Proposition 3.41

Let (X, 9) be a topological space, and A C X. Then dA is closed.

Proof

We can write _ _
0A=ANIntA=An(Int AF.

Note that A is closed and (Int A)° is closed, since Int A is open. Then dA is intersection of two
closed sets, and in hence closed by (C2).

We can characterize A as the set of limit points of sequences in A.
Definition 3.42: Set of limit points
Let (X, J) be a topological space, A C X. The set of limit points of A is defined as

L(A) :={xe X : 3{x,} C A st. x, > x}.
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Proposition 3.43

Let (X, ) be a topological space, A C X a set. Let {x,} C A and x; € X be such that x,, — x.
Then x; € A. In particular,
L(A)C A.

Proof
Suppose by contradiction x, ¢ A, so that
xp € (A).
Since (A)° is open and x, — x;, there exists N € N such that
x, € (AF, Vn>N.
This is a contradiction, since we were assuming that {x,} C A. This shows x; € A and therefore
L(A) C A

Warning

1. The converse of Proposition 3.43 is false in general, that is,
A¢ L(A).
We show a counterexample in Example 3.44.
2. The relation

A=1L(A).

holds in the so-called first countable topological spaces, such as metric spaces, see Propo-
sition 3.45 below.

Example 3.44: Co-countable topology on R

Question. The co-countable topology on R is the collection of sets
Tee :={ACR: A°=R or A countable }.
1. Prove that I is a topology on R.
2. Prove that a sequence {x,} is convergent in I, if and only if it is eventually constant.

3. Define the set A = (-, 0]. Prove that A = R.
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4. Conclude that A ¢ L(A).
Solution.

1. See Question 2 in Homework 3.
2. See Question 2 in Homework 3.

3. Assume C is a closed set such that A C C. Since C is closed, it follows that C° € ..
Therefore (C°)° = C is either countable, or equal to R. As A C C, we have that C is
uncountable. Therefore, C = R. As C is an arbitrary closed set containing A, we conclude

that _
A= ﬂ C= ﬂ R=R.

AcCC AcCC
C closed C closed

4. By Point 2, convergent sequences are eventually constant. Therefore, if {x,} C A
converges to xp, we conclude that x; € A. This shows

L(A) = A = [~,0).
By Point 3, we have A =R. We conclude that A ¢ L(A).

In metric spaces we can characterize the interior of a set and the closure in the following way.
Proposition 3.45: Characterization of Int A and A in metric space

Let (X, d) be a metric space. Denote by J; the topology induced by d. For any A C X, we have
L IntA={xeA: 3r>0 st B(x)CA},

2. A=L(A) ={x e X st 3{x,} C A st. x, - x}.

Proof

1. See Question 4 in Homework 3.
2. The inclusion L(A) C A holds by Proposition 3.43. We are left to show that
ACL(A).

To this end, let x, € A. For n € N, consider the ball B, /n(%p)- Since By /p(x) € Iy and
Xg € B.(xp), we can apply Lemma 3.39 and deduce that

Bi/n(xp)n A= @.
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Let x, € By/n(x) n A. Since n was arbitrary, we have constructed a sequence {x,} C A
such that
X € By/n(xg), VneN.

In particular, we have that
0 < d(x,,x) < i, 0
n

as n — o0. Thus x, — x,, showing that x; € L(A).

Example 3.46
Question. Consider R equipped with the Euclidean topology. Let A = [0, 1). Prove that:
IntA=(0,1), A=[0,1], 0A={0,1}.

Note: In particular, this shows
IntA+A, A+A,

so that A is neither open, nor closed.
Solution. See Question 5 in Homework 3.

3.6. Density

Definition 3.47: Density
Let (X, 9) be a topological space. We say that a subset A C X is dense in X, if

AnU=@, VYVUeT,U=+*0Q.

Density can be characterized in terms of closure.
Proposition 3.48: Characterization of density
Let (X, 9) be a topological space, A C X. They are equivalent:

1. Ais dens_e in X.
2. Itholds A = X.
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Proof

Part 1. Let A be dense in X. Suppose by contradiction that
AzX.
This means (A)° # @. Note that (A)° is open, being A closed. By density of A in X we have
An(AYX £0.

Since A C ;l, the aboze is a contradiction.
Part 2. Suppose that A = X. Let U €  with U # @. By contradiction, assume that

AnU=09.
Therefore A C U¢. As U° is closed, we have
ACUS,

because A is the smallest closed set containing A. Recalling that A = X, we conclude that
U°¢ = X. Therefore U = @, which is a contradiction.

Example 3.49: Q is dense in (R, Tyqlid)

Question. Consider R equipped with the Euclidean topology Jeyclid-
1. Prove that Q is dense in R, that is, @ =R.
2. Prove that IntQ = @.
Note: This shows Q is neither open, nor closed, since
mtQ=0Q, Q0.

Solution. To solve the exercise we will need the following well-known analysis result:
Density Thoerem. Let x € R and ¢ > 0. There exists g € Q such that

|x—qgl<e.

1. We want to prove that Q is dense in R according to the topological definition. Therefore,
let U be a non-empty open set in R. Let x € U. Since U is open, there exists r > 0 such
that

(x—-r,x+r)CU.

By the Density Theorem, there exists g € R such that
lx—ql<r.

In particular, this shows g € (x —r,x +r), so that g € U. Therefore Q n U # @, proving
that Q is dense in R. In particular, by Proposition 3.48, we conclude that Q = R.
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2. Recall that (R, J¢yliq) is a metric space. Therefore, we can apply Proposition 3.45, and

infer that
ntQ={geQ: 3r>0st (g—r,g+r)CQ} (3.7)
Assume by contradiction that Int Q # @. Let g € Int Q. By (3.7), there exists r > 0 such
that
(g—r.g+rcQ.

But (g — r,q + r) is an interval of R, and therefore it will contain an irrational number
x € R\ Q. Contradiction. Hence, IntQ = @.

Example 3.50: Z is not dense in (R, Teyclid)

Question. Consider R equipped with the Euclidean topology Jcy,clid. Prove that the set of
integers Z is not dense in R, with

7Z=27.
Solution. The set of integers Z satisfies
7° = U(z,z+ 1).
z€Z

Since (z,z + 1) is open in R, by (A2) we conclude that Z° is open, so that Z is closed. Therefore
zZ=17.

As Z = R, by Proposition 3.48, we have that Z is not dense in R.

If we change topologies, the closure might change.
Example 3.51: Z is dense in (R, Tcofinite)

Question. Consider R equipped with the cofinite topology
T cofinite = {U C R : U°€ is finite, or U¢ = R}.
Prove that Z is dense in R. In particular,
Z=R,

Solution. Suppose C is a closed set such that Z C C. By definition of T ,gnite, Wwe have that
(C%)¢ = C is either finite, or it coincides with R. Since Z C C, and Z is not finite, we conclude
C =R. As C is an arbitrary closed set containing Z, we conclude that

z= () ¢= () R=R.
zce zce
C closed C closed
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In particular, by Proposition 3.48, Z is dense in R.

3.7. Hausdorff spaces

Hausdorff space are topological spaces in which points can be separated by means of disjoint open
sets.

Definition 3.52: Hausdorff space

We say that a topological space (X, J) is HausdorfT if for every x,y € X with x # y, there
exist U,V € T such that
xeU, yeV, UnV=0.

The main example of Hausdorff spaces are metrizable spaces.
Proposition 3.53

Let (X, d) be a metric space, 7 the topology induced by d. Then (X, 7;) is a Hausdorft space.

Proof
Let x,y € X with x # y. Define
1
U:=B(x), V:=BJ(y), e:= Ed(x,y).

By Proposition 3.28, we know that U,V € J;. Moreover x € U, y € V. We are left to show that
U nV = @. Suppose by contradiction that U nV # @ and let z € U n V. Therefore

dix,z)<e, dy,z)<e.
By triangle inequality we have
d(x,y) <d(x,2) +d(y,2) <e+e=d(x,y),

where in the last inequality we used the definition of e. This is a contradiction. Therefore
UnV =@and (X, J,) is Hausdorff.

In general, every metrizable space is Hausdorff.
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Definition 3.54: Metrizable space

Let (X, 9) be a topological space. We say that the topology  is metrizable if there exists a
metric d on X such that
T =9y,

with I the topology induced by d.

Corollary 3.55

Let (X, ) be a metrizable space. Then X is Hausforff.

Proof
Since (X, 9) is metrizable, there exists a metric d on X such that
T =9.
By Proposition 3.53 we know that (X, 7) is Hausdorff. Hence (X, 9) is Hausdorff.

As a conseugence of Corollary 3.55 we have that spaces which are not metrizable are not Hausdorff.
Let us make a few examples.

Example 3.56: (X, Jiivial) is not Hausdorft

Question. Let X be equipped with the trivial topology Jiyiyvial- Then X is not Hausdorff.
Solution. Assume by contradiction (X, Jivial) is Hausdorff and let x, y € X with x # y. Then,
there exist U,V € Jiyivial Such that

xeU, yeV, UnV=0.
In particular U # @ and V # @. Since = {@, X}, we conclude that
U=V=X == UnV=X=#0Q.

This is a contradiction, and thus (X, Ji;iyia1) is not Hausdorff.

Example 3.57: (R, Tofinite) is not Hausdorft
Question. Consider the cofinite topology on R
T cofinite = U CR : U€ is finite, or U = R}.

Prove that (R, T.ofinite) is not Hausdorff.
Solution. Assume by contradiction (R, T¢ofinite) is Hausdorff and let x, y € R with x # y. Then,
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there exist U,V € J¢ofinite Such that
xeU, yeV, UnV=0.
Taking the complement of U nV = @, we infer
R=UnV)X=UuV". (3.8)
There are two possibilities:

1. U¢ and V¢ are finite. Then U° u V¢ is finite, so that (3.8) is a contradiction.

2. EitherU° = Ror U° = R. If U = R, then U = @. This is a contradiction, since x € U. If
V¢ =R, then V = @. This is a contradiction, since y € V.

Hence (R, J¢ofinite) is not HausdorfT.

Example 3.58: Lower-limit topology on R is not Hausdorff

Question. The lower-limit topology on R is the collection of sets
9LL = {@,]R} u {(a, +00) tae ]R}.

1. Prove that (R, 971) is a topological space.
2. Prove that (R, 97 ) is not Hausdorff.

Solution. Part 1. We show that (R, 71 ) is a topological space by verifying the axioms:
(A1) By definition @,R € I7;.
(A2) Let A; € 97, for alli € I. We have 2 cases:

o If A; = @ for all i, then v;A; = @ € I

« At least one of the sets A; is non-empty. As empty-sets do not contribute to the union,

we can discard them. Therefore, A; = (—o0, q;) with g; € R u {o}. Define:

a:=supg, A :=(-,a).
i€l
Then A € I and:
A= UiEIAi'

To prove this, let x € A. Then x < g, so there exists i; € I such that x < G- Thus, x € Aio,
showing A C ujrA;. Conversely, if x € ujrA;, then x € A; for some iy € I, implying
x < @, < a. Thus, x € A, proving uie1A; € A.

(A3) Let A, B € I11.. We have 3 cases:
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e A=@orB=9@. ThenAnB=9Q € 7.
« A# @andB # @. Therefore, A = (—0,a) and B = (—o0, b) with a,b € R u {co}. Define
U:=AnB, 2z :=min{a,b}.
ThenU = (—o0,z) € I7]..

Thus, (R, 911) is a topological space.
Part 2. To show (R, 971 ) is not Hausdorff, assume otherwise. Let x,y € R with x # y. Then
there exist U,V € J71, such that:

xeU, yeV, UnV=0.

As U,V are non-empty, by definition of I, there exist a,b € Ru{co} such that U = (-0, a) and
V = (—o90,b). Define:
z :=minf{a,b}, Z :=UnV = (-o9,2).

Hence Z # @, contradicting U n V = @. Thus, (R, 91) is not Hausdorff.

In Hausdorff spaces the limit of sequences is unique.

Proposition 3.59: Uniqueness of limit in Hausdorff spaces

Let (X, ) be a Hausdorff space. If a sequence {x,,} C X converges, then the limit is unique.

Proof

Let {x,} C X be convergent, and suppose by contradiction that
Xn > Xo, Xp Yo, X0 F Vo
Since X is Hausdorf, there exist U,V € 9 such that
x €U, eV, UnV=0.
As x, = xy and U € I with x; € U, there exists N; € N such that
x, €U, Vvn2>N;.
Similarly, since x,;, = yp and V € I with y, € U, there exists N, € N such that
x, €V, Vn>N,.

Take N := max{Nj, Np}. Then
x, €UnV, Vvn>N.

Since U n V = @, the above is a contradiction. Therefore the limit is unique.
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3.8. Continuity

We extend the notion of continuity to topological spaces. To this end, we need the concept of pre-
image of a set under a function.

Definition 3.60: Images and Pre-images
Let X,Y be sets and f : X — Y be a function.
1. Let U C X. The image of U under f is the subset of Y defined by
fU) :={yeY: IxeX st y=fl)}={f(x) : xeX}.
2. Let V C Y. The pre-image of V under f is the subset of X defined by

V) i={xeX : f(x)eV}

Warning

The notation f~1(V) does not mean that we are inverting f. In fact, the pre-image is defined
for all functions.

Let us gather useful properties of images and pre-images.
Proposition 3.61

Let X,Y be sets and f : X — Y. We denote with the letter A sets in X and with the letter B sets
inY. We have

< AC fTI(f(A)

« A= fI(f(A))if f is injective

- f(FT'(B)HCB

« f(f~Y(B)) = Bif f is surjective

o If A} C A, then f(Ay) C f(Ap)

« If B; C B, then f~1(B;) C f~1(B,)
« If A; C X fori € I we have

f (U Ai) =Jf@

iel iel
f (ﬂ Ai) <)
i€l i€l
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« If B; CY fori € I we have

7 (U Bi) =Jr'®

i€l i€l
I (ﬂ Bi) = f'®)
i€l i€l

Suppose Z is another setand g: Y — Z. Let C C Z. Then

(8= A = g(f(A)
(g NTO =)

J

It is a good exercise to try and prove a few of the above properties. We omit the proof. We can now
define continuous functions between topological spaces.

Definition 3.62: Continuous function
Let (X, Ix) and (Y, Iy) be topological spaces. Let f : X — Y be a function.
1. Let xy € X. We say that f is continuous at x; if it holds:

VVeTy st flx)eV,aU eIy st. xeU, f{U)CV.

2. We say that f is continuous from (X, ) to (Y, Jy) if f is continuous at each point
Xy € X.

J

The following proposition presents a useful characterization of continuous functions in terms of
pre-images.

Proposition 3.63

Let (X, Ix) and (Y, Jy) be topological spaces. Let f : X — Y be a function. They are equiva-
lent:

1. f is continuous from (X, Ix) to (Y, Fy).
2. Ttholds: f~1(V) € Iy forall V € Fy.

Important

In other words, a function f : X — Y is continuous if and only if the pre-image of open sets in
Y are open sets in X.
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The proof of Proposition 3.63 is simple, but very tedious. We choose to skip it.

Example 3.64

Question. Let X be a set and J7, 95 be topologies on X. Define the identity map
dy : (X,97) - (X,73), Tdx(x) :=x.

Prove that they are equivalent:

1. Idy is continuous from (X, 77) to (X, T5).
2. 77 is finer than 95, that is, 75, C J7.

Solution. Idy is continuous if and only if
' (V) e Ty, vVed,.
But Id)_(l (V) =V, so that the above reads
Ved,, VYWVeTg,,

which is equivalent to 7, C 77.

J

Let us compare our new definition of contiuity with the classical notion of continuity in R". Let us
recall the definition of continuous function in R".

Definition 3.65: Continuity in the classical sense
Let f: CR" —» R™. We say that f is continuous at x, if it holds:

Ve>0,358>0 st [f(x)— f(xo)l <e if |x—x] <6.

Proposition 3.66

Let f: R* - R™ and suppose R", R™ are equipped with the Euclidean topology. Let x, € R".
They are equivalent:

1. f is continuous at x in the topological sense.
2. f is continuous at x in the classical sense.

Proof

Part 1. Suppose that f is continuous at x, in the topological sense. Let ¢ > 0 and consider the
set

V= B.(f(x0))-
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We have that V c R™ is open and f(xy) € V. As f is continuous in the topological sense, there
exists U C R" open with x( € U and such that

fU) cV = B.(f(x0))- (3.9)
Since U is open and x,, € U, there exists § > 0 such that
Bs(xp) CU.
By the above inclusion and (3.9) we conclude that

F(Bs(x0)) € f(U) €V = B:(f(x0)) .

This is equivalent to
x€Bs(x)) = f(x)€B(f(x0)),

which reads
Ix—xl <6 = [f(® - fxl<e.

Therefore f is continuous at X, in the classical sense.
Part 2. Suppose f is continuous at x; in the classical sense. Let V C R™ be open and such that
f(xg) € V. Since V is open, there exists ¢ > 0 such that

B.(f(xg)) C V. (3.10)

Since f is continous in the classical sense, there exists § > 0 such that

Ix—xol <6 = |f&x) - f(xp)l <e.

The above is equivalent to

x€Bs(xo) = f(x)€B(f(x0))- (3.11)

Set
U := Bs(xo)

and note that U is open in R" and x € U. By definition of image of a set, (3.11) reads

FW) = f(Bs(x0)) € Be(f(x0))-

Recalling (3.10) we conclude that
fO)cv.

In summary, we have shown that given V C R™ open and such that f(x,) € V, there exists U
open in R” such that xy € U and f(U) c V. Therefore f is continuous at xq in the topological
sense.

A similar proof yields the characterization of continuity in metric spaces. The proof is left as an
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exercise.
Proposition 3.67

Let (X,dx) and (Y, dy) be metric spaces. Denote by Ty and Jy the topologies induced by the
metrics. Let f: X — Y and xy € X. They are equivalent:

1. f is continuous at x; in the topological sense.

2. It holds:
Ve>0,356>0 s.t

dy(f(x), f(xp)) <& if dx(x, %) <§.

Let us examine continuity in the cases of the trivial and discrete topologies.

Example 3.68

Question. Let (X, 7y) and (Y, Iy) be a topological space. Suppose that Iy is the trivial topol-
ogy, that is,
Iy ={2,Y}.

Prove that every function f: X — Y is continuous.
Solution. f is continuous if f~}(V) € Ty for all V € Jy. We have two cases:

« V=@: Then f (V)= f1(0) =0 € Ty.
« V=Y:Then f1(V)= f1(Y) = X € Ix.

Therefore f is continuous.

Example 3.69

Question. Let (X, Jx) and (Y, Jy) be topological spaces. Suppose that Ty is the discrete
topology, that is,
.G]Y Z{V st. V QY}

Let f: X — Y. Prove that they are equivalent:

1. f is continuous from X to Y.
2. f{yh) e Iy forally €Y.

Solution. Suppose that f is continuous. Then
f_l(V)ng, vVeIy.

AsV = {y} € Fy, we conclude that f'({y}) € Tx.
Conversely, assume that f'({y}) € Ix forall y € Y. Let V € Jy. Trivially, we have V =
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Uyey {y}. Therefore
=5t (U {y}) = r'on.
yev yev

As f71({y}) € Ix for all y € Y, by property (A2) we conclude that f~1(V) € Ty. Therefore f is
continuous.

It is useful to introduce the notion of sequential continuity.

Definition 3.70: Sequential continuity

Let (X, Jx) and (Y, Iy) be topological spaces, and f : X — Y. We say that f is sequentially
continuous if the following condition holds:

lcX, x> x in X = f(x,)—> flx) inY.

J

In other words, f is sequentially continuous if it takes convergent sequences into convergent se-
quences. In any topological space, continuity implies sequential continuity, as proven in the next
Proposition.

Proposition 3.71

Let (X, Ix) and (Y, Iy) be topological spaces. Let f : X — Y be continuous. Then f is sequen-
tially continuous.

Proof

Let {x,} C X and suppose that x,, — x; in the topology Jx. We need to prove that

fGa) = f(x), in Y.

To this end, let V € Jy be such that f(xy) € V. Since f is continuous, there exists U € Ty with
Xy € U such that
fO)cv.

Since U € I and x, — x; in X, there exists N € IN such that
x, €U, Vvn>N.

Therefore
f(x) € fU), ¥n>N.

Seeing that f(U) c V, we conclude
f(x,) €V, v¥n>=N,
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showing that f(x,) - f(x)inY.
Warning

1. The reverse implication of Proposition 3.71 is false:
sequential continuity ~ #=  continuity

A counterexample is given in Example 3.73 below.

2. Continuity is equivalent to sequential continuity if the topologies on X and Y are first
countable. This is the case for metrizable topologies, see Proposition 3.72 below.

Proposition 3.72
Let (X,dy) and (Y, dy) be metric spaces. They are equivalent:

1. f is continuous.
2. f is sequentially continuous.

Proof

Part 1. We have already proven that continuity implies sequential continuity in any topological
space.

Part 2. Assume f is sequentially continuous. Suppose by contradiction f is not continuous at
some point xy € X. Then there exists g > 0 such that, for all § > 0 it holds

dy(f(x), f(x)) > &9, dx(x,x0) < 8.

We can therefore choose § = 1/n and construct a sequence {x,} C X such that

dy (fGen), f(0)) > &0 » dx(xn,x0)<%, vneN.

Therefore x, — x; in X. Define the sequence

x, if n even

n i Xy if n odd

As x, = xy, we have y, —» x5. However {f(3,)} does not converge to any point in Y: Indeed
{f(33,)} cannot converge to f(x,), since for n even we have

dy (fOm): f(x0)) = dy (f(x), f(x0)) > & -
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Also {f(3;,)} cannot converge to a point y # f(xg), since for n odd

dy(f(m),y) = dy(f(x0),¥) > 0.

Hence, we have produced a sequence {y,} which is convergent, but such that {f(3,)} does not
converge. This contradicts our assumption. Hence f must be continuous.

Example 3.73: Sequential continuity does not imply continuity

Question. Consider the co-countable and discrete topologies on R

Tee ={ACR : A°=R or A® countable}
Tdiscrete = {ACR}

Consider the identity function

fr R Ie) = R Tgiscrete)»  f(x) 1= x.
Prove that

1. f is not continuous.
2. f is sequentially continuous.

Hint: You can use the following fact: Sequences in (R, T,.) and (R, T giscrere) converge if and only
if they are eventually constant.
Solution.

1. We have {x} € Tjjscrete- However,

) = {x} ¢ T,
since {x}° = R\ {x} is neither equal to R, nor countable. Therefore f is not continuous.

2. Assume that {x,} is convergent in J.. By the Hint, we have that {x,} is eventually con-
stant. Again by the Hint, we infer that {x,} is convergent in Jjiscrete- Since f(x,) = x,,
we conclude that f is sequentially continuous.

Let us make an observation on continuity of compositions.
Proposition 3.74: Continuity of compositions

Let (X,9),(Y,9y),(Z,T) be topological spaces. Assume f: X - Yand g: Y — Z are
continuous. Then (g f): X — Z is continuous.
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Proof
Let C € 9. As g is continuous, we have that
g (O egy.
Since f is continuous, we also have
g e)egx.

Therefore
(g NO) =g O)eIx,

so that g o f is continuous.
We conclude the section by introducing homeomorphisms.

Definition 3.75: Homeomorphism

Let (X, Ix), (Y, Iy) be topological space. A function f : X — Y is called an homeomorphism
if they hold:

1. f is continuous.
2. f admits continuous inverse f~!: Y — X.

J

Therefore f is a homeomorphism if it is continuous and admits a continuous inverse. Homeomor-
phisms are used to study similarities between topological spaces: When 2 topological spaces are
homeomorphic, they can be essentially considered to be the same space.

3.9. Subspace topology

Any subset Y in a topological space X naturally inherits a topological structure. Such structure is
called subspace topology.

Definition 3.76: Subspace topology
Let (X, J) be a topological space and Y C X a subset. Define the family of sets

§:={ACY:3UeT st. A=UnY}
={UnY, UeT}.

The family & is called subspace topology on Y induced by the inclusion Y C X.
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Proof: Well-posedness of Definition 3.76

We have to show that (Y, &) is a topological space:

c (A1) @ e Ssince =@nY and @ € J. Similarly, we haveY € &, sinceY = X nY and
XeT

« (A2) Let A; € 8 fori € I. By definition there exist U; €  such that A; =U;nY foralli € I.
Therefore
Vier Ai = Uiet(UinY) = (uiglUi) nY .

The above proves that ujc; A; € &, since v U; € .

+ (A3) Let Ay, Ay € &. By definition there exist U;,U, € I such that Ay = U; nY and
Ay =U, nY. Therefore

AlnA2=(UlﬂY)ﬂ(UzﬂY)=(UlﬂU2)ﬂY

The above proves that A; n Ay € §,sinceU; nU; € 7.

If the set Y is open, the subspace topology coincides with the original topology, as see in the next
Proposition.

Proposition 3.77

Let (X, 9) be a topological space and Y € 7. Let
ACY. Then
Aes = AeT

Proof
Suppose A € &. Then there exists U € J such that
A=UnY.
Since U,Y € 7, by property (A3) of topologies it follows that
A=UnYeT
Conversely, assume that A € . Then
A=AnY,

showing that A € &.
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Warning
Let (X, 9) be a topological space, A CY C X. In general we could have
Aed and Ae¢eT.

Example. Let X = R with Jj;q- Consider the subsetY = [0, 2), and equip Y with the subspace
topology &. Let A = [0,1). Then A ¢ JTyqiq but A € &8, since

A=(-1,1)nY, (-1,1) € Teyalid -

Example 3.78

Question. Let X = R be equipped with J¢,i4- Let & be the subspace topology on Z. Prove

that
S =9 discrete -

Solution. To prove that & = Jgjscrete We need to show that all the subsets of Z are open in §.
1. Let z € Z be arbitrary. Notice that
{Z}=(G-1,z+1)nZ
and (z— 1,z + 1) € Toyclig- Thus {z} € .
2. Let now A C Z be an arbitrary subset. Trivially,
A =ugeaist.

As {z} € &, we infer that A € § by (A2).

3.10. Topological basis

We have seen that in metric spaces every open set is union of open balls, see Propostion 3.28. We
can then regard the open balls as the building blocks for the whole topology. In this context, we call
the open balls a basis for the topology.

We can generalize the concept of basis to arbitrary topological spaces.
Definition 3.79: Topological basis

Let (X, ) be a topological space and let %8 C J. We say that % is a topological basis for
the topology 7, if for allU € I there exist open sets {B;};c; € %, with I family of indices, such
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that
U= U B;. (3.12)

i€l

Example 3.80

Question. Prove the following statements.
1. Let (X, ) be a topological space. Then % := T is a basis for 7.
2. Let (X, d) be a metric space with topology 7 induced by the metric. Then
B :={B(x): xeX, r>0}
is a basis for 7.
3. Let X be equipped with Jgiscrete- Then
B ={{x}: xeX}
is a basis for Jgiscrete-
Solution.
1. This is true because one can just take B = U in (3.12).
2. This is true by Propostion 3.28.

3. This is true because for any U € I we have

U=}

xeU

Example 3.81

Question. Consider R equipped with the Euclidean topology J¢ycig- Which of the following
collection of sets are basis for J,.j;q? Motivate your answer.

1. B1={@ab): a,beR}
2. By ={(a,b) : a,beQ}.
3. B3 ={(ab): abeZ}

Solution.

1. A, is a basis for Tgyig, for the following reason. Let d be the Euclidean distance on R,
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and I the topology induced by d. We know that 7; = T4, therefore
B ={B(x): xeR, r>0}
is a basis for J,jiq by Propostion 3.28. Note that balls in R are just open intervals
B(x)=(x—-r,x+r).
Hence %, = 9%, so that B is a basis for T¢yid-

2. B, is a basis for Tyqiq- This is because any open interval (a,b) with a,b € R can be

written as
U @9=@b.
q.r€Q, a<q, s<b

Therefore, since 9B is a basis for T qiq, we conclude that also &, is a basis for Toylig-

3. %3 is not a basis for Tc1iq- Indeed, consider U = (0, 1/2), which is open in Jgcjig- It is
clear that U cannot be obtained as the union of intervals (g, s) with ¢, s € Z.

Proposition 3.82
Let (X, 9) be a topological space, and & a basis for 7. They hold:
« (B1) We have
) B=x.
Be%

o (B2) If Uy, U, € % then there exist {B;} C & such that

UanZZUBi'

i€l

Proof

« (B1) This holds because X € & . Therefore by definition of basis there exist B; € 9% such
that
x=|JB.
i€l
Therefore taking the union over all B € 98 yields X, and (B1) follows.

« (B2) Let U;,U; € &B. Then U,U, € T, since B8 C . By property (A3) we get that
Uy nU, € . Since A is a basis we conclude (B2).

Properties (B1) and (B2) from Proposition 3.82 are sufficient for generating a topology.
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Proposition 3.83

Let X be a set, and & a collection of subsets of X satisfying (B1)-(B2). Define

7 :=JucX: U=|JB, B e®{.

i€l

Then T is a topology on X, with basis given by 9.

Proof
1. We need to verify that  is a topology:

« (A1) We have that X € J by (B1). Moreover @ € J, since @ can be obtained as empty
union. Therefore (A1) holds.

« (A2) LetU; € T for alli € I. By definition of  we have

u=J A

kekK;

for some family of indices K; and B;( € %. Therefore

ve=Uu= U 5.

i€l i€l, kek;
showing that U € 7.

 (A3) Suppose that U;,U, € 7. Then

U1:UBi1= U2:UB,-2

iel, iel,
for B!, B? € %. From the above we have

1>

Uinlp= ) B'nB.
i€l kel,

From property (B2) we have that for each pair of indices (i, k) the set B} n B,% is the union
of sets in 98. Therefore U; n U, is union of sets in 9B, showing that U; nU, € I

2. This trivially follows from defintion of I and definition of basis.
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3.11. Product topology

Given two topological spaces (X, Tx) and (Y, Iy) we would like to equip the cartesian product
XxY={(x,y): xeX, yeVY}
with a topology. We proceed as follows.
Proposition 3.84
Let (X, Ix) and (Y, Iy) be topological spaces. Define the family & of subsets of X x Y as
B :={UxV :U€Tyx, VeIy}C ITxxTy.
Then 9 satisfies properties (B1) and (B2) from Proposition 3.82. In particular,
Txxy =92 + Z=|JUxV; UxV,e % (3.13)
iel

is a topology on X x Y.

Proof

The proof that 9 satisfies (B1)-(B2) is an easy check, and is left as an exercise. As 9 satisfies
(B1)-(B2), by Proposition 3.83 we know that T,y is a topology on X x Y.

Definition 3.85: Product topology

Let (X, Ix) and (Y, Iy) be topological spaces. The product topology on X xY is the collection
of sets Tx,y at (3.13).

Example 3.86

Let R be equipped with the (one dimensional) Euclidean topology. The product topology on RxR
coincides with the topology on R? equipped with the (two dimensional) Euclidean topology.

Definition 3.87: Projection maps
Given two sets X,Y we define the projection maps as

x: XxY =X, nX(x,y)::x,
my: XxY oY, m(xy) =y.
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Proposition 3.88: Projections zy, 71y are continuous for Tyy

Let (X, Jx) and (Y, Iy) be topological spaces and equip X x Y with the product topology Ty
Then 7y and 7y are continuous.

Proof

LetU € Ix. Then
i U)=UxY.

We have that U xY € T,y since U € Tx and Y € Fy. Therefore xy is continuous. The proof
that my is continuous is similar, and is left as an exercise.

The following proposition gives a useful criterion to check whether a map into X xY is continuous.
Proposition 3.89

Let (X, Jx) and (Y, Iy) be topological spaces and equip X x Y with the product topology Ty
Let (Z, J,) be a topological space and

f:Z—->XxY
a function. They are equivalent:

1. f is continuous.
2. The compositions
nxef:Z—=-X, myef:Z->Y

are continuous.

The proof is left as an exercise.

3.12. Connectedness

Suppose that (X, 97) is a topological space. By property (A1) we have that
o, XeT

Therefore
=X, X'=09

are closed. It follows that @ and X are both open and closed.
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Definition 3.90: Connected space

Let (X, 9) be a topological space. We say that:

1. X is connected if the only subsets of X which are both open and closed are @ and X.
2. X is disconnected if it is not connected.

J

The following proposition gives two extremely useful equivalent definitions of connectedness. Be-
fore stating it, we define the concept of proper set.

Definition 3.91: Proper subset

Let X be a set. A subset A C X is properif A= @ and A # X.

Proposition 3.92: Equivalent definition for connectedness

Let (X, 9) be a topological space. They are equivalent:

1. X is disconnected.
2. X is the disjoint union of two proper open subsets.
3. X is the disjoint union of two proper closed subsets.

Proof

Part 1. Point 1 implies Points 2 and 3.
Suppose X is disconnected. Then there exists U C X which is open, closed, and such that

Uzo, U#X. (3.14)
Define A :=U, B := U°. By definition of complement we have
X=AuB, AnB=0.
Moreover:

« A and B are both open and closed, since U is both open and closed.

« A and B are proper, since (3.14) holds.

Therefore we conclude Points 2, 3.
Part 2. Point 2 implies Point 1. Suppose A, B are open, proper, and such that

X=AuB, AnB=09.

This implies
A°=X\NA=B,
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showing that A€ is open, and hence A is closed. Therefore A is proper, open and closed, showing
that X is disconnected.
Part 3. Point 3 implies Point 1. Suppose A, B are closed, proper, and such that

X=AuB, AnB=09.

This implies
A°=X\NA=B,

showing that A is closed, and hence A is open. Therefore A is proper, open and closed, showing
that X is disconnected.

In the following we will use Point 2 and Point 3 in Proposition 3.92 as equivalent definitions of
disconnected topological space.

Example 3.93

Question. Consider the set X = {0, 1} with the subspace topology induced by the inclusion

o

X C R, where R is equipped with the Euclidean topology eycliq- Prove that X is disconnected.
Solution. Note that
X ={o}u{1}, {0}n{1}=0.

The set {0} is open for the subspace topology, since
{0}=Xn(-1,1), (-1,1) € Teyclid-
Similarly, also {1} is open for the subspace topology, since
{}=Xn(0,2), (0,2) € Teyclid-

Since {0} and {1} are proper subsets of X, we conclude that X is disconnected.

Example 3.94

Question. Let R be equipped with T4, and let p € R. Prove that the set X = R\ {p} is
disconnected.
Solution. Define the sets

AZ(_‘X’,P)s Bz(P"x’)

A and B are proper subsets of X. Moreover
X=AuB, AnB=0.

Finally, A, B are open for the subspace topology on X, since they are open in (R, T¢c1i4)- There-
fore X is disconnected.
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As it is easy to imagine, the conclusion of 3.94 is false if the dimension is n > 2. In order to prove
the statement rigorously, we need a technical lemma.

Lemma 3.95

Let (X, ) be a topological space. Let A,U C X with A connected and U open and closed.
Suppose that AnU # @. Then A CU.

Proof
The following set identities hold for any pair of sets U and A:

A=(AnU)u(AnU%
?@=(AnU)n(AnU)

Now, suppose by contradiction A ¢ U. This means A n U® # @. By assumption we also have
AnU # @. Moreover the sets AnU and A n U are open for the subspace topology on A, since
U and U* are open in X. Hence A is the disjoint union of non-empty open sets, showing that A
is disconnected. Contradiction. Thus A C U.

Example 3.96

Question. Let n > 2, and A C R” be open and connected. Let p € A. Prove that X = A\ {p}is
connected.
Solution. Assume that

X=UuV,

with U,V disjoint and open in X. If we show that U,V are not proper, we conclude that X is
connected. In order to prove it, start by noting that X = A\ {p} is open, since A is open. As the
sets U,V are open for the subspace topology on X, and X is open in R", we conclude that U,V
are open in R". As U,V are also closed for the subspace topology, we conclude that they are
closed in R". As Ais open, and p € A, there exists r > 0 such that B,(p) C A. Since X = A\{p},
we have

B.(p)\{p} € X.
As X =U uV, we have

BP)\{PHnU =2 or (B(p)\{pHnV=0.

Without loss of generality, assume that (B.(p) \ {p}) n U # @ (the argument is similar in the
other case). Since B.(p) \ {p} is open, and U is open and closed, by Lemma 3.95 we conclude
that

B(\{ppcU = B(p)CU :=Uu{p}.

Let q € U’. We have two cases:
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« q # p: Then q € U. As U is open, there exists ¢ > 0 such that

B.(qQCUCU’.

« q = p: We have shown that B.(p) CU"’.
This shows U’ is open in R". In conclusion, we have
X=UuvV = A=U'vuV,
with U’,V disjoint and open in A (since they are open in R"). As p € U’, we conclude that

U’ # @. By connectedness of A, we must have V = @. This implies U = X. Therefore U and V
are not proper, implying that X is connected.

The next theorem shows that connectedness is preserved by continuous maps.

Theorem 3.97

Let (X, JY), (Y,Jy) be topological spaces. Suppose that f: X — Y is continuous and let
f(X) CY be equipped with the subspace topology. If X is connected, then f(X) is connected.

Proof
Suppose that A, B are open in f(X) and such that
f(X)=AuB, AnB=0.

If we show that
A=@ or B=® (3.15)

the proof is concluded. Since A, B are open for the subspace topology, there exist ABe Iy
such that ~
A=Anf(X), B=Bnf(X). (3.16)

Since f(X) = Au B we have
X = f"Y(AuB)
= (A f(B)
= @v B
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where in the last equality we used (3.16). Since A n B = @, we also have that

fH A& 0 fAB) = FH A0 f71(B)
=f'(AnB)

=@
=Q

where in the first equality we used (3.16). By continuity of f we have that
FUA, f(B) e Ix.
Therefore, using that X is connected, we deduce that
fYA)=0 or fA(B)=0.

The above implies ~ _
Anf(X)=9 or Bn f(X)=0.

Recalling (3.16), we obtain (3.15), ending the proof.

An immediate corollary of Theorem 3.97 is that connectedness is a topological invariant, e.g., con-
nectedness is preserved by homeomorphisms.

Theorem 3.98: Connectedness is topological invariant
Let (X, J), (Y, Iy) be homeomorhic topological spaces. Then

X is connected <= Y is connected

The proof follows immediately by Theorem 3.97, and is left to the reader as an exercise.
Example 3.99

Question. Let n > 2. Prove that R” is not homeomorphic to R.
Solution. Suppose by contradiction that there exists a homeomorphism f: R” — R. Define
p = f(0) and the restriction

g RIN{O}) > RN{p}) . g(x) = f(0).

Note that g is a homeomorphism, being restriction of a homeomorphism. By Example 3.96, we
have that R”\ {0} is connected. Hence, by Theorem 3.98, we infer that R\ {p} is connected. This
is a contradiction, since R \ {p} is disconnected, as shown in Example 3.94.

A stronger version of the statement in Example 3.99 holds.
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Theorem 3.100: Topological invariance of dimension

Let n # m. Then R” is not homeomorphic to R™.

Unfortunately, the argument in Example 3.99 cannot be extended to prove Theorem 3.100. The
bottom line is that connectedness does not give enough information to tell apart R” from R™. The
right topological tool to prove Theorem 3.100 is called homology, which requires a serious effort
to construct/define.

Let us give another example of spaces which are not homeomorphic.
Example 3.101

Question. Define the one dimensional unit circle
S' :={(x,y) €eR? : x?+y?=1}.

Prove that $! and [0, 1] are not homeomorphic.
Solution. Suppose by contradiction that there exists a homeomorphism

f:[0,1] —» St.

The restriction of f to [0,1] \ {%} defines a homeomorphism

g: ([0,1]\{%}) — (Sl \{p}) ., P :f(%) .
The set [0, 1] \ {%} is disconnected, since

[0,1]\{1/2} =[0,1/2) v (1/2,1]

with [0, 1/2) and (1/2, 1] open for the subset topology, non-empty and disjoint. Therefore, using
that g is a homeomorphism, we conclude that also $ \ {p} is disconnected. Let 8, € [0, 27) be
the unique angle such that

p = (cos(6h), sin(6))) -
Thus $! \ {p} is parametrized by
Y(@) :=(cos(t),sin(t)), t€ (6,6 +27).

Since y is continuous and (6, 6y + 27) is connected, by Theorem 3.97, we conclude that AN {p}
is connected. Contradiction.
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3.13. Intermediate Value Theorem

Another consequence of Theorem 3.97 is a generalization of the Intermediate Value Theorem to
arbitrary topological spaces. Before providing statement and proof of such Theorem, we need to
characterize the connected subsets of R.

Definition 3.102: Interval
A subset I C R is an interval if it holds:

Vabel,x€R st.a<x<b = xe€l.

Theorem 3.103: Intervals are connected

Let R be equipped with the Euclidean topology and let I C R. They are equivalent:

1. I is connected.
2. I is an interval.

Proof

Part 1. Suppose I is connected. If I = {p} for some p € R then I is an interval and the thesis is
achieved. Otherwise there exist a,b € I with a < b. Assume that x € R is such that

a<x<b.
We need to show that x € I. Suppose by contradiction that x ¢ I and define the open sets
A=(-00,x), B=(x,0).

Then
A=(—o0,x)nI, B=(x,00)nI

are open in I for the subspace topology. Clearly

AnB=

©

Moreover

[~ )]

I=Avu
since x ¢ I. We have:

e Sincea < x and a € I, we have thata € A. Therefore A # @.
« Similarly, b > x and b € I, therefore b € B. Hence B # @.

Therefore I is disconnected, which is a contradiction.
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Part 2. Suppose I is an interval. Suppose by contradiction that I is disconnected. Then there
exist A, B proper and closed, such that

I=AuB, AnB=0.
Since A and B are proper, there exist points a € A, b € B. WLOG we can assume a < b. Define
a=sup S, S:={xeR: [a,x)n]C A}.
Note that « exists finite since b is an upper bound for the set S.

Suppose by contradiction b is not an upper bound for S. Hence there exists x € R
such that [a,x) n I C A and that x > b. As b > a, we conclude that b € [a,x)n I C A.
Thus b € A, which is a contradiction, since b € Band An B = @.

Moreover we have that a € A.

This is because the supremum « is the limit of a sequence in S, and hence of a
sequence in A. Therefore o belongs to A. Since A is closed, we infer a € A.

Note that A° = B, which is closed. Therefore A is closed, showing that A is open. As a € A
and A is open in I, there exists ¢ > 0 such that

(a—eg,a+e)nICA.

In particular
[a,a +e)nIC A,

showing that a + ¢ € S. This is a contradiction, since « is the supremum of S.
We are finally ready to prove the Intermediate Value Theorem.
Theorem 3.104: Intermediate Value Theorem

Let (X, 9) be a connected topological space. Suppose that f : X — R is continuous. Suppose
that a,b € X are such that f(a) < f(b). It holds:

VeceR st fla)<c< f(b), 3¢ e X st. f(&)=c.

Proof

As f is continuous and X is connected, by Theorem 3.97 we know that f(X) is connected in R.
By Theorem 3.103 we have that f(X) is an interval. Since a,b € X it follows f(a), f(b) € f(X).
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Therefore, if ¢ € R is such that

fl@) <c< f(b)

we conclude that ¢ € f(X), since f(X) is an interval. Hence there exists £ € X such that

f@=c

There is an alternative proof to the fact that intervals are connected. It makes use of the classical
Intermediate Value Theorem in R. It is an interesting exercise.

Example 3.105: Intervals are connected - Alternative proof

Question. Prove the following statements.

1. Let(X, ) be a disconnected topological space. Prove that there exists a function f : X —
{0, 1} which is continuous and surjective.

2. Consider R equipped with the Euclidean topology. Let I C R be an interval. Use point
(1), and the Intermediate Value Theorem in R (see statement below), to show that I is
connected.

Intermediate Value Theorem in R: Suppose that f : [a,b] — R is continuous, and f(a) < f(b).
Let ¢ € R be such that f(a) < ¢ < f(b). Then, there exists & € [a,b] such that f(¢) = c.
Solution. Part 1. Since X is disconnected, there exist A, B € J proper and such that

X=AuB, AnB=09.

Define f: X — {0,1} by
0 ifxeA
fx) = .
1 ifxeB
Since A and B are non-empty, it follows that f is surjective. Moreover f is continuous: Indeed
suppose U C R is open. We have 4 cases:

«0,1¢U.Then fl(U)=0€cT.
«0€U,1¢U.Then f1U)=A€T.
«0¢U,1€U.Then f'U)=BeJ.
« 0,1€U. Then f}(U)=XeT.

Then f~}(U) € 7 for all U C R open, showing that f is continuous.
Part 2. Let I C R be an interval. Suppose by contradiction I is disconnected. By Point (1), there
exists a map f: I — {0, 1} which is continuous and surjective. As f is surjective, there exist
a,b € I such that

f@=0, f)=1.
Since f is continuous, and f(a) = 0 < 1 = f(b), by the Intermediate Value Theorem in R, there
exists £ € [a,b] such that f(¢) = 1/2. As I is an interval, a,b € I, and a < & < b, it follows that
& € I. This is a contradiction, since f maps I into {0, 1}, and f(¢) = 1/2 ¢ {0, 1}. Therefore I is
connected.
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3.14. Path-connectedness

Definition 3.106: Path-connectedness

Let (X, 9) be a topological space. We say that X is path-connected if for every x,y € X there
exist a,b € R with a < b, and a continuous function

a: [abl—> X st ala)=x, ab)=y.

It turns out that path-connectedness implies connectedness.

Theorem 3.107: Path-connectedness implies connectedness

Let (X, 9) be a path-connected topological space. Then X is connected.

Proof

Suppose that X = AuBwith A, B € 9 and non-empty. In order to conclude that X is connected,
we need to show that
AnB+09Q.

Since A and B are non-empty, we can find two points x € A and b € B. As X is path-connected,
there exists & : [0, 1] - X continuous such that «(0) = x and «(1) = y. In particular,
al(A)=0, a'(B)=0.

Moreover

[0,1] = & 1(X)
=a '(AuB)
=a (A val(B).
As ais continuous, & !(A) and & (B) are open in [0, 1]. Suppose by contradiction that AnB = @.

Then
alA)na'B)=a(AnB) =a () = 0.

Hence [0, 1] is disconnected, which is a contradiction. Therefore An B # @ and X is connected.

Example 3.108

Question. Let A C R" be convex. Show that A is path-connected, and hence connected.
Solution. A is convex if for all x,y € A the segment connecting x to y is contained in A,
namely,

[x,y] :={(1—t)x+ty : t€[0, 1]} CA.
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Therefore we can define
a:[0,1] > A, a@®):=Q-t)x+ty.

Clearly « is continuous, and a(0) = x, a(1) = y.

Example 3.109: Spaces of matrices

Let R?? denote the space of real 2x2 matrices. Assume R?*? has the euclidean topology obtained
by identifying it with R%.

1. Consider the set of orthogonal matrices
02)={AeR?>? : ATA=1}.
Prove that O(2) is disconnected.
2. Consider the set of rotations
SO(2) ={AeR¥? : ATA=1, det(A) = 1}.
Prove that SO(2) is path-connected, and hence connected.

Solution. Let A € O(2), and denote its entries by a, b, c,d. By direct calculation, the condition
AT A = I is equivalent to

ad+vr=1, P+ct=1, ac+bd =0.

From the first condition, we get that a = cos(¢) and b = sin(¢), for a suitable t € [0, 27). From
the second and third conditions, we get ¢ = +sin(¢) and d = F cos(t). We decompose O(2) as

0(2)=AuB,
A =50(2) = {( cos(t)  —sin(t) ) te o, 271)}

sin(t)  cos(t)
_{f cos(t) sin(t)
B= {( sin(t) —cos(t) )’ telo, 2”)} )
1. The determinant function det : O(2) — R is continuous. If M € A, we have det(M) = 1.
If instead M € B, we have det(M) = —1. Moreover,
det '({1)=A,  det '({0}) = B.

As det is continuous, and {0}, {1} closed, we conclude that A and B are closed. Therefore,
A and B are closed, proper and disjoint. Since O(2) = A v B, we conclude that O(2) is
disconnected.
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2. Define the function ¢/ : [0, 27) — SO(2) by

[ cos(t) —sin(t)
140 _< sin(t)  cos(t) ) )

Clearly, ¢ is continuous. Let R,Q € SO(2). Then R is determined by an angle ¢;, while
Q by an angle #,. Up to swapping R and Q, we can assume t; < f;. Define the function
f:[0,1] = SO(2) by

FA =9t =) + 1),

Then, f is continuous and
fO=yt)=R f(1)=y)=0.

Thus SO(2) is path-connected.

Warning

In general connectedness does not imply path-connectedness, as seen in Proposition 3.110.

Proposition 3.110: Topologist curve

Consider R? with the Euclidean topology, and define the sets
. (1
ieffsn) o
B:={0,t): te[-11]}, X :=AuB.

Then X is connected, but not path-connected.

Proof

Step 1. X is not path-connected.

Let x € A and y € B. There is no continuous function « : [0,1] — X such that «(0) = x and
a(1) = y. If such « existed, then we would obtain a continuous extension for t = 0 of the
function

f@) = sin(%) , x>0

which is not possible. Hence X is not path-connected.
Step 2. Preliminary facts.
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« Ais connected: Define the curvey : (0,00) — R? by

0= isn(1)).

Clearly y is continuous. Since (0,00) is connected, by Theorem 3.97 we have that
y((0,00)) = A is connected.

« B is connected: Indeed B is homeomorphic to the interval [—1,1]. Since [-1,1] is con-
nected, by Theorem 3.98 we conclude that B is connected.

« A = X: This is because each point y € Bis of the form y = (0,1,) for some t, € [-1,1]. By
continuity of sin and the Intermediate Value Theorem there exists some z > 0 such that

sin(z) =t .
Therefore z, := z + 2ns satisfies
z, > o, sin(z,) =1y, VneN.

Define s, := 1/z,. Trivially

. 1
s, —> 0, sm(—)zto, vneNN.

Sn

(s,,, sin (i)) — (0,t5).

Hence the set B is contained in the set L(A) of limit points of A. Since we are in R?, we
have that L(A) = A, proving that BC A. Thus A= AuB=X.

Therefore we obtain

Step 3. X is connected.

Let U € X be non-empty, open and closed. If we prove that U = X, we conclude that X is
connected. Let us proceed.

Since U is non-empty, we can fix a point x € U. We have two possibilities:

« x € A: In this case AnU # @. Since A is connected and U is open and closed, by Lemma

3.95 we conclude A C U. As U is closed and contains A, then A C U. But we have shown
that

A=X,
and therefore U = X.
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« x € B: ThenU n B # @. Since B is connected and U is open and closed, we can invoke
Lemma 3.95 and conclude that B C U. Since (0,0) € B, it follows that

(0,00 eU.

As U is open in X, and X has the subspace topology induced by the inclusion X C R?,
there exists an open set W of R? such that

U=XnW.
Therefore (0,0) € W. As W is open in IR?, there exists a radius ¢ > 0 such that
B.(0,0) CW.

Hence
XnB(0,00CXnW=U.

The ball B,(0, 0) contains points of A, and therefore

AnU=0Q.
Since A is connected and U is open and closed, we can again use Lemma 3.95 and obtain
that A C U. Since we already had B C U, and since U € X = A u B, we conclude hence
U=X.

Therefore U = X in all possible cases, showing that X is connected.

We conclude with the observation that connectedness and path-connectedness are equivalent for
open sets of R™.

Theorem 3.111

Let A C R" be open for the Euclidean topology. Then A is connected if and only if it is path-
connected.

The proof of this theorem is a bit delicate, and we decided to omit it. We conclude with an interesting
example concerning spaces of matrices.
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4. Surfaces

Curves are 1D objects in R3, parametrized via functions y : (a,b) — R3. There is only one available
direction in which to move on a curve:

« t — y(t) moves forward on the curve
« t — y(—t) moves backward on the curve

-t
ey v

Figure 4.1.: Sketch of a curve y.

Surfaces are 2D objects in R3. There are two directions in which one can move on a surface.

Figure 4.2.: Sketch of a surfaces: Sphere, Torus, Mdbius band.

Question 4.1

How to dercribe a surface mathematically?
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A curve I' C R? can be described with one function y : (a,b) — TI. The idea is that I' looks locally
like R.

143}

~
~

Figure 4.3.: A curve I can be described by a functiony : (a,b) - I.

How do we represent a surface? Suppose given a function ¢ : U — R3, with U C R? open set.
Denote by & := o(U) the image of U through . We say that & is a surface and o is a chart.
Unofortunately, not all surfaces can be described with just one chart: in most cases one needs to
piece together many local charts a; : U; — &, with U; C R? open. The charts g; represent § if they
cover the whole surface:

S =U¢7i(Ui)~

Figure 4.4.: A surface § can be described by a family of charts a; : U; — & with U; C R? open set.

Before proceeding with the formal definition of surface, we collect some preliminary definitions and
results.

4.1. Preliminaries

Before proceeding with the formal definition of surface, we need to establish some basic notation

and terminology regarding linear algebra, the topology of R", and calculus for smooth maps from
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R" into R™.

4.1.1. Linear algebra

Definition 4.2: Bilinear form
Let V be a vector space and B: V xV — R. We say that:
+ Bis bilinear if

B(A1vy + A3ve, W) = A4 B(vy, W) + A3 B(vy, W),
B(W, /11V1 + /12V2) = AlB(W, Vl) + AzB(W, Vz) .

forallvi,weV, A €R.

« Bis symmetric if
B(v,w) = B(w,Vv)

forallv,wevV.

A bilinear map B is called bilinear form on V.

Notation

Let V be a vector space with basis {vy, ..., v,}. Then, for a vector v € V there exist coefficients
Als .. » Ay such that
v=Mhvi+ ...+,

We denote the vector of coefficients of v by the column vector
. T n
X = (Al,...,An) eR".
The coefficients of a vector w are denoted by

Y o= (g )T

Notice that we are using different letters to denote abstract vectors v, w € V, and their compo-
nents x,y € R™.

Bilinear forms can be represented by a matrix.

Remark 4.3: Matrix representation for bilinear forms

Let {vy, ..., v,} be a basis for the vector space V. Given a bilinear form B: V xV — R we define
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the matrix .
M := (B(Vi’vj))ijzl € R™" .

Then
Bv,w)=x My.

Proof. We can write v and w in cordinates as
n n
V=Z/1ivi, W=Zy,~v,',
i=1 i=1

for suitable coefficients 4;, i; € R. Using bilinearity of B we get

n n
B(V, W) =B (Z /1,-v,~, Z IJJV])
i=1 j=1

n
= Y AB(vi,v))
=1

= xTMy.

Definition 4.4: Quadratic form

Let V be a vector space and B: V xV — R be a bilinear form. The quadratic form associated
to B is the map
Q: V>R, Q) :=B(v,v).

J

A symmetric bilinear form is uniquely determinded by its quadratic form, as stated in the following
proposition.

Proposition 4.5

Let B: V xV — R be a symmetric bilinear form and Q : V — R the associated quadratic form.
Then 1
B(u,v) = 5 Qv +w) —Q(v) —Q(w)) .

forallv,wevV.

The proof is an easy check, and is left as an exercise.
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Definition 4.6: Inner product

Let V be a vector space. An inner product on V is a symmetric bilinear form (-,-) : VxV - R
such that
(v,v) >0, VveV.

Moreover:

« The length of a vector v € V with respect to B is defined as
Ivl = J{v.v).

« Two vectors v,w € V are orthogonal if

(v,w)=0.

Example 4.7

Let V = R" and consider the euclidean scalar product

n
vew =) v,
i=1

where v = (v{,...,V,), w = (wy,...,w,). Then
(v,w) :=v-w

is an inner product on R™.

Proposition 4.8

Let V be a vector space and (-, -) an inner product on V. There exists an orthonormal basis
{v{,...,v,} of V, that is, such that

1 ifi=j

(vovj) = 0 ifizj

In particular, the matrix M associated to (-, -) is the identity.

Definition 4.9: Linear map
Let V, W be vector spaces and L : V — W. We say that L is linear if

L(Av + pw) = AL(v) + pL(w)
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forallv,weVand A, p e R.

Remark 4.10: Matrix representation of linear maps

Let V,W be vector spaces and L: V — W be a linear map. Let {vy, ..., v,} be a basis of V and
{W1i, ..., wp,} be a basis of W. Then there exists a matrix M € R™" such that

Lv=Mx, VveV.

Specifically, M € R™" is called the matrix associated to L with respect to the basis {vq,...,v,}
of V and {wy ..., w,,} of W, and is defined by

where the coefficients ;; are such that

m
L(V]) = aljwl + ...+ amjwm = Z al-jwl- .
i=1

In other words, the columns of M are given by the coordinates of the vectors L(v;) with respect
to the basis {wy, ..., w,}.

Definition 4.11: Eigenvalues and eigenvectors

Let V be a vector space and L : V — V alinear map. We say that A € R is an eigenvalue of L if
L(v)=Av

for some v € V with v # 0. Such v is called eigenvector of L associated to the eigenvalue A.

Definition 4.12: Self-adjoint map

Let V be a vector space, (-,-) an inner product and L: V — V a linear map. We say that L is
self-adjoint if
(v, L(w)) ={L(v),w), Vv,wevV.
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Theorem 4.13: Spectral Theorem

Let V be a vector space, (-, -) an inner product, and L : V — V a self-adjoint linear map. There
exist an orthonormal basis of V
Vi, Vi,

where v; are eigenvectors of L, that is,
LVi = Al-v,-

for some eigevalue A; € R. In particular, the matrix of L with respect to the basis {vy,...,v,} is
diagonal:

A0 .0
M = diag(Ay, ..., A,) = 0 ’12 O
0 0 .. A

J

There is also a matrix version of the spectral theorem. To state it, we need to introduce some termi-
nology.

Definition 4.14
Let A € R™" be a matrix. We say that:

« Ais symmetric if

Il
>

AT

« Ais orthogonal if
ATA=1,

where I is the identity matrix.

Remark 4.15

Let L: V — V be linear and A € R™" be the matrix associated to L with respect to any basis
{v{,..., vy} of V. They are equivalent:

« L is self-adjoint,
« A is symmetric.

Definition 4.16: Matrix eigenvalues

Let A € R™" be a matrix. An eigenvalue of A is a number A € R such that

Av = Av,
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for some v € R" with v # 0. The vector v is called an eigenvector of A with eigenvalue A.

Remark 4.17

Let A € R™". The eigenvalues of A of A can be computed by solving the characteristic equa-
tion
P() =0,

where P is the characteristic polynomial of A, defined by

P(A) := det(A — AD).

Remark 4.18

Let L: V — V be a linear map and A the associated matrix with respect to any basis of V. Then
Liv)=Ax, VveV,

where x € R" is the vector of coordinates of v. They are equivalent:

« Ais an eigenvalue of L of eigenvector v,
« Ais an eigenvalue of A of eigenvector x.

Theorem 4.19: Spectral Theorem for matrices

Let A € R be a symmetric matrix. Consider R" equipped with the euclidean scalar product.
There exist an orthonormal basis of V

Vi, Vi,
where v; are eigenvectors of A, that is,
AV,’ = /L'Vl‘
for some eigevalue 4; € R. Moreover
A =PDPT,
where
P = (vql...[vp)
A 0 .. 0
0 A .. O

D := diag(/ll, ~~~’/1n) =
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Remark 4.20

The corresponedence between Theorem 4.13 and Theorem 4.19 is as follows. Let A € R™" be
symmetric and {wy, ..., w,} be any orthonormal basis of the vector space V. Define the linear
map L: V — V such that

n
L(v)) = Zaijwi, Vji=1,..,n.
i=1

In this way A is the matrix associated to L with respect to the basis {wy,..., w,}. Then L is self-
adjoint. Moreover L and A have the same eigenvalues. By the Spectral Theorem there exists an
orthonormal basis {vy, ..., v,} of V such that the matrix of L with respect to such basis, say D,
is diagonal. Then

A = PDPT

where P is the matrix of change of basis between {wy, ..., w,} and {vy, ..., v}, that is, P = (pij)
where

n
Wi =D Pivi-
i=1

4.1.2. Topology of R"

Definition 4.21: Topology of R"

The Euclidean norm on R” is denoted by

n
inz, x = (x1,...,%,) € R".
i=1

Define the Euclidean distance d(x,y) =[x — y].
1. The pair (R", d) is a metric space.
2. The topology induced by the metric d is called the Euclidean topology, denoted by 7.
3. AsetU C R" is open if for all x € U there exists ¢ > 0 such that B.(x) C U, where
Be(x) :={y €R" : |x —y| <¢}

is the open ball of radius ¢ > 0 centered at x. We write U € , with I the Euclidean
topology in R™.

4. AsetV CR"is closed if V¢ :=R*\ U is open.
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Example 4.22

« The n-dimensional unit sphere
$"={xeR" . |x| =1}
is closed in R"1. Indeed, define f : R® — R by
fx) =1x].

Then f is continuous and

"= fi(1D.

« The n-dimensional unit cube
C:={xeR": |x|+...+|x,| < 1}
is open in R™. Indeed, define f : R* - R by
&) = x| + o+ |l

Then f is continuous and

C=f((~1)).

« The set
Vi={xeR": |x|+..+x,|>1}

is closed, since V¢ = C is the unit cube, which is open.

Since {1} is closed in R, and f is continuous, we conclude that $" is closed.

Since (—o0, 1) is open in R, and f is continuous, we conclude that C is open.

Definition 4.23: Subspace Topology

Let A C R". The subspace topology on A is the family
Ty :={UCA: IWeT st. U=AnW}.

IfU € T4, we say that U is open in A.

4.1.3. Smooth functions

We recall some basic facts about smooth functions from R” into R™. For a vector valued function

f: R" - R™ we denote its components by

= fm)-
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Definition 4.24: Continuous Function

Let f: U C R" —» R™ with U open. We say that f is continuous at x € U if Ve > 0,35 > 0
such that

Ix-yl<é = [f®-fyl<e.

f is continuous in U if it is continuous for all x € U.

J

The above “classical’’ definition of continuity is equivalent to the topological one, in the following
sense:

Theorem 4.25: Continuity: Topological definition

Let f: U CR" —» V C R™, with U,V open. We have that f is continuous if and only if f~(A)
is open in U, for all A openinV.

Definition 4.26: Homeomorphism

Let f: UCR" >V CR™ with U,V open. We say that f is a homeomorphism if:

1. f is continuous;
2. f admits continuous inverse 1 : V — U.

Definition 4.27: Differentiable Function

Let f: U C R* - R™ with U open. We say that f is differentiable at x € U if there exists a
linear map dy f : R* - R™ such that

ity =ty SO0,

for all h € R?, where the limit is taken in R™. The linear map dy f is called the differential of
fatx.

J

The idea behind the definition of differentiability is as follows: The function f is differentiable at x
if it can be approximated by the linear map dy f around the point x.

We denote by {e;}lL; the standard basis of R”. When f is differentiable, the partial derivatives are
defined as follows:

Definition 4.28: Partial Derivative

Let f: U € R* - R™ U open, f differentiable. The partial derivative of f at x € U in
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direction e; is
af .
—(x) :=dxf(e;) = lim
ox; £—0

f(x+e¢e;) — f(x) .

£

Definition 4.29: Jacobian Matrix

Let f: U c R* > R™ be differentiable. The Jacobian of f at x is the m x n matrix of partial
derivatives:

Jf(x) := (a—fi(x)) € R™"

an

L]

If m = nthen Jf € R™" is a square matrix and we can compute its determinant, denoted by

det(J f).

J

The differential dy f : R" — R™ is a linear map. As such, it must have a matrix representation with
respect to the Euclidean basis. Since the partial derivative is defined as

2 x) 1= de flep),

axl-
we trivially have that J f(x) is the matrix of dy f with respect to the standard basis:

Proposition 4.30: Matrix representation of dy f

Let f: U € R" — R™ be differentiable. The matrix of the linear map dy f : R* — R™ with
respect to the standard basis is given by the Jacobian matrix J f(x).

Definition 4.31: Multi-index notation

For a multi-index
a = (ag,...,o) € N"

we denote by

n
o = la
i=1

the length of the multi-index.
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Definition 4.32: Smooth Function
Let f: U CR" —» R™ with U open. f is smooth if the derivatives

a‘alf aO{l aO{n

= — =
dxa 8x1 1 aXnn

f

exist for each multi-index & € IN". Note that in this case all the derivatives of f are automatically
continuous.

Notation: Gradient and partial derivatives

For f: U CR* - R™ smooth, the partial derivatives are

d 9

_f > ax-xlf = fxlx- = —f

ox; i Y 0x0x;
»’f

000X

Onf=fu =

axixjxkf = fxixjxk =
For f: U C R" — R smoothm, the gradient is

V) = (fr, &), ... f,(2) -

Note that V f(x) coincides with J f(x).

Example 4.33
The functions f: R? - Rand g : R? — R? defined by

f(x,y) :=cos(x)y, glx,y) :=(x%y"x—y)

are both smooth.

4.1.4. Diffeomorphisms

A key definition needed for the study of surfaces is the one of diffeomorphism. In this section we
only consider maps from R" into R".

Definition 4.34: Diffeomorphism
Let f: U — V,with U,V C R" open. We say that f is a diffeomorphism between U and V if:
1. f is smooth,
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2. f admits smooth inverse f~1: V — U.

Definition 4.35: Local diffeomorphism
f: R" > R" is a local diffeomorphism at x, € R" if:

1. There exists an open set U C R” such that x; € U,
2. There exists an open set V C R" such that f(xq) € V,
3. f: U — Vis a diffeomorphism.

Proposition 4.36

Diffeomorphisms are local diffeomorphisms.

J

Non-vanishing Jacobian determinant is a necessary condition for being a diffeomorphism, as out-

lined in the following Proposition.
Proposition 4.37: Necessary condition for being diffeomorphism
Let f: U —» R" with U C R" open. Suppose f is a local diffeomorhism at x, € U. Then

det J f(xq) # 0. (4.1)

Example 4.38

We have already encountered Proposition 4.37 in the scalar case when we were studying curves.
Indeed, suppose that
¢: R—>R

is a local diffeomorphism at f; € R. Then

J(ty) = dlty),  det Jo(ty) = dlto) ,

and we recover the already seen result that

$ty) # 0.

J

The condition at (4.1) is sufficient fot f to be a local diffeomorphism at x,,. This is the content of

the Inverse Function Theorem.
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Theorem 4.39: Inverse Function Theorem

Let f: U —» R" with U C R" open, f smooth. Assume
det J f(xq) =0,

for some x, € U. Then:

1. There exists an open set Uy C U such that x, € U,
2. There exists an open set V such that f(x,) €V,
3. f: Uy — V is a diffeomorphism.

Example 4.40
Define f: R?> — R? by

f(x,y) := (cos(x) sin(y), sin(x) sin(y)) .

Then in(x) sin(y) (x) cos(y)
[ —sin(x)sm(y) cos(x)cos(y
Jf(xy) = ( cos(x)sin(y)  sin(x) cos(y) ) |
and
det J f(x,y) = — sin’(x) cos(y) sin(y) — cos?(x) cos(y) sin(y)

= —sin(y) cos(y)

= —% sin(2y).
Therefore

detJf(x,y) =0 <= y:%t,kelN.

The above condition means that the Jacobian vanishes on each of the lines

e ffel) - we.

Define the open set U obtained by removing the lines L; from R", that is,
U =R\ L.
k=1
In particular, we have

det Jf(x,y) #0, V(x,y)eU.
By the Inverse Function Theorem 4.39, f is a local diffeomorphism at each point (x, y) € U.
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Warning

Condition (4.1) is not sufficient for f to be a global diffeomorphism, in the following sense:
There exist differentiable functions f : U € R" — R" such that:

1. det Jf(x) = 0forall x € U,
2. f is not a diffeomorphism between U and f(U).

We will show this in the next Example.

Example 4.41: A local diffeomorphism which is not global

Question. Define the function f : R?> — R?

f(x,y) = (e* cos(y), ¥ sin(y)).

Prove f is a local diffeomorphism but not a diffeomorphism.
Solution. f is alocal diffeomorphism at each point (x, y) € R? by the Inverse Function Theorem,
since

_f cos(y) sin(y)
]f(X,)’)—e < —sin(y) COS(y)
det Jf(x,y) =e?* # 0.
However, f is not invertible because it is not injective, since

fx,y) = f(x,y +2n7), V(x,y)€R%, neN.

Hence, f cannot be a diffeomorphism of R? into R?.

4.2. Surfaces

We give the main definition of surface in R3.

Definition 4.42: Surface
Let & C R3 be a connected set. We say that & is a surface if for every point p € & there exist
an open set U C R?, and a smooth map ¢ : U — a(U) C & such that

1. pea(U),
2. 6(U) isopenin &,
3. 0 is a homeomorphism between U and a(U).

o is called a surface chart at p.
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A visual interpretation of the definition of surface is given in Figure 4.5.

Remark 4.43

1. & is a topological space with the subspace topology induced by the inclusion & C R3.
This means that a subset V C  is open in &, if there exists an open set W C R® such that

V=Wns.

2. & is required to be connected with respect to the subspace topology.

3. A surface chart o is a map
oc:U—R3,

with U C R? open. Therefore smoothness of ¢ is intended in the classical sense.

4. Given a chart 6 : U — a(U), the set U is open in R? while a(U) is open in & with the
subspace topology. This means there exists and open set W C R® such that

cU)=Wnd&.
5. The homeomorphism condition is saying that the surface patch
clU)c S
can be continuously deformed into the open set

UCR?.

L) =wns,
W <€ R* oPed

UEIEI oPEN

Figure 4.5.: Sketch of the surface & and charto: U - o(U) € 8. The setU C R? is open in R? and
o(U) is open in &. This means there exists W open in R® such that 6(U) = & n W.
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Notation

1. Points in U will be denoted with the pair (u, v).
2. Partial derivatives of a chart & = o(u, v) will be denoted by

L .

o, = , Oy = .
du av

Similar notations are adopted for higher order derivatives, e.g.,

Oyy = (92_0' > Oyy *= o >
u? dudv

Oy *= o Oy 92_0'
ovou ov?

3. Components of & will be denoted by

o =(cl,0% 0% = (x, v,2).

An atlas of a surface is a collection of charts which cover the whole surface:
Definition 4.44: Atlas of a surface
Let & be a surface. Assume given a collection of charts
d ={oilier, 0i:U—-ol)CS.
The family & is an atlas of & if
S = UU i(U).

i€l

Example 4.45: 2D Plane in R3

Planes in R? are surfaces with atlas made by one chart. To prove it, note that a plane & C R? is
described by the equation
r={xeR: x-w=21},

for some w € R3 and 1 € R. Let

« P.q € R3 be orthonormal, and orthogonal to w.
«+ a € 7 be any point in the plane.

This construction is represented in Figure 4.6. Let x € . Then x — a satisfies

(x—a)-w=0.
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Hence, the vector x — a is orthogonal to w, meaning it can be written as linear combination of
the vectors p and q:
X—a=up+vq,

for some coefficients u, v € R. Therefore the plane & can be equivalently represented as
r={a+up+vq: u,veR}.
The above suggests to define the chart o : R? — x by
o(u,v) :=a+up+vq.
Then o is a chart for x, and
o = {o}

is an atlas, implying that 7 is a surface.
Proof. Check that o is a chart:

« 0 is smooth.

« R? is obviously open.

« 6(R?) is open in m for the subspace topology, since 6(R?) = , and 7 is open in the
subspace topology.

« Suppose x = o(u,v). Then

(x—a)-p=u, (x—a)-q=v,

given that p and q are orthonormal.

« The above shows that the inverse of & is ¢!

:  — R? given by
o7 '(x)=((x~-a) p(x-2a)q.

Clearly, o~ ! is continuous.
« Thus, o is a homeomorphism between R2 and .
« Therefore o is a chart for z. Since

Notice that
o(R®) =,

and therefore o/ = {0} is an atlas for &, showing that  is a surface.

Example 4.46: Unit cylinder
Consider the infinite unit cylinder

é’:{(x,y,z)e]R3 : x2+y2=1}.
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Tl ¢)= a +up +7Tq

I
</

Figure 4.6.: A plane 7 is a surface with atlas containing a single chart o : R? — 1.

Define the map
o: R >R, o(uv) :=(cos(n), sin(u),v).

Setting V' := [0, 27r) x R, we notice that
o(V)=¢.
Moreover o : V — & is clearly bijective, with inverse
o '(x,y.2) = (0.2),

with @ the angle formed by the vector p = (x, y) with the x-axis. However, V is not open in R?,
and therefore o cannot be a chart. To overcome this issue, let us cover V with two open sets:

For example,
U= (0.2) xR, (n2) xR,
2 2

so that
V= Ul U U2 s

with U; and U, open. We can now define two charts
c,:U—-»>8, o0,:U,> 8,
by restricting o
61 :=0ly,, 0, :=0ly,.

The images of the two charts 61 and ¢, are shown in Figure 4.7. We have that & is a surface
with the atlas
g = {0'1, 62} .

Check:

« 0; is smooth, since ¢ is smooth.
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« Uj is clearly open in R?.

+ One can check that ¢;(U;) is open in .

« 0; is clearly invertible from U to o;(U;), and the inverse is continuous.
« Thus, 6; is a homeomorphism between U; and o(U)).

o o ={0,,0,}is an atlas for &, since

S =01(U) voyUy).

AN % (12)

Up = (o, 37) x o= (mEmx R

Figure 4.7.: Unit cylinder & is a surface with atlas &/ = {6,0,}. Depicted are the images ¢;(U;) and
o, (Us).

Example 4.47: Graph of a function

Let U C R% be open and f : U — R be smooth. The graph of f is the set

Tf ={wv, fu,v)) : (u,v)eU}.

I'f is a surface with atlas given by
o ={o}
whereo : U - I'yis
o(w,v) := v, f(u,v)).

Proof. Let us check that I'¢ is a surface:

« 0 is smooth since f is smooth.

« U is open in R? by assumption.

«o(U)=T - and therefore o(U)isopeninT -

« The inverse of ¢ is given by ™! : T t = U defined as

o uv, f(u,v) = (u,v).

Clearly 6! is continuous.
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+ Therefore o is a homeomorphism of U into I'y.
. of ={o}is an atlas for Ff, since
Ff =a(U).

Let us conclude the section with an example of a set which is not a surface.
Example 4.48: Circular cone

Consider the circular cone
S ={(x,y,2) € R3 : x2 +y2 = 7%},
Then & is not a surface. This is, essentially, a consequence of the fact that
S\ {0}

is a disconnected set, see Figure 4.8.
To see that & is not a surface, suppose there exists an atlas {6;} of &

6;:U-oU)CS.
In particular there exists a chart o such that
0eco(U).

Let % € U be the point such that
O'(Xo) =0.

Since U is open in R?, there exists ¢ > 0 such that B,(x,) C U. Since & is a homeomorphism, we
deduce that
o(B:(xo))

is open in . Hence there exists an open set W in R? such that
0(B,(%9)) =a(U)nW.
As 0 € 6(B,(x,)), we conclude that 0 € W. Since W is open in R, there exists § > 0 such that
Bs(0)CW.
In particular, we deduce that
o(U)n Bs(0) Ca(U) nW =0(B:(xg)).
The ball B5(0) intersects both &~ and &, with

ST i =8n{z<0}, ST :=&n{z>0}.
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Therefore 6(B,(x,)) intersects both &~ and &*. This implies that the set
V i= o(B.(x,) \ 0}
is disconnected, with disconnection given by
V=FnS&)Hu(lVnsH).

However, V is homeomorphic to
Be(x0) \ {X},

which is instead connected. We have obtained a contradiction, and therefore & is not a surface.

J

Figure 4.8.: The circular cone is not a surface. This is because & \ {0} is disconnected.

4.3. Regular Surfaces

We have defined a regular curve to be amapy : (a,b) - R" such that
ly@l=0, vte(ab).

Regularity allowed us to reparametrize by arc-length and define the Frenet frame, curvature and
torsion. We then proved that curvature and torsion completely characterize y, up to rigid motions.

We want to do something similar for surfaces: We look for a condition that eventually will allow us
to define the tangent plane to the surface. Specifically, we require that the partial derivatives o, and
o, of a chart ¢ are linearly independent. In this case o is called a regular chart. In details:

210



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Definition 4.49: Regular Chart

Let U C R? be open. A map & = o(u,v) : U — R is a regular chart if the partial derivatives

do

du

do

dv @ v)

o,(u,v) = —wv), o,uv)=

are linearly independent vectors of R? for all (u,v) € U.

We are now ready to define regular surfaces.
Definition 4.50: Regular surface
Let & be a surface. We say that:

« 4 is aregular atlas if any o in & is regular.
« & is a regular surface if it admits a regular atlas.

J

Before making some examples, we highlight give some equivalent methods for checking the regu-
larity condition.

Theorem 4.51: Characterization of regular charts

Leto : U — R3 with U C R? open. They are equivalent:

1. o is a regular chart.

deo : R? — R is injective for all x € U.

. The Jacobian matrix Jo has rank 2 for all (u,v) € U.
o, %0, # 0forall (u,v) eU.

B e

Proof

Part 1. Equivalence of Point 1 and Point 4.
By the properties of vector product, we have that

o,x0,#0 VY(uv)eU

if and only if 6, and &, are linearly independent for all (u,v) € U.
Part 2. Equivalence of Point 2 and Point 3.
The differential dyo : R? — R is represented in matrix form by the Jacobian

1 1

oy Oy
Jowv)=| o of
o oy

By standard linear algebra results, Jo has rank 2 if and only if do is injective.
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Part 3. Equivalence of Point 1 and Point 3.
A 3 x 2 matrix has rank 2 if and only if its columns are linearly independent. Since the columns
of Jo are 0, and 0,,, we conclude that ¢, and o, are linearly independent.

Example 4.52: 2D Plane in R3

Question. Let a, p, q € R®, with p and q orthonormal. The plane
#={at+up+vq: uveR}
is a surface with atlas o = {o}, where
6:R>>m, o(uv):=a+up+vq.

Prove that 7 is a regular surface.
Solution. We have 6, = p,6,, = q. Since p and q are orthonormal, we conclude that o, and
0, are linearly independent and o is regular. r is a regular surface because o is a regular chart.

Example 4.53: Unit cylinder
Question. Consider the infinite unit cylinder
S ={(x,y,2) eR®: x?+y?=1}.
& is a surface with atlas &/ = {6,0,}, with
o(u,v) = (cos(u), sin(u),v), oy=0ly,, oy=0ly,,

Ulz(o,%>X]R, Uzz(ﬂ,%>X]R.

Prove that & is a regular surface.
Solution. The map o is regular because

o, = (—sin(uw), cos(u),0), o, =1(0,0,1),

are linearly independent, since the last components of 6, and o, are 0 and 1. Therefore, also
o1 and 0, are regular charts, being restrictions of a. Thus, & is a regular atlas and & a regular
surface.

The infinite cylinder can also be parametrized using a single chart, as shown in the next Example.
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Example 4.54: Unit cylinder: Single chart atlas
Consider again infinite unit cylinder
S ={(x,7,2) €eR? : x?+y? =1}.

Define the open set
U :=R\{(0,0)},

and the mapo : U - & by

o(u,v) = ( log (\m)) .

u v
Ju? + vz’ Nu? + vz’

Then o is regular and of = {6} is a regular atlas for §.
Proof: Left as an exercise.

Example 4.55: Graph of a function
Question. Let f : U — R be smooth, U C R? open. Define
I'p={@v fwv): (uv)eU},
the graph of f. Then I'; is surface with atlas &/ = {5}, where
o:U—Ty, o(u,v) := (u,v, f(u,v)).

Prove that I'y is a regular surface.
Solution. The Jacobian matrix of o is

1 0
]a(u,v):( 0 1 )
fu Fo

Jo has rank 2, because the first minor is the 2 x 2 identity matrix. Therefore, ¢ is regular. This
implies & is a regular atlas, and & is a regular surface.

We now want to consider the sphere
§2 :={(x,y,2) €R® : x> +y? +2% =1}.

In order to prove that $2 is a regular surface, we need to introduce spherical coordinates.
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Definition 4.56: Spherical coordinates
The spherical coordinates of p = (x,y,z) # 0 are

x = pcos(0) cos(p)
y = psin(0) cos(p)
z = psin(p)

p = [x2+y2+zz, 0¢€-mmn], (pE[—%,%],

with the angles 0 and ¢ as in Figure 4.9.
Check: It is clear that z = psin(p). To compute x and y, we note that the segment joining 0 to
q has length

where

L = pcos(p).

Therefore we get

x = Lcos(9) = pcos(f) cos(p)
y = Lsin(f) = psin(0) cos(¢)

concluding.

Figure 4.9.: Spherical coordinates in R®.
Example 4.57: Unit sphere in spherical coordinates

Consider the unit sphere in R3
$2 :={(x,y,2) €R® : x*+y? + 22 =1}.
Spherical coordinates allow us to define an atlas on $2. In details, define the set

T T

U :z{(@,(p)e]Rz c0e(—nm,m),pe <_EE)}
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and the map o : U — R3 by

(0, p) := (cos(0) cos(p), sin(0) cos(p), sin(yp)) .

In order to name some of the parallels and meridians on $?, let us identify $? with the Earth.
With reference to Figure 4.10, we make the following definitions:

« The Equator Line corresponds to the angle ¢ = 0, that is,
Equator Line = $? n {z = 0}.

« The Greenwich meridian corresponds to the angle 8 = 0. Hence:

V.

Greenwich = {(cos(@), 0,sin(p)), ¢ € ( > E>} .

« The Date Line is the meridian opposite to the Greenwich one. This corresponds to 6 = 7,
and is parametrized by:

Date Line = {(— cos(¢), 0, sin(g)), ¢ € (—% %)} .

« The North Pole and South Pole have coordinates

N =(0,0,1), S=(0,0,—1).

« The Northern Hemisphere is the top-half of $2, that is,

Northern Hemisphere = $2 n{z > 0}.

« The Southern Hemisphere is the bottom-half of $2 that is,

Southern Hemisphere = $% n{z < 0}.

Notice that the angles

0=m, =+Z
T (7] 2

are excluded in the definition of U. Therefore the parametrization ¢ misses the Date Line, as
well as the North and South Poles, see the left picture in Figure 4.11. In formulas:

o(U) = $? \ {Date Line, North Pole, South Pole}
=82\{(x,0,2) e R® : x <0}.

Since o(U) # $2, the chart & does not form an atlas. We need a second chart. An option is to
defineé : U — R3 by

6 := (—cos(0) cos(p), — sin(p), — sin(@) cos(¢)) .
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Notice that ¢ is obtained by rotating ¢ by 7 about the z-axis, and by 7 /2 about the y-axis, see
the right picture in Figure 4.11. Thus,

G(U) =82\ {(x,y,0) e R® : x>0}.
In particular, we have shown that
$2 =a(U)ué(U).
Question. Show that
A :={0,6}
is a regular atlas for $2.

Solution. Check that o and ¢ are charts:

« 0 is smooth.
. U is open in R?.
« Moreover
o(U) =9%°\{(x,0,2) e R3 : x<0}.

This is clearly an open set in $2.

« The spherical coordinates on the sphere are invertible. Therefore o is invertible, with
continuous inverse.

« Thus, o is a homeomorphism from U into o(U).

« This shows o is a chart of §2.

« Since ¢ is obtained from o by composing two rotations, we conclude that also & is a chart.

Show that o is a regular chart:
oy = (— sin(0) cos(p), cos(8) cos(p), 0)
6, = (—cos(0) sin(p), — sin(0) sin(p), cos(¢)) -

Since (6, p) € U, we have ¢ € (= /2, /2). Therefore, the last component of o, is non-zero, ie.,

T
#0, Vepel-=,=).
cos(p) oe(-2.2)
Since the last component of g is 0, we conclude that 6y and o, are linearly independent for all
(6, p) € U. Therefore o is regular. Alternatively, we could have computed:
g x 0, = (cos(6) cos*(p), sin(6) cos*(p), cos() sin(p)),
from which
Hag X %H = | cos(p)|.
Since (0, ¢) € U, we have ¢ € (—n/2,7/2), and so

HO’@ x 6‘0“ =cos(p) # 0.
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Thus 0 and o, are linearly independent, and o is regular.
Since & is obtained from o by applying two rotations, it follows that & is regular. Therefore

o ={o,6}
is a regular atlas for $2.
GREBSWICH
HERIDIAN N=(0,0,4)
&=0
te(£.2) DATE UNE
o=
te(-£.7)
ERUATR
une
=0
S= (0)01-1)

Figure 4.10.: Equator Line, Greenwich Meridian, Date Line, North and South Poles on the sphere.

1.0
OO 05
§§§§$J« 0.0 0%5
= _65 00
Eéé/gy 1.0 -0.5
7 1.0
0.5 . 0510
-1.0 0.0 0.5 :
-0.5 05 0.0 0.0
0.0 —Y. y —-0.5 -0.5
0.5 -1.0 y -1.0 -1.0 X
§ 1o . . .

Figure 4.11.: Image of the charts of the sphere from the above example.

In alternative, the sphere can be parametrized in Cartesian coordinates.
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Example 4.58: Unit sphere in Cartesian coordinates

Question. Define the following collection of charts on the sphere $

where o; is defined as follows: Let

be the unit open ball in R?, and define 6, : U — R3 by

Prove that &/ is a regular atlas.
Solution. Let us check that $2 is a surface:

'd = {01}16:1 >

U:={uv)eR®: v’ +v? <1}

o, is smooth, since in U we have u? + v? < 1.

U is open, being the open ball of radius 1 in R2.

61(U) is clearly open in $: This is because a;(U) coincides with the Northern Hemi-
sphere, with the Equator Line removed.

The inverse of g, is given by 61 : ¢1(U) — U defined by

o ', v, N1 —u2 —v2) :=(u,v).
-1

o~ is continuous, and thus ¢ is a homeomorphism of U with o1 (U).

With similar arguments, we can see that all the maps o; are charts.

Note that o1 charts the Northern Hemisphere (excluding the Equator), while o5 charts
the Southern Hemisphere (excluding the Equator). Thus,

1) ua,(U) = %\ {z = 0}.

By including the other 4 charts 63,04,05,0¢, we can cover the whole sphere, that is,
6
$?2={Joy(U).
i=1

This shows that & = {o;}°_; is an atlas for $2.
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Let us now check that $? is a regular surface:
« The first chart o1 has derivatives
(61 =(1,0,f), (61)y=(0.1,1),
where f,, f, are the partial derivatives of
fu,v) :=N1—u2 -2,

Therefore, the Jacobian matrix of o is

1 0
Jo(w,v)y= 0 1
fu B

The first minor of Jo is the identity matrix, and therefore Jo has rank 2, showing that
(01), and (0,), are linearly independent. Hence o is regular.

« Clearly, Jo; has rank 2 for each of the charts o;. Therefore o; is regular.

« We conclude that & is a regular atlas, making $? a regular surface.

Let us conclude the section with the example of a non-regular surface.
Example 4.59: A non-regular chart
Question. Prove that the following chart is not regular

o(u,v) = (u,v?,v%).

Solution. We have
o, = (0,2v,3v?), a,(u,0) = (0,0,0).

o is not regular because 6, and o,, are linearly dependent along the line L = {(,0) : u € R}.

J

Looking at Figure Figure 4.12, it is clear that & is not regular, since & has a cusp along the line
o(L).

4.4. Reparametrizations
We have already considered reparametrizations when we studied curves. In a similar way, one can

reparametrize surface charts.
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Figure 4.12.: Example of a non-regular surface.

Definition 4.60: Reparametrization

Suppose that U, U C R? are open sets and
c:U—>R, &: [7—>]R3,

are surface charts. We say that 6 is a reparametrization of g if there exists a diffeomorphism
®: U — U such that
6=0°0.
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DY

7

$
Q;

cR

Figure 4.13.: Schematic illustration of surface chart ¢ and reparametrization 6.

We will show that reparametrizations of regular charts are regular. To prove this, first we need to
recall the chain rule for vector valued functions of several variables.

Remark 4.61: Chain rule

Suppose that U, U C R? are open sets,
f:U—-R
is smooth, and _
¢ :U->U
is a diffeomorphism. Define f : U — R® by composition:
fi=fe0.
Explicitly, the above means
f@v) = f@@v). v@vel.
We denote the components of f, f and ¢ by
F=ULEAP), f=UL 5, o=@ o).
The Jacobians are
1A 1 g1
i f fu 1y 1 gl
~ i 1
If=\ i £ | If=\ 5 K| Je= (22 gz)
;5 P
The chain rule states that )
Jf@a,9) = Jf(@(@, V) Jo(@, V).

By carrying out the matrix multiplication on the right hand sinde of the above identity, we
obtain the chain rule in vectorial form:

fal, ) = f,(@(@, 7)OL(@, ¥) + f,(D(@, )2 (d, V)
Fo@,9) = £, (@@, ¥)@, v) + f,(®(@, 7))P(, )
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The above expressions are quite cumbersome. This motivates the introduction of more compact
notations for reparametrizations and chain rule. Specifically, we denote the components of the
diffeomorphism @ by

Ol o~ (,9) ~ u(i, V)

O s (@, 0) - (@, V)

Accordingly, the Jacobian of @ is denoted by:

ol @l a—lf a—lf

— v
JCD_( o @ ) O T
ou v

Hence, the chain rule in vectorial form reads
x du av
L — — 4+ -
fi= fioR+ 1,5

x du ov
— — 4+ i}
F=hS 15

We will now prove that the reparametrization of a regular chart is regular.

Theorem 4.62: Reparametrizations of regular charts are regular

Let U,U C R? be open and 6 : U — R3 be regular. Suppose given a diffeomorphism @ : U — U.
The reparametrization
6:U->R, G=0-0

is a regular chart, and it holds

6;x06y =det JO (o, x0,) .

Proof

Since o is a regular chart we have that 6, and o, are linearly independent. Hence
o,x0,%0.

To see that ¢ is regular it is sufficient to prove that

0;x0; %0, (4.2)
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By chain rule we have

0; = auazf +0'va—Y
0 ou
&17 =0y 3_1:1 +o'va_‘~}
ov ov

By the properties of vector product we get

~ - ou v ou ov
G; X0} au—+av£ X 6u£+0v£

_a_ua_u(o_ xa)+a—u@(a xa,)
onav - W ooy Y
+6_va_u(a xa)+@ﬂ(a X0,)
onav -V W omoav VY
(B N )
o ov omov) ¢V

u  ou
= det g% 33 (o, x0,)

ou v

=det J® (o, x0,) .
Since @ is a diffeomorphism, we have that

det JO =0,

from which we conclude (4.2).

4.5. Transition maps

Suppose that a surface § has atlas given by of = {0;};c;. By definition of atlas, it holds that

§ = Jai®.

i€l

As the images o;(U;) are open in &, and cover the whole surface, in general it will happen that two

(or more) images will overlap, i.e.,

Ii=0U)noy(U) % 0,

for some i # j. It is natural to ask whether the charts o; and o are reparametrizations of each other
on the overlapping region I, see Figure 4.14. This is indeed the case, see Theorem 4.65 below. Such

reparametrization is called a transition map.
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o 1T gt 0
—
3

Figure 4.14.: If the two regular charts o and ¢ have overlapping image, then they are reparametriza-

tion of each other, through a transition map ® =6~ 6.

Definition 4.63: Transition map

Let & be a regular surface, : U — &, : U — & regular charts. Suppose the images of & and
o overlap
I:=0cU)ne(U) Q.

I is open in &, being intersection of open sets. Define
Vi=el(DcUu, V:=6')cU.

V and V are open, by continuity of & and &. Moreover, as ¢ and & are homeomorphisms, we
have 6(V) = 6(V) = I. Therefore, they are well defined the restriction homeomorphisms

oly: VI, dly: VoI,
The transition map from o to ¢ is the homeomorphism

b : \7—>V, ®:=0lo5.

J

The following theorem states that the transition maps between regular charts are diffeomorphisms.
The proof is somewhat technical and relies on the Implicit Function Theorem. A similar argument
will be used for Lemma 4.79 in Section 4.7. We have chosen to omit the proof here, but interested
readers can refer to page 117 of [7] for details.

Theorem 4.64

Transition maps between regular charts are diffeomorphisms.

The immediate consequence of Theorem 4.64 is that transition maps are reparametrizations. To fix
notations, let us state this fact precisely.
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Theorem 4.65: Transition maps are reparametrizations

Let & be a regular surface,o: U - §,6 : U->¢§ regular charts, with I := ¢(U) n a(0) = @.
Define the transition map

d=cle6: VoV, V=cl()) V=6 '1).
Then o and ¢ are reparametrization of each other, with

6=0°D, c=6-d1.

Example 4.66: Reparametrization of $2

In Example 4.57 and Example 4.58 we gave two different regular parametrizations of the sphere
$2:

1. Spherical coordinates: The sphere, excluding the Date Line and the Poles, is charted by
0(0,9) = (cos(0) cos(p), sin(f) cos(y), sin(p)),

defined over the set

T T

U:{(e,q))eRZ L Qe (-mm), (p€<—5,5>}.

2. Cartesian coordinates: The Northen Hemisphere is charted by

o(u,v) = (u,v,N1 —u? —v2),

defined over the set
U={uv)eR®: u?++*<1}.

The intersection of the images
I=6U)ne)

is non-empty. Indeed, the two charts overlap across the Northern Hemisphere, excluding the
Date Line and North Pole. Define the open sets

Vi=ol(), V:=6D),

and the transition map
®: VoV, ®:=¢1e6.

Since o and 6 are regular, Theorem 4.65 guarantees that @ is a reparametrization map. Therefore
o and ¢ are reparametrization of each other, with

6=0°®.

Conclusion: the two parametrizations ¢ and & of $? are interchangeable!
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Important

Theorem 4.65 demonstrates that there is no single preferred way to parametrize a surface: When
two regular charts overlap, they are reparametrizations of each other in the overlapping region.
This observation has a significant consequence:

It allows us to define a property of any regular surface by using charts, as long as we ensure that
the definition is independent of reparametrization and, therefore, of the specific chart chosen.

4.6. Functions between surfaces

We aim to define the concept of a smooth function
f:81 8,

where & and &, are regular surfaces. Up to this point, we only know how to define smooth functions
from R"” to R™. The idea is to use surface charts to extend this definition of smoothness to functions
between surfaces, see Figure 4.15.

Definition 4.67: Smooth functions between surfaces
Let & and &, be regular surfaces and f: & — &, a map.
1. f is smooth at p € &Y, if there exist charts
0;: U — &; such that p € a1(U7), f(p) € 02(Us),
and that the following map is smooth

¥:U —»U, ¥Y=0,'fc0.

2. f is smooth, if it is smooth for each p € &;.

Remark 4.68

1. Definition 4.67 makes sense because 0'51 exists.

2. The map 6,  f o 6, is only defined for the points x € U such that

flo1(x) € 0,(U3).

1

3. The function 6! » f o &1 maps from R? into R?, therefore smoothness is intended in the

classical sense.

4. Definition 4.67 is well-posed: Smoothness of f does not depend on the specific choice of
charts 7 and o5.
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G (Jy) ”-(dz)
Q s (*)
S,
A 7 U

Us
ofog U,
[N )Y
d T >

Figure 4.15.: The function f: & — &, is smooth at p, if the vector valued function a7 !

smooth.

Indeed, suppose that &; : U; — & are charts such that

p E[71([71), f(p) € 5'2((72)~

In particular we have ~
oi(U) n6(U) # @.

As &1 and &, are regular surfaces, by Theorem 4.64 there exist open sets
vicU, Vich,

and reparametrization maps

Hence
~—1 ~ _ ~—1 -1 1 o
Gy ofo01=05 °(030°05 )ofo(o1°07 )04
~—1 _ — ~
= (0, °0'2)°(0'zl°f°0'1)°(°'11°01)

=0, e (05" 0 fooy)o Dy

Since @4, @51 and 0'51 o f oo are smooth, we conclude that

6y °fe0;

is smooth. Hence Definition 4.67 does not depend on the choice of charts.

°f°0'1 is
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Proposition 4.69
Iff: & > & and g: & — &3 are smooth maps between surfaces, then the composition

(gof): 1S3

is smooth.

Proof

Fix p € &) and choose charts
0;: U~

such that
peoiU), f(p)earln), g(f(p)€asUs).

Since f and g are smooth, by definition the maps
-1 -1
6, ofeoq, 03 °§8°03,
are smooth. Hence
o'gl o(gof)co'l = (o'gl °g°0'2)°(0-51 ofoo'l)
is smooth, ending the proof.
The inverse function of a chart is a differentiable.

Proposition 4.70: Inverse of a regular chart is smooth

Leto : U — R3 be regular. Then o' : ¢(U) — U is smooth.

Proof
First of all, note that:
. 671 exists, as ¢ is required to be a homeomorphism;
« 0(U) can be regarded as a surface, being an open subset of the surface §.
Let p eo(U)andé : U — & be a regular chart at p, that is,
pes@).

In order to prove that 6! : 6(U) — R? is a differentiable map, we need to check that the map
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is differentiable (where it is defined). To this end, define the intersection
[:=0U)né(0).
Clearly I # @, since p € I. We can then define the open sets
v=c'), V=670,

and the transition map
O: VoV, d:=01e5.

By Theorem 4.64, the map @ is differentiable. As ® = ¢! o &, the proof is concluded.

The following Theorem gives a very useful sufficient condition to check differentiability.
Theorem 4.71
Let & and &, be regular surfaces. Assume:

1. VCR3is open, with §; C V,
2. f: V — R3 is differentiable, with (&) C &,.

The restriction flg : &3 — & is a smooth map.

Proof
Let p € $; and charts oy : Uy = &1,0, : Uy = &5, with

peai(Uy), f(p) €0,(Uy).

The map
03! o feoy U =1
is differentiable because composition of differentiable functions: a5 is differentiable by Propo-

sition 4.70; f is differentiable by assumption; o is differentiable by definition of chart.

Example 4.72
Let & be a regular surface.
1. Assume & is symmetric relative to the {z = 0} plane, that is,
(x,y,2)e8 <<= (x,y,—2)€ed.

Then the map f: & — &, which takes p € S into its symmetrical point, is differentiable.

229



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

This is because f is the restriction to & of the map
fAR SR, flay.2)=(xy.—2),

which is clearly differentiable.

2. Let 7: & — R? be the map which takes each p € & into its orthogonal projection over
R? = {(x,7,0) : x,y € R}.
7 is differentiable because restriction of the differentiable map
7R3> R3, m(x,y,2z) = (x,9,0).

3. Let f: R®> — R® be given by

flx,y,2) = (xa, yb, zc),

where a,b, and ¢ are non-zero real numbers. Clearly, f is differentiable. Therefore, the
restriction f|g2 is a differentiable map from the Sphere

$°={(x,y,2) e R’ : ¥ +y*+2* =1}

into the Ellipsoid

2 2 2
X Yy
E= (x,y,z)e]R3: a_2+b_2+ =1¢,

QN|N

because f($?) C E.

Definition 4.73: Diffeomorphism of surfaces

Let & and &, be regular surfaces.

1. f: & = & is a diffeomorphism, if f is smooth and admits smooth inverse.

2. &1, &, are diffeomorphic if there exists f : & — &, diffeomorphism.

The key ideas around diffeomorphisms are:
1. Two diffeomorphic surfaces are essentially the same.

It is easy to check that being diffeomorphic is an equivalence relation on the set of
regular surfaces. Therefore, two diffeomorphic surfaces can be identified.

2. Two diffeomorphic surfaces have essentially the same charts, as shown in the next Proposition.
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Proposition 4.74: Image of charts under diffeomorphisms

Let & and & be regular surfaces, f: & — s diffeomorphism. If 6 : U — & is a regular chart
for & at p, then ~
c6:U—> S8, 0:=f-0,

is a regular chart for & at f(p).

Proof

Letoy: Uy — Sbea regular chart for S at f(p). By definition of diffeomorphism between
surfaces, the map
O:U—U,, ®:=0,l0foo,

is a diffeomorphism. Therfore
(f e 0)(w,v) = 65 (2(u,v))

with @ diffeomorphism, meaning that f - o is a reparametrization of 6. Since o, is regular, by
Theorem 4.62 we deduce that f - ¢ is regular.

We conclude with the definition of local diffeomorphism between surfaces.
Definition 4.75: Local diffeomorphism

Let & and & be regular surfaces, and f : & — &5 smooth.

1. fis alocal diffeomorphism at p € & if:

+ There exists An openset V C & withp e V;
o f(V)C &, is open;
o f:V > f(V)is smooth between surfaces.

2. fis alocal diffeomorphism in &, if it is a local diffeomorphism at each p € &;.

3. & is locally diffeomorphic to &5, if for all p € & there exists f local diffeomorphism
at p.

Two remarks:

1. The above definition is well-posed, since open subsets of surfaces are themselves surfaces.
2. Being locally diffeomorphic is not an equivalence relation: §; locally diffeomorphic to &,
does not imply that &, is locally diffeomorphic to §;.
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4.7. Tangent plane

The tangent vector to a curve y : R — R? at the point y(t) is just y(t), the derivative of the curve at
t. Tangent vectors to a surface & can be defined as the tangent vectors of curvesy : R - & with
values in &, see Figure 4.16.

To simplify statements, we make the following assumption.
Assumption 4.76

From now on, all the surfaces will be regular and all the charts will be regular.

Definition 4.77: Tangent vectors and tangent plane

Let & be a surfaceand p € §.

1. v € R? is a tangent vector to § at p, if there exists a smooth curvey : (—¢,¢) — R3 such
that
y(—ee)C S, y(0)=p, v=y(0).

2. The tangent plane of & at p is the set

T,8 :={ve R® : v tangent vector of & at p}.

Figure 4.16.: Tangent plane T, § of surface & at the point p. A tangent vector v has to satisfy v = y(0),
for some smooth curvey : (—¢,¢) > & such that y(0) = p.

Let us start with the most basic example: We want to compute the tangent plane to an open set in
R?.

Example 4.78

Let U C R? be open and p € U. Then
T,U =R?.
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Proof. Suppose first that v € T,U. By definition of tangent vector, there exists a smooth curve
y: (-ge)>U

such that
y(0)=p y(0)=v.

Since U C R?, it follows that y is a plane curve, so that
v =y(0) € R%.

Conversely, let v € R%. Since p € U, and U is open, there exists ¢ > 0 such that B,(p) C U.
Define the curve
y: (—ee) >R, y() :=p+tv.

By construction
&) CB(p) U, y(0)=p, y(0)=v,

showing that v € T,U.

In the above example, we have seen that
_m2
T,U =R

for any open set U C R?. In general, if § is a regular surface, then TpS is a vector space isomorphic

to R%, in symbols
T,8 = R%.

This means that there exists a map
Q: TS — R?

which is an isomorphism of vector spaces, i.e., @ is invertible and linear:
DAV + pw) = AD(A) + pd(w),

forall v,w € Tpé’ and A,y € R.

To prove this result, we need a Lemma concerning curves with values on surfaces: The lemma says
that when & is regular, all the smooth curvesy : (—¢,¢) - R3 with values in &, are of the form

y(@® =o@®),v(®)), Vvie(-¢e)),

for a pair of smooth functions u,v: (—¢,¢) - R.
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Lemma 4.79: Curves with values on surfaces

Leto : U — R® be a regular chart and § := a(U). Let p € & and (u,vy) = 6~ '(p). Assume
Y : (=e,€) = R? is a smooth curve such that

y(—eo)C S, y(O)=p.

There exist smooth functions u,v : (—¢,¢) — R such that

Y®) =o(u(),v(@)), vt € (—¢e,€), u(0)=1uy, v(0)=1y.

Proof

To visualize the geometric ideas of this part of the proof, see Figure 4.17. Let pin & = a(U),
and assume given a smooth curvey : (—¢,¢) — R3 such that y(0) = p and

y®es, vie(—ge).
Denote the coordinates of the chart o : U — R? by

o(u,v) = (f(u,v), g(u, v), h(w,v)).

fu h
Jo=| & & |-
h, h,

Since o is regular, by definition Jo has rank-2 at (uy,vy). This means that at least one of the 3

minors
(EB) (F k) (28)

is invertible. WLOG, assume the first is invertible (the proof in case the other two are invertible
is similar). Define the map

The Jacobian of o is

F: UCR? > R?, F(u,v) := (f(u,v), g(u,v)).

(B0,

which is invertible at (uy, 1) by assumption. Hence, by the Inverse Function Theorem 4.39,
there exist

The Jacobian of F is

« Uy C U open set, with (ug, vy) € Uy,
. VCR? open set, with F(uy, 1) €V,
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such that
F:Uy—-V

is a diffeomorphism. In particular, the inverse function
Fl: v,
is smooth. Define the projection map
7 RP->R:, n(x,y,2) = (x,9),
and notice that, by construction,
F=moo.

The composition
moy: (e,6) > R?

is smooth, and such that

(2 ¥)(0) = n(y(0))
7(p)

= (o (U, v))
= F(uy, v) -

Since F(uy,vy) € V, with V open in R2, and since 7 o Y is continuous, there exists ¢ € (0, ¢] such
that

(mey)t) eV, Vte(—&,&).
Since F! maps V into Uy, it is well-defined the composition
n: (—&,&) = Up, 7]3:F71°7'[°}’.

Notice that 7 is smooth, since F~!, 7 and y are smooth. In particular, the componenents of 5 are
two smooth functions
u,v: (—&. &) > R,

such that
w®).v®) = (F Lemoy)t), Vie(—g.g). (4-3)
We are now ready to conclude:
« Recalling that F = 7 - ¢, and that o is invertible, we infer that

1

F=goo => Fool=g = o l=Flog.

Hence, we can substitute F~! o 7 = ¢! in (4.3), and obtain
W®,v®) = (F ' emep)) =@ op)1).
Applying o to both sides gives the desired equation
y(®) = o(u(®), v(®)), Vi€ (=)
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+ We have computed that
(7 2 ¥)(0) = F(ug, v) -

In particular, substituting t = 0 in (4.3) gives,
((0),v(0)) = (F~" o w2 y)(0)
= F (x> y)(0))
= F'(F(u, m))
= (up, W),

showing that
u(0) = uy, v(0) = .

o, 52)= ¥(o) = p S

= F o wor

F=Too

Figure 4.17.: Image associated with the Proof for Lemma 4.79. The smooth coordinates n(t) =
(u(t), v(t)) are constructed by settingn := F 1oz oy.

We are now ready to characterize T, & when & is a regular surface.

Theorem 4.80: Characterization of Tangent Plane

Leto : U — R3 be a regular chart and § := o (U). Let p € §. Then
T,S = span{o,,0,} :={lo, + po, : A p€eR},

where 6, and &, are evaluated at (u,v) = ¢~ !(p).

Proof
Leto : U — & be aregular chart.

« First, suppose v € T,8. By definition of tangent plane, there exists a smooth curve
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Y : (—&,6) > & such that
y©=p, y)=v.

By Lemma 4.79, there exist &, € (0, ¢] and smooth functions
u,v: (—&,6) >R, u0)=u, v(0)=n1,

such that
Y(t) = O'(U(t), V(t)) 5 vVt e (_80’ 80) .

Therefore, by chain rule,

Y (©) = 0,(u(®), v() i(t) + 0, (u(t), v(£)) ¥(2) .

Evaluating the above at t = 0 yields

v =y(0)
= 64, ((0),v(0)) &(0) + o,(u(0), v(0)) ¥(0)

= 0, (up, vp) W(0) + o, (g, vp) v(0),

which shows
v € spanio, (uy, vp), 0, (up, v)} -

« Conversely, suppose that

v € spanfo, (g, v9), 0 (g, vo)} -
Then, there exist A, ; € R such that

v = Aoy (ug, vo) + poy, (g, vp) -
The map s : R — R? defined by

s(t) 1= (uy + At, vy + pit).
is continuous, being s is the line through (uy, vy) in the direction (4, y). Moreover,
s(0) = (ug,w) €U .
Since U is open in RR2, there exists R > 0 such that
Bg(s(0)) = Br((ug,w)) CU .

In particualar, by continuity of s, there exists ¢ > 0 such that

t—0/<e = |s(t)—s(0)] <R,
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which implies
s@) =@y + A, vy +pt) €U, Vite(—¢e).

Therefore, it is well-defined the curve
y: (—ee)>0o(U)CS, y:i=0cs.
Write down the definition of y explicitly:
Y(®) = o(ug + At, vy + pt).

By chain rule
Y@®) =o,(uy + At, vy + p)A + 0,(uy + At, vy + pt)p,

and therefore
y(0) = a,(ug, vp)A +0,(ug, V)t = v.

This proves that v € T, &', ending the proof.
Remark 4.81
The tangent plane is a vector space isomorphic to R?, that is,
T,S = R?,
with isomorphism @ : T,§ — R? given by

® (Ao, + poy,) = (A, p).

Proof

By Theorem 4.80 we have that
T,$ = spanfo,, 0.}

Since 6, and g, are linearly independent, we conclude that TS is a vector space of dimension
2. Therefore T, is canonically isomorphic to R? via the map @ : T,$ — R? given by

®(A6y + poy) = (A, p).

Remark 4.82

By definition, TpcS’ is a vector subspace of R3. As such, it holds that

OeTPoS’.
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To see this, take the curve y(¢) = p. Then y(0) = p and y(0) = 0, showing that
0eT,S.
P

Therefore TS is a plane through the origin, no matter where the point p € & is located. In
pictures, such as Figure 4.16, we draw the tangent plane as if it was touching the surfaces at the
point p, and still denote it by T, This is a slight abuse of notation: to be precise, the plane
drawn is

p+1p,8,

which is the affine tangent plane through p € §.

We can easily compute cartesian equations for the tangent plane.

Theorem 4.83: Equation of tangent plane

Leto: U — & beregular, § =o(U). Letp € § and
n:=o,wv)xo,wv), (wv):=c(p).

The equation of the tangent plane T, S is given by

x-n=0, vx eR3.

Proof

By Theorem 4.80 we know that
Tp,S = span{o,,0.,}.

By the properties of cross product, the vector n is orthogonal to both g, and o,,. Therefore it is
orthogonal to T,§'. The equation for T, S is then

x-n=0, vxeR3.

Remark 4.84: Equation of affine tangent plane
The equation of the affine tangent plane p + T, S is given by

(x—p)'n=0, vxecR3.

Proof

The vector n is orthogonalto T, §'. In particular, the equation for the affine tangent plane p+1,§

239



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

is
x-n=k, VxeR3,

for some k € R. To compute k, it is sufficient to evaluate the above equation at any point in
p + TS Recalling that 0 € T, &, we have that p belongs to p + T,,§. Therefore,

k=p-n.
Hence the equation for p + T, 8 is
(x—p)-n=0, VxeR3,

ending the proof.

Example 4.85: Calculation of tangent plane

Question. For u € (0,27), v < 1, let § charted by
o(u,v) = (m cos(u), V1 — v sin(u), v) .
1. Prove that o charts the paraboloid x* + y? — z = 1.
2. Prove that o is regular and compute n = ¢, xg,,.
3. Give a basis for T, at p = (V2/2,42/2,0).
4. Compute the cartesian equation of T, .
Solution.
1. Denote a(u,v) = (x,y,z). We have

x2+y? = (m cos(u))2 + (m sin(u))2

=l-v=1-z.
2. We compute n = ¢, x 0, and show that o is regular:
o, = (—\/1 — vsin(u), V1 — v cos(u), O)
o, = (—%(1 —v) Y2 cos(u), —%(1 — ) Y25in(w), 1)

n=0,%x0, = (\/1 —wvcos(u),v1 —vsin(u),%) 0
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3. Notice that ¢ (r/4,0) = p. A basis for T,,§ is

4. Using the calculation for n in Point 2, we find

n(Z.0) = (@ Qi) '

4 2 2 2

The equation for Tpef’ is x -n = 0, which reads

ﬁx+\/§y—z:0.

Figure 4.18.: The Paraboloid in the Example.
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Remark 4.86: Tangent plane and derivations

The definition of tangent plane depends on the fact that & is contained in R>. This is a serious
drawback in many applications, as the surface & does not necessarily need to be Euclidean.
There is a way to get rid of such dependence, and give an intrinsic definition of tangent plane,
depending only on the point p and the surface §.

The basic idea is as follows: If U C R? is open and p € U, then T,U = R?. We can associate to
any point v € T,U a directional derivative acting on smooth functions f : U — R:

v=(v,%) i‘ =V 2
Vlip 0x1

Tty 2
2 8x2

P P

The above directional derivative is called a derivation.
The point is that derivations do not need to be defined through vectors, but can be defined as
follows: D is a derivation if

« D: C*(U) — Ris alinear operator, where C*(U) is the set of smooth functions f : U —
R,
« D satisfies the Leibnitz rule

D(fg) = f(p)D(g) + g(P)D(f), Vf,geC™U).
The tangent plane at p can then be defined as
ToU = {D derivation at p}.

Therefore
T,U € (C*U))*,

the dual space of smooth functions.
It is possible to do such construction directly on &, by introducing the concepts of:

« germ of a function
« algebra of derivations, acting on germs

An in depth discussion can be found in Chapter 3.4 of [1].

4.8. Unit normal and orientability

Let & be a regular surface and p € §'. The tangent plane T, & passes through the origin. Therefore
T, S is completely determined by giving a unit vector N perpendicular to it:

TPSZ{XE]R3 : x-N=0}.

We will also write
N L TPS ,
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to denote that N is perpendicular to 7,8 Clearly, also —N is a unit vector, and

(-N)LT,S.

Question 4.87

Which unit normal should we choose between N and —N?

There is no right answer to the above question. One way to proceed is the following.

Remark 4.88

Suppose that ¢ : U — R® is a regular chart for §. Let p € a(U). Then
T,$ = span{o,,0.,}.
Therefore we can choose the unit normal to T, as

N, .o ZuXOy
7 euxall’

Clearly, N, has unit norm. Moreover
Ny-6,=0, Ngs-0,=0

by the properties of cross product. Thus, Ny is perpendicular to T, S
There is however an issue: Ny is not independent on the choice of chart o. Indeed, suppose
thaté: U > R3isa reparametrization of ¢, that is,

c6=0-0,
with @ : U — U diffeomorphism. As stated in Thorem 4.62, we have
0y X0y = det]@(au XO'V).

Hence o det [®
0;; X035 et o, %0
Ny = 2ix0y _ det]D gux0y _
l6z xa5]  [det JOf Joy, x o]

Therefore the sign on the right hand side depends on the sign of the Jacobian determinant of
the transition map ®.

The above remark motivates the following definitions.
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Definition 4.89: Standard unit normal of a chart

Let & be a regular surface and 6 : U — R? a regular chart. The standard unit normal of ¢ is
the smooth function
3 0, X0y
Ny: U—->R’, Ng=——.
low <ol

Definition 4.90: Charts with same orientation

Let & be a regular surface ando : U — R3,6 : U — R® regular charts such that
oU)n6() = 0.
Denote by @ the transition map between 6 and 6. We say that:
1. 0 and 6 determine the same orientation if

det J® > 0.

2. 0 and ¢ determine the opposite orientations if

det J® < 0.

Example 4.91: Orientation of the plane

Let a,p,q € R3, and suppose that p and q are linearly independent. The plane spanned by p,q
and passing through a is parametrized by

o(u,v) i=a+pu+qv, V(uv)eR’.
An alternative parametrization is given by
G(u,v) i=a+qu+pv, V(uv)eR?.

We have
o,=p, 0y=(q,

and therefore

_ Pxq
PR .
Ip xql
Similarly, we have
__9xp _-Pxq
7 laxpl Ipxql’
showing that
Ny = —Nj.

Hence o and 6 determine opposite orientations.
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If a surface can be covered by charts with the same orientation, it is called orientable.
Definition 4.92: Orientable surface

Let & be a regular surface. Then:

1. Let
A ={0;: U — Sher

be an atlas for §'. We say that & is oriented, if the following property holds:
o(U)noi(U) 0 = detj®>0,
where @ is the transition map between 6; and 6.
2. & is orientable if there exists an oriented atlas &.

3. If an oriented atlas & is assigned, we say that & is oriented by &.

Warning: Orientability is a global property

Orientability is a global property: To determine if a surface & is orientable, we need to examine
the transition maps for the entire atlas &.

Example 4.93: Mobius band

The classical example of non orientable surface is the Mobius band, see Figure 4.27. We will
discuss this example in more details when we introduce ruled srufaces, see Example 4.118.

Example 4.94

Leto : U — R3 be a regular chart. Then
Sy :=a(U)

is a regular surface with atlas of = {o}. Therefore S is orientable.
Check: This is because we have only one chart. Therefore any transition map @ will be the
identity, so that det J® =1 > 0.

Remark 4.95

Let ¢ and ¢ be regular charts with transition map ®. We have seen in Remark 4.88 that

i det J®
T |detJo| °°
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If 6 and 6 determine the same orientation, then
det J® >0,

which implies
Ns =N, .

Hence, if & is an orientable surface, one can define a unit normal vector at each point of &,
without ambiguity.

Definition 4.96: Unit normal of a surface

Let & be a regular surface. A unit normal to & is a smooth function N : & — R? such that

N(p) LTS, [N(p)|=1, vped.

Warning

We require the function p — N(p) to be globally defined on & and smooth.

Proposition 4.97
Let & be a regular surface. They are equivalent:

1. & is orientable.

2. There exists a unit normal N : & — R3.

The proof follows from the above discussion. For a self-contained proof, we refer the reader to
Proposition 4.3.7 in [1].

In view of Propostion 4.97, for an oriented surface there is a natural choice of unit normal, which
we call standard unit normal of §.

Definition 4.98: Standard unit normal of a surface

Let & be a regular surface oriented by the atlas &/. The standard unit normal to & is the map
N: & — R3 such that
Noo =N,
for each chart o € &/, where
o, %0,

N,: U->R}, N,=—12Y"
¢ 7 oy xo,
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is the standard unit normal of the chart o.

Notation

In the following we will often denote by N both the standard unit normal of & and of a chart.

Example 4.99: Calculation of N
Question. Compute the standard unit normal to
o(u,v) =" u+v,v), uveR.

Solution. The standard unit normal to o is

o, =(4,1,0), 0,=(0,1,1), loy x o, = V1 + 2624
1, —e%, e
o,x0,=(1,—€e"¢e") N, = —( )

1+ 2e%

4.9. Differential of smooth functions

Let f: U — V with U,V C R? open. Suppose f is smooth. By definition, the differential of f at
p €U is a linear map
dpf R? > R?

which approximates f locally at p. We have seen in Example 4.78 that
— R2
T, U =R".
Therefore we can interpret dj, f as a map between tangent planes:
dpf : ToU > TRU.

This reasoning suggests how to define the differential of a smooth map between surfaces: If f : & —
& is smooth, we could define its differential at p € § as a linear map

dpf : TpS = Ty(p)S -

How is the above map defined explicitly? To answer this question, we need a Lemma.

247



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Lemma 4.100

Let & and & be regular surfacesand f: & — § a smooth map. Let v € T, &, and
y:(—ee)—> &8
be a smooth curve such that
r@=p, y()=v.
Define ~
7i=foy: (ceo)— 8.

Then y is a smooth curve into R® and

}7(0) € Tf(p)g'

Proof

Note that

y=iofey,
withi: & — R? inclusion map. Since i, f,y are smooth, we conclude thaty : (—¢,¢) — R3 is
smooth. Moreover

r(0) = f(y(0)) = f(p).

By definition of tangent plane, we conclude that
¥(0) € Ty(p)S .
Lemma 4.100 justifies the following definition of differential.
Definition 4.101: Differential of smooth function

Let & and & be regular surfacesand f: & — § a smooth map. The differential dp, f of f at p
is defined as the map

dpf : TP(S’ - Tf(P)g’ dpf(V) = (f ° Y),(O) >

withy : (—¢,¢) > & smooth curve, y(0) = p, y(0) = v.

J

We need to show that Definition 4.100 is well-posed, i.e., that dp f(v) depends only on p, f, v: This
is because there are infinitely many curves y such that

r@=p, yO)=v.

Therefore, a priori, dp f(v) could depend on which curve is chosen. This is however, not the case,
as shown in the next Proposition. We will also show that the map df,, is linear, and compute its

matrix.
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Theorem 4.102: Matrix of d}, f

Let &, & be regular surfaces, and f: & — § smooth.
1. dp, f(v) depends only on f, p,v (and not on ).

2. dpf is linear, that is, for all v,w € TPoS’ and A, u € R

dp FOW + W) = Ay f(¥) + iy f(w) .

3. Leto: U— &8,6: U — & be regular charts at p, f(p). Let @ and § be the components
of ¥ = ! o f 0@, so that

o(a(u,v), p(u,v)) = flo(w,v)), v(uv)eU.
The matrix of dj, f with respect to the basis
{ou,0.} on T,8, {63065} on Tf(p)o?,

is given by the Jacobian of the map ¥, that is,

().

Point 3 in the above Theorem says that:

1. Let f: & — & be a smooth function between surfaces. Consider local charts o at p, and & at
f(p). By definition of smooth map, the real map

¥: R > R?, Y=o foo
is smooth.
2. The matrix of the differential dp f with respect to the basis
{o,,0,} on TS, {6;,65} on Tf(p)o?,

is just the Jacobian of .

Proof

Let p € 8. In order to prove the thesis, we need compute dj, f. To this end, letg : U - S be a
chart at p. Denote

(ug. ) = (p).
Leté : U — & a chart at f(p). Since f is smooth, the map
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is smooth. Denote by
(u,v) = (alu,v), f(u. v))
the smooth components of ¥. By definition of ¥ it holds
o(a(u,v), fw,v)) = flew,v)), V(uv)eU. (4-4)

Let v € T, § and denote by (4, u) the components of v with respect to the basis {6, 0,} of T,
that is,
v=JAo, + po, .

Define the scalar functions
u(t) :=uy + At, (@) 1=y + put.
Since U is open in R?, and (4, vy) € U, there exists a sufficiently small & > 0 such that
(u(®),v(@)) eU, Vte(—¢ge).
In particular, it is well defined the curve
vi(ee) > 8, y@ :=au@).v).
It is immediate to check that
y(0) =a(uy,v) =p, y(0)=41o,+po,=v.
By definition of y, and by (4.4), we have

(fep)®) = f(y(®)
= flo(u(),v(®)))
= 6 (a(u(@®), v(¥)), fu(t), v(1))).

By chain rule we obtain

(fer)®

3 w0, )] + 655 [Hu),v(0)

=6 [oqu(t) + e, ¥(0)] + 6 [fu(0) + (D] -
Noting that
u(0) = A, v(0) = p,
we get
(foy)(0) =065 [Aay + por ] + 65 [A, + ppy] -
As, by definition of differential,
dp f(v) = (f >y)'(0),
we have obtained
dp f(V) = 6[Aay + pory ] + G5[Af, + ppy] (4.5)

We can now prove the 3 points stated in the Proposition:
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1. The RHS of (4.5) depends only on A, u (the components of v), f (via the components «,
of ¥), and the point p. In particular dj, f(v) does not depend on the choice of y, and the
definition is well-posed.

2. The RHS of (4.5) is linear in the components 4, p of v. In particular d, f(v) is linear in v.

3. The coordinates of o, with respect to the basis {¢,,,0,} of T,,& are

AL =(1,0).
Using (4.5), we get
dpf(o'u) =600 +05p,
Similarly, the coordinates of o, with respect to the basis {6, 0} of T,,§ are

(4w =(0.1).

Therefore

dpf(av) =03, + 6P,
This shows that the matrix of the linear application d}, f with respect to the basis {o,, 0}
onT,S, and the basis {6;,6;} on Tf(P)§ , is given by

o?
(5 &)=
Given the above discussion, we have 2 ways of computing the differential of a smooth function
f:8->8
1. By using the definition: Let v € T,§ and let y be a curve on & such that

Y@ =p, y0)=v.
Then
dp f(v) = (f > ¥)'(0).
Method to construct y: Following the proof of Theorem 4.102, one can proceed as follows:

« Findo : U — & chart of & at p.
« Compute
T,S = spanf{o,,0.,}.

« Forve Tpé’ , compute A, p such that
v = Ao, + po,, .

« Compute (1, ) = 6~ (p).
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« Define the curve
y(@®) = o(uy + At, vy + put).

Such curve satisfies
y(0) = p, y(0) =v.
« Compute
dpf(v) = (f>y)'(0).
2. By using the matrix representation: Let v € T, §

+ Findo : U - & chartof § at p.
« Findo : U — & chart of § at f(p).
« Compute the components «, f§ of the function

5'_1°f00': U-U.

« The matrix of d}, f with respect to the basis {o,0,} on T, S, and the basis {6,,6,} on

wrem=(t )

v = Ao, + jo, .

Tp 8, is given by

Compute A, p such that

Compute )
dpf(v) = A6, + fi6,

where the coefficients A and [i are

( ; ) ( ) ( ) )
H Bu By u)e
Let us give example calculations for both methods.

Example 4.103: Computing d,, f using the definition

Question. Consider the plane § = {z = 0}, the unit cylinder § = {x? + y? = 1}, and the map
f: S—>o§;, f(x,y,0) = (cosx,sinx, y).

1. Compute T, 8.
2. Compute dpf at p = (up, v, 0) and v = (4, 11, 0).

Solution.
1. A chart for § is given by o(u, v) = (u, v, 0). Hence,
o, =(1,0,0), o,=(0,1,0),
and the tangent space is

T,S = span{o,, 0.} ={(4, 11,0) : A p€eR}.
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2. Define the curvey : (—¢,¢) > § by setting
y(@) :=oa(uy +tA,vy +tp) = (ug +tA,v +tp,0).
Note that y(0) = p and y(0) = v = (4, y, 0). Therefore, the differential is given by

(f e y)(@) = (cos(ugy + tA), sinuy + tA), vy + tp),
(f oy) () = (=Asin(uy +tA), Acos(uy +tA), 1),
dp f(v) = (f 2 y)(0) = (—=Asin(yy), A cos(up), p) -

Example 4.104: Computing the matrix of d, f

Question. Let & be the cylinder, and S the plane, charted by
o(u,v) = (cosu,sinu,v), 6&(u,v)=,v,0),
defined on U = (0,27) x R and U = R%. Define the map
fr8->8, flxy.2)=(y.xz0).

Compute the matrix of dp, f with respect to {0,,0,} and {6,,6.,}.

Solution. Note that 6'71(u, v,0) = (u,v). Hence,

Y(u,v) = 6! (fle(u,v)) = 6! (f(cosu,sinu, v))

=6 ! (sin(u), cos(u)v, 0) = (sin(u), cos(u)v) .
The components of ¥ are
a(u,v) = sin(w), p(u,v) = cos(u)v.

The matrix of dp f is hence
[ w o a cos(u) 0
Y= ( Bu By ) B ( —sin(w)v  cos(u) ) :

The differential satisfies the following useful properties.

Proposition 4.105

The following hold:
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1. If & is a regular surface and p € &, the differential at p of the identity map
I: 8->¢8, Ix) :=x,

is the identity map
I T,(S8) > Tp(S), I(v) :=v.

2. If &1, &5 and &5 are regular surfaces and
f:81 =8, g8,
are smooth maps, then
dp(gef)=dipgedpf. VpeET,S.
3. If &, &, are regular surfaces and
[ 81— 82,
is a diffeomorphism, then the differential
dp: TSt = Typ)S2

is invertible for all p € &;.

J

For a proof see Proposition 4.4.5 in [7]. The above Proposition says that the differential of diffeo-
morphism is invertible. The converse statement is true locally.

Theorem 4.106
Let &, &, be regular surfaces and f : & — &, smooth. They are equivalent:

1. fis alocal diffeomorphism at p.
2. The differential dp, f : Tp Sy — Ty(p)S2 is invertible at p.

The proof is based on the Inverse Function Theorem 4.39, see Proposition 4.4.6 in [7].

g4.10. Examples of Surfaces

In this section we discuss a few families of surfaces:

1. Level surfaces
2. Quadrics
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3. Rules surfaces
4. Surfaces of revolution

4.10.1. Level surfaces

Level surfaces are described as the set of zeros of scalar functions.

Definition 4.107: Level surface

Let f: V — R be smooth, V C R? open. The level surface associated to f is the set

Sp=frq ={x.y.2) eV : flx,y,2) =0}

We now give a result concerning regularity of level surfaces. The proof, rather technical, is based on
the Implicit Function Theorem. It can be found in Proposition 3.1.25 of [1]. We decide to omit it.

Theorem 4.108: Regularity of level surfaces
Let f: V — R be smooth, with V C R® open. Assume

Vf(x,y,2) #0, VY(x,y,2)€V.

Then S is a regular surface.

We saw that the circular cone
S ={(x,7,2) €eR® : x?+y? =22}
is not a surface. However, the positive sheet
st :z{(x,y,z)E]R3 : xz—l—y2 =z2, z > 0}.
is a regular surface, see Figure 4.19, with regular atlas given by &/ = {o}, where
o: R2-> R, o(uv)=(uv,Vu?+v?).

We can also show that §* is a regular surface by using Theorem 4.108.
Example 4.109: Circular cone
Question. Prove the circular cone is a regular surface

S ={(x,y,2) €R®: x?+y? =22, 2>0}.
Solution. Define the open set V. R® and f : V — R by

V:{(x,y,z)E]R3 : z> 0}, f(x,y,z):x2+y2—zz.
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§ is a regular surface, since § = &y and

Vf(x,y,2) = (2x,2y,-22) #0, V(x,y,z)€V.

1.2
1.0
0.8
0.6
0.4
0.2

~1.0
=03 00
05 0.3

1.0
y 1.0

Figure 4.19.: Positive sheet of circular cone.

Let us give a characterization of the tangent plane to level surfaces.

Theorem 4.110: Tangent plane of level surfaces
Let f: V — R be smooth, with V C R3 open. Assume

Vf(x,y,2) #0, VY(x,y,2)€V.
Let p € 8¢. Then Vf(p) L T, S, and

1. The cartesian equation of T, 8 is given by

Vf(p)-x=0, vx eR3,

2. The cartesian equation for p + T, & is given by

Vi(p)- (x—p)=0, VxeR3.
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Proof
Let v € T, 8'r. By definition of tangent plane, there exists a smooth curve
y: (&) > S

such that
y©@=p, y0)=v.
Sincey(t) e § t» we have that

fo®)=0, vie(-¢e).

By chain rule we get
Viy®) yt)=0, Vie(—¢e).

Evaluating the above att = 0 yields
0=Vf(y(0)) y(0)=Vf(p)-v,
showing that v is orthogonal to Vf(p). Since v is arbitrary, we conclude that
Vf(p) LTSy
In particular, the equation for T, 8 is
Vilp)-x=0, VxeR3.
Therefore, the equation for p + T, § is given by
Vilp) - x=k, vx €R3,
for some k € R. Since p belongs to p+T},&, we can substitute p in the above equation to obtain
k=Vf(p) p-

Hence the equation for p + T, S is

Vf(p)-(x—p)=0, VxeR>.

Example 4.111: Unit cylinder

uestion. Consider the unit cylinder & = {x? + y? = 1}.
y y

1. Prove that & is a regular surface.
2. Find the equation of T,8 atp = (\/5/2, J2/2, 5).

Solution.
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1. Define the open set V. CR3>and f: V — Rby
V=R3\{(0,0,2) : z€R}, f(x,y,2) :=x*+y*—1.
& is a regular surface, since & = Sf and

Vi(x,y,2) = (2x,2y,0) #0, V(x,y,z)€V.
2. Using the expression for Vf in Point 1, we get

ufp=vf (2. 25) = (220

The equation for 7,8 is

Vilp)- x=0 < x+y=0.

4.10.2. Quadrics

Quadrics are special level surfaces
Sp={(xy.2) €R : flx,y.2)=0},
where

flx, v, 2) =a;x% + ayy? + a3z + 2a,xy + 2a5xz + 2a5yz+
+bix+byy+bz+c,

for some coefficients a;, b;, c € R. Let

and
Xz(x,y:Z)T, b:(bl,bz,b3)T,

Then f can be represented by the quadratic form
fx) =x'Ax+b-x+c.
The expression f = 0 is called a quadric equation.
As stated in the following Theorem, there are 14 quadrics in total. Out of these:

e g are interesting surfaces,
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« 3 are planes,
. 11is a line,
» 1is a point.

Theorem 4.112

described by one of the following equations:

2 2 2
. .4 X y z
1. Ellipsoid: i q_z + =

=1.
2y 2

2. Hyperboloid of one sheet: =+
q

. x? yz 2*
3. Hyperboloid of two sheets: — — — — = =1
P
2 2
4. Elliptic Paraboloid: A Y - z
P
. x? y2
5. Hyperbolic Paraboloid: — — — =z
rq
2 2 2
6. Quadric Cone: A Yz _ 0
22 P
2 2
7. Elliptic Cylinder: % + Z—z =1
2 2
8. Hyperbolic Cylinder: % - Z—z =1

2
9. Parabolic Cylinder: x_z =y
p

10. Plane: x =0

11. Two parallel planes: x? = p?
2 Y
12. Two intersecting planes: — — =— =0
P q
2 2
13. Straight line: x_2 + y—z =0
r°q
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14. Single pomt — y—z + Z—z =0

P
We refer to Figure 4.20, Figure 4.21, Figure 4.22, Figure 4.23, Figure 4.24, Figure 4.25 for illustra-
tions.

J

The proof of Theorem 4.112 follows (quite tediously) by diagonalizing the symmetric matrix A, and
by studying the eigenvalues, see Theorem 5.5.2 in [7].

ELLipsoin

HrPERBOWLOD of 4 SHEET

Figure 4.20.: Classification of quadrics: Ellipsoid and Hyperboloid of 1 sheet.

S

ELL\PTic PARAROLOID

HYPERBOLOD of 2 SHEET

Figure 4.21.: Classification of quadrics: Hyperboloid of 2 sheets and Elliptic Paraboiloid.

Example 4.113
The sphere is described by
={(xx,y,2) €R® : x2+y*+2%=1}.

This is an ellipsoid with
p = q =r = 1 .
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QUADRIC CoNE

Figure 4.22.: Classification of quadrics: Hyperbolic Paraboloid and Quadric Cone.

=
i O
)

ELLIPTiC CTLINDER 2
HYPER BoLiC
CrLINDER

Figure 4.23.: Classification of quadrics: Elliptic Cylinder and Hyperbolic Cylinder.

w

PARABOLIC CTLINDER PLANE

Figure 4.24.: Classification of quadrics: Parabolic Cylinder and Plane.

261



Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

PARALLE L INTERSECTW G
PLANES PLANES

Figure 4.25.: Classification of quadrics: 2 parallel planes and 2 intersecting planes.

In particular we can write the sphere as the quadric equation:

100
xI{ o 1 0 |x=1.
0 0 1

Example 4.114

Consider the level surface
S ={(xy.2)eR : f(x,y,2)=0}

with
floy,2) =x? +2y° — 422 + 2xy + yz —6x2+1=0.

Therefore § is a quadric. The matrix associated to f is

1 1 -3
A= 1 2 1/2
-3 1/2 -4

Diagonalizing the matrix A we obtain A = PDP~!, with P matrix of eigenvectors and

—5.51 0 0
D= 0 155 0
0 0 296

Therefore, up to changing basis via the matrix P, the surface S can be described by the quadric
equation
5.51%% — 1.55% — 2.962% = 1,

showing that S is a Hyperboloid of two sheets.
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4.10.3. Ruled surfaces

A ruled surface, is a surface obtained as union of straight lines, called the rulings of the surface. By
using curves, ruled surfaces can be defined in the following way.

Definition 4.115: Ruled surface
A ruled surface is a surface with chart
o, v) = y(u) + va(u),
wherey,a: (a,b) —» R3 are smooth curves, such that
y(@®) and a(#) are linearly independent for all ¢ € (a, b).

y is the base curve and the lines v — va(u) the rulings.

Theorem 4.116: Regularity of ruled surfaces

A ruled surface & is regular if v is sufficiently small.

Proof

A chart for & is
o(u,v) =y() +va(u),

with y and a linerly independent Differentiating, we obtain
o, =y +va(w), o, =aw).

Thus, y(u) + va(u) and a are linearly independent for v sufficiently small.

The same base curve can yield multiple ruled surfaces, depending on the choice of rulings. For
example, if y is a circle,
¥ () = (cos(u), sin(u), 0),

we can obtain both the unit cylinder, and the M6bius band.
Example 4.117: Unit Cylinder is ruled surface

Question. Prove that the unit cylinder is a ruled surface.
Solution. The unit cylinder & is charted by

o(u,v) = (cos(u), sin(u), v) = y(u) + va(w)
y(@) = (cos(u), sin(u),0), a=(0,0,1)
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& is a ruled surface, since the vectors
Y = (_ Sin(u)’ COS(U), O) 5 a= (0> Oa 1)

are orthogonal, and hence linearly independent.

ROLN &S

Figure 4.26.: The unit cylinder is a ruled surface with base curve the unit circle, and rulings given by
vertical lines.

Example 4.118: Mobius band
Question. The Mdbius band is a ruled surface with chart
o=y)+va(u), ue(0,2r),ve (—% %) ,

where
y(@) = (cos(u), sin(u), 0)

o= (s st sn S s 2

is a vector which does a half rotation while going around the unit circle y. In particular

o(u,v) = ([1 —vsin (g)] cos(u), [1 —vsin <g>] sin(u), v cos (%)) .

1. Compute the standard unit normal to o.
2. Prove that & is non orientable.

is the unit circle, and

Solution.

1. From the formula for o, it is easy to compute that
0, X0, = (— cos(u) cos (%) , — sin(u) cos (%) ,—sin (g)) .
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It is also immediate to check that |o,, xa,| = 1, and therefore the principal unit normal
of o is
Ny =0, x0,.

2. Suppose by contradiction that & is orientable. This means there exists a globally defined
principal unit normal vector
N: & —>R.

By definition of principal normal, we have
Neo=N,.

Consider the point p = (1,0,0) on &. Notice that, by continuity, p can be obtained via &
through the limits
p= lim 6(»,0) = lim o(u,0).
u—0" u—2m-

Since N is continuous, the above implies

N(p) = lim Noo(u,0) = lim Noo(u0). (4.6)
u—0" u—2mw"

However, by direct calculation:
lim Neoo(u,0) = lim Ng(u,0) = (-1,0,0)
—0* —0*

lim Noo(u,0) = lirzn_ N (u,0) = (1,0,0)
JT

u—2mr

This clearly contradicts (4.6). Therefore N cannot exist, and & is not orientable.

l(u)
i ¥ oaln)
Alu.)
Mozws BAND

Figure 4.27.: The Mgbius band is a ruled surface with base curve y and rulings given by rotating
vertical lines.
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Example 4.119: A ruled surface
Question. Show that the following surface is ruled
Sz{(x,y,z)EIR3 : x2+10xy+16x2—z=0} .
Solution. We can rearrange
x2+10xy +16x2 —2=0 = (x+8y)(x+2y) =z.
Letu = x + 8y and v = x + 2y. Therefore uv = z and
—v v—u

u
u—v==~6 = = = x=u-—-8y=
y y 6 y 3

It follows that if (x, y,z) € S then

dv—u u—v
LUV

(x,9,2) =< ,
- <_E, 2,0) +v<é,—%,u) =y(w) +va(u).

When u # 0, the vectors

= (820). y0=(L0).

are linearly independent, as the last component of y(u) is 0. Also a(0) and y(0) are linearly
independent. Thus, & is a ruled surface.

4.10.4. Surfaces of Revolution
Surfaces of revolution are obtained by rotating a curve about the z-axis.
Definition 4.120: Surface of revolution

Lety: (a,b) — R3 be a smooth curve in the (x, z)-plane,

Y = (f(»),0,g(v)),  f>0.

The surface & formed by rotating y about the z-axis, called a surface of revolution, is charted
byo: U—R3

o(u,v) = (cos(u) f(v), sin(u) f(v), g(v)), U = (0, 27) x (a,b).
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Theorem 4.121: Regularity of surfaces of revolution

A surface of revolution is regular if and only if y is regular.

Proof

We have

o, = (—sin(u) f(v), cos(u) f(v),0)
o, = (cos(u) f (v), sin(u) f (v), g(v))
oy x0, = (cos(w)fg,sin()fg,~ff) .

oy <ol = f(F% + &%) = Flvl -

Now, o is regular if and only if 6, x 6, # 0. Since f > 0 by definition, we conclude that o is
regular if and only if y # 0, that is, y is regular.

Example 4.122: Catenoid is surface of revolution

Question. The Catenoid & is the surface of revolution formed by rotating the catenary y(v) =
(cosh(v), 0,v) about the z-axis. A chart for § is given by

o(u,v) = (cos(u) cosh(v), sin(u) cosh(v),v),

with u € (0,27),v € R. Prove that & is a regular surface.
Solution. Note that f > 0. & is regular because y is regular, as

= (sinh(v),0,1), |y|* =1+ sinh(v)? > 1.

Figure 4.28.: The Catenoid is the surface of revolution obtained by rotating the catenary about the
z-axis.
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4.11. First fundamental form
In this section we introduce the first fundamental form of a surface. This will allow us to com-
pute:

« Angle between tangent vectors
 Lengths of tangent vectors
« Area of surface regions

Let & be a surface and consider two points p,q € §. The euclidean distance between p and q is

lp—dl.

However, this measures the length of the straight segment which connects p to q, that is, the planar
distance between p and q. We are interested in measuring the distance of p and q on &. A way to
measure such distance is the following: Suppose

y: (@b)— S

is a smooth curve such that
r@=p, y®=q.
The distance between p and q on & could be defined as the length of y, i.e.,

b

[ wora.
a
Since y(t) € &, by definition of tangent plane, we have

YO ET,S, p:=y().

Therefore, computing |y(¢)| is equivalent to computing the length of tangent vectors to &. This
motivates the definition of first fundamental form.

Definition 4.123: First fundamental form (FFF)

Let & be a regular surface and p € &. The first fundamental form (FFF) of & at p is the
bilinear symmetric map

I T,8 xT,8 >R, Ip(v,w) I=V-W.

Three observations:

1. The first fundamental form of & at p is the map obtained by restricting the scalar product of
R? to T, S .
2. Note that
L(v,v) = IvI?,

so that I, can be used to compute the length of tangent vectors.
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3. The definition of Ip does not depend on a chosen chart, since TPS can be defined without
using charts.

To use the first fundamental form in practice, we need to express I, in terms of local charts. To this
end, we first define:

« The coordinates functions du and dv on TpcS’ ,
« The first fundamental form of a chart.

Definition 4.124: Coordinate functions on tangent plane

Leto : U — R3 be regular, § = 6(U). The coordinate functions on T, S are the linear maps
du,dv: T,8 >R, du(v) :=1, dv(v):=yp,

where v = Ao, + o, since {0, 0} is a basis for T, S

Definition 4.125: FFF of a chart
Leto : U — R3 be regular, § = a(U). Define E,F,G: U — R
E=¢6,-0,, F=0,-0,, G=0,-0,.
The FFF of o is the quadratic form #; : T,8 — R
F1(v) = Edu?(v) + 2F du(v) dv(v) + Gdvi(v), Vve TS,

for all p € 6(U), with E, F, G evaluated at (u,v) = a_l(p).

We usually omit the dependence on v in (?@eq-fff-chart), and just write
F1 = Edu? + 2F dudv + Gdv?.
We are now ready to write I, with respect to the basis {¢,,,0,} of TS

Theorem 4.126: Matrix of FFF
Leto : U — R3 be regular, § = 6(U), and p € 6(U). Then
E F T
Ip(v’ W) = (du(V), dV(V)) F G (du(W), dV(W)) )

forall v,w € Tpé’ . In particular, it holds

F1(v) =L(v,v), VVET,S.
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Proof

By Theorem 4.80, we have
Tp,S = span{o,,0.,}.

Therefore, for v,w € TP& , there exist Ay, Ay, p11, iy € R such that

v=MN0,+10,, W=2Ao,+no,.

Therefore,
Lvw)=v-w
=Mhdyoy, 0y + (g + Aap) 0y 0y + i jp 0y, - Oy
= Edu(v)du(w) + F (du(v) dv(w) + du(w)dv(v))
+ Gdv(v)dv(w)
E F .

= (du(v), dv(v)) F oG (du(w), dv(w))" .

The fact that

Lv.V) = F1(v)

follows from the first part of the statement and definition of #.

Remark 4.127: Linear algebra interpretation

Using linear algebra, Theorem 4.126 has the following clear interpretation: I, is a symmetric
bilinear form on the vector space T,&'. Fixing the basis {o,0,} for T, &', we can represent I,
via the matrix

M ::( Ip(a'wa'u) Ip(”w”v) )
@00y Lonoy)

_ [ Oy0y 0y 0y
B Oy 0y 0y-0y
(E F

"\ F G )’

where we used thato, -0, =0, -0,.

Notation

With a little abuse of notation, we also denote by & the 2 x 2 matrix

E F

270




Differential Geometry Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

Example 4.128: FFF of Unit cylinder
Question. Consider the unit cylinder with chart
o(u,v) = (cos(u), sin(u),v), (u,v) € (0,27)xR.

Prove that the FFF of o is

F =du? +dv®.
Solution. We have
o, = (—sin(u), cos(u), 0) F=0,0,=0
o, =1(0,0,1) G=o0,-0,=1
E=0,-0,=1 Fy = du® + dv?

Warning

The first fundamental form I, depends only on the surface & and the point p. Instead the local
representation of I,
F1 = Edu® + 2F dudv + Gdv?,

depends on the choice of charto : U — R®. The next result explains how % changes when we
change chart.

Proposition 4.129: FFF and reparametrizations

Leto: U > R3 be regular, and ¢ : U->Ra reparametrization, with6 = o o ® and ¢ : U->U
diffeomorphism.

1. The matrices %; and ﬁl of the FFF of ¢ and ¢ are related by

Q™
SN—

~ E F ~ E
‘cilz(]qD)Tgl.](Ds tc}7]:(1_7 G)a tc/71:<f

2. The linear maps du, dv and di, dv are related by
du=% i+ % a5
v

ou
dv=Ldi+ % v
ou ov
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Proof

The pairs {o,,,0,,} and {6;,6;} are both bases for the vector space T,S. By the chain rule, we

have
6'—0'%+o'a—v
%o Von
0;=0 %-l-aﬂ
Vo TR e Vo

The above show that the change of basis matrix between {6, 0,} and {6;;,6;} is given exactly by

J®. Therefore, the two formulas in the Proposition are
for bilinear forms and linear maps, respectively.

Example 4.130: FFF of Plane

is charted by, respectively,

o(u,v) =a+up+vq, (u,v) € R?,
o(p,0) = a+ pcos(O)p + psin(f)q,

1. Show that the FFF of o and 6 are

F1 = du® +dv?, 9?1

Solution.

1. Using that p and q are orthonormal,

Q:

oy, =P,

272

Question. Let a, p, q € R3, with p, q orthonormal. The plane in cartesian and polar coordinates

=dp? + p?do®.
2. Let @ be the change of variables from polar to cartesian coordinates. Show that

F1= (D) F Jo.

= cos(&)p + sin(d)q
= —psin(@)p + p cos()q

p
o,=q o9
E=0,-0,=1 E=
F=0,-0,=0 F=
G=0,0,=1 G=
Fy = du® + dv? 9/;1

consequence of change of basis results

p>0,0€(0,27).

Q:
o
Q:

p=1

Q:
hs}
Q:
>
o [e=}

Q:
)
Y
)
I
~

dp? + p?d6?
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2. We have ®(p, 8) = (p cos(0), p sin(f)). Then

O @ = (JO)T J@

_( cos(0) sin(0) ) ( cos(@) —psin(h) )
“\ —psin(0) pcos(b) sin(@)  pcos(6)

1 0 ~
:(0 Pz):'%'

Remark 4.131

As seen in Example 4.129, when the plane is charted in cartesian coordinates, the FFF is essen-
tially the Pythagorean Theorem on the plane: In fact, a basis for T, S is

T,S = span{o,,0,} ={Ap + puq : A p€R}.
Therefore, for
veTPS, v=Ap+uq,

we have
VI? = F(v) = du?(v) + dv3(v) = 2% + 1.

Hence, the square of the length of the vector v, which has coordinates A, y in the basis {6, 0,},
is equal to A% + 42,

Remark 4.132
We have seen that a plane and the unit cylinder have the same first fundamental form
Fy = du? +dv?.

Therefore, lengths, angles and areas are the same on the two surfaces.

Example 4.133
Question. Find the FFF of the surface chart

o(u,v) = (u—v,u+v,u2 +v2) .
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Solution. We compute

o, =(1,1,2u) F=0,-0,=4uv
o, =(-1,1,2v) G:ov~0'v:2(1+2v2)

1+ 2u? 2uv )

— — 2 —
E=0,-0,=2(1+2u%) 91_2< w1402

4.11.1. Length of curves

The first fundamental form allows to compute the length of curves with values on surfaces.

Proposition 4.134: Length of curves and FFF

Leto : U — R3 be regular, § = 6(U). Lety : (a,b) —» S be a smooth curve. Then

y(®) =o(u@),v(t)),

for some smooth functions u,v : (a,b) — R, and

b b
J 7@l dt = J JEi? + 2Fiv + Gv2 dt,
a

a

where 1, v are computed at t, and E, F, G at (u(t), v(2)).

Proof
Since y takes values into 6(U), by Lemma 4.79 there exist smooth functions u, v such that
Y®) =o(u),v(@)), vte(ab).
By chain rule we have
y(®) = u()o, (u(®), v(t) + v(t)o, (u(®), v(1)).

Therefore,

. 2 L.
O =y -y
= (uo'u + 1'10'1,) : (uo-u + ‘./a-v)
= Eu? + 2F v + G .

Integrating, we obtain the thesis.
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Example 4.135: Curves on the Cone
Question. Consider the cone with chart
o(u,v) = (cos(u)v, sin(u)v,v), ue€(0,2r),v>0.
1. Compute the first fundamental form of .
2. Compute the length of y(¢) = o(t,¢t) for t € (n/2, 7).
Solution.

1. The first fundamental form of o is

o, = (—sin(w)v, cos(u)v, 0) F=06,-06,=0
o, = (cos(u), sin(u), 1) G=o0,0,=2
E=0, 0,=17 Fy = v¥du? +2dv?

2. y(t) = a(u(t), v(¢)) with u(¢) = t and v(t) = ¢. Then

u=1,v=1 F(u(®),v(t)) = F(t,t) =0
E(u(t), v(t)) = E(t,t) = G(u(®),v(t)) = G(t,t) = 2

The length of y between /2 and 7 is

J ly@)| dt = J N2+ 2dt.
/2 /2

4.11.2. Isometries

Isometries are an important class of maps between surfaces: They are smooth maps which preserve
the first fundamental form.

Definition 4.136: Local Isometry and Isometry

Let § and & be regularand f: & — & smooth. We say that:
1. fisalocal isometry, if forallp € &

v-w=d,f(v)-dyf(w), VYv,weT,S.

In this case, & and & are said to be locally isometric.

2. fis an isometry if:
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« fis alocal isometry; ~
« f is a diffeomorphism of & into &.

In this case, & and & are said to be isometric.

Recall that the first fundamental form of & is defined by
Ip(v,w) =v-w, VvweT,S.
Therefore, condition (?@eq-loc-iso) reads
Lv,w) = L(dp f(v),dp f(W), VVvwEeT,S.

In this sense, we see that local isometries preserve the first fundamental form.

Figure 4.29.: Sketch of a local isometry f between & and §. The scalar product between tangent
vectors v and w is preserved by dp, f.
Remark 4.137

A smoothmap f: & — § is a local isometry if and only if
v-v=d,f(v)-dpf(v), VVveETS.

Proof. The thesis follows immediately from the elementary identity
V-w= %((v+w)~(v+w)—v-v—w~w) ,

which holds for all v,w € T,& (and more in general in arbitrary vector spaces with inner
product).

Local isometries are automatically local diffeomorphisms.
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Proposition 4.138

Local isometries are local diffeomorphims.

Proof
Let p € §. Assume by contradiction that the differential of f

dpf : TpS — Tf(p)g’
is not invertible. As dj, f is linear, this implies d}, f is not injective. Therefore

ker (dp f) # {0},

meaning that there exists v € T, & such that

dpf(v) =0, v=0.
Using that f is a local isometry, we get

IVI? =v-v=dyf(v) - dp f(v) = 0,

which implies v = 0. This is a contradiction, and therefore d}, f has to be invertible. By Theorem
4.106, we conclude that f is a local diffeomorphism at p. As p € & is arbitrary, we infer that f
is a local diffeomorphism of & into &.

Remark 4.139

We have just seen that local isometries are also local diffeomorphisms. By definition, isometries
are local isometries which are also diffeomorphisms. As such:

1. Isometries are local isometries,
2. Local isometries are not isometries

This is because, in general, local diffeomorphisms are not global diffeomorphisms, see Example
4.145.

Local isometries preserve the length of curves, as shown in the following Proposition.

Theorem 4.140: Local isometries preserve lengths

Let &, & be regular surfaces, f: & — & smooth. Equivalently:

1. fis alocal isometry. -
2. Lety be a curve on & and define the curvey = f oy on &. Then y and y have the same
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length.

Proof

Part 1. Suppose y : (a,b) — & is a smooth curve. Consider the smooth curve
7:@h—>8,  ji=fey.

Set p :=y(2), so that
Y eTpS .

By definition of differential of a function between surfaces, we have

dp fy(D) = y(1).

Using that f is a local isometry gives:

FO 0RO
=dp f(y (D) - dp f¥ (D))
=y®-y®)
= I’
Therefore y and y have the same length:
b b
[ ol a= [ wora.

Part 2. We need to prove that f is a local isometry. By Remark 4.137, it is sufficient to show that

dpf ) dpf () = Vv, WV ET,(S). (47)

Therefore, let v € T,8 be arbitrary. By definition of tangent plane, there exists a curve
y: (—¢,¢6) > & such that
y(©)=p, y(O)=v.
Define the curve -
vi(eeo)>8, yi=fey.
By assumption, y and y have the same length, that is,

J_ 7070 di = J_ y@) y@yar.

Since the above equality is true for each € > 0, and the functions being integrated are continuous,
we infer

1(0)-y(0) = y(0) - y(0).
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Recall that by definition of differential we have

dy f(v) = 1(0).
Therefore

dp f¥) - dy f(v) = 7(0) - ¥(0)
=y(0)-y(0)

=V-V.

As v was arbitrary, we conclude (4.7).

By definition, local isometries preserve the first fundamental form. The next Theorem gives a prac-
tical method to check if a map is a local isometry.

Theorem 4.141: Local isometries preserve FFF

Let §, 8 be regular surfaces, f: & — § smooth. Equivalently:

1. fisalocal isometry. ~ ~
2. Leto : U — & beregular chart of &, and define a chartof § as6 : U — &, withe = feo.
Then o and & have the same FFF

E=E, F=F, G=G.

Note: E, F,G and E I?, G are defined on the same set U. Therefore, equality is intended pointwise.
Proof
Part 1. Suppose that f is a local isometry, that is,
v-w=d,f(v)-dyf(w), Vv,weT,S.

Let o be a chart for & at p. Define

c=fo0.
Since f is alocal isometry, then it is also a local diffeomorhims by Proposition 4.138. In particular,
Proposition 4.74 ensures that & is a regualar chart of & at f(p). Now, recall the statement of
Theorem 4.102: if

o(a(u,v), f(u,v)) = flo(u,v)),

for some smooth maps
a,p:U—-U,
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then the matrix of d}, f with respect to the basis

0,0} of T,8, 16,6.} of TypS.

w-(i %)

6(u,v) = f(o(u,v)),

is given by

In our case, we have U = U and

so that
aw,v)=u, pu,v)=v.

w=(55)-(00)

dyf(6,)=1-6,+0-6,=6,

Therefore
which means that
dpf(ov) =0-6,+1-6,=6,

Using that f is a local isometry gives

E=0,-0,=dpf(@,) dpf(.)

=0,-0,=E,

F=0,-0,= pf(au)‘dpf(av)
=6,-6,=F,

G=0,-0,= pf(o'v)‘dpf(av)
=6,-6,=0,

showing that o and ¢ have the same first fundamental form.
Part 2. Define 6 = f o o and suppose that ¢ and 6 have the same first fundamental form. In
particular they hold

0, 0,=06,0,
0, 0,=0,0,
6, 0,=0,0,
As discussed above, since 6 = f - g, by Theorem 4.102 we get

dpf(o'u) =0y, dpf(o'v) =0,.
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Letv € T,S. Since {0,,0,} is a basis for T, &', we get
v = Ao, + po,
for some A, i € R. Therefore

dpf(v) = dpf(Mu +poy)
= Adpfloy) + pdy f(oy)
= A6, + yo,, .

Hence

v-v = (Ao, + po,) - (Ao, + po,,)
=0y -0,) + 200y - 0,) + 40y - 0,)
= A%(6, - 6,,) + 2Ap(G, - 6,) + (6, - 6,)
= (06, + p6,) - (06, + pié,)
=dp f(v) - dp f(v),
showing that
v-v=dyf(v)-dpf(v), VVET,S.

By Remark 4.137 we conclude that f is a local isometry.

Remark 4.142

To prove that a smooth map

f:8&- s
is a local isometry, it is sufficient to verify Condition 2 in Theorem 4.141 on one atlas of &'. Then,
automatically, all other atlases will verify the condition, ensuring that f is a local isometry.
To see this, suppose we can verify Condition 2 on the chart 6: U — &, that is, suppose we
have proven

F1=F, (4.8)

where ENI is the first fundamental form of & = f o 6. Assume that 6 : U — & is another chart
of §. By Remark 4.129, the fundamental forms of 6 and o are related by

F1=(JO) F,J@ (4.9)
where @ is the transition map ® : U — U such that
6=0°D.

Applying f to 6 gives
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showing that otisa reparametrization of 6 with transition map ®. Therefore, by Proposition
4.129, the fundamental forms of o' and & are related by

F = (o) F e
Recalling (4.8) and (4.9), we get

7 = (o) FJo
=(Jo) 7 jo
= ‘gAl .

We have therefore proven that 6 and ol = f ° 6 have the same first fundamental form. Thus &
satisfies Condition 2 in Theorem 4.141.

J

Sometimes, we wish to determine if two surfaces & and & are locally isometric, but it is not clear
how to construct a map

f:8->8.
As an alternative, we can shift the problem of finding f, to the problem of finding suitable charts &
of &, and 6 of &, such that o and ¢ have the same first fundamntal form. This is detailed in the next
Theorem.

Theorem 4.143: Sufficient condition for local isometry

Let &, S be regular surfaces, with chartse : U - § and6 : U — &. Assume that & and & have
the same FFF. We have

1. The surfaces a(U) and & are locally isometric.
2. Alocal isometry is given by

f:o@)—>S8, f=6o0".

J

Note: o and ¢ are defined on the same open set U. Therefore, E, F,G and E, I?, G are defined on U,
and the equality is intended pointwise.

Proof

Define f =6 o o~ !, and notice that
fec=6c06"'0=¢.

Therefore, by assumption, & and 6 have the same first fundamental form. Note that the chart
o gives an atlas for the surface o(U). Hence, by Theorem 4.143, we conclude that f is a local
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isometry between o(U) and S.

Example 4.144: Plane and Cylinder are locally isometric

Question. Consider the plane & = {x = 0} and the unit cylinder S = {x? + y? = 1}. Define the
function

f:8&— S, £(0,y,2) = (cos(y), sin(y), z) .

Prove that f is a local isometry (you may assume f smooth).
Solution. The plane & is charted by

o(u,v) =(0,u,v), uveR.
We already know that o is regular, with FFF coefficients
E=1,F=0,G=1 = F/ledu2+dv2.
Define 6 = f - 0. Therefore,

6(u,v) = f(0,u,v) = (cos(u), sin(u), v).

The FFF of 6 is
6, = (—sin(u), cos(u), 0) F=6,-6,=0
&, =(0,0,1) G=6,-6,=1
E=6,-6,=1 F1 = du? + dv?

Thus, 6 and 6 have the same FFF. Since o = {o}is an atlas for &, by Theorem 4.143 we conclude
that f is a local isometry of & into &

Example 4.145: Plane and Cylinder are not isometric

Consider again the plane
S ={(x,y,2) € R3 : x =0},

and the unit cylinder _
S={x,y,2)eR®: x*+y*=1}.

We have seen in Example 4.144 that & and S are locally isometric. However, & and & are not
isometric.

Proof. The surfaces & and & are nor homeomorphic, and therefore they cannot be isometric
(and hence diffeomorphic). We cannot rigorously prove this claim with our current knowledge
of topology. However, to give some intuition, here is a sketch of the argument, see Figure 4.30:
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« Any simple closed curve y in the plane & can be shrunk continuously into a point without
leaving &. In this case we say that & is simply connected.

. If & and & were to be homeomorphic, then S would be simply connected.

« However, a parallel y of the Cylinder & cannot be shrunk continuously into a point with-
out leaving the Cylinder. Thus, § is not simply connected.

« Hence, the Plane and the Cylinder cannot be homeomorphic.

PlLAve S R

Figure 4.30.: A simple closed curvey in the plane & can be shrunk continuously into a point without

leaving §. A parallel y of the Cylinder & cannot be shrunk continuously into a point
without leaving .

Example 4.146: Plane and Cone are locally isometric
Question. Consider the cone without tip
S ={(x,y,2) eR3: x2+y2 =22, 2> 0},
and the plane S ={z =0}
1. Compute the FFF of the chart of the Cone

c:U— &, o(p,0) = (pcos(@), psin(8), p),
U={(p.0) eR*: p>0,0€(0,2n)}.

2. Compute the FFF of the chart of the plane
G:U—> S, 6(p,0) = (ap cos(b), ap sin(bd), 0),
where a > 0 and b € (0, 1] are constants.

3. Prove that f =6 - o lisalocal isometry between & and S , for suitable coefficients a, b.

Solution.
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1. As seen in Example 4.135, the coefficients of the FFF of o are

E=2, F=0, G=p.

2. Note that & is well defined for all (p,0) € U, as
0e(0,2r), be(0,1] = bOe(0,27).
The coefficients of the FFF of 6 are
6, = a(cos(bd), sin(b0), 0)
6¢ = abp (— sin(b0), cos(b9), 0)

2
E—ap-ap—a
3. Imposing thatE:E,FzFandazG, we obtain

a® =2, a*h =1 == azﬁ,b:i.

V2

Note that a > 0 and 0 < b < 1, showing that a,b are admissible. Hence, for a = V2 and

b=1/ V2, the charts o and & have the same FFF. By Theorem 4.141, we conclude that &

and & are locally isometric, with local isometry given by f =6 oo™ 1.

4.11.3. Angles on surfaces

We want to define the notion of angle between tangent vectors.
Definition 4.147: Angle between tangent vectors

Let & be a regular surface and p € §'. The angle between two vectors v,w € T, 8 is defined as

the number
0(v,w) € [0, 7],

such that
VW

vl wl °

cos(0) =
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Figure 4.31.: Sketch of angle 6 between two vectors v,w in T, S

The angle between tangent vectors can be computed in terms of local charts.
Proposition 4.148
Let & be a regular surface and o a regular chart at p. Let v, w € T, §". Then

EAL+ F(Aji + Ap) + Guji
(EA? + 2FAp + Gu?)V/2(EJ2 + 2F i + Gi2)V/2

cos(f) =

where A, ;1 i € R are such that

v =AM, + po,, wziaquﬁav.

Proof

By definition the angle between v and w is

vV-w

cos(0) =

MWl (4:10)

The vectors {g,,06.,} form a basis of T, §. Therefore
v = Aoy, + po,,, w:)NLou+ﬁ0'V.
for some A, p, /Nl [l € R. Hence, the coordinates of v and w with respect to the basis {6,,,0,} are

v=p, w=@j.
By Theorem 4.126 we get

vew = Ip(v,w)
E F -
o f & )an
= EAA+ F(Aji + Ap) + Guji.
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Similarly, we obtain

V> = v-v = EA? + 2FAu + Gu®
Iwl? = w-w = EA® + 2FAji + Gji*.

Substituting in (4.10) we conclude.

4.11.4. Angles between curves

Since tangent vectors are derivatives of curves with values in &, it also makes sense to define the
angle between two intersecting curves.

Definition 4.149: Angle between curves
Let & be a regular surface, and y, y curves on & intersecting at

Y(t) =p =y(t).

The angle 0 betweeny and y is

y (o) - ?(to)
ly ol (o)l

Figure 4.32.: Sketch of angle 6 between two curvesy andy on §.
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Theorem 4.150: Angle between curves and FFF

Let & be a regular surface, o regular chart at p, and y, ¥ curves on & intersecting at y(ty) = p =
Y(%). There exist smooth functions u, v, @, ¥ such that

y(@®) =o((®).v(®)), )=o), vQ).
The angle between y andy is
Euii + F(uv + i) + G

cos(f) = —~ — = ,
(Ei? + 2Fuv + Gv2)V/2(Eil” + 2Fiv + Gv)1/2

with E, F, G evaluated at (u(ty), v(ty)), and @, v, it, v at #,.

Proof

By definition the angle between y and y is

os(0) = Y_}N: ) (4.11)
Iyllyl

Asy,y are smooth curves with values in &, by Lemma 4.79 there exist smooth functions u, v, i, ¥
such that

y(®) =o@®),v(®), y) =o@@@), ).

Differentiating the above expressions we obtain

Y = o, +vo,, ¥ =io,+o,.
Therefore,

y ¥ = (io, +0,) - (o, +70,)

= Euii + F(aV + i) + Gvv .

Similarly, we obtain

ly|? =y -y = Eu? + 2Fiv + Gv?

fI> =5 -7 = Eil + 2Fii + G3

Substituting in (4.11), we conclude.
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Example 4.151: Calculation of angle between curves

Question. Let S be a surface charted by
o(u,v) = (u,v,e") .

1. Calculate the FFF of o.
2. Calculate cos(8), where 0 is the angle between the two curves

Y(®) = o(u®),v(t)), u(t)=t v(t)=t,
7 = o), v(t)), at) =1, 9(1t) =t.

Solution.
1. The coefficients of the FFF are

o, =(1,0,e""v) F(u,v) = e#“Yuv
o, =(0,1,e""u) G(u,v) = 1 + e?4v¢?

E(u,v) = 1+ e?WWy?

2. y and y intersect at y(1) = y(1) = 6(1, 1). We compute

(1) =1 E(1,1) =1+ ¢
(1) =1 F(1,1) =€
(1) =0 G(1,1) =1+ €2
(1) =1

Therefore, the angle 0 satisfies

1+ 2¢2 14 2¢%
cos(f) = = >
\2 + 4e24/1 + €2 2+2e

4.11.5. Conformal maps
Local isometries are maps which preserve the scalar product between tangent vectors. We want to

consider maps which preserve the angle between tangent vectors. These will be called conformal
maps.
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Definition 4.152: Conformal map

Let 8, S be regular surfaces, f: & — S local diffeomorphism. We say that f is a conformal
map, ifforallpe §

9:0’ VV,WETPS,

. Q is the angle between v and w,
« 0 is the angle between d}, f(v) and d}, f(w).

In this case, we say that & and § are conformal.

Figure 4.33.: Sketch of conformal map f between & and §. The angles between tangent vectors are
preserved by d,, f.

Notation
For brevity we denote
<V,W> =Vew, <V,W>f = pf(V)dpf(W),

and also

IVl := vy, Ivly = vy

Remark 4.153
We have that f is a conformal map if and only if

(v,w) (v.w)s

IViIwl — IvlpIwly

Vv,w € TpcS’.

Proof. Follows immediately by the definition of angle between vectors.
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Proposition 4.154

Local isometries are conformal maps.

Proof
By definition of local isometry we have
(v,w) = (V,w)f , Vv,wE€ TPS.

In particular we have
IVI? = (v, v) = (v, v) ¢ = IV},
for all v € T, & Therefore
(v,w) (v,w)¢
IvItwl — Ivly Iwly

showing that f is a conformal map.

Therefore, every local isometry is a conformal map. The converse is false, as we will show in Example
4.159 below. Before giving the example, let us provide a characterization of conformal maps in terms

of the first fundamental form.

Theorem 4.155

1. f is a conformal map.
2. There exists a function 1 : & — R such that

(v,w>f = Ap) (v,w), Vv,we T,S .

Let § and & be regular surfaces and f : & — & a local diffeomorphism. They are equivalent:

Proof

Step 1. Suppose f is a conformal map, so that

(v,w) (v,w)s
Iviiwl vl g Iwly

VV,wW € Tpc§’.

Let {&;,a,} be an orthonormal basis for T,S, that is,

(@1,@2) =0, Jai]| = fezf = 1.
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Define

Ap) = (@) = layl?,
pp) = <a1:‘12>f )
v(p) = <a2,0!2>f = ||a2||§c.
By (4.12) we have
(@) (@1.02)f
lealllaz] ~ e pleesl s

Since a; - @5 = 0, from the above we get

p(p) = (@ az); =0.

Moreover, since @; and @, are orthonormal, the angle between a; and @; + a; is 0 = 7/4. By
definition of angle between vectors, we infer

V2 _fapa; tay)
— =cos(f) = ———.
2 ler1 |y + e

On the other hand, using (4.12) we get

<a1,a1 +a2> _ <a1:a1 +a2>f
laslleey +ayl  leylflery +aaly

The numerator of the right hand side satisfies

(@) +az)p={apar)f+{(a,az)ys
= A(p) + u(p)
=Ap).

since p(p) = 0. Concerning the denominator, we have
laey +aol = lo I} + @y, @) f + a3

= A(p) + p(p) + v(p)
= A(p) +v(p).,

since p(p) = 0. Putting together the last 4 groups of equations, we obtain

\2 A

2 " ARA+n/2
Rearraging the above equation yields
A(p) = v(p).
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Now let v € T,,&. Since {a}, @5} is a basis for T, S, there exist vi, v, € R such that
vV =via; +wa,.
Therefore
(v,v) = vf (@1, @) + 2vyvy (g, @) + V5 (. )
=vZ+Z,
where we used that @; and a, are orthonormal. On the other hand,
(Vv =i (@y, @) p + 2vv (@, @) f + 33 (@p,@0) 5

vE A(p) + 2vy vy p(p) + vE v(p)
Ap) (V¥ +v3),

where we used that A(p) = v(p) and u(p) = 0. Thus
Vo) y = Ap)OF +99) = Ap) (v.v)

forall v € T,,§. Since (-,-) and (-, ) ¢, by arguing as in Remark 4.137 we conclude that

(v.w)r = A(p) (v,w)

forall v,w € Tp&
Step 2. Suppose that there exists a function 1 : & — R such that

(v,w>f =Ap) (v,w), Vv,weE Tp§.

In particular, we have
Ivlf =VA@IVl. VveT,S.
Then
v wig Ap) (vow)  (v.w)

ligwly — Jap)vifA@iwl — IVIlwl

showing that f is a conformal map.

The following result gives a practical necessary and sufficient condition to check if a map is confor-
mal.

Theorem 4.156: Conformal maps and FFF

Let &, 8 be regular surfaces, f: & — & alocal diffeomorphism. Equivalently:
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1. fis a conformal map.

2. Leto : U — & beregular chart of &, and define a chart of Sasé: U— &, withé = feo.
Then the FFF of o and & satisfy

.ofl = AMu,v)#, VY(uv)eU,

for some smoothmap A: U — R.

J

Theorem 4.156 can be easily proven by using Theorem 4.155, and by adapting the argument in the
proof of Theorem 4.141. We omit the proof.

Remark 4.157

To prove that a diffeomorphism ~

f:8&8->8
is a conformal map, it is sufficient to verify Condition 2 in Theorem 4.156 on one atlas of §.
Then, automatically, all other atlases will verify the condition, ensuring that f is a conformal
map.
Proof. This can be seen by adapting the argument found in Remark 4.142.

The following result gives a sufficient condition to prove that two regular surfaces are conformal.

Theorem 4.158: Sufficient condition for conformality

Let &, S be regular surfaces, with chartse: U - & ando : U — & Assume that 9~1 = AF
for some A: U — R. We have

1. The surfaces 6(U) and § are conformal.
2. A conformal map is given by

fioU)>&, f=6o0".

J

The proof follows by adapting the argument in the proof of Theorem 4.143, and by applying Theorem
4.156. This is left as an exercise.

Example 4.159: Stereographic Projection
Question. Consider the unit sphere $2 = {x? + y? + z2 = 1} and define the surface
S =82\{N}, N =(0,0,1).

Consider the plane § = {z = 0}. The plane S slices through the equator of the sphere. Let
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P = (x, y,z) be any point on $2, except the North Pole N. The line joining N to P intersects the
plane & at the point P, see Figure 4.34. The point P’ defines the Stereographic Projection map,
which is easily computed to be:

f:oS’—)oS’N, f(x,y,z)z( d , 4 ,0).
1-z 1-z

Prove that:

1. f is a conformal map.
2. fis not alocal isometry.

Note: In particular, the Sphere and the Plane are conformal.
Solution. It is easy to prove that ! = ¢, with

o(u,v) = ( 2u 2v 2 ) .

WA +1 @ +v2 41 w2 +v2+1
It is straightforward to compute that the FFF of ¢ is

4
W? +v2 +1)?°

F = Mu,v)(du? +dv?), Au,v) =
Leté = f 6. Since 6 = !, we have that
6(u,v) = (u,v,0).
As already computed, the FFF of ¢ is
9}1 =du® +dv?.
We can now conclude:

1. We have that

~ 1
Fi1==F.
1=371
Since of = {0} is an atlas for &, by Theorem 4.156 we conclude that f is a conformal map.
2. Since A is not always equal to 1, we have that
Ffl = F .

Therefore, by Theorem 4.141, we conclude that f cannot be a local isometry.
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Figure 4.34.: Stereographic projection map from the North pole N = (0,0,1). Let P € $2. The line
through N and P intersects the plane {z = 0} at the point P’.

4.11.6. Conformal parametrizations

In the previous section we defined conformal maps between surfaces
f:8 - .

It is also useful to define conformal parametrizations.

Definition 4.160: Conformal parametrization

Leto: U — R® be regular. We say that ¢ is a conformal parametrization if the FFF of o
satisfies

F1 = Mu, v(du? + dv?),

for some smooth function A: U — R.

J

The above definition is motivated by the following result, stating that & admits a conformal
parametrization if and only if & is conformal to a plane.

Theorem 4.161

Leto : U — R be regular. Let 1 be the plane {z = 0}. They are equivalent:

1. 0 is a conformal parametrization.

2. The map f: & — o(U) defined by
fw,v,0) =0a(u,v)

is conformal.
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Proof

The plane x is charted by
6(u,v) = (u,v,0), (u,v)€R?

The first fundamental form of ¢ is ~
Fq = du® +dv?.

Consider the map f : & — & given in Point 2, that is,
fw,v,0) =0(u,v).

By definition of 4,
fle(,v)) =o(u,v).

Theorem 4.156 says that f is a conformal map if and only if there exists A : U — R such that
F1 = M, v)F,

where # is the first fundamental form of o. This happens exactly when ¢ is a conformal
parametrization.

As an immediate consequence, we have the following Theorem.

Theorem 4.162: Conformal parametrizations preserve angles

Let o be a conformal parametrization, and y,(t),y,(t) be curves in R? such that y, (t), ¥, (t)
make angle 6. Lety; =0 oy, andy, =0 °y,. Theny, (t;),y, () also make angle 6.

It turns out that all regular surfaces admit an atlas formed by conformal charts.
Theorem 4.163

Let & be a regular surface. There exists an atlas & such that each charto € &/, 6: U - &' is
conformal, that is, there exists A : U — R such that the first fundamental form of ¢ is

Fy = Mu, v)(du? + dv?).

The coordinates (u, v) are called isothermal.

The proof of this result is quite technical, see for example the paper [2], which can be read here. The
proof in not constructive, and it involeves showing the existence of solutions to a certain PDE. If § is
a minimial surface, existence of isothermal coordinates is easier to prove, see for example Theorem
12.4.1in [7].

We have already seen examples of conformal parametrization for the Cylinder:
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Example 4.164: Unit cylinder
Question. Prove that the following is a conformal parametrization of the unit cylinder
o(u,v) = (cos(u), sin(u),v), u€(0,2r),veR.

Solution. We have already computed that the FFF of g is

Therefore o is a conformal parametrization, with A = 1.

An important application of conformal parametrizations is in cartography.

Remark 4.165: Drawing World Maps

Suppose given a parametrization of $
o:U— 82,
for some U C R%. Set V := a(U). The inverse map
cl: Vst >R

is a projection of $2 into the plane. If $2 models the Earth, 6~! gives a rule to draw a world
map! For a map to be useful, we would like it to

« preserve angles and shapes;
« preserve areas.

We know that angles are preserved if 6~ ! is a conformal map, and o a conformal parametrization.
Below we discuss two conformal maps of $2:

« Stereographic Projection,
« Mercator Projection.

In the next sections we will also discuss an equiareal map of of $2, i.e., a map which preserves
areas. This will be called

« Lambert Cylindrical Projection.

We will also see that it is not possible for a map o to both preserve angles and areas. This is
because o would be both conformal and equiareal, and hence an isometry of the sphere into the
plane. However, isometries between sphere and plane cannot exist.
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Example 4.166: Stereographic Projection

Consider the parametrization of the sphere $? given by

o(u,v) = ( 2u 2v 1- 2 )
’ W2+ 1w +v2 41w vie1/
We have seen in Example 4.159 that o is the inverse of the stereographic projection map. We
have also mentioned that the FFF of o is

4

== (du*+dVP).
(u2+v2+1)2( " V)

F1
Therefore, ¢ is a conformal parametrization of the sphere.
Note. Let V = o(U). In this case
V =82\{(1,0,0)}.

In particular, the inverse
o l:VC$ SR

is a conformal map. This is known as the Stereographic Projection, see Figure 4.35 and
Figure 4.36.

Figure 4.35.: Stereographic projection of the Earth. Image from Wikipedia

Example 4.167: Mercator projection

Question. Prove that the parametrization of $2 is conformal

o(u,v) := (cos(u) sech(v), sin(u) sech(v), tanh(v)) .
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Figure 4.36.: The Stereographic projection is a conformal map: Angles and shapes are preserved.

However areas are magnified away from the North pole.

Note. Let V = ¢(U). In particular, the inverse

o l:VC$ SR

Solution. Recall the identities sechz(v) + tanhz(v) =1and
sech(v)’ = —sech(v) tanh(v), tanh(v)’ = sechz(v).
The chart o is a conformal parametrization because the FFF is

6, = sech(v) (— sin(u), cos(u), 0)
v = sech(v) (= cos(v) tanh(v), — sin(u) tanh(v), sech(v))

Oy = sechz(v)(cosz(u) + sin(w)) = sechz(v)

M ™ o &
(1
Q: O
<
Q
<
Il
(=]

Il
Q:

v Oy = sechz(v)(tanhz(v) + sechz(v)) = sechz(v)
1= sechz(v) (du2 + dvz) .

9

is a conformal map. This is known as the Mercator Projection, see Figure 4.37 and Figure 4.38.

4.11.7. Areas

Suppose given a regular surface &, with chart e : U — R>. Given R C U, consider the region

o(R)CS.
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i

Figure 4.37.: Mercator projection of the Earth. This is the most frequently used map of the Earth.
Image from Wikipedia.

> 'Y q
) P * q
> o @ o o ° [

Figure 4.38.: The Mercator Projection is a conformal map: As such it preseves angles and shapes.
However areas are distorted away from the Equator. Image from Wikipedia.
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If 6(R) is sufficiently small, it can be approximated by a small portion of the tangent plane T,S,
namely, by the parallelogram spanned by o, and o,, see Figure 4.39. By the properties of vector
product, the area of such parallelogram is |6, X a,|. Therefore, the area A;(R) of 6(R) is approxi-
mated by

Ag(R) = oy x 0] -

It can be shown that the area of any region o(R) is obtained by integrating |o, x&,| on R, see
Theorem 4.2.5 in [1]. Specifically,

ﬂ%szwmeWw (4.13)

The proof of such result is similar to the one we did for showing that the length of a curve is given

by
b

WFJMMM

a
where L(y) is defined as
L) = lim L(r,),

where L(y,) is the length of a piecewise linear approximation y, of y. To obtain (4.13), one can
approximate o(R) with a piecewise affine mesh a(R,), and then define

Ag(R) = lim Ag(R,).

Making this argument precise requires a lot of effort. Instead, we just take (4.13) as the definition of
area.

Definition 4.168

Leto : U — R be a regular chart and R C U. The area A of the region o(R) is

Ay = J loy x o, dudv.
R

Theorem 4.169

Leto : U — R® be a regular chart. Then

loy x o] = VEG — F%.

Proof
By the properties of vector product, we have
Ivxwl? = VP Iwl* —v-w, vv,weR’.
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Area (R) % A =] x5 |

Figure 4.39.: The area A of a small region o(R) on a surface & can be approximated by the area of
the parallelogram of sides ¢, and 6. Such area is o, x &,|.

Applying the above identity to 6, and o, gives
2
low xo,l” = ||6u||2||6v||2 -0, 0,=EG- F2.
Taking the square roots gives the thesis.

It is easy to check that the definition of A; does not depend on the choice of &, see Proposition 6.4.3
in [7].

Example 4.170
Question. Let § be the paraboloid z = x? + y?. Compute the area of
Sni{z<1}.
Solution. The paraboloid & is charted by
o(u,v) = (u,v,u? +v?),

for u,v € R. We compute the first fundamental form of o:

o, =(1,0,2u) F=0, 0, =4u
a, =(0,1,2v) G=0,0,=1+4?
E=0,-0,=1+4u® EG —F% =1+ 4(u® +1?)

The region & n {z < 1} corresponds to 6(R), with

R={(u,v) eR?: *+v* < 1}.
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The area of 6(R) is then

As(R) = J- EG — F2 dudv = J' 1+ 4(u? +v%) dudv
R R

1 27

=J j V1+4r2 pdpdd = Z(5%% - 1),
0 Jo 6

where the integral was computed using polar coordinates

u=pcos(d), v=psin(0).

4.11.8. Equiareal Maps

Definition 4.171

Let & and & be regular surfaces and f: & — & a local diffeomorphism. We say that f is an
equiareal map if it takes any region in § to a region of the same area in §. In this case, we
say that & and & are equiareal.

ﬁ
m

Figure 4.40.: Sketch of equiareal map f between the surfaces & and & The area of the region R is
the same as the area of f(R).

Theorem 4.172

Let §, S be regular surfaces, f: § — & alocal diffeomorphism. Equivalently:

1. f is an equiareal map. ~ ~
2. Leto : U — & beregular chart of &, and define a chartof § as6 : U — &, witha = feo.
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Then the FFF of o and ¢ satisfy

EG-F?=EG-F?.

Theorem 4.172 can be proven with arguments similar to the proof of Theorem 4.141. The proof is
omitted.

As usual, we give a sufficient condition to prove that two regular surfaces are equiareal.

Theorem 4.173

Let &, S be regular surfaces, with chartse: U - § and6: U — &. Assume that
EG-F2=EG-F?,
We have

1. The surfaces 6(U) and & are equiareal.
2. An equiareal map is given by

f:oU)—> &, f=6-0"1.

J

The proof follows by adapting the argument in the proof of Theorem 4.143, and by applying Theorem
4.172. This is left as an exercise.

Example 4.174: Archimedes map

Question. Consider the surface & obtained by removing the North and South Poles from the

unit sphere
§ =82\{(0,0,£1)},  $*={x*+y*+7¥=1}.

Let & = {x? + y? = 1} be the unit cylinder. The Archimedes map is

f:oS’—>cS’~, f(x,y,z)z( ad Y )

(x% + y2)1/2’ (x% + y2)1/2’z

1. Prove that f is a diffeomorphism.
2. Prove that f is equiareal.

Solution. Note that f € § because

2 y 2
x —_
] el -
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Therefore f is well-defined. In order to chart &, introduce
o(u,v) = (cos(u) cos(v), sin(u) cos(v), sin(v))
U, = {(u v)ER? : ue(—mm),ve(-n/2 n/z)}
U, = {(u, WeR?: ue(0,2n),ve (—m/2, ﬂ/2)}
0'1=0'|U1> 02=0|U2~
Note that
o(U;) = $2 \ {Date Line, (0,0, £1)},
o(U,) = $2 \ {Greenwich Meridian, (0,0, £1)},
Therefore of = {61,6,} is an atlas for §. Denote the components of o by
x = cos(u) cos(v), y=sin(u)cos(v), =z =sin(v).

We have that

(x* + Y1)/ = | cos(v)| = cos(v),
where we used that cos(v) > 0, since v € (—r/2,7/2) when (u,v) € U; or (u,v) € U,. Thus, the
charte = foois

6(u,v) = f(o(u,v))

_ x Y 2
o\t yOI/2° (x2 4 y2)1/2°
_ <cos(u) cos(v) sin(u) cos(v) sin(v))

cos(v) ~ cos(v)

= (cos(u), sin(u), sin(v)) .

It is clear that & charts the part of the unit cylinder between the planes {z = —1} and {z = 1},
when u € [0,2x] and v € (—x/2, £/2). Therefore, the charts

A=1{61,6,}, 61,=6ly,, 6&;=6ly,
form an atlas for the surface & n{—1 < z < 1}.
1. Fori = 1,2 define the map
¥:U-U, ¥=6 ofco.
Since 6 = f - o, we have that ¥ is the identity
Y(u,v) = (u,v).

Therefore ¥ is smooth, with smooth inverse. By definition of smooth map between sur-
faces, this implies that both f and f~1 are smooth. Thus, f is a diffeomorphism between
Sand S n{-1<z< 1}
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2. We compute the FFF of o

o, = (— sin(u) cos(v), cos(u) cos(v), 0)

o, = (= cos(u) sin(v), — sin(u) sin(v), cos(v))
E=0, -0, = cos’(v)

F=06,0,=0

G=0,0,=1

The FFF of 6 is
6, = (—sin(u), cos(u),0)
6, =(0,0,cos(v))
E=6,6,=1
F=6,6,=0
G= G, -6, = cos’(v)

Therefore, we have that o and 6 = f - o satisfy
EG—F%2 = EG — F2 = cos?(v). (4.14)

Note that o; is defined by restricting o to U;. Hence, o and g; have the same FFF. Similarly,
6; := f o 0; is just the restriction to U; of 6. Therefore, 6; and 6 have the same FFF. We
conclude that 6; and 6; = f ° 0; also satisfy (4.14). In particular, since &f = {6,0,} is an
Atlas for &, Theorem 4.172 implies that f is an equiareal map.

Derivation of the Archimedes map. The sphere § is contained inside the cylinder 8, and
the two surfaces touch along the circle x*> + y? = 1 in the {z = 0} plane. Let P € $2, except
for North or South Pole. Draw the line through P and the z-axis which is parallel to the plane
{z = 0}. This line intersects the cylinder in 2 points. Denote by P’ the intersection point which
is closest to P, see Figure 4.41. To write the projection map explicitly, denote the coordinates of
P and P’ by

P=(xy,2), P =(X)Y,2).

Since the line through P and P’ is parallel to the plane {z = 0}, we have
Z=z, (X,)Y)=Ax7y)

for some scalar A. Using that P’ belongs to the cylinder, we get
1=X2+Y2=22(x* +%)

from which we deduce that .

(x% + y2)1/2 ’
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Therefore
X=dx=s—X  y=ly=2z—2
(xz +y2)1/2 (xz +y2)1/2
Taking the + sign gives the point
x Y
P =(X,Y,Z2) = , 2 .
e (u2+wvﬂ(ﬂ+y%V2%

This defines the Archimedes map f: & — s

ﬂ&%d=< x 4 )

2 2\1/2° (42 21/2’2
(x* +yHe (x* +y°)

(L

Figure 4.41.: Construction of the Archimedes Map between the Sphere and the Cylinder.

We conclude this section by clarifying the relationship between isometries, conformal and equiareal
maps.

Theorem 4.175

Letf: & — & be a local diffeomorphism between surfaces. They are equivalent:

1. fis alocal isometry.
2. fis conformal and equiareal.

Proof
Part 1. Local isometries preserve the FFF. Therefore, f is conformal with A = 1. Moreover, also

EG — F? is preserved, implying that f is equiareal.
Part 2. Assume f is conformal and equiareal. Let ¢: U — R? be a chart of &, and define
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0 = foo. As f is conformal, by Thoerem 4.156 we have that
E=1E, F=JF, G=G,
for some smooth A1 : U — R. As f is equiareal, by Theorem 4.172 we have that
EG-F*=EG-F°.
In particular, we get
EG — F? = EG — F? = (AE)(AF) — (AG)? = A*(EG — F?).
Since o is a regular chart, we have EG — F 2> 0. Therefore, we obtain A = +1, which implies
E=)E, A=+l

Note that ,
E=0,-0,=|0,]" >0,

being & regular (so that 6, # 0). Similarly, as ¢ is regular, we also have that E > 0. Therefore
A = 1. In particular, we have shown that % = &, implying that f is alocal isometry by Thoerem

4.141.

4.11.9. Equiareal parametrizations
In the previous section we defined equiareal maps between surfaces
f: 8-> .

It is also useful to define equiareal parametrizations.

Definition 4.176: Equiareal parametrization

Leto : U — R® be regular. We say that ¢ is an equiareal parametrization if the coefficients
of the FFF of o satisfy
EG-F*=1.

The above definition is motivated by the following result, stating that & admits an equiareal
parametrization if and only if & is equiareal to a plane.

Theorem 4.177

Leto : U — R3 be regular. Let 1 be the plane {z = 0}. They are equivalent:

1. @ is an equiareal parametrization.
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2. The map f: & — o(U) defined by
f(u,v,0) =o(u,v)

is equiareal.

Proof

The plane x is charted by
6(u,v) = (u,v,0), (u,v)€R?

The first fundamental form of & is ~
Fy = du? +dv?.

Therefore
EG-F2=1.

Consider the map f : & — & given in Point 2, that is,
fw,v,0) =o(u,v).

By definition of G,
flo(u,v)) =o(u,v).

Theorem 4.172 says that f is an equiareal map if and only if
EG-F?=EG-F*=1.
This happens exactly when o is an equiareal parametrization.
As an immediate consequence, we have the following Theorem.
Theorem 4.178
An equiareal parametrization 6 : U — R3 preserves areas, that is,
IRl = Az(R), VRCU,

where |R| is the area of R in R%.

J

An important application of equiareal parametrization is in cartography: We would like to draw a
map of the Earth which preserves areas. One such map is known as the Lambert cylindrical projec-

tion.
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Example 4.179: Lambert cylindrical projection

Question. Prove that the following parametrization of $? is equiareal

o(u,v) = (cos(u)\ll — 2 sin(w)\1 — 2, v) .

Note: In particular, the inverse
o l: 8% >R

is an equiareal map. This is known as the Lambert cylindrical projection, see Figure 4.42
and Figure 4.43.
Solution. We compute

o, = (— sin(u)v'1 — vZ, cos(u)\1 — v2, 0)

oy = (— cos(u)v(1l — VZ)—I/Z’ — sin(u)v(1 — 1)2)—1/2, 1)

E=0,-0,=1-

F=06,-0,=0
2

G:0'1,-¢:$'1,=1+1_v2

and therefore ,

EG—F2=(1—v2)<1+1v ):1,

showing that & is an equiareal parametrization of $2.

Figure 4.42.: Lambert cylindrical projection of the Earth. Images from Wikipedia.

® © & ©® o o © o o o o
o o o e & o o o o o ®
® © © o o o o o o o o
-_— - e e e > e > - - -

Figure 4.43.: The Lambert cylindrical projection is an equiareal map. As such it preseves areas. How-
ever angles and shapes are distorted. Image from Wikipedia.
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Remark 4.180: Cartography
We have shown that:

1. The Mercator projection is a conformal map of $2 into the plane. Such projection preseves
angles but distorts areas.

2. The Lambert cylindrical projection is an equiareal map of $2 into the plane. Such projec-
tion preseves areas but distorts angles.

The following question is natural: Is there a projection
o: 8% > R?

which is both conformal and equiareal?
Answer: No. This is because ¢ would be an isometry between $2 and the plane R?, see Theorem
4.175. This is impossible because:

« The Theorema Egregium (by Gauss - we will study it) tells us that isometric surfaces must
have the same Gaussian curvature;

« However, the plane has zero Gaussian curvature, while the sphere has non-zero Gaussian
curvature;

« Therefore the plane and the sphere cannot be isometric.

This means that we cannot draw a map of the Earth which preserves both angles and lengths.

4.11.10. Summary
Let & be a regular surface and ¢ : U — R® a chart. We have introduced the first fundamental
form of & as the restriction of the euclidean scalar product to the tangent space:
Lvw)=v-w, VvweT,S§
The first fundamental form of ¢ is
F, = Edu® + 2Fdudv + Gdv*

where the coefficients are

E=¢,0,, F=0,-0,, G=0,-0,.
Given a chart o, we have

Lv,v) = Edu(v)? + 2Fdu(v)dv(v) + Gdv(v)?

Consider two curves y and y on the surface o(U), that is,

y(@) =o(u(®).v(®), y@) =o@@®), ).

Moreover, consider a region R C U. The first fundamental form allows to compute:
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1. Length of curves:

b
Ly) = J JEi? + 2Fiv + G2 dt
a

2. Angle 0 between y and y (at any intersection point):

Euii + F(u¥ + i) + Gy

cos(0) = — — = .
(Eu? + 2Fuv + Gv2)Y2(Eid™ + 2Fiuv + Gv )1/2

3. Area Az(R) of the region a(R)

As(R) = JR VEG — F2 dudv .

We have also introduced maps preserving certain quantities. Specfically, let § be another regular
surface and _
f: 8->

a local diffeomorphism:
1. flocal isometry: Preserves scalar product of tangent vectors, and length of curves

+ Length of y equals that of f -y for anyy.
« fisometry < FFF of o and 6 = f o o satisfy

E=E F=F G=G

2. f conformal map: Preserves the angle between tangent vectors, and between curves

« Angle between y and y is the same as the angle between f oy and f oy
+ f conformal <= FFF of o and 6 = f - o satisfy

E=AE, F=)F, G=1C

for some function A(u, v).
3. Equiareal maps: They preserve areas of surface regions

+ Area of Q C & is the same as the area of f(Q).
+ f equiareal <= FFF of 0 and 6 = f - 0 satisfy

EG-F?=EG-F?
Moreover, they are equivalent:

1. f is alocal isometry,
2. fis conformal and equiareal.
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4.12. Second fudamental form

The first fundamental form allows to measure distances on a surface. However it does not give any
information on how curved a surface is: For example, we saw that a plane and a cylinder have the
same first fundamental form

Fy = du® +dv?.

However the plane is flat, while the cylinder curves. We would like to find a measure of curvature
which allows us to tell these two surfaces apart.

We can now start our discussion about curvature of surfaces. We can make a similar argument to
the one we made for curves: If y is a unit-speed curve, the curvature of y is defined as

k(6) =y @I -

The quantity k(t) gave us a measure of how much y is deviating from a straight line. Similarly, we
would like to quantify how much a surface § is deviating from the tangent plane T, 8. Recall that

T,8 = span{c,,0,},

where o is a regular chart of & at p. The standard unit normal of o is

N TuX0y
loy xol”

which is orthogonal to T,S'. Let (ug, v) € R? be the point such that
o(ug, ) =p-
As the scalar quantities Au and Av vary, the point
o(uy + Au,vy +Av) e &
deviates from the tangent plane T,§. Since N is orthogonal to T, &, the deviation is given by
§ :=[o(uy + Au, vy + Av) — o (ug, vy)] - N,
as shown in Figure 4.44.
Using Taylor’s formula we get
o(uy + Au, vy + Av) = o(uy, vy) + 0,(ug, Vo) Au + 6, (4, V) Av
+ 2 (Ol A + 20, ) Ay
+ 0, (U, vo)(Av)z) + R(Au, Av),
where R(Au, Av) is a remainder such that

R(Au, A
L RAwdv) o

A = (Au)? + (Av)?.
lim A , (Au)® + (Av)
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Tu x 05

T x o )f

T Mot Au, Vot Ad)

Figure 4.44.: The point 6(uy + Au, vy + Av) on § deviates from T, & by a quantity 6.

Since N is orthogonal to ¢, and &, if we multiply the above Taylor expansion by N, and ignore the
remainder, we obtain

5= % (L(AW)? + 2MAuAv + N(Av)?)

where we set
L:=06,,-N, M:=06,,-N, N :=0,, N.

The expression
Fy :=Ldu® + 2M dudv + N dv?

is called the second fundamental form of &. Therefore #, measures how much the surface &
deviates from being a plane. Let us make this definition precise.

Definition 4.181: Second fundamental form of a chart
Leto: U > R be regular, § = 6(U). Define L, M,N: U - R
L:=0,,N, M:=0,,N, N:=0,,"N,

where N is the standard unit normal to 6. The second fundamental form (SFF) of ¢ is the
quadratic form % : T, - R

Fo(v) = Ldu?(v) + 2M du(v) dv(v) + Ndvi(v), Vv € 1,9,

for all p € 6(U), with L, M, N evaluated at (u,v) = 6~ (v), and du, dv the coordinate functions
in Definition 4.124.

Notation

With a little abuse of notation, we also denote by #; the 2 x 2 matrix

()
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Let us show that a plane and a cylinder have different second fundamental forms.

Example 4.182: SFF of Plane

Question. Let a, p, q € R3, with p, q orthonormal. The plane is charted by
o(u,v)=a+up+vq, (u,v)eR?.

Prove that the SFF of g is 3 = 0.
Note: This reflects the intuition that a plane is flat, and therefore there is no curvature.
Solution. We have that %, = 0, since

6,=Pp, 0y,=q, Oy =0y, =0,=0,
L=6,, -N=0, M=06,,  N=0, N=0,,  N=0.

Example 4.183: SFF of Unit cylinder

Question. Consider the unit cylinder with chart
o(u,v) = (cos(u), sin(u),v), (u,v) € (0,27)xR.
Prove that the SFF of g is
(0/72 = _duz .

Note: This reflects the intuition that the cylinder curves only when moving in the u-direction.
In such direction we are moving on a circle of radius 1, therefore we expect the curvature to be
—1.

Solution. We have

o, X0
o, = (—sin(u), cos(u),0) N= 4"V
low x oyl
g, =(0,0,1) = (cos(u), sin(u), 0)
G = (~ cos(u), — sin(u), 0 L=04 N=-1
Oyy =0,,=0 M=0c,,-N=0
o, x 0, = (cos(u), sin(u), 0) N=o,,-N=0
loy x| =1 Fy = —du?
Remark 4.184

We have seen that a plane and the unit cylinder have the same first fundamental form

glzﬁl:duz+dvz,
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while their second fundamental forms differ: we have
gz =0, 9\:2 = _du2 >

respectively.

Remark 4.185: SFF and reparametrizations

Leto: U — R3 be regular, and 6 : U —>~1R3 a reparametrization, with =g ® and @ : U-U
diffeomorphism. The matrices %, and %; of the SFF of ¢ and & are related by

~ L M ~( L M
Fo = +(JOTF o, F=( < = Fo| = =
2 :t(]) 2] 5 2 (M N)a 2<M N),

where the formula holds with the plus sign if det J® > 0, and with the minus sign if det J® < 0.

J

Proof

The formula holds by a change of variable argument. The sign depends on the sign of det J®

because .
N 0ix05 _ det j® o, xo0, _ 4N
log <3| |det JO| lo, x 0| ’

as shown in Remark 4.88.

4.12.1. Gauss and Weingarten maps

Another way to quantify how much a surface § is curving is by examining the behavior of standard
unit normal N. If § is a plane spanned by vectors p and q, then its standard unit normal is
_Pxq
lp>ql”

which is constant across §. If § is a general surface, measuring the variation of N will tell us how
much & is deviating from being a plane. This is the idea behind the definition of the Gauss and
Weingarten maps.

Remark 4.186

Let & be oriented and N: & — R3 be the standard unit normal. In particular N is a smooth
map and
N(p) LTS, [N(p)|=1, vpeS.
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Since T, S passes through the origin and N has norm 1, it follows that
N(p)€$? :={xeR>: |x| =1},

where $? is the unit sphere in R3. Thus N: & — §2.

Definition 4.187: Gauss map

Let & be an oriented surface with standard unit normal N. The Gauss map of § is

Gs: S8 —>8%, Ze(p):=N(p).

<(p)=N
N(f’) 35 g P) (p)
—
VAN,
S S"

Figure 4.45.: The Gauss map € of § is defined as €¢(p) : = N(p). Note that €¢(p) € S°.

Remark 4.188

The Gauss map of § is just the standard unit normal of §'. By definition of standard unit normal
to & we obtain that
?Cg) oo =N

for all charts o : U — R3, where N = N, is the standard unit normal to o, that is,

X
N: U—>1R3, N ;:M.
loy x o

Example 4.189

1. Suppose & is the unit sphere $°. Then € : & — $? is the identity,

gs(P)=p.
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see Figure 4.46.
2. Let a,v,w € R with v and w linearly independent. Let & be the plane
o(u,v) :=a+vu+wv, V(uv)eR?.

The Gauss map of § is constant:

Guxav VXW

? = = N
S e T I

for all p € &, see Figure 4.47.

3. Let & be the unit cylinder
o(u,v) = (cos(u), sin(u),v), (u,v)€(0,27)xR.

We have already compute that the standard unit normal is

0, X0
=2~ Y — (cos(w), sin(u),0).
low > ol

Therefore, the Gauss map of § is
Zs(p) = (cos(up), sin(yy), 0),

where (19, vy) is such that a(u, vy) = p. Note that €5 maps & into the equator of $2, see
Figure 4.48.

o

NN

SL

Figure 4.46.: The Gauss map & of a sphere is the identity.
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35 SS(P) = 85 (‘l)

Figure 4.47.: The Gauss map @ of a plane is constant.

Figure 4.48.: If § is the unit cylinder, the Gauss map ¥ ¢ maps & into the equator of $2.
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Remark 4.190

By definition, the Gauss map is a smooth function between surfaces. Therefore the differential
of ¢ is well defined, and
. 2
dpTs : TpS = Tgyp)S”,

for all p € §. We have that
Ty (pS* = TpS (4.15)

see Figure 4.49. Therefore
BTs: Ty - TS .

Proof. The tangent plane Tg (p)SZ passes through the origin and
?(p) 1 T?J(P)SZ .

By definition € (p) = N(p), and thus
N(p) L Tg&(P)$2 .

Since by definition
N(p) L TS,

we infer (4.15).

Figure 4.49.: We ca identify Tgcy(P)Sz with T, 8. This is because Z(p) L Tgé,(P)Sz and Z(p) = N(p).

Definition 4.191: Weingarten map

Let & be an orientable surface with Gauss map ¢ : & — $2. The Weingarten map Wp,s of
S atpis
Wps: TpS > 1,8, Wp,(g(v) = —dp?(v).
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Important

The Gauss map encodes information on the standard unit normal N to &. Hence its derivative,
the Weingarten map, detects the rate of change of N.

Remark 4.192

The minus sign in the definition of 7}, s is a convention, just like we defined the torsion to be
the scalar 7 such that
b=-mn.

J

The Weingarten map allows us to define a bilnear form on T,&. We call such bilinear form the
second fundamental form of §.

Definition 4.193: SFF of a surface
Let & be an orientable surface with Weingarten map 7%}, . The SFF of & at p is the bilinear

map
I, : T,8 xT,8 > R, IL(v,w) :=Wp s(v)-w.

Remark 4.194

The second fudamental form I, of § is bilinear.
Check. 7, s is linear, being the differential of a smooth map. Hence IJ;, is bilinear, given that
the scalar product is bilinear.

Remark 4.195: Matrix of the second fundamental form

Let o be a chart at p € §. Since I, is a bilinear form on T, &, it can be represented by the 2 x 2
matrix
A= ( IIp("w"u) IIp(0u>0v) )
IIp(o-v:o'u) IIp(GVso'v) ’
given that {o,,,0,} is a basis for T, 8. In the next Theorem, we will prove that

ene( )

where
L=6,,-N, M=06,,-N, N=o0, " N.

Therefore, the second fundamental form I Ip coincides with the second fundamental form %; of
the chart 6. We prove this statement in the next theorem.
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Theorem 4.196: Matrix of the SFF

Leto : U — R be regular, § = 6(U), and p € 6(U). Then
1. The second funamental form II;, is a symmetric bilinear map.

2. It holds
IL,(v, w) = (du(v), dv(v))( e )(du(w),dv(w))T,

forall v,w € TPS.
3. &, is the quadratic form associated to I, that is,

Fy(v) =1Ip(v,v), VVET,S.

To prove Theorem 4.196 we use the following two Lemmas.

Lemma 4.197

Leto : U — R be a regular chart with standard unit normal N : U — R3. Then

N, 0,=-L,
N,-0,=N,-0,=-M,
N, -0, =-N.

Proof

The vectors 6, and o, form a basis for T,8. Since N is orthogonal to T,& by definition, it
follows that
N.-6,=0, N-0,=0.

Differentiating the above with respect to u and v yields the thesis. For example, we have
d
—WN-0,)=0.
Z(N-a,)
On the other hand, by chain rule,
d
£(N~0'u) =N,-6,+N-6,,=N,-0,+1L,

from which we infer
N,-0,=-L.

The rest of the proof follows similarly.
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Lemma 4.198

Let & be an orientable surface with Weingarten map 7}, ¢, and o a regular chart at p. Then

Wp,é’(o-u) =—-Ny,, Wp,é’(o'v) =-N,,

where 6,0, N,, N, are evaluated at (u,v) = O'_l(p).

Proof

Since %, s is defined as —d, &g, we can compute %}, 5(0,,) and 7}, ¢(0,) by using the defini-
tion of differential of a smooth function. To this end, consider the curve

y(®) :=o(uy +1t,%).
We have that y is a smooth curve in & and

y(®) = ou(up +£,%).

Therefore
y(0) =o(up,v) =p, ¥(0) =0,(up, w).
Define
r(®) = (Fs oy)®).
By Remark 4.188
Y@ = Gs(y(®) = Gs(o(up +£,%)) = N(ug +1,v) .
Thus

?(t) = Nu(uo =+ t, V()) s )7(0) = Nu(uo, Vo) .

By definition of differential, we have

Wpé’ (o-u) = _dp?é’ (o-u) = _?.(0) = _Nu(uO’ VO) >

as we wanted to prove. To show that

Wp,é’(o'v) = _Nv(uO;VO) s

it is sufficient to consider the curve
y(@®) :=a(uy, v +1),

and argue similarly. This is left as an exercise.

We can now prove Theorem 4.196
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Proof: Proof of Theorem 4.196

By Theorem 4.80 we have
TS = span{o,,0.,}.

Therefore, for v,w € TPS , there exist Ay, A, 111, iy € R such that
v=MA0o,+ 1o,, wW=2Ao,+no,.
By bilinearity of 11, we infer

IIP(V, W) = /11/12 IIP(O'u,O'u) + AIIJZ IIp(O'u,O'V)
+ Aot IIp(o'vao-u) + Hfh IIp(6v>6v)
= du(v)du(w) I1,(6,,0,) + du(v)dv(w) I1,(c,,0.,)
+dv(v)du(v) I,(a,0,) + dv(v)dv(w) 11, (0, 0,)

- (du(v), dv(v)) ( ﬁiﬁz; ﬁigzg )(du(w), av(w))"

By Lemma 4.198 and Lemma 4.197 we have
Wp,s@,)=-N,, L=-Ny-0,.
Therefore, using the above and the definition of IL,, we get
Iy(0y,0,) = Wy s(0y) 6, =Ny -0, =L.
With similar calculations we obtain
IIy(oy,0,) = IIy(0y,0,) =M, Il(o,,0,)=N,

concluding the proof of point 2. In particular this also proves that I, is symmetric, which is
Point 1 of the statement. The fact that

I, (v, v) = F5(v)

follows from Point 2 and definition of F,.

4.12.2. Matrix of Weingarten map

The Weingarten map is a linear map

w,

We would like to find a formula to compute 7}, ¢. This is easily done: Given a chart ¢ at p, we
have that {6, 0, } is a basis for the vector space Tp<§’ . Therefore, there exists a 2 x 2 matrix % which
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represents Wp,g. It turns out that

W =F ' F,
where we recall that
a-(E 1) m=(4 )
where
E=0,-0,, F=0,0,, G=o0,-0,,
L=0o, N, M=0c, -N, N=o0,,-N,
and %0,
louxayl’

Let us prove this claim.
Theorem 4.199: Matrix of Weingarten map

Let & be an orientable surface with Weingarten map %}, 5. Let o be a regular chart at p. The
matrix of the Weingarten map with respect to the basis {6, 0, } of T, & is

W = 91_192 5

where the FFF and SFF are evaluated at (u,v) = 6~ (p).

Proof
By Theorem 4.80, we know that {g,,,6,} is a basis of T, §. The matrix of the linear map

Ty

a ¢
7=(i6)

where the coefficients a, b, ¢, d € R are such that

’(572 Tp(§)—>TpO§

with respect to such basis is given by

Wy, s(0,) = ac, + bo,
Wy, s(0,) = coy, +do, .
By Lemma 4.198 we have
Wps@y) =Ny, Wps(6,)=-N,y,
so that we obtain
-N, = a0, + bo,

-N, =co, +do,.
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Taking the scalar product with o, and o, we get

-N, -0, = aloy -0,) + b(o, - 0,)
-N, -0, = a0y -0,) + b(o - 0)
-N, -0, =0, -0,) +d(oy-0y)
-N, -0, =0y -0,) +d(0, -0,)

By Lemma 4.197 we have

Nu.o'u:—L, Nu'O'v:_M;
N, -0,=-M, N,-0,=-N.

If in addition we recall the definition of E, F, G, we obtain

L = aE + bF
M = aF + bG
M =cE+dF
N =cF+dG

The above equations are equivalent to the matrix multiplication
L M\ (E F a c
M NJ \F G b d )’

.6/72:&0/\:1%:.

which reads

Now, notice that
det g] >0.

This is true by Cauchy-Schwarz inequality:
vow<|vlwl, vv,weR’,

where the inequality is strict if and only if v and w are linearly independent. Since & is regular,
we have that 6, and o, are linearly independent. Therefore by Cauchy-Schwarz we have

0y°0,< "o'u" ||¢Tv|| >

and so, squaring both sides,
2 2 2
(o'u : o'v) < "0-11 " "o-v” .
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Hence
det(#,) = EG — F?

=(0y,-0,)(0, 0,)—(0y 'o'v)z

2, 2 2
= loulloy|” - (64 -6,)" > 0.
Alternatively, we could have also noticed that
2, 2 2 2
lowl”loy|” - (64 - 64)" = lou x 0]
by the properties of vector product. Therefore,
det(F,) = EG—F2 =|o, xo,|* >0

since @ is regular.
In particular the matrix & is invertible, and thus

W =FF,,

concluding the proof.

Remark 4.200: Matrix inverse

A matrix A € R®? is invertible if and only if det(A) # 0. In such case the inverse A1 is
computed via the formula

-1
a b 1 d -b
( e d ) = et A) ( — a ) det(A) = ad — bc.

If the matrix is diagonal, then

() =070

Notation

In the following we denote the matrix of 7}, ¢ by the symbol 77"
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Example 4.201: Weingarten map of Helicoid
Question. The Helicoid is charted by
o(u,v) = (ucos(v),usin(v),\v), u€eR,ve(0,2r),

with A > 0 constant, see Figure 4.50. Compute the matrix of the Weingarten map.
Solution. We compute all the derivatives of &

o, = (cos(v), sin(v), 0) o, = (—sin(v), cos(v),0)
o, = (—usin(v),ucos(v), 1) o,, = —u(cos(v),sin(v),0)
o, =(0,0,0)

The FFF and its inverse are

E=0,-0,=1 F=0,-0,=0
G=0,0,=u’+1°
1 0
1 0
(G/:l:< 2 2) g1:< 1 )
0 u+2 1 0 ———
u? + 22

The standard unit normal to o is

o, %0, = (Asin(v),—Acos(v),u)
||6u Xo_v" =u? + A2

0,%x0, 1 (Asin(v), —A cos(v),u) .

N = =
loy x o Nul + A2

The SFF of 0 is
A
L=0'uu-N=0 M:o’uv~N:——
Vu? + A2
N=g,, - N=0
0 I
(972 — 3 \V uz + AZ
-—— 0
Vu? + A2
Finally, the matrix of the Weingarten map is
0 Y S
W = !0/7—19 — (uz + /12)1/2
1 72 2 0

B (u2 + 22)3/2
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Figure 4.50.: Plot of Helicoid.

4.13. Curvatures

Curvatures of a surface § are scalars associated to the Weingarten map %}, . We will define:

« Gaussian curvature

« Mean curvature

« Principal curvatures
« Normal curvature

« Geodesic curvature

4.13.1. Gaussian and mean curvature

The Weingarten map of & encodes the rate of change of the standard unit normal N. We use this
map to produce scalar values, which we call curvatures. The first two curvatures that we consider
are called Gaussian and mean curvatures.

Definition 4.202: Gaussian and mean curvature

Let & be an orientable surface. Let 7" be the matrix of the Weingarten map %}, s of § at p.
We define:
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1. The Gaussian curvature of & at p is

K :=det(®),
2. The mean curvature of & at p is

H:= % W),

Notation: Trace of a matrix

The trace of a 2 x 2 matrix is the sum of the diagonal entries

a b
Tr(A)=a+d, A:(C d)'

Remark 4.203

The Gaussian curvature and mean curvature do not depend on the choice of basis of T,§'. In-

deed, if 7/ is the matrix of the Weingarten map with respect to the basis {¢;,,6,} of T, &', then
det(?) = det( W), Te( W) =Tu(T).

Check. The above is true by a general linear algebra result: The determinant and trace of a
matrix are invariant under change of basis.

Since we have shown that the matrix of the Weingarten map is
W =F'F,
we can express K and H in terms of the first and second fundamental forms.

Proposition 4.204: Formulas for K and H

Leto: U > R3bea regular chart, and & = ¢(U). Then

LN - M? _ LG —2MF - NE
EG-F2’ 2(EG — F?)
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Proof

By Theorem 4.200 the matrix of the Weingarten map 7}, ¢ of & at p is given by

szofjl_ltc/"z.
We have
E F
det(,%):‘ F oG ‘:EF—GZ,
det(%):‘]@ %:LN—MZ.

By the properties of determinant we get

1 1

det(F 1) = = ,
et(F1) det(#)  EF — G2

and therefore

K =det(?') = det (9:1719:2)
LN — M?

= det(F 1) det(F,) = ————.
e(l)e( 2) G — F?

To compute H we need to find the diagonal entries of 7. Since

gl 1 G -F
' " EG-F2\ -F E

1 G -F L M
7/_EG—FZ(—I’*“ E )(M N)'

From the above we compute

we have

1
w1 = —— (LG - MF
1= 5o )
1
Wyy = ———— (—=MF + EN
2 = 2 ( )
Therefore
H= lTr‘W
2
1
= E(Wll + Wyz)
_ LG—-2MF +EN
2(EG — F?)
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Example 4.205: Curvatures of the Plane
Question. Let a, p, q € R3, with p, q orthonormal. Consider the plane charted by
o(u,v) =a+pu+qv.

1. Compute the matrix of the Weingarten map of .
2. Compute the Gaussian and mean curvatures of the plane.

Solution.

1. From Examples 4.129, 4.181, the FFF and SFF of o are

10 00
A=(ov) #e(00)

Therefore the matrix of the Weingarten map is

_ 00
W:‘%l%:(o 0).

2. The Gaussian and mean curvatures are

K=det(W)=0, H= % TH W) = 0.

Example 4.206: Curvatures of the Unit cylinder
Question. Consider the unit cylinder & charted by
o(u,v) = (cos(u), sin(u),v).

1. Compute the matrix of the Weingarten map of o.
2. Compute the Gaussian and mean curvatures of §.

Solution.
1. From Examples 4.127, 4.185, the FFF and SFF of ¢ are

10 -1 0
A=l ) 2o (00)

Therefore the matrix of the Weingarten map is

_ -1 0
‘7/:911.%:( . 0).

2. The Gaussian and mean curvatures are

K=det(w)=0, H:%Tr(W):—%.
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4.13.2. Principal curvatures

In order to define the principal curvatures, we need the notions of eigenvalue and eigenvector. For
reader’s convenience, we recall them in the next Remark.

Remark 4.207: Eigenvalues and eigenvectors

Let V be a two-dimensional vector space, and L : V — V a linear map. We say that A € Ris an
eigenvalue of L with eigenvector v € V if

Liv)=Av, v=0. (4.16)
Let {v{, vy} be a basis of V, and denote by
x=(x1,%2), V=xV]+xV;.

the coordinates of v in such basis. Let A € R?? be the matrix of L with respect to the basis
{v1,v,}. Equation (4.16) is equivalent to

Ax = Ax,

meaning that A is an eigenvalue of A with eigenvector x. The eigenvalues of A can be computed
by solving the characteristic equation

P() =0, PQ) :=det(A—Al),

where P is the characteristic polynomial of A. Finally, we recall that A € R*? is diagonal-
izable if there exists a diagonal matrix D and an invertible matrix P such that

A=P1pp.

Theorem 4.208: Eigenvalues of Weingarten map

Let & be an orientable surface and ¢ a regular chart at p. Let 7" be the matrix of the Weingarten
map 7}, s with respect to the basis {5,,,0,} of T, S Then

1. There exist scalars k1, k; € R and an orthonormal basis {t;, t,} of T, & such that
W st) =rity,  Wps(ty) =Koty
2. Let Ay, Ay, pi1, 1o € R be such that
ty = Aoy + oy, t =240, + 1o,

Denote x; = (44, p1) and x5 = (A5, p1s). Then Ky, k, are eingenvalues of 7 of eigenvectors
x; and x,
WXI = K1X1, WXZ = KoXo .
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In particular, the matrix 7%  is diagonalizable, with

@ = P1DP, D=<"1 0), P:(’11 AZ).
0 Ky 1o o

Proof

Part 1. Let ¢ be a chart for § at p. Then {0,,,6.} is a basis of T;,&". Let 7 be the matrix of %}, ¢
with respect to such basis. By Theorem 4.200 we have

— -1
W =F\F,.

Recall that

a1 G -F
7 _EG—F2<—F E )

L M
7= v

is symmetric, and the product of symmetric matrices is symmetric, we conclude that 7 is
symmetric as well. Therefore Wp,é’ is self-adjoint, see Remark 4.15. The thesis now follows
from the Spectral Theorem, see Theorem 4.13.

Part 2. We have just proven that

Thus, 91_1 is symmetric. Since

Wpst) =K1ty Wps(ty) =Koty
As 7 is the matrix of 7}, s and x1, x; are the coordinates of t;, t;, we infer
le = K1Xq, WXZ = K9Xo,

showing that «; is eigenvalue of 7" with eigenvector x;. In particular, it follows that 7" is
diagonal in the basis {x, x5} of R2. Therefore # = P"1DP, with D and P as in the statement.

The principal curvatures are the eigenvalues of the matrix of the Weingarten map, and the principal
vectors its eigenvectors.

Definition 4.209: Principal curvatures and vectors
Let & be an orientable surface. Let 7}, 5 the Weingarten map of § at p. We define:

1. The principal curvatures of § at p are the eigenvalues ky, k; of 7 s

2. The principal vectors corresponding to k; and «; are the eigenvectors ty, t; of 7}, .
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Theorem 4.208 gives an explicit way to compute the principal curvatures and vectors.

Remark 4.210: Computing principal curvatures and vectors

Leto : U — R3 be a regular chart and & = a(U).
1. Compute the FFF and SFF of ¢, and the matrix of the Weingarten map
W =F'F,.
2. Compute the eigenvalues of 7, by solving for A the equation
det( —AI) =0.
The two solutions are the principal curvatures x; and ;.

3. Find scalars A, g which solve the linear system
A
(W—Kil)< L ) =0.
The solution(s) gives the eigenvector(s) of #
X; = (/L [1)

corresponding to the eigenvalue k;.

4. The principal vector(s) associated to ; is

t, = Ao, + po,

Remark 4.211: The case of 77 diagonal
Leto : U — R3 be a regular chart and & = 6(U). Assume the matrix of the Weingarten map is
diagonal
_ K1 0
W - ( 0 Ko ) ’

Then, the eigenvalues of 7 are x; and k,, with eigenvectors

X1 :(1,0), X2:(0,1)
Therefore k1, ko are the principal curvatures of &, with principal vectors given by

ty=0,, t,=o0,.

The principal curvatures are related to the Gaussian and mean curvatures.
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Proposition 4.212: Relationships between curvatures

Let & be an orientable surface. Then
K1 + K
K = K1K2 N H = % .

ki=H+\JH?-K.

Proof

Part 1. By Theorem 4.208 we have
0
% =P'DP, D:("1 )
0 Ko

By the properties of determinant
det (AB) = det(A)det(B), VA,BeR>?.

By definition of Gaussian curvature and the above formula we infer

K = det(?")
= det (P~'DP)
= det(P~1) det(D) det(P)
= det(D)
=K1Kz,
where we also used that .
det(P™!) = .
P = Gam

Part 2. The trace satisfies
Tr(AB) = Tr(BA), VA,BeR>?,

By definition of mean curvature and the above formula we get

H= %Tr(%)

% Tr (P7'DP)

% Tr (PP7'D)

1

1
= (K1 +Ko2) .
(ki +1)
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Part 3. For any matrix A € R%2, we have

a—2A b
det(A—M)zdet( c d—/l)

=(a-A)(d-21)—bc
=2 —(a+dA+ad - b
= 12 = Tr(A)A + det(]).

If A= %, we obtain
det(# — AI) = A2 —2HA+ K.

Therefore, the principal curvatures are

KI'ZH:i:\/Hz—K.

Example 4.213: Principal curvatures of Unit Cylinder
Question. Consider the unit cylinder charted by
o(u,v) = (cos(u), sin(u),v).

Compute the principal curvature and principal vectors.
Solution. By Example 4.206, the matrix of the Weingarten map is

-1 0
(3 o)
Since 7/ is diagonal, the eigenvalues are the diagonal entries of 7" and the eigenvectors are
X1 = (1,0), X9 = (0, 1) .

Therefore, the principal curvatures and principal vectors are

Kk1=-1, k=0,
tl = Gu = (_ Sin(u)’ COS(V)5 0) 3
t2 =0, = (0,0: 1):

as shown in Figure 4.51.
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k==
!: (-sint), costa), 0 )
===~ < {fzfr‘r‘(o)o,a.)
s, N
L —r
| A "
, -~ =~ ~

Figure 4.51.: Principal vectors of the unit cylinder.

Example 4.214: Curvatures of Sphere
Question. Consider the chart for the sphere

o(u,v) = (cos(u) cos(v), sin(u) cos(v), sin(v)),

where u € (0,27), v € (—r/2,7/2). Prove that
2
o [ cost(v) 0 (10
91_"'2_( 0 1) =0 1)

K:H:K1:K2:1, tlza'u, t2:0'v.
Solution. Compute the FFF of &

o, = (—sin(u) cos(v), cos(u) cos(v), 0)

o, = (— cos(u) sin(v), — sin(u) sin(v), cos(v))
E =0, 6, = cos’(v)
F=06,-0,=0
G=0,0,=1

2
F = ( cosO(v) (1) ) .

Moreover

6, x 0, = (cos(u) cos?(v), sin(u) cos?(v), cos(v) sin(v))

low x o] = [cos(v)] = cos(v),
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where we used that cos(v) > 0 since v € (—x/2, r/2). Therefore,

N = (cos(u) cos(v), sin(u) cos(v), sin(v))
0, = (—cos(u) cos(v), — sin(u) cos(v), 0)
0, = (sin(u) sin(v), — cos(u) sin(v), 0)
0, = (—cos(u) cos(v), — sin(u) cos(v), — sin(v))
L=06,, N =cos?(v)
M=0c,,  N=0
N=06,, N=1

Hence, the SFF and matrix of the Weingarten map are

2
cos“(v) O _ 1 0
972=( 0() 1), W:gllgv'z:(o 1).

Since % is diagonal, the principal curvatures and vectors are
K1:K2:1, tlzau, tZZO'v.
Finally, the mean and Gaussian curvatures are

_ K1 + Ky

=1, K=Kikp=1.
9 172

Example 4.215: Curvatures of the Torus

Consider a circle & contained in the xz-plane, with center at distance b > 0 from the z-axis, and
radius a, with 0 < a < b. The torus is obtained by rotating % around the z-axis. This surface is
charted by

0(0,9) = ((a + bcos(6)) cos(), (a + b cos(0)) sin(¢), b sin(0)) ,

where 0 € (—r/2,7/2) and ¢ € (0, 27r). One can compute that the first and second fundamental
forms are

o P 0
71 _( 0 (a+bcos(9))2 )

b 0
Fy = ( 0 (a+bcos(8))cos(d) ) '
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Therefore the matrix of the Weingarten map is

1 0
W =F " Fy= ﬁ cos(0)
a+ bcos(6)
Since %’ is diagonal, the principal curvatures are
cos(0)

1
=y 2= a+bcos(9)’

and the principal vectors

The Gaussian and mean curvature are
cos(0)
b(a+ bcos(9))
ki +ky  a+ 2bcos(0)
2 2b(a+bcos(9)

K:K1K2 =

H:

4.13.3. Normal and geodesic curvatures

Let & be a regular surface and consider all the curves y on & passing through the point p € §. The
shape of & at p influences the curvature of such curves.

Question 4.216

Which curves through p have greatest or lowest curvature?

We start our analysis with the following Definition.
Definition 4.217: Darboux frame

Let & be a regular surface, y : (a,b) - & a unit-speed curve. The Darboux frame of y at ¢ is

the triple
{r,N.Nxy},

where y is evaluated at ¢, and N is the standard unit normal to &, evaluated at p = y(t).
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Proposition 4.218: Darboux frame is orthonormal basis

Let & be a regular surface, y : (a,b) » & a unit-speed curve. The Darboux frame is an or-
thornormal basis of R for all t € (a, b).

Proof
By definition of tangent space, y(t) € T,§ when p :=y(t). As N(y(t)) is normal to T, &', we get
7 -NE®) =0.

Asy is unit-speed, we have |y| = 1. Moreover, [N| = 1 by definition. Therefore, y and N are
orthonormal, and by the properties of vector product:

IN>yl| = IN[ly|=1.
Again using the properties of vector product, we have
(Nxy)-N=0, (Nxy)-y=0.

Therefore {y,N,N x y} is an orthonormal basis of R>.

Important

In general, the Darboux frame
{r.N,Nxy}

does not coincide with the Frenet frame
{y.n, b}
of y. This is because the principal normal to y is

n=-—-=
Il x

El

and, in general, n = N.

Proposition 4.219: Coefficients of y in the Darboux frame

Let & be a regular surface,y : (a,b) > & a unit-speed curve. Then

Y =N +xg (Nxy), (4.17)
where N is evaluated at p : = y(¢) and k;, k; are scalars depedent on p. Moreover

Ky =Y -N, KgZY'(NXY)) (418)
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K= K?,zl +x2, (4.19)

Kp = kcos(¢), kg = +ksin(g), (4.20)

where « is the curvature of y, and ¢ is the angle between N and n, the principal unit normal of
Y-

Proof

Part 1. By Proposition 4.218, we know that

., NN xy}

is an orthornormal basis of R3. Hence

Yy =ay +bN+c(Nxy),
for some coefficients a, b, ¢ € R. Since y is unit-speed, we have that
yi=o0.
On the other hand,
y¥y=ay y)+by N)+cy -(Nxy)=a,
since y is orthogonal to both N and N x y, and
yoy=W’=1

Therefore, a = 0 and
Yy=ON+c(Nxy).

Setting k,, := b and k; := ¢ we conclude (4.17).
Part 2. Taking the scalar product of (4.17) with N yields

. 2 .
7N =1, INI* + 10, (N <) -N =y,

where we used that N and N x y are orthonormal vectors. Similarly, taking the scalar product
of (4.17) with N x y yields the second equation in (4.18).
Part 3. By (4.17) we infer

12 2 . 12
717 = 57 INI” + 28,5 N - (N x ) + &g IN x|
= K7 +K5,
where we used that N and N x y are orthonormal. Since
k() = @l ,
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we conclude (4.19).
Part 4. Recalling that

Y =kn,
from the first equation in (4.18) we obtain
K =§-N
=kn-N
= k|n[|N] cos(¢)
= kcos($),

where we used that n and N have unit norm. Hence, the first equation in (4.20) is established.
By (4.19) we get

K‘éZKZ—K,%

= k% — k% cos?(¢)
= k*(1 — cos*(¢))

= k% sin*(¢$),
from which we obtain the second equation in (4.20).
The quantities k, and k, are the normal and geodesic curvatures of y.

Definition 4.220: Normal and geodesic curvatures

Let & be regular and y : (a,b) — & a unit-speed curve. Let N bet the standard unit normal to
S.

1. The normal curvature ofy is
kn =Y N,

2. The geodesic curvature of y is

KgZY'(NXY)-

In particular:

« The normal curvature is the curvature of y forced by being on the surface.
« The geodesic curvature is the residual curvature.

The normal curvature x,, can be computed via the second fundamental form, as shown in the theorem
below:.
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Theorem 4.221: Computing k,, with SFF
Let & be a regular surface andy : (a,b) —> & a unit-speed curve. Denote p := y(t). We have:

1. The normal curvature x,, satisfies

K = Lp(7.1).
2. Let o be a chart for & at p = y(¢). Then
y(@® = o(u®),v(®))
for some smooth functions u,v : (a,b) > R, and
K, = Lu® + 2Muv + Nv2

where L, M, N are evaluated at (u(t), v(t)), and @, v at t.

Proof

Part 1. By definition of tangent space, y(t) € T, when p = y(t). By definition of differential,

we have
Ny () = (Neoy) (). (4.21)

Since N(y(#)) is normal to T,(S') at p = y(¢), and y(¢) € Tp(S), we have
NG (®) - 7(0) = 0.

Differentiating the above expression, we get

-4 -y
0= & IN0@) -y

=(Ney)®-y®) + Ny®) - ¥(©)
= dpN(y(®)) - y(®) + Ny (1) - 7).,

where in the last equation we used (4.21). Hence,

—dpN(y (1) - y(®) = N(y(©) - 7). (4.22)
By definition of Weingarten and Gauss map we get
Wp,sY®) = —dp Ty (1) = —dpN(y(1)) . (4.23)

Therefore, using (4.22) and (4.23), we infer
I,y ®).y®) = Wy s ¥ () -y (@)
= —dpN(y (1) - (1)
=Ny®) -7(®) =Ky,
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where in the last equality we used (4.18).
Part 2. Let o be a chart at p and

y(®) = o (@), v(®)).
Differentiating the above expression we get
y@®) =uo, +vo,,.

By definition of du and dv, see Definition 4.124, we have

du(y(®)) =), dv(y(t)) =v().
Therefore, using Part 1 and Theorem 4.196, we obtain
Kn = IIp(Y(t), y®)

= Ldu(y(t))* + 2Mdu(y())dv(y(t)) + Ndv(y(t))?
= Li? + 2Muv + Nv2 .

Example 4.222: Curves on the sphere

Question. Consider the unit sphere $2 with chart
o(u,v) = (cos(u) cos(v), sin(u) cos(v), sin(v)) .
Show that, for all unit-speed curves on $2
Ky(£) =1.

Solution. Let y(t) = o(u(t), v(t)) be a unit-speed curve on $2. Differentiating, we get Differen-
tiating, we get

y@® = %(cos(u(t)) cos(v(t)), sin(u(t)) cos(v(t)), sin(v(t)))
= (—usin(u) cos(v) — v cos(u) sin(v),
2 cos(u) cos(v) — v sin(u) sin(v),
v cos(v))

ly (DI = cos*(v)u® + v*.
Since y is unit-speed, we have |y| = 1. Therefore,
cos’(Wyi? +v%2 =1.
By Example 4.214, the coefficients of the SFF of o are
L=cos’(v), M=0, N=1.
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By Theorem 4.220, the normal curvature of y is

Ky = Li® + 2Muv + Nv? = cos?(v)u? +v2 = 1.

The normal curvature k,, is related to the principal curvatures x; and k.
Theorem 4.223: Euler’s Theorem

Let & be a regular surface with principal curvatures ky, k; and principal vectors ty, t,. Lety be
a unit-speed curve on &. The normal curvature of y is given by

K, = k1 cos?(0) + ky sin®(0),

where 0 is the angle between y and t;.

Proof
Let y be a unit-speed curve on & and set

p:=y(®).

By Theorem 4.208 the principal vectors {t, t;} form an orthonormal basis of T,&. Since by
definition

y®)eTpS,
there exist scalars A, p € R such that
y(@®) = Aty + pty.
Asy is unit-speed and ty, t, orthonormal, we infer
1= O =77 = A+ 4.
Therefore there exists 6 € [0, 27r] such that
A=cos(@), p=sin(@).

Hence
yY(@®) = cos(O)t; + sin(O)t, . (4.24)
In particular, we can take the scalar product of (4.24) with t; to get

cos(@)=A=y@) t,.

Since y and t; are unit vectors, from the above equation we conclude that § is the angle between
Y and t;. In addition, recall that

Wps(t) =K1ty Wy s(ty) =Koty
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and ty, ty are orthonormal. Thus

2
Hy(ty, t) = Wy s(t) -ty =k [t1]" =1
Iyt t) = Wy (b))t =Kty -t =0
Ity t)) = Wy s(t) - t; =Koty -t =0

2
Iy(ty, t) = Wy s(t2) -t = 12 o] " = 12

By Theorem 4.220, equation (4.24), and bilinearity of II,, we get

Kn = IIp(y’ Y)
= cos?(0) I, (ty, t1) + cos(8) sin(0) I, (ty, t;)
+ sin(6) cos(6) I (ty, ty) + sin®(0) I, (tz, t2)

= cos?(O)k; + Sin2(9)l<2
ending the proof.
As an immediate corollary of the Euler’s Theorem we get the next statement.
Corollary 4.224

Let & be a regular surface and ky, k, its principal curvatures at p with principal vectors t, t,.
Then:

« k1 and k, are the minimum and maximum values of k,, for all unit-speed curves on &

passing through p.

« The directions of lowest and highest curvature on & are given by t; and t,.

In Example 4.222, we have shown by direct calculation that
K, =1

for all unit-speed curves on the sphere. Thanks to Euler’s Theorem, we can obtain the same result
in a quicker way.

Example 4.225: Curves on the sphere (again)
Question. Same question as in Example 4.222.

Solution. By Example 4.214, the principal curvatures of the unit sphere are k; = k, = 1. By
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Euler’s Theorem, for any unit-speed curve y on the sphere we have

K, = k7 cos2(0) + Kk, sin2(9) = cos?(0) + sin2(9) =1.

We have only defined normal and geodesic curvatures for unit-speed curves. We now extend the
definition to regular curves.

Definition 4.226: K, and k; for regular y

Let & be regular, andy : (a,b) > & aregular curve. Let y be a unit-speed reparametrization of
Y, with )
y=ve¢, ¢:(ab)—@ab).

Let k, and K, be the normal and geodesic curvatures of y. The normal and geodesic curvatures
of y are

Kkn(0) = K (), 1y () = Kg($(D)).

J

It is immediate to check that k,, and Kg, as defined above, do not depend on the choice of unit-speed
reparametrization. Therefore, y can be taken as the arc-length reparametrization of y. The next
Theorem gives practical formulas to compute ,, and k.

Theorem 4.227: Formulas for x,, and Kg

Let & be regular, andy : (a,b) > & aregular curve.

1. The normal and geodesic curvatures of y are given by

PN P (Nxp)
Kn =770  KgT T T3 -
Iy Iy
2. Denote by « the curvature of y. It holds
K2 = K2 + Kg,.
3. Let o be a chart for § at p = y(¢). Then
y(@®) = a(u(®), v(t))

for some smooth functions u,v : (a,b) — R, and

- I, (¥:¥)  Li? + 2Miw + Nv2
" L@.y)  Ei?+2Fwv+Gv?

(4.25)

with E, F,G, L, M, N evaluated at (u(¢), v(t)), and u, v at ¢.
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Proof

Part 1. Denote by s the arc-length function of y. In particular, we have

Y=Y°s.
Differentiating, we obtain '
y(®) = y(s@®)i) (4.26)
7(©) = y(sM)$*(®) + y(s())3(B5() - (4-27)

Since y is unit-speed, its normal and geodesic curvatures are, by definition
Ra(s) = ¥() - N(¥(s))
Ro(s) =¥(s) - [NG(s) x¥(s)] -
Taking the scalar product of (4.27) with N(y(t)) gives
7O - NE®) = [r(s®) - NG ®)] )+
+ [y (s(e) - N 1)] s()5)
= [r(s@®) - N)] ),

where we used that ) '
y(s(®) Ny (®) = y(s@) - N(y(s(t))) = 0,
since y(s(t)) € TqS when q = y(s(t)), and N(y(s(¢))) is normal to Ty §". Therefore,

70 -N@®) = [y(s(1)) - N@@)] (1)

= [r(s(0) - N@(st))] 1)

= & (O WO
where we used the definition of K, and that § = |y|. By definition of x,,, we obtain
¥ - N¢®)

wer
as required. Similarly, taking the scalar product of (4.27) with N(y(¢)) x y(¢) gives
7O - ING @) x (0] = y(s(t)) - [N () x y ()] )+
+ ¥ (@) - NG @) x (O] $0s(0)
= Y(s(0) - ING (1) <y O] ().,

Kn(t) = Ko (1)) =

where we used (4.26), which implies

Y(s@®)- [N(r(®) x (O] 3(1)3() =
=y(s@)) - [N(y(®) x y(s(t)] $*®)s(t) = 0,
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by the properties of vector product. Therefore,
PO - ING®) x (O] = y(s()) - NG () x y(1)] $°(0)
= y(s(®) - [NF(s@) x y(s(t)] $*(®)
L ACON O

where in the last to last equality we used (4.26), while in the last equality we used the definition
of kg, and that § = |y|. By definition of k¢, we get

7 - ING®) xy(@)]
{0

Ky (1) = Kg(s(1)) =

as required.
Part 2. Recall that the curvature of y is defined by

k() = k(s()),
where & is the curvature of .. By (4.19) we have that
R(s) = R (s) + RE(S).
Therefore,
K2(1) = £%(s(t))
= k2 (s(1)) + k5(s(2))

=k2(t) + Kg(t).
Part 3. Arguing as in the proof of Theorem 4.220, we observe that
y(®) - Ny (@) =0,

since y(t) € T, when p = y(t), and N(y(t)) is orthogonal to T,§'. Differentiating, we get

0= L O N

=¥ NFO) + 10 (N oy)©
= §0) - NY®) + 70 NGO)
— §0 - NY®) + 70 T ()
= ¥ NGO) = 1) Fp s GO)

from which we obtain

Wp,s(@) - y(®) =§) - N ().
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Therefore, by definition of second fundamental form, we infer
(1) = Vs @) 7 =7-N. (4.28)

Moreover, by definition of first fundamental form, we have

L=y =W (4:29)
Using (4.28)-(4.29), and the formula for x,, obtained in Part 1, we get the first equality in (4.25)

7-N  ILG.y)

Ky = W = W

The second equality in (4.25) follows because

. d . .
Yy = aa(u(t), v(it)) =o,u+0o,v,

and therefore

L(y.y) = Ei® + 2Fuv + Gv*
IL(y.y) = Li® + 2Muv + NV2 .

Example 4.228: Calculation of normal and geodesic curvatures

Question. For v # 0 and ¢ # 0, consider the surface chart and curve
u 2
o(u,v)=(uv,— |, y@t) =0c@1).
v

Prove that o is regular.

Compute the principal unit normal to o.

Prove that y is regular.

Compute the normal and geodesic curvatures of y.
Compute k, the curvature of y. Verify that

G PN

K= K% + KE,.
Solution.

1. The chart o is regular because
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2. The principal unit normal is

1/2
||0' <o "_ (u2+v2+v4)
u vil — vz
N = O, X0y (_v’u’vz)

lowxoul (2424 v4)1/2'

3. The curve y is regular because

Y = o0 = 1,1)
yi) = (2,1,1) %0

4. Compute the following quantities

7(1)] = 2/2 (212 + 1)1/2 PON—-—— 2
ly (I ( ) 1 Y
y@® =(2,0,0) Nxy= (1 + 21,‘2)1/2 0,1,-1)
N@, 1) = _CLeD 7-(Nxy)=0
(22 + 1)

The normal and geodesic curvatures are
Ky = rN__ !
Ul @R
_r-(Nxp)
Ke= " -3
Iy

5. The curvature of y is

YX).;:(O’Z’_Z)’ ||Y><}'||=23/2
vl
K = =
> (2 +1)3/2

Thus k = —«,. Since k; = 0, we conclude that K% =K+ Ké.
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4.14. Local shape of a surface

The principal curvatures k; and k, determine the maximum and minimum curvature of a surface &,
see Corollary 4.224. Hence, we can study the local shape of & in function of x; and ;.

Theorem 4.229: Local structure of surfaces

Let & be a regular surface and p € §. In the vicinity of p, the surface § is approximated by the
quadric surface of equation

z= % (lecl (p) + y21<2(p)) , (4.30)

where k1 (p), ko(p) are the principal curvatures of § at p.

Proof

By Theorem 4.208 the principal vectors {t;, t;} form an orthonormal basis of T, Therefore,
the standard unit normal N at p is orthogonal to both t; and t,. Up to rotations and translations,
we can assume WLOG that p = 0 and

t; =(1,0,0), t,=1(0,1,0), N =(0,0,1). (4.31)
Let o be a chart for § at p. Up to reparametrizing, we can assume that
0(0,0)=p=0.
AsN = (0,0, 1), it follows that Tpof is the xy-plane

Since {0, } is a basis for T,&', we have that for each (x,y) € R? there exist (s,t) € R? such
that
(x,y,0) = so, +ta,,, (4-32)

where 6, and 0,, are evaluated at (0, 0). The Taylor approximation of ¢ at (0, 0) is

o(s,t) =0(0,0) + so, +to,

1
+3 (s%0y + 2sto,, + t20.,,) + R,
1
= (x,7,0) + 5 (s%0,y + 2stoy, +t20.,,) + R,

where R is a remainder and the derivatives of ¢ are evaluated at (0, 0). Hence, if x, y are small
(and thus s, t are small), we have that

o(s.t) = (x,,2)
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where
1
zi=2 (s%0y + 2sta,, +t26,,) N

= % (Ls® + 2Mst + Nt?) ,

with L, M, N coefficients of the second fundamental form of & at (0, 0). Set
vV :=so, +to,.
By Theorem 4.196 we have
Ls® + 2Mst + Nt? = IL,(v,v) = Wp s(v) - v.
On the other hand, using (4.31) and (4.32) we get
v =s0o, +to, = (x,,0) = xt; + yt,.
Since the Weingarten map is linear we get

Wp,é’(v) = XWP,S(tl) + pr,é’(tz)
= XKltl + yK2t2 s

where we used that t; and t; are eigenvectors of 7}, s with eigenvalues x; and k,. Hence,

Wp,s(v) v = (xK1t; + yioty) - (xty + yty)

= x21<1 + y21c2
Therefore
z= % (Ls2 + 2Mst + Ntz)
— 1%‘ (
= E p.S V)V
= % (szl =+ yzkz) 5
showing that

o(t,s) =~ (x, Vs % (XZKI + yzkz)) .

Thanks to Theorem 4.228 we can distinguish between 4 approximating shapes.
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Definition 4.230: Local shape types

Let & be a regular surface, with x;(p) and k,(p) the principal curvatures at p. The point p is

Elliptic if
k1(p) >0, k2(p) >0 or x;(p) <0, ky(p) <O
Then (4.30) is the equation of an elliptic paraboloid.

« Hyperbolic if
k1(p) <0 <Ky(p) or Ky(p) <0 <ky(p)

Then (4.30) is the equation of a hyperbolic paraboloid.

« Parabolic if
ki(p) =0, x(p) #0 or Ky(p) # 0, k1(p) =0

Then (4.30) is the equation of a parabolic cylinder.

Planar if

k1 (p) = rp(p) = 0
Then (4.30) is the equation of a plane.

J

Sometimes it is not easy to compute the principal curvatures xy, k, explicitly. However, the Gaussian
curvature K is simpler to compute, as it is just the determinant of the matrix of the Weingarten map.

As K = KKy, we can still infer some information about the local shape type from the knowledge of
K.

Proposition 4.231: Gaussian curvature and local shape

Let & be a regular surface, with K(p) the Gaussian curvature at p. The point p is
- Elliptic if K(p) > 0,
« Hyperbolic if K(p) < 0,

« Parabolic or Planar if K(p) = 0.

Proof
The Gaussian curvature satisfies K = kjk, where k; and k, are the principal curvatures of &.

« If K > 0, then we must have either x;, k5 > 0 or ky, k; < 0. Therefore, the point is elliptic.

« If K < 0, then we must have either x; < 0 < k; or k3 < 0 < k. Therefore, the point is
hyperbolic.

« If K = 0, then we might have
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ELLIPTIC HYPERgoLIC

Ka, kb >0 F1<0 <k,
oR °R

E1, k2 <0 k240 < ky

PARABOLIC
F1=0, Fa# 0
o’ Fi=k, =0

k, =
ZO,kifo -
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- k1 #0and k; = 0, or ¥; = 0 and x, # 0. In both cases the point is parabolic.
— K = Ky = 0, in which case the point is planar.

Example 4.232: Analysis of local shape

Question. Consider the surface chart
o(u,v) = (u —vu+v,ut+ vz) .

Compute the first fundamental form of o.
Compute the second fundamental form of 0.
Compute the matrix of the Weingarten map.
Show that p = ¢(1,0) is an elliptic point.
Can there be points which are not elliptic?

S o

Solution.

1. The FFF of o is

o, =(1,1,2u) F=0, 0,=4uv
o, =(-1,1,2v) G=0, 0,=2(1+2v?)
1+ 20 2uv
E=0, 0, =201+ 2u’ F1=2
oy -0y = 2(1+2u7) 1 (Zuv 1+2v2>

2. The standard unit normal is
o,%x0,=2(v—u,—u—v,1)

1
loy xo,] =2 (1 +2u? + 2112)2

_(v-u—u—v,1)

N 1
(1+2u? + 2v2)?2
The SFF of o is
_1
oy, =(0,0,2) L=0y, -N=2(1+2u*+2v%) 2
oy =(0,0,0) M=0,,N=0
_1
oy =(0,0,2) NZO'W'NZZ(1+2u2+ZV2) 2
F =(1+2u2+2v2)_§ 1o
2 0o 1)
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3. The inverse of # is

g1 G -F
U " det(F)\ -F E
B 1 <1+2v2 —2uv )
21+ 2u% + 202) \ —2uv  1+2u7

The matrix of the Weingarten map is

— -1
W = F\F,

B 1 <1+2v2 —2uv )

B 3\ -2 1+ 2u?
(1 + 2u? + 2v2)2 w u

4. Foru =1 and v = 0 we obtain

3
1 0 32 0
3 0 3 -
32 0 3 2
Therefore the principal curvatures at p are

3 1
k(p)=32>0, x(p)=32>0.
Therefore p is an elliptic point.

5. No. This is because the Gaussian curvature is

1

K=det(#)= ——— >0
) (1 + 2u2 + 2v%)2

By Proposition 4.231 we conclude that every point is elliptic.

Definition 4.233: Umbilical point

an umbilical point if
K1(p) = K3(p) -

Let & be a regular surface, with x;(p) and x,(p) the principal curvatures at p. We say that p is

Remark 4.234

Umbilical points might be planar or elliptic.
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Example 4.235: Plane and Sphere

1. From Example 4.205, the principal curvatures of the plane are
K1 =Ky =0.
Therefore, all points are umbilical, of planar type.

2. From Example 4.214, the principal curvatures of the sphere are

K1:K2:1.

Therefore, all points are umbilical, of elliptic type.

Suppose that p is an umbilic, that is,
k1(p) = K2(p).-
Let k, be the normal curvature of a unit-speed curve y passing through p. By Theorem 4.223 we
have
K, = K c0s2(0) + Kk, sin®(0) = Ky -
Therefore k,, does not depend on y. Intuitively, this can only happen if in the vicinity of p the surface
looks like a sphere or a plane. Indeed, the following theorem holds.

Theorem 4.236: Structure theorem at umbilics

Let & be a regular surface such that every point p € & is umbilic. Then & is an open subset of
plane or a sphere.

Proof

By assumption, we have
k1(p) =ko(p) =x(p), VpeS. (433)
Step 1. x is constant.

By Theorem 4.208 the principal vectors {t;, t,} are an orthonormal basis of T,§. Hence, for
each v e TpoS’ there exist A, p € R such that

VvV = Atl + 'Utz .
Using the linearity of 7}, ¢ and (4.33) we obtain

Wp,é’(v) = AWP,CS’(tl) + ﬂWp,é’(tz)

= Aty + pxt,
=kv,
showing that
Wy s(V)=xv, VVET,S. (4.34)
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Leto: U — R® be a chart of &. Up to restricting &, we can assume that U is connected. By
Lemma 4.198 we have
Wp,e?(du) =-N,, Wp,&(av) =-N,.

On the other hand, by (4.34) we infer

Wp,é’(o'u) =Koy, Wp,c?(av) =KO,,

from which
N, = —k6,, N,=-«0o,. (435)
Thus
(Ko-u)v = _(Nu)v = (Nv)u = (Kov)u .

Moreover

(ko y), = K0, + KOy

(x0,), = K 0, + KOy,
so that

KyOy = KyOy - (4-36)

Recall that ¢, and o, are linearly independent, being & regular. Hence the linear combination
at (4.36) must be trivial, implying
K, =K, =0.

Since U is connected, the above implies that x is constant.
Step 2. We have the two cases k = 0 and k # 0.

« Assume k = 0. By (4.35) we get that
N, =N, =0,
which implies N is constant. Therefore
N-6),=N,-6+N-6,=0
since N, =0 and N -6, = 0 because N is orthogonal to T,§". Similarly we get
(N-0), =0,
showing that N - ¢ is constant. Hence there exists ¢ € R such that
N-o(u,v)=c, V(uv)eU.
This shows o(U) is contained in the plane
r={xeR®: N-x=c}.
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« Assume k # 0. Condition (4.35) implies
N=-xo+a
for some a € R3 constant vector. Thus

2 2
=l =l -
K

1
K K2’

given that |[N| = 1. Therefore a(U) is contained in the sphere of center a/k and radius
1/k.

Proposition 4.237: Criterion for umbilics

Let & be a regular surface. The point p is umbilical if and only if

H*(p) = K(p).

In particular, p cannot be umbilical if
K(p)<o.

Proof

Part 1. By Proposition 4.212, the principal curvatures are

ki=H+VH?-K, xy=H-VH?-K.

By definition, p is umbilic if and only if k; = K, at p, which is equivalent to H?> — K = 0.
Part 2. If K(p) < 0, then we cannot have that K(p) = H?(p). Therefore, by Part 1, p cannot be
umbilical.

Proposition 4.238: Chart criterion for umbilics

Leto : U — R® be a regular chart and § = o(U). A point p is umbilic if and only if there exists
a scalar «k such that
'9:2 = Kgl .

Proof

Part 1. By Theorem 4.208, there exists a basis {t;, t;} of T, & such that the Weingarten map
satisfies

Wps(t) =K1ty Wy s(ty) =Koty
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where x; and k, are the principal curvatures of § at p. If p is umbilical, then
K1 = K9 =K.
Let v € T,S. Then v = Aty + put; for some A, p € R. By linearity of 7}, 5, we get

Wp,s(V) = Wy s(Aty + pty)
= A‘Wp,é’(tl) + ﬂWp,é’(tz)
= Aty + pxt,

=kv,

showing that 7}, ¢ is a multiple of the identity map. Therefore, the matrix representation of
Wp,s with respect to any basis of T, & is a multiple of the identity matrix. In particular,

W =«l,

where 7/ is the matrix of %}, s with respect to the basis {0,,,0.,} of T, S Recalling that 7" =
91_192, we obtain

W=xl = FFH=xI = F=kF.
Example 4.239: Plane and Sphere

1. If the plane is charted as in Example 4.205, the FFF and SFF are

(10 o (00
=lo1) ==(0o)

Therefore #5 = k%, with k = 0, and all points are umbilical.

Y

2. If the sphere is charted as in Example 4.214, the FFF and SFF are

2
cos“(v) O
91:9;2:( 0() 1),

Since F5 = %, all points on the sphere are umbilical.

Remark 4.240: How to find umbilics
Condition &, = k% is equivalent to

(E,F,G)x(L,M,N) =0.
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In practice, umbilics can be found by solving the above equations. Common factors may be
discarded, if convenient.

Proof
By the properties of vector product, we have that
(E,F,G)x(L,M,N) =0

if and only if the vectors (E, F,G) and (L, M, N) are parallel. Therefore, there exists a constant
k such that
(L,M,N) =k(E,F,G) < F=x%.

Example 4.241: Local shape of the Monkey Saddle
Question. Consider the Monkey Saddle surface & described by
z=x— 3xy2 .

1. Compute the Gaussian curvature of §.
2. Does & contain any hyperbolic point?
3. Prove that the origin is the only umbilical point.

Solution. The Monkey Saddle is charted by

o(u,v) = (u,v,u® — 3uv?).

The FFF of 0 is
o, = (1,0,3(u? —v?)) F=06, 0,=—18uv(u’® —v?)
o, = (0,1, —6uv) G=0,-0,=1+36u’v?

E=0,-6,=1+9u?—v?)?
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The SFF of o is

o, x0a, = (=3w? —v?), 6uv, 1)
lo, xa,] = 1+ 36u?v? + 9(u? — v?)?
=1+9ut +9v* + 18u?v?
=1+ 9u? +v?)?
_ (—3(u? —v?), 6uv, 1)
o = (0,0, 6u)
oy = (0,0, —6v)
o, = (0,0,—6u)

N

L:o’uu.N:6—u
1+ 9(u? +v%)?

M=0'm,~N=_—6v
1+ 9(u2 +v2)2

N=o0,,-N= bu

1. We have that
EG — F2 = (1+9(u? = v*)?)(1 + 36u%v?) — (—18uv(u? — v))?
=1+ 36u*v? + 9(u? — v?)?
=1+ 9u + 9v? + 18020
=1+9w? +v?)?
LN — M2 = _M
1+9(u? +v?)?

Therefore the Gaussian curvature is

K- LN- M 36(u? + %)
COEG-F2  [1+9(u? + 222

2. Note that
K<o0, V(uv)=(00).

By Proposition 4.231, we conclude that all the points outside of the origin are hyperbolic.

3. Since K < 0 everywhere except at the origin, Proposition 4.236 implies that points outside
the origin cannot be umbilic. At (0, 0), we have

91=du2+dv2, LO/TZ=0.
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Therefore %, is a multiple of %], and by Proposition 4.238 we conclude that (0, 0) is an
umbilical point. Note: the matrix of the Weingarten map is %" = % 1%, = 0. Therefore
the principal curvatures are k; = k; = 0, showing that (0, 0) is a planar point.

Figure 4.53.: The Monkey Saddle surface z = x> — 3xy?2.

4.15. Conclusion: FTS and Theorema Egregium

We conclude by discussing two important and powerful Theorems:

1. Fundamental Theorem of Surfaces (FTS)
2. Theorema Egregium

We proceed in analogy with curves: for each point of the surface we assign a basis of R%, analogous
to the Frenet frame. Let & be an orientable surface and ¢ a chart at p. The triple

{o,,0,,N}

gives a basis of R® (not orthonormal, but it does not matter). We can now express the derivatives of
o, and o, with respect to such basis.

Proposition 4.242: Christoffel symbols
Let o be a regular chart, with first and second fundamental forms given by

Edu® + Fdudv + Gdv?, Ldu® + Mdudv + Ndv?,
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Then
64 =Tho,+T%0,+IN
64 =Tle, + 12,6, + MN
oy = T30, + 5,0, + NN
where
1 _ GFu—2FF, + FE,
11 o
2(EG - F?)
2 _ 2EF, — EE, — FE,
11 — 9
2(EG-F?)
. _ GE,—FG,
T = ey
2(EG - F?)
o _ EGy—FE,
27 2(EG - F?)
1 _ 2GR — GG, — FG,
2 2 (EG — F?)
2 _ EGy—2FF, + FG,
22 — 2
2(EG - F?)

The six coefficients I"fj are called the Christoffel symbols of .

Proof

Since {6,,0,, N} is a basis of R3, there exists scalars &, B, v; such that

G, = 010, + 00, + 3N

Oy = P10y + fooy, + 3N (437)
Oy = Y10, + Y20, + 13N

Recall that the coefficient of the second fundamental form are
L=6,,N, M=06, N, N=0, N.
Therefore, taking the dot product of each equation in (4.37) with N gives
=L, p3=M, y3=N,

where we used that N is orthogonal to both ¢, and g,,. Taking the dot product of each equation
in (4.37) with o, and o, gives 6 scalar equations which determine the Christoffel symbols I“fj
For example, dotting the first equation in (4.37) with o, gives

Gy 0, =00, 0,+m0, -6,=E+aF.
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On the other hand,
Ee= Lo, 00 =200 0.
from which we get
o E+ ayF = %Eu. (4.38)

Similarly, dotting the first equation in (4.37) with o, gives
Gy 0y, =010, 0, + 00, 0, =0qF+a,G.

On the other hand,

1
Oyy Oy = (o'u'o-v)v_o'u'o'uv :FV_EEV’

from which we obtain .
nF+aG=F - EEv- (439)

Equations (4.38) and (4.39) foem a 2x2 linear system in @; and @, which reads

E F\(a\ [ 3iE
F G)\a) \R-1ig )

Inverting the matrix of the first fundamental form, we obtain

( @ ) 1 ( G -F ) SE,
a EG-F2\ -F E F,—3E, )’
which gives the first 2 Christoffel symbols

GE, - 2FF, + FE, __,

a1 =
! 2(EG — F2) 1
~FE, + 2EF, —EE,
a = 2 =111
2(EG — F?)

The remaining 4 Christoffel symbols are obtained in a similar manner.

Note that the Christoffel symbols depend only on the first fundamental form of o.

The question is whether there are relations between the first and second fundamental forms. As it
turns out, all the existing relations are encoded in two sets of equations:

« Codazzi-Mainardi Equations
« Gauss Equations
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Proposition 4.243: Codazzi-Mainardi and Gauss Equations
Let o be a regular chart, with first and second fundamental forms
Edu® + Fdudv + Gdv?, Ldu® + Mdudv + Ndv?,
and Christoffel symbols as in Proposition 4.242. They are satisfied:
1. The Codazzi-Mainardi Equations
L, =M, = LT}, + M (T}, ~T};) - NT};
M, — Ny = LT3, + M (T3, —T1,) = NTi,
2. The Gauss Equations
2
EK = (T%;), — (T%2), + T1iT5z + THi5, — Tl - (I%)
FK = (T1,), — (Th), +T% —r%réz
FK = (T1,), — (T3;), + T1oTT, — Tolh
2
GK = (rzz)u = (T1z), + T3l + 5T, — (T12)” —T{I%

where K denotes the Gaussian curvature of o.

The proof involves a lot of calculations, and we decide to omit it. For a reference, see Propositions
10.1.1 and 10.1.2 in [7].

The Codazzi-Mainardi and Gauss equations are necessary and sufficient to completely determine a
surface, up to rigid motions. This is the statement of the Fundamental Theorem of Surfaces, which
can be seen as the surfaces analogue of the Fundamental Theorem of Space Curves: Curvature and
torsion completely characterize a regular curve, up to rigid motions. The equivalent Theorem for
surfaces states that First and Second Fundamental Forms, with coefficients satisfying the Codazzi-
Mainardi and Gauss equations, completely determine a surface, up to rigid motions.

Theorem 4.244: Fundamental Theorem of Surfaces (FTS)
1. Leto: U —> R¥and 6 : U — R be regular surface charts with the same first and second
fundamental form. Then, there exists a rigid motion M : R3 > R3 such that
o= M(o).

2. Let V C R3 be open, and
E,F,G,LM,N:V —>R

be smooth functions on V, such that

E>0, G>0, EG-F?>0,
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and satisfying the Codazzi-Mainardi and Gauss equations in Proposition 4.243, with
2
K= LN - M .
EG - F?
Then, if (uy, vy) € V, there exists
« an open set U C V containing (uy, vy)
« aregular surface chart ¢ : U — R® with first and second fundamental forms given

by
Edu?® + Fdudv + Gdv*, Ldu® + Mdudv + Ndv? .

J

The proof of the FTS is very complicated, as it involves PDEs, and is found at page 239 of [3]. The
FTS is the reason why the differential geometry of surfaces is still an active field of research today:

« If one wishes to construct a surface with prescribed first and second fundamental form, then
one needs to solve the Codazzi-Mainardi and Gauss Equations

« These are very complicated PDEs

« Examples of active research directions are

— Minimal Surfaces

Costant Mean Curvature Surfaces

Geometric Flows: a surface evolves following the direction of steepest descent of some
energy

An example of Geometric flow is the Mean Curvature Flow, in which & minimizes

F(S) = LHdA,

where H is the mean curvature of §.

The other major result we want to talk about is the Theorema Egregium (which means remarkable)
by Gauss.

Theorem 4.245: Theorema Egregium

The Gaussian curvature is invariant under local isometries.

Proof
Let o be a regular surface chart. The first Gauss equation in 4.243 gives that
2
KE = (%)), = (T1y), + ThTh, + T5T5, - ThIh - (T%,)

where K is the Gauss curvature , E one of the coefficients of the first fundamental form, and I“{;
the Christoffel symbols of 6. As o is regular, we have that E = ¢, - 6, > 0. Therefore, we can
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divide by E and obtain

r? 3,) +T1T%, +T2 1%, T
oo T = O, e T T - () ao)

Note that the Christoffel symbols depend only on the coefficients of the first fundamental form.
Therefore, the RHS of (4.40) depends only on the coefficients of the first fundamental form.
Since the first fundamental form is invariant under local isometries, we conclude that the Gaus-
sian curvature K is invariant under local isometries.

The Theorem is remarkable because the Gaussian curvature is defined in terms of both first and
second fundamental forms

LN — M?

EG-F?

Being a curvature, K should depend on how the surface bends in space. Instead, the Theorema
Egregium shows that K can be computed using only the first fundamental form, which is a quantity
intrinsic to the surface.

K =det(%') =

As an immediate application, we obtain that there is no perfect World Map:

Proposition 4.246

There is no isometry between and open set of the unit sphere $? and the plane.

Proof
Suppose there was an isometry

o:U—§
for some open set U C R?. The Theorema Egregium implies that $? and U have the same
Gaussian curvature. However, the Gaussian curvature of the unit sphere is K = 1, while the
one of the plane is K = 0.

In particular, we have have proven that a map
c:UCR* - §?

cannot be equiareal and conformal at the same time, otherwise it would be an isometry. Therefore,
world maps will always distort areas or angles, and there is no world map which preserves both.

The converse of the Theorema Egregium is false: there are surfaces which are not isometric but have
the same Gaussian curvature, see the next Example.
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Example 4.247
Question. Define the open set U = (0, 27) x (0,0) and let § and S the surfaces defined by
§ =o(U), S =6(U) with

o(u,v) = (cos(u)v, sin(u)v, log(v)),

6(u,v) = (cos(w)v, sin(u)v,u).

Note that & is the surface of revolution obtained by rotating the curve (v, 0,log(v)), while §is
a portion of Helicoid.

1. Prove that § and &§ are not locally isometric.
2. Prove that & and & have the same Gaussian curvature.

Solution.
1. Compute the first fundamental form of &

o, = (—sin(u)v, cos(u)v, 0)

o, = (cos(u), sin(u), 1/v)
E=0,-06,="

F=0,-0,=0

G=0,-0,=1+1/v?
2
o [V 0
Jl_( 0 1+1/v? )
The first fundamental form of & is

6, = (—sin(w)v, cos(u)v, 1)

7, = (cos(u), sin(u), 0)

I
Il Il
Q:
< <
Q:
< <
Il |
[e=] —
+
<

Il
Q:
<
o
<
Il
—

A
1
—_
[
o +
<
Do
—_ O
SN——

Suppose by contradiction there was a local isometry f: & — & Therefore, the charts &
and f o o would have the same first fundamental form. Since f - ¢ and 6 are both charts
for &, there exists a diffeomorphism & such that

feo=0-0.
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In particular, the first fundamental form of f o ¢ is the same as the one of ® - 6. In
conclusion, ¢ and ® - 6 have the same ﬁr~st fundamental form. By Proposition 4.129, the
first fundamental form of ® o & is (J' @)T.?l J®. Therefore, we have

F1= (D) FJe. (4.41)
Taking the determinant of both sides, we get
det(F;) = det(J®)? det(F,).

We compute that ~
det(F) = det(F) = 1 +v?,

and thus
det J& = +1. (4-42)

On the other hand,

- V2
owrn=(3 5)(137 ()

:( 21+ +c¢% x )

* *

a2 +v)+c? x| V2 0
* * ]\ 0 1+1/2% )

Equating the first entries, we obtain

By (4.41), we get

A +v)+c =v3, vv>o0.

Taking the limit for v — 07 gives

lir(r)l [a*(u,v) + 2(u,v)] =0,
v—0*

which implies
lim a(u,v) =0, lim c(u,v) =0.
v—0* v—0*

Therefore, we have that
. . a b 0 b
- (2 2)-(3 1)
By continuity of the determinant, we infer

lim det J®(u,v) = det( 0 b ) =0.
v—0+ 0 d

This contradicts (4.42). Hence, & and & cannot be locally isometric.
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2. Note that we could compute the Gaussian curvature from the first fundamental form, by
first computing the Christoffel symbols, and then using the first Gauss Equation. How-
ever, we proceed as usual, and compute K as the determinant of the Weingarten map. To
this end, compute the second fundamental forms of & and &

6y = (—cos(u)v, — sin(u)v, 0)
0,y = (—sin(u), cos(u), 0)
oy = (0,0,—1/v%)
o, x 0, = (cos(u), sin(u), —v)
loy x &) = (1+v2)1/2
N=(1+ Vz)_l/z(cos(u), sin(u), —v)
L=0y N=—-v(1+v?)"1/2
M=0,,"N=0
N=o0, N=( +v2)_1/2/v
Gy = (= cos(u)v, — sin(u)v, 0)
G,y = (—sin(u), cos(u), 0)
G, = (0,0,0)
6, x 6, = (—sin(u), cos(u), —v)
|6, %6, = (1 +v3)!/2

N=(1+ vz)_l/z(— sin(u), cos(u), —v)

L=oy N=o0
M=6, N=(@+v})1/?
N = o, N=0
Therefore, the Gaussian curvature of o is
a2
o IN-MP 1

TEG-F2 (1422
while the one of 6 is —
LN - M? 1

K=" __ ,
EG - F? (1 +v2)?

showing that & and & have the same Gaussian curvature.
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A. Plots with Python

A.1. Curves in Python

A.1.1. Curves in 2D

Suppose we want to plot the parabola y = t? for t in the interval [—3, 3]. In our language, this is the
two-dimensional curve

y®) = (1%, te[-3,3].

The two Python libraries we use to plot y are numpy and matplotlib. In short, numpy handles
multi-dimensional arrays and matrices, and can perform high-level mathematical functions on them.
For any question you may have about numpy, answers can be found in the searchable documentation
available here. Instead matplotlib is a plotting library, with documentation here. Python libraries
need to be imported every time you want to use them. In our case we will import:

import numpy as np
import matplotlib.pyplot as plt

The above imports numpy and the module pyplot from matplotlib, and renames them to np and
plt, respectively. These shorthands are standard in the literature, and they make code much more
readable.

The function for plotting 2D graphs is called plot(x,y) and is contained in plt. As the syntax
suggests, plot takes as arguments two arrays

x=[x5,0 %], V=1Vl

As output it produces a graph which is the linear interpolation of the points (x;,y;) in R?, that is,
consecutive points (x;, y;) and (x; 1, y;11) are connected by a segment. Using plot, we can graph the
curve y(t) = (t,1) like so:

# Code for plotting gamma

import numpy as np
import matplotlib.pyplot as plt

# Generating array t
t = np.array([-3,-2,-1,0,1,2,3])
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# Computing array f
f = t#x2

# Plotting the curve
plt.plot(t,f)

# Plotting dots
plt.plot(t,f,"ko")

# Showing the plot
plt.show()

Let us comment the above code. The variable t is a numpy array containing the ordered values
t=1[-3,-2,-1,0,1,2,3]. (Aa)

This array is then squared entry-by-entry via the operation ¢ **2 and saved in the new numpy array
f, that is,
f=19410149].

The arrays t and f are then passed to plot(t,f), which produces the above linear interpolation,
with t on the x-axis and f on the y-axis. The command plot(t,f, " 'ko') instead plots a black
dot at each point (¢, f;). The latter is clearly not needed to obtain a plot, and it was only included
to highlight the fact that plot is actually producing a linear interpolation between points. Finally
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plt.show() displays the figure in the user window".

Of course one can refine the plot so that it resembles the continuous curve y(t) = (t,t2) that we all
have in mind. This is achieved by generating a numpy array t with a finer stepsize, invoking the
function np. linspace(a,b,n). Such call will return a numpy array which contains n evenly spaced
points, starts at a, and ends in b. For example np. linspace(-3, 3, 7) returns our original array t at
A.1, as shown below

# Displaying output of np.linspace
import numpy as np

# Generates array t by dividing interval
# (-3,3) in 7 parts

t = np.linspace(-3,3, 7)

# Prints array t

print("t =", t)

t = [-3.-2. -1. 0. 1. 2. 3.]

In order to have a more refined plot of y, we just need to increase n.

# Plotting gamma with finer step-size

import numpy as np
import matplotlib.pyplot as plt

# Generates array t by dividing interval
# (-3,3) in 100 parts
t = np.linspace(-3,3, 100)

# Computes f
f = txx2

# Plotting
plt.plot(t,f)
plt.show()

'The command plt.show() can be omitted if working in Jupyter Notebook, as it is called by default.
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We now want to plot a parametric curve y : (a,b) — R? with

y(@® = (x(®), y(1)).

Clearly we need to modify the above code. The variable t will still be a numpy array produced by
linspace. We then need to introduce the arrays x and y which ecode the first and second compo-
nents of y, respectively.

import numpy as np
import matplotlib.pyplot as plt

# Divides time interval (a,b) in n parts
# and saves output to numpy array t
t = np.linspace(a, b, n)

# Computes gamma from given functions x(y) and y(t)
x = x(t)
y = y(t)

# Plots the curve
plt.plot(x,y)

# Shows the plot
plt.show()
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We use the above code to plot the 2D curve known as the Fermat’s spiral

y(@®) = (Vtcos(t),Vtsin(t)) for te[0,50]. (A.2)
# Plotting Fermat's spiral

import numpy as np
import matplotlib.pyplot as plt

# Divides time interval (0,50) in 500 parts
t = np.linspace(0, 50, 500)

# Computes Fermat's Spiral
X = np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)

# Plots the Spiral

plt.plot(x,y)
plt.show()

Before displaying the output of the above code, a few comments are in order. The array t has size 500,
due to the behavior of linspace. You can also fact check this information by printing np.size(t),
which is the numpy function that returns the size of an array. We then use the numpy function
np.sqrt to compute the square root of the array t. The outcome is still an array with the same size

of t, that is,
t=[t,..ty] = Nt=[Jt ]

Similary, the call np.cos(t) returns the array

cos(t) = [cos(t;), ..., cos(t,)] .

The two arrays np.sqrt(t) and np.cos(t) are then multiplied, term-by-term, and saved in the
array x. The array y is computed similarly. The command plt.plot(x,y) then yields the graph of
the Fermat’s spiral:
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Figure A.1.: Fermat’s spiral

The above plots can be styled a bit. For example we can give a title to the plot, label the axes, plot
the spiral by means of green dots, and add a plot legend, as coded below:

# Adding some style

import numpy as np
import matplotlib.pyplot as plt

Computing Spiral

= np.linspace(0, 50, 500)
= np.sqrt(t) * np.cos(t)
= np.sqrt(t) * np.sin(t)

< Wt H

# Generating figure
plt.figure(l, figsize = (4,4))

# Plotting the Spiral with some options
plt.plot(x, y, '--', color = 'deeppink', linewidth = 1.5, label = 'Spiral')

# Adding grid
plt.grid(True, color = 'lightgray')

# Adding title
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plt.title("Fermat's spiral for t between 0 and 50")

# Adding axes labels
plt.xlabel("x-axis", fontsize
plt.ylabel("y-axis", fontsize

15)
15)

# Showing plot legend
plt.legend()

# Show the plot
plt.show()

Fermat's spiral for t between 0 and 50
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Figure A.2.: Adding a bit of style

Let us go over the novel part of the above code:

« plt.figure(): This command generates a figure object. If you are planning on plotting just
one figure at a time, then this command is optional: a figure object is generated implicitly
when calling plt.plot. Otherwise, if working with n figures, you need to generate a figure
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object with plt.figure(i) for each i between 1 and n. The number i uniquely identifies the
i-th figure: whenever you call plt.figure(i), Python knows that the next commands will
refer to the i-th figure. In our case we only have one figure, so we have used the identifier 1.
The second argument figsize = (a,b) in plt.figure() specifies the size of figure 1 in
inches. In this case we generated a figure 4 x 4 inches.

plt.plot: This is plotting the arrays x and y, as usual. However we are adding a few aestethic
touches: the curve is plotted in dashed style with --, in deep pink color and with a line width
of 1.5. Finally this plot is labelled Spiral.

plt.grid: This enables a grid in light gray color.

plt.title: This gives a title to the figure, displayed on top.

plt.xlabel and plt.ylabel: These assign labels to the axes, with font size 15 points.
plt.legend(): This plots the legend, with all the labels assigned in the p1t.plot call. In this
case the only label is Spiral.

@ Matplotlib styles
There are countless plot types and options you can specify in matplotlib, see for example
the Matplotlib Gallery. Of course there is no need to remember every single command: a
quick Google search can do wonders.

i Generating arrays

There are several ways of generating evenly spaced arrays in Python. For example the
function np.arange(a,b,s) returns an array with values within the half-open interval
[a, b), with spacing between values given by s. For example

import numpy as np

t = np.arange(0,1, 0.2)
print("t =",t)

t = [0. 0.2 0.40.60.8]

A.1.2. Implicit curves 2D

A curve y in R? can also be defined as the set of points (x, y) € R? satisfying

fGx,y)=0

for some given f : R? — R. For example let us plot the curve y implicitly defined by

fx,y) = Bx* = y*)? y* = (x* + y*)*

for —1 < x,y < 1. First, we need a way to generate a grid in R? so that we can evaluate f on such
grid. To illustrate how to do this, let us generate a grid of spacing 1in the 2D square [0, 4]?. The goal
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is to obtain the 5 x 5 matrix of coordinates

(0,0) (1,0) (2,0) (3,0) (4,0)
0,1) (1,1 (21 6,1 “1)
A=1(00,2) (1,2) (2,2) (2,3) (2,4
(0,3) (1,3) (2,3) (3,3) (3,9
0,4) (1,4) (2,9 3,49 (4,9

which corresponds to the grid of points

4.0 o ° ° ° °

3.5 1

304 e o o . o

2.5

204 e o o . o

1.5 A

1.0 e ° . ° .

0.5 A

0.0 ° . ° .
0 1 2 3 4

Figure A.3.: The 5 x 5 grid corresponding to the matrix A
To achieve this, first generate x and y coordinates using

x = np.linspace(0, 4, 5)
np.linspace(0, 4, 5)

<
]

This generates coordinates
x=1[0,1,2,3,4], y=1[0,1,2,3,4].

We then need to obtain two matrices X and Y: one for the x coordinates in A, and one for the y
coordinates in A. This can be achieved with the code
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X[0,0] =
X[0,1] =
X[0,2] =
X[0,3] =
X[0,4] =
X[1,0] =
X[1,1] =

= O R W N RO

X[4,3] -
x[4,4] = 4

w

and similarly for Y. The output would be the two matrices X and Y

oS O O O
—_om e
NN
W W W W
~
Il
N I =)
B W N = O
B W N RO
B W N =R O
B W N = O

If now we plot X against Y via the command

plt.plot(X, Y, 'k.")

we obtain Figure A.3. In the above command the style 'k.' represents black dots. This procedure
would be impossible with large vectors. Thankfully there is a function in numpy doing exactly what
we need: np.meshgrid.

# Demonstrating np.meshgrid
import numpy as np

# Generating x and y coordinates
xlist = np.linspace(0, 4, 5)

ylist = np.linspace(0, 4, 5)

# Generating grid X, Y
X, Y = np.meshgrid(xlist, ylist)

# Printing the matrices X and Y
# np.array2string is only needed to align outputs

print('X =', np.array2string(X, prefix='X= "))
print('\n")
print('Y =', np.array2string(Y, prefix='Y= "))

386



Differential Geometry

Dr. Silvio Fanzon - S.Fanzon@hull.ac.uk

X = [[0. 1. 2. 3. 4.]
[0.
[0.
(0.

DN

w W W W
PN NN

e e
U R

Y = [[0. 0. 0. 0. 0.]

(3.
(4.

B W NN -
B W N -
[ S R

B W N -
B~ W N -

Now that we have our grid, we can evaluate the function f on it. This is simply done with the

command

Z :((3*(X**2) = Y**Z)**Z)*(Y**Z) = (X**Z aL Y**Z)**4

This will return the matrix Z containing the values f(x;, y;) for all (x;, y;) in the grid [X,Y]. We are
now interested in plotting the points in the grid [ X, Y] for which Z is zero. This is achieved with the

command

plt.contour(X, Y, Z, [0])

Putting the above observations together, we have the code for plotting the curve f = 0 for —1 <

x,y< L

# Plotting f=0

import numpy as np
import matplotlib.pyplot as plt

# Generates coordinates and grid
xlist = np.linspace(-1, 1, 5000)
ylist = np.linspace(-1, 1, 5000)
X, Y = np.meshgrid(xlist, ylist)

# Computes f

Z :((3*(X**2) = Y**Z)**Z)*(Y**Z) = (X**Z aL Y**Z)**4

# Creates figure object
plt.figure(figsize = (4,4))
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# Plots level set Z = 0
plt.contour(X, Y, Z, [0])

# Set axes labels
plt.xlabel("x-axis", fontsize 15)
plt.ylabel("y-axis", fontsize = 15)

# Shows plot
plt.show()

1.00

0.75 A

0.50 A

0.25 A

0.00 -

y-axis

—0.25 A

—0.50 A

—0.75 A

-1.00 T T
-1.0 -0.5 0.0 0.5 1.0

X-axis

Figure A.4.: Plot of the curve defined by f=0

A.1.3. Curves in 3D

Plotting in 3D with matplotlib requires the mplot3d toolkit, see here for documentation. Therefore
our first lines will always be

# Packages for 3D plots
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import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

We can now generate empty 3D axes
# Generates and plots empty 3D axes

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Creates figure object
fig = plt.figure(figsize = (4,4))

# Creates 3D axes object
ax = plt.axes(projection = '3d')

# Shows the plot
plt.show()

r 1.0
0.8
- 0.6
- 0.4
0.2
= 0.0

1.0
0.8
0.6

0.4

0.2

0.8 10 0.0

0.0
0.2

0.4
0.6

In the above code fig is a figure object, while ax is an axes object. In practice, the figure object
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contains the axes objects, and the actual plot information will be contained in axes. If you want
multiple plots in the figure container, you should use the command

ax = fig.add_subplot(nrows = m, ncols = n, pos = k)

This generates an axes object ax in position k with respect to am x n grid of plots in the container
figure. For example we can create a 3 x 2 grid of empty 3D axes as follows

# Generates 3 x 2 empty 3D axes

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Creates container figure object
fig = plt.figure(figsize = (6,8))

# Creates 6 empty 3D axes objects
ax1l = fig.add_subplot(3, 2, 1, projection = '3d")
ax2 = fig.add_subplot(3, 2, projection = '3d")
ax3 = fig.add_subplot(3, 2, 3, projection = '3d'")
ax4 = fig.add_subplot(3, 2, 4, projection = '3d'")
5
6

b

ax5 = fig.add_subplot(3, , projection = '3d")
ax6 = fig.add_subplot(3, , projection = '3d")

DN DN DN

# Shows the plot
plt.show()
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We are now ready to plot a 3D parametric curvey : (a,b) — R® of the form

y(®) = (x(8), (1), z())

with the code
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# Code to plot 3D curve

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure and 3D axes
fig = plt.figure(figsize = (sizel,size2))
ax = plt.axes(projection = '3d')

# Plots grid
ax.grid(True)

# Divides time interval (a,b)
# into n parts and saves them in array t
t = np.linspace(a, b, n)

# Computes the curve gamma on array t
# for given functions x(t), y(t), z(t)
x = x(t)
y = y(t)
z = z(t)

# Plots gamma
ax.plot3D(x, y, z)

# Setting title for plot
ax.set_title('3D Plot of gamma')

# Setting axes labels

ax.set_xlabel('x', labelpad !
ax.set_ylabel('y', labelpad =
ax.set_zlabel('z', labelpad !

|
T T o
~

# Shows the plot
plt.show()

For example we can use the above code to plot the Helix
x(t) = cos(t), y(@)=sin(t), z()=t

fort € [0, 67].
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# Plotting 3D Helix

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure and 3D axes
fig = plt.figure(figsize = (4,4))
ax = plt.axes(projection = '3d')

# Plots grid
ax.grid(True)

# Divides time interval (0,6pi) in 100 parts
t = np.linspace(0, 6*np.pi, 100)

# Computes Helix

X = np.cos(t)

y = np.sin(t)

z =t

# Plots Helix - We added some styling
ax.plot3D(x, y, z, color = "deeppink", linewidth = 2)

# Setting title for plot
ax.set_title('3D Plot of Helix')

# Setting axes labels

ax.set_xlabel('x', labelpad = 20)
ax.set_ylabel('y', labelpad = 20)
ax.set_zlabel('z', labelpad = 20)

# Shows the plot
plt.show()
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3D Plot of Helix
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1.0 ~10 y

0.0

We can also change the viewing angle for a 3D plot store in ax. This is done via

ax.view_init(elev = e, azim = a)

which displays the 3D axes with an elevation angle elev of e degrees and an azimuthal angle azim
of a degrees. In other words, the 3D plot will be rotated by e degrees above the xy-plane and by a
degrees around the z-axis. For example, let us plot the helix with 2 viewing angles. Note that we
generate 2 sets of axes with the add_subplot command discussed above.

# Plotting 3D Helix
import numpy as np
import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Generates figure object
fig = plt.figure(figsize = (4,4))

# Generates 2 sets of 3D axes

ax1l = fig.add_subplot(1l, 2, 1, projection = '3d")
ax2 = fig.add_subplot(1l, 2, 2, projection = '3d'")
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# We will not show a grid this time
ax1l.grid(False)
ax2.grid(False)

# Divides time interval (0,6pi) in 100 parts

t = np.linspace(0, 6*np.pi, 100)
# Computes Helix

X = np.cos(t)

y = np.sin(t)

z =t

# Plots Helix on both axes
ax1l.plot3D(x, y, z, color = "deeppink", linewidth = 1.5)
ax2.plot3D(x, y, z, color = "deeppink", linewidth 1.5)

# Setting title for plots
axl.set_title('Helix from above')
ax2.set_title('Helix from side')

# Changing viewing angle of axl
# View from above has elev = 90 and azim = 0
axl.view_init(elev = 90, azim = 0)

# Changing viewing angle of ax2
# View from side has elev = 0 and azim = 0
ax2.view_init(elev = 0, azim = 0)

# Shows the plot
plt.show()

Helix from above Helix from side
-1 0 1

-1
0 10
1 0
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A.1.4. Interactive plots

Matplotlib produces beautiful static plots; however it lacks built in interactivity. For this reason I
would also like to show you how to plot curves with Plotly, a very popular Python graphic library
which has built in interactivity. Documentation for P1lot 1y and lots of examples can be found here.

A.1.4.1. 2D Plots

Say we want to plot the 2D curvey : (a,b) — R? parametrized by

y(®) = (x(®), ¥(@®)).

The Plotly module needed is called graph_objects, usually imported as go. The function for line
plots is called Scatter. For documentation and examples see link. The code for plotting y is as
follows.

# Plotting gamma 2D

# Import libraries
import numpy as np
import plotly.graph objects as go

# Compute times grid by dividing (a,b) in
# n equal parts
= np.linspace(a, b, n)

-+

Compute the parametric curve gamma
for given functions x(t) and y(t)
= x(t)

= y(t)

< X =

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter(x = x, y =y, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Display the figure
fig.show()

Some comments about the functions called above:
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« go.Figure: generates an empty Plotly figure

« go.Scatter: generates the actual plot. By default a scatter plot is produced. To obtain linear
interpolation of the points, set mode = 'lines'. You can also label the plot with name =
"string"

+ add_trace: adds a plot to a figure

« show: displays a figure

As an example, let us plot the Fermat’s Spiral defined at A.2. Compared to the above code, we also
add a bit of styling.

# Plotting Fermat's Spiral

# Import libraries
import numpy as np
import plotly.graph_objects as go

# Compute times grid by dividing (0,50) in
# 500 equal parts
t = np.linspace(0, 50, 500)

# Computes Fermat's Spiral
X = np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter(x = x, y =y, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Here we start with the styling options
# First we set a figure title

fig.update_layout(title_text = "Plotting Fermat's Spiral with Plotly")

# Adjust figure size
fig.update_layout (autosize = False, width = 600, height = 600)

# Change background canvas color
fig.update_layout (paper_bgcolor = "snow"

# Axes styling: adding title and ticks positions
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fig.update_layout (

xaxis=dict (
title_text="X-axis Title",
titlefont=dict(size=20),
tickvals=[-6,-4,-2,0,2,4,6],
)

yaxis=dict(
title_text="Y-axis Title",
titlefont=dict(size=20),
tickvals=[-6,-4,-2,0,2,4,6],
)

# Display the figure
fig.show()

Unable to display output for mime type(s): text/html
Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, please click
here for the digital version of these notes. Note that the style customizations could be listed in a
single call of the function update_layout. There are also pretty buit-in themes available, see here.
The layout can be specified with the command

fig.update_layout(template = template_name)

where template_name canbe "plotly", "plotly_white", "plotly_dark", "ggplot2", "seaborn",
"simple_white".

A.1.4.2. 3D Plots

We now want to plot a 3D curvey : (a,b) — R® parametrized by

y(®) = (x@), y(t), z(1)) .
Again we use the Plotly module graph_objects, imported as go. The function for 3D line plots is

called Scatter3d, and documentation and examples can be found at link. The code for plotting y is
as follows.
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# Plotting gamma 3D

# Import libraries
import numpy as np
import plotly.graph_objects as go

# Compute times grid by dividing (a,b) in
# n equal parts

t = np.linspace(a, b, n)

# Compute the parametric curve gamma
# for given functions x(t), y(t), z(t)
x = x(t)

y = y(t)

z = z(t)

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter3d(x = x, y =Yy, z = z, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Display the figure
fig.show()

The functions go.Figure, add_trace and show appearing above are described in the previous Sec-
tion. The new addition is go.Scatter3d, which generates a 3D scatter plot of the points stored in
the array [x,y,z]. Setting mode = 'lines' results in a linear interpolation of such points. As
before, the curve can be labeled by setting name = "string".

As an example, we plot the 3D Helix defined at A.3. We also add some styling. We can also use the
same pre-defined templates descirbed for go.Scatter in the previous section, see here for official
documentation.

# Plotting 3D Helix
# Import libraries

import numpy as np
import plotly.graph_objects as go
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# Divides time interval (0,6pi) in 100 parts
t = np.linspace(0, 6*np.pi, 100)

# Computes Helix

X = np.cos(t)

y = np.sin(t)

z =t

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
# We add options for the line width and color
data = go.Scatter3d(

X=X,Y=Y, 2 =2,

mode = 'lines', name = 'gamma',
line = dict(width = 10, color = "darkblue")
)

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Here we start with the styling options
# First we set a figure title
fig.update_layout(title_text = "Plotting 3D Helix with Plotly")

# Adjust figure size
fig.update_layout (
autosize = False,

width = 600,
height = 600
)

# Set pre-defined template
fig.update_layout (template = "seaborn")

# Options for curve line style

# Display the figure
fig.show()

Unable to display output for mime type(s): text/html
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The above code generates an image that cannot be rendered in pdf. To see the output, please click
here for the digital version of these notes. Once again, the style customizations could be listed in a
single call of the function update_layout.

A.2. Surfaces in Python

A.2.1. Plots with Matplotlib

I will take for granted all the commands explained in Section A.1. Suppose we want to plot a surface
S which is defined by the parametric equations

x=xwv), y=yv), z=zwv)

for u € (a,b) and v € (c,d). This can be done via the function called plot_surface contained in
the mplotsd Toolkit. This function works as follows: first we generate a mesh-grid [U, V] from the
coordinates (u, v) via the command

[U, V] = np.meshgrid(u, v)

Then we compute the parametric surface on the mesh

x = x (U, V)

y (U, V)
z =z (U, V)

&
1}

Finally we can plot the surface with the command

plt.plot_surface(x, y, z)

The complete code looks as follows.

# Plotting surface S

# Importing numpy, matplotlib and mplot3d
import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Generates figure object of size m x n
fig = plt.figure(figsize = (m,n))
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# Generates 3D axes
ax = plt.axes(projection = '3d')

# Shows axes grid
ax.grid(True)

# Generates coordinates u and v

# by dividing the interval (a,b) in n parts

# and the interval (c,d) in m parts

u = np.linspace(a, b, m)

v = np.linspace(c, d, n)

# Generates grid [U,V] from the coordinates u, v

U, V = np.meshgrid(u, v)

# Computes S given the functions x, y, z
# on the grid [U,V]

x = x(U,V)

y = y(U,V)

z = z(U,V)

# Plots the surface S
ax.plot_surface(x, y, z)

# Setting plot title
ax.set_title('The surface S')

# Setting axes labels

ax.set_xlabel('x', labelpad=10)
ax.set_ylabel('y', labelpad=10)
ax.set_zlabel('z', labelpad=10)

# Setting viewing angle
ax.view_init(elev = e, azim = a)

# Showing the plot
plt.show()

For example let us plot a cone described parametrically by:
x=ucos(v), y=usin(v), z=u

for u € (0,1) and v € (0, 27r). We adapt the above code:
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# Plotting a cone

# Importing numpy, matplotlib and mplot3d
import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Generates figure object of size 4 x 4
fig = plt.figure(figsize = (4,4))

# Generates 3D axes
ax = plt.axes(projection = '3d')

# Shows axes grid
ax.grid(True)

Generates coordinates u and v by dividing
the intervals (0,1) and (0,2pi) in 100 parts
= np.linspace(0, 1, 100)

= np.linspace(0, 2+*np.pi, 100)

< & = =

H

Generates grid [U,V] from the coordinates u, v
V = np.meshgrid(u, v)

=

Computes the surface on grid [U,V]
= U * np.cos(V)

= U * np.sin(V)

= U

N < MW o
|

# Plots the cone
ax.plot_surface(x, y, z)

# Setting plot title
ax.set_title('Plot of a cone')

# Setting axes labels

ax.set_xlabel('x', labelpad=10)
ax.set_ylabel('y', labelpad=10)
ax.set_zlabel('z', labelpad=10)

# Setting viewing angle
ax.view_init(elev = 25, azim = 45)

# Showing the plot
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plt.show()

Plot of a cone
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As discussed in Section A.1, we can have multiple plots in the same figure. For example let us plot
the torus viewed from 2 angles. The parametric equations are:

x = (R+rcos(u)) cos(v)
y = (R +r cos(u)) sin(v)
z = rsin(u)

for u, v € (0, 2r) and with

« R distance from the center of the tube to the center of the torus
« rradius of the tube

# Plotting torus seen from 2 angles

# Importing numpy, matplotlib and mplot3d
import numpy as np

import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure object of size 9 x 5
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fig = plt.figure(figsize = (9,5))

# Generates 2 sets of 3D axes
ax1l = fig.add_subplot(1l, 2, 1, projection = '3d")
ax2 fig.add_subplot(1, 2, 2, projection = '3d')

# Shows axes grid
ax1l.grid(True)
ax2.grid(True)

Generates coordinates u and v by dividing
the interval (0,2pi) in 100 parts

= np.linspace(0, 2+*np.pi, 100)

= np.linspace(0, 2+*np.pi, 100)

< £ #* =

=

Generates grid [U,V] from the coordinates u, v
V = np.meshgrid(u, v)

=

Computes the torus on grid [U,V]
with radii r = 1 and R = 2

R
1l
[\

ol

= (R +1r * np.cos(U)) * np.cos(V)
= (R + r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)

=

# Plots the torus on both axes

ax1l.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors
- = 'snow')

ax2.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray',k edgecolors
o> = 'snow')

# Setting plot titles
ax1l.set_title('Torus')
ax2.set_title('Torus from above')

# Setting range for z axis in axl
ax1l.set_zlim(-3,3)

# Setting viewing angles
axl.view_init(elev = 35, azim = 45)
ax2.view_init(elev = 90, azim = 0)
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# Showing the plot
plt.show()

Torus Torus from above

3-2-10 1 2 3.'@'@

Notice that we have added some customization to the plot_surface command. Namely, we have
set the color of the figure with color = 'dimgray' and of the edges with edgecolors = 'snow'.
Moreover the commands rstride and cstride set the number of wires you see in the plot. More
precisely, they set by how much the data in the mesh [U, V] is downsampled in each direction, where
rstride sets the row direction, and cstride sets the column direction. On the torus this is a bit difficult
to visualize, due to the fact that [U, V] represents angular coordinates. To appreciate the effect, we
can plot for example the paraboiloid

foru,v € [-1,1].
# Showing the effect of rstride and cstride

# Importing numpy, matplotlib and mplot3d
import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

# Generates figure object of size 6 x 6
fig = plt.figure(figsize = (6,6))
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# Generates 2 sets of 3D axes

ax1l = fig.add_subplot(2, 2, 1, projection = '3d")

ax2 = fig.add_subplot(2, 2, 2, projection = '3d'")

ax3 = fig.add_subplot(2, 2, 3, projection = '3d')

ax4 = fig.add_subplot(2, 2, 4, projection = '3d")

# Generates coordinates u and v by dividing

# the interval (-1,1) in 100 parts

u = np.linspace(-1, 1, 100)

v = np.linspace(-1, 1, 100)

# Generates grid [U,V] from the coordinates u, v

U, V = np.meshgrid(u, v)

# Computes the paraboloid on grid [U,V]

Xx =U

y =V

Z = - Ux%2 - V%2

# Plots the paraboloid on the 4 axes

# but with different stride settings

ax1l.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors
o> = 'snow')

ax2.plot_surface(x, y, z, rstride = 5, cstride = 20, color = 'dimgray',
-~ edgecolors = 'snow')

ax3.plot_surface(x, y, z, rstride = 20, cstride = 5, color = 'dimgray',
-~ edgecolors = 'snow')

ax4.plot_surface(x, y, z, rstride = 10, cstride = 10, color = 'dimgray',
-~ edgecolors = 'snow')

# Setting plot titles

axl.set_title('rstride = 5, cstride
ax2.set_title('rstride = 5, cstride
ax3.set_title('rstride = 20, cstride = 5')
ax4.set_title('rstride = 10, cstride = 10')

1] I
[NCRNE)]
o -
-~
~—

# We do not plot axes, to get cleaner pictures

axl.axis('off"')
ax2.axis('off"')
ax3.axis('off"')
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ax4.axis('off"')

# Showing the plot
plt.show()

rstride = 5, cstride = 5 rstride = 5, cstride = 20

rstride = 20, cstride =5 rstride = 10, cstride = 10

/’;’/,"";';’5
¥

V.

In this case our mesh is 100 x 100, since u and v both have 100 components. Therefore setting
rstride and cstride to 5 implies that each row and column of the mesh is sampled one time every
5 elements, for a total of

100/5 = 20

samples in each direction. This is why in the first picture you see a 20 x 20 grid. If instead one sets
rstride and cstride to 10, then each row and column of the mesh is sampled one time every 10
elements, for a total of
100/10 = 10
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samples in each direction. This is why in the fourth figure you see a 10x10 grid.

A.2.2. Plots with Plotly

As done in Section A.1.4, we now see how to use Plotly to generate an interactive 3D plot of a
surface. This can be done by means of functions contained in the Plot1ly module graph_objects,
usually imported as go. Specifically, we will use the function go. Surface. The code will look similar
to the one used to plot surfaces with matplotlib:

« generate meshgrid on which to compute the parametric surface,
« store such surface in the numpy array [x,y,z],
« pass the array [x,y,z] to go.Surface to produce the plot.

The full code is below.
# Plotting a Torus with Plotly

# Import "numpy" and the "graph objects" module from Plotly
import numpy as np
import plotly.graph_objects as go

Generates coordinates u and v by dividing
the interval (0,2pi) in 100 parts

= np.linspace(0, 2*np.pi, 100)

= np.linspace(0, 2+*np.pi, 100)

< £ = #

H

Generates grid [U,V] from the coordinates u, v

U, V = np.meshgrid(u, v)

# Computes the torus on grid [U,V]
# with radii r = 1 and R = 2

R = 2

r=1

x = (R+ r * np.cos(U)) * np.cos(V)
y = (R + 1 * np.cos(U)) * np.sin(V)

z = 1 * np.sin(U)

# Generate and empty figure object with Plotly
# and saves it to the variable called "fig"
fig = go.Figure()

# Plot the torus with go.Surface and store it
# in the variable "data". We also do now show the
# plot scale, and set the color map to "teal"
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data = go.Surface(
X=X,y =Y, ZzZ=2,
showscale = False,
colorscale="'teal'

)

# Add the plot stored in "data" to the figure "fig"
# This is done with the command add_trace
fig.add_trace(data)

# Set the title of the figure in "fig"
fig.update_layout(title_text="Plotting a Torus with Plotly")

# Show the figure
fig.show()

Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, see the
link to the digital version of these notes. To further customize your plots, you can check out the
documentation of go.Surface at this link. For example, note that we have set the colormap to teal:
for all the pretty colorscales available in Plotly, see this page.

One could go even fancier and use the tri-surf plots in Plotly. This is done with the function
create_trisurf contained in the module figure_factory of Plotly, usually imported as ff. The
documentation can be found here. We also need to import the Python library scipy, which we use
to generate a Delaunay triangulation for our plot. Let us for example plot the torus.

# Plotting Torus with tri-surf

# Importing libraries

import numpy as np

import plotly.figure factory as ff
from scipy.spatial import Delaunay

Generates coordinates u and v by dividing
the interval (0,2pi) in 100 parts

= np.linspace(0, 2+*np.pi, 20)

= np.linspace(0, 2*np.pi, 20)

< £ = #

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Collapse meshes to 1D array
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# This is needed for create_trisurf
U = U.flatten()

V = V.flatten()

# Computes the torus on grid [U,V]
# with radii r = 1 and R = 2

R =2

r=1

x = (R+ r * np.cos(U)) * np.cos(V)
y = (R + 1 * np.cos(U)) * np.sin(V)

z = 1 * np.sin(U)

# Generate Delaunay triangulation
points2D = np.vstack([U,V]).T

tri = Delaunay(points2D)
simplices = tri.simplices

# Plot the Torus

fig = ff.create_trisurf(
X=X, y=Yy, Z=2,
colormap = "Portland",
simplices=simplices,
title="Torus with tri-surf",
aspectratio=dict(x=1, y=1, z=0.3),
show_colorbar = False

)

# Adjust figure size
fig.update_layout(autosize = False, width = 700, height = 700)

# Show the figure
fig.show()

Unable to display output for mime type(s): text/html

Again, the above code generates an image that cannot be rendered in pdf. To see the output, see the
link to the digital version of these notes.
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