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Welcome

These are the Lecture Notes of Differential Geometry 661955 for T1 2023/24 at the University of Hull. We
will study curves and surfaces in ℝ3. I will follow these lecture notes during the course. If you have any
question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Up to date information about the course, Tutorials and Homework will be published on the University of Hull
Canvas Website

canvas.hull.ac.uk/courses/67594

and on the Course Webpage hosted on my website

silviofanzon.com/blog/2023/Differential-Geometry

Digital Notes

Digital version of these notes available at

silviofanzon.com/2023-Differential-Geometry-Notes

Readings

Main textbooks:

• Pressley [6] for differential geometry,
• Manetti [5] for general topology.

Other interesting readings are the books by do Carmo [2] and Abate, Tovena [1]. I will assume some knowl-
edge from Analysis and Linear Algebra. A good place to revise these topics are the books by Zorich [7, 8].
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Visualization

It is important to visualize the geometrical objects and concepts we are going to talk about in this course. I
will show basic Python code to plot curves and surfaces. This part of the course is not required for the final
examination. If you want to have fun plotting with Pyhton, I recommend installation through Anaconda or
Miniconda. The actual coding can then be done through Jupyter Notebook. Good references for scientific
Python programming are [3, 4].
If you do not want to mess around with Python, you can still visualize pretty much everything we will do in
this course using the excellent online 3D grapher tool CalcPlot3D. To understand how it works, please refer
to the help manual or to the short video introduction. Another nice tool is Desmos.

You are not expected to purchase any of the above books. These lecture notes will cover 100% of the
topics you are expected to known in order to excel in the final exam.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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https://c3d.libretexts.org/CalcPlot3D/index.html/
https://c3d.libretexts.org/CalcPlot3D/CalcPlot3D-Help/front.html
https://c3d.libretexts.org/CalcPlot3D/CalcPlot3D-Help/section-1.html
https://www.desmos.com


1 Curves

Curves are, intuitively speaking, 1D objects in the 2D or 3D space. For example in two dimensions one could
think of a straight line, a hyperbole or a circle. These can be all described by an equation in the 𝑥 and 𝑦
coordinates: respectively

𝑦 = 2𝑥 + 1 , 𝑦 = 𝑒𝑥 , 𝑥2 + 𝑦2 = 1 .
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Figure 1.1: Plotting straight line 𝑦 = 2𝑥 + 1

Goal

The aim of this course is to study curves by differentiating them.

Question

In what sense do we differentiate the above curves?
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Figure 1.2: Plot of hyperbole 𝑦 = 𝑒𝑥
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Figure 1.3: Plot of unit circle of equation 𝑥2 + 𝑦2 = 1
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It is clear that we need a way to mathematically describe the curves. One way of doing it is by means
of Cartesian equations. This means that the curve is described as the set of points (𝑥, 𝑦) ∈ ℝ2 where the
equation

𝑓 (𝑥, 𝑦) = 𝑐 ,
is satisfied, where

𝑓 ∶ ℝ2 → ℝ .
is some given function, and

𝑐 ∈ ℝ
some given value. In other words, the curve is identified with the subset of ℝ2 given by

𝐶 = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑓 (𝑥, 𝑦) = 𝑐} .
For example, in the case of the straight line, we would have

𝑓 (𝑥, 𝑦) = 𝑦 − 2𝑥 , 𝑐 = 1 .
while for the circle

𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 , 𝑐 = 1 .
But what about for example a helix in 3 dimensions? It would be more difficult to find an equation of the
form

𝑓 (𝑥, 𝑦 , 𝑧) = 0
to describe such object.

1.0
0.5

0.0
0.5

1.0 1.0
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Figure 1.4: Plot of a 3D Helix
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Problem

We need a unified way to describe curves.

1.1 Parametrized curves

Rather than Cartesian equations, a more useful way of thinking about curves is viewing them as the path
traced out by a moving point. If 𝛾𝛾𝛾 (𝑡) represents the position a point in ℝ𝑛 at time 𝑡 , the whole curve can be
identified by the function

𝛾𝛾𝛾 ∶ ℝ → ℝ𝑛 , 𝛾𝛾𝛾 = 𝛾𝛾𝛾 (𝑡) .

This motivates the following definition of parametrized curve, which will be our main definition of
curve.

Definition 1.1: Parametrized curve

A parametrized curve in ℝ𝑛 is a function

𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 .
where

−∞ ≤ 𝑎 < 𝑏 ≤ ∞ .

A few remarks:

• The symbol (𝑎, 𝑏) denotes an open interval

(𝑎, 𝑏) = {𝑡 ∈ ℝ ∶ 𝑎 < 𝑡 < 𝑏} .
• The requirement that

−∞ ≤ 𝑎 < 𝑏 ≤ ∞
means that the interval (𝑎, 𝑏) is possibly unbounded.

• For each 𝑡 ∈ (𝑎, 𝑏) the quantity 𝛾𝛾𝛾 (𝑡) is a vector in ℝ𝑛.
• The components of 𝛾𝛾𝛾 (𝑡) are denoted by

𝛾𝛾𝛾 (𝑡) = (𝛾1(𝑡), … , 𝛾𝑛(𝑡)) ,
where the components are functions

𝛾𝑖 ∶ (𝑎, 𝑏) → ℝ ,
for all 𝑖 = 1, … , 𝑛.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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1.2 Parametrizing Cartesian curves

At the start we said that examples of curves in ℝ2 were the straight line, the hyperbole and the circle, with
equations

𝑦 = 2𝑥 + 1 , 𝑦 = 𝑒𝑥 , 𝑥2 + 𝑦2 = 1 .
We saw that these can be represented by Cartesian equations

𝑓 (𝑥, 𝑦) = 𝑐
for some function 𝑓 ∶ ℝ2 → ℝ and value 𝑐 ∈ ℝ. Curves that can be represented in this way are called level
curves. Let us give a precise definition.

Definition 1.2: Level curve

A level curve in ℝ𝑛 is a set 𝐶 ⊂ ℝ𝑛 which can be described as

𝐶 = {(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ∶ 𝑓 (𝑥1, … , 𝑥𝑛) = 𝑐}
for some given function

𝑓 ∶ ℝ𝑛 → ℝ
and value

𝑐 ∈ ℝ .
We now want to represent level curves by means of parametrizations.

Definition 1.3

Suppose given a level curve 𝐶 ⊂ ℝ𝑛. We say that a curve

𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛

parametrizes 𝐶 if
𝐶 = {(𝛾1(𝑡), … , 𝛾𝑛(𝑡)) ∶ 𝑡 ∈ (𝑎, 𝑏)} .

Question

Can we represent the level curves we saw above by means of a parametrization 𝛾𝛾𝛾?

The answer is YES, as shown in the following examples.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Example 1.4: Parametrizing the straight line

The straight line
𝑦 = 2𝑥 + 1

is a level curve with
𝐶 = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑓 (𝑥, 𝑦) = 𝑐} ,

where
𝑓 (𝑥, 𝑦) ∶= 𝑦 − 2𝑥 , 𝑐 ∶= 1 .

How do we represent 𝐶 as a parametrized curve 𝛾𝛾𝛾? We know that the curve is 2D, therefore we need
to find a function

𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ2
with componenets

𝛾𝛾𝛾 (𝑡) = (𝛾1(𝑡), 𝛾2(𝑡)) .
The curve 𝛾𝛾𝛾 needs to be chosen so that it parametrizes the set 𝐶 , in the sense that

𝐶 = {(𝛾1(𝑡), 𝛾2(𝑡)) ∶ 𝑡 ∈ (𝑎, 𝑏)} . (1.1)

Thus we need to have
(𝑥, 𝑦) = (𝛾1, 𝛾2) . (1.2)

How do we define such 𝛾𝛾𝛾? Note that the points (𝑥, 𝑦) in 𝐶 satisfy

(𝑥, 𝑦) ∈ 𝐶 ⟺ 𝑦 = 2𝑥 + 1 .
Therefore, using (1.2), we have that

𝛾1 = 𝑥 , 𝛾2 = 𝑦 = 2𝑥 + 1
from which we deduce that 𝛾𝛾𝛾 must satisfy

𝛾2(𝑡) = 2𝛾1(𝑡) + 1 (1.3)

for all 𝑡 ∈ (𝑎, 𝑏). We can then choose
𝛾1(𝑡) ∶= 𝑡 ,

and from (1.3) we deduce that
𝛾2(𝑡) = 2𝑡 + 1 .

This choice of 𝛾𝛾𝛾 works:

𝐶 = {(𝑥, 2𝑥 + 1) ∶ 𝑥 ∈ ℝ} (1.4)
= {(𝑡, 2𝑡 + 1) ∶ − ∞ < 𝑡 < ∞} (1.5)
= {(𝛾1(𝑡), 𝛾2(𝑡)) ∶ − ∞ < 𝑡 < ∞} , (1.6)

where in the second line we just swapped the symbol 𝑥 with the symbol 𝑡 . In this case we have to choose
the time interval as

(𝑎, 𝑏) = (−∞,∞) .
In this way 𝛾𝛾𝛾 satisfies (1.1) and we have successfully parametrized the straight line 𝐶 .

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 13

Remark 1.5: Parametrization is not unique

Let us consider again the straight line

𝐶 = {(𝑥, 𝑦) ∈ ℝ2 ∶ 2𝑥 + 1 = 𝑦} .
We saw that 𝛾𝛾𝛾 ∶ (−∞,∞) → ℝ2 defined by

𝛾𝛾𝛾 (𝑡) ∶= (𝑡, 2𝑡 + 1)
is a parametrization of 𝐶 . But of course any 𝛾𝛾𝛾 satisfying

𝛾2(𝑡) = 2𝛾1(𝑡) + 1
would yield a parametrization of 𝐶 . For example one could choose

𝛾1(𝑡) = 2𝑡 , 𝛾2(𝑡) = 2𝛾1(𝑡) + 1 = 4𝑡 + 1 .
In general, any time rescaling would work: the curve 𝛾𝛾𝛾 defined by

𝛾1(𝑡) = 𝑛𝑡 , 𝛾2(𝑡) = 2𝛾1(𝑡) + 1 = 2𝑛𝑡 + 1
parametrizes 𝐶 for all 𝑛 ∈ ℕ. Hence there are infinitely many parametrizations of 𝐶 .

Example 1.6: Parametrizing the circle

The circle 𝐶 is described by all the points (𝑥, 𝑦) ∈ ℝ2 such that

𝑥2 + 𝑦2 = 1 .
Therefore if we want to find a curve

𝛾𝛾𝛾 = (𝛾1, 𝛾2)
which parametrizes 𝐶 , this has to satisfy

𝛾1(𝑡)2 + 𝛾2(𝑡)2 = 1 (1.7)

for all 𝑡 ∈ (𝑎, 𝑏).
How to find such curve? We could proceed as in the previous example, and set

𝛾1(𝑡) ∶= 𝑡 .
Then (1.7) implies

𝛾2(𝑡) = √1 − 𝑡2 ,
from which we also deduce that

−1 ≤ 𝑡 ≤ 1
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are the only admissible values of 𝑡 . However this curve does not represent the full circle 𝐶 , but only the
upper half, as seen in the plot below.
Simlarly, another solution to (1.7) would be 𝛾𝛾𝛾 with

𝛾1(𝑡) = 𝑡 , 𝛾2(𝑡) = −√1 − 𝑡2 ,
for 𝑡 ∈ [−1, 1]. However this choice does not parametrize the full circle 𝐶 either, but only the bottom half,
as seen in the plot below.
How to represent the whole circle? Recall the trigonometric identity

cos(𝑡)2 + sin(𝑡)2 = 1
for all 𝑡 ∈ ℝ. This suggests to choose 𝛾𝛾𝛾 as

𝛾1(𝑡) ∶= cos(𝑡) , 𝛾2(𝑡) ∶= sin(𝑡)
for 𝑡 ∈ [0, 2𝜋). This way 𝛾𝛾𝛾 satisfies (1.7), and actually parametrizes 𝐶 , as shown below.
Note the following:

• If we had chosen 𝑡 ∈ [0, 4𝜋] then 𝛾𝛾𝛾 would have covered 𝐶 twice.
• If we had chosen 𝑡 ∈ [0, 𝜋], then 𝛾𝛾𝛾 would have covered the upper semi-circle
• If we had chosen 𝑡 ∈ [𝜋, 2𝜋], then 𝛾𝛾𝛾 would have covered the lower semi-circle
• Similarly, we can choose 𝑡 ∈ [𝜋/6, 𝜋/2] to cover just a portion of 𝐶 , as shown below.

1.0 0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

Figure 1.5: Upper semi-circle

Finally we are also able to give a mathematical description of the 3D Helix.
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Figure 1.6: Lower semi-circle
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Figure 1.7: Lower semi-circle
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Figure 1.8: Plotting a portion of 𝐶

Example 1.7: Parametrizing the helix

The Helix plotted above can be parametrized by

𝛾𝛾𝛾 ∶ (−∞,∞) → ℝ3

defined by
𝛾1(𝑡) = cos(𝑡) , 𝛾2(𝑡) = sin(𝑡) , 𝛾3(𝑡) = 𝑡 .

The above equations are in line with our intuition: the helix can be drawn by tracing a circle while at the
same time lifting the pencil.

1.3 Smooth curves

Let us recall the definition of parametrized curve.

Definition 1.8: Parametrized curve

A parametrized curve in ℝ𝑛 is a function

𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 .
where
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(𝑎, 𝑏) = {𝑡 ∈ ℝ ∶ 𝑎 < 𝑡 < 𝑏} ,
with

−∞ ≤ 𝑎 < 𝑏 ≤ ∞ .
The components of 𝛾𝛾𝛾 (𝑡) ∈ ℝ𝑛 are denoted by

𝛾𝛾𝛾 (𝑡) = (𝛾1(𝑡), … , 𝛾𝑛(𝑡)) ,
where the components are functions

𝛾𝑖 ∶ (𝑎, 𝑏) → ℝ ,
for all 𝑖 = 1, … , 𝑛.

As we already mentioned, the aim of the course is to study curves by differentiating them. Let us see what
that means for curves.

Definition 1.9: Smooth functions

A scalar function 𝑓 ∶ (𝑎, 𝑏) → ℝ is called smooth if the derivative

𝑑𝑛𝑓
𝑑𝑡𝑛

exists for all 𝑛 ≥ 1 and 𝑡 ∈ (𝑎, 𝑏).

We will denote the first and second derivatives of 𝑓 as follows:

̇𝑓 ∶= 𝑑𝑓
𝑑𝑡 ,

̈𝑓 ∶= 𝑑2𝑓
𝑑𝑡2 .

Example 1.10

The function 𝑓 (𝑥) = 𝑥4 is smooth, with

𝑑𝑓
𝑑𝑡 = 4𝑥3, 𝑑2𝑓

𝑑𝑡2 = 12𝑥2 ,
𝑑3𝑓
𝑑𝑡3 = 24𝑥, 𝑑4𝑓

𝑑𝑡4 = 24 ,
𝑑𝑛𝑓
𝑑𝑡𝑛 = 0 for all 𝑛 ≥ 5 .

Other examples smooth functions are polynomials, as well as

𝑓 (𝑡) = cos(𝑡), 𝑓 (𝑡) = sin(𝑡) , 𝑓 (𝑡) = 𝑒𝑡 .
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Definition 1.11

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 with
𝛾𝛾𝛾 (𝑡) = (𝛾𝛾𝛾 1(𝑡), … , 𝛾𝛾𝛾 𝑛(𝑡))

be a parametrized curve. We say that 𝛾𝛾𝛾 is smooth if the components

𝛾𝛾𝛾 𝑖 ∶ (𝑎, 𝑏) → ℝ
are smooth for all 𝑖 = 1, … , 𝑛. The derivatives of 𝛾𝛾𝛾 are

𝑑𝑘𝛾𝛾𝛾
𝑑𝑡𝑘 ∶= (𝑑

𝑘𝛾1
𝑑𝑡𝑘 , … , 𝑑

𝑘𝛾𝑛
𝑑𝑡𝑘 )

for all 𝑘 ∈ ℕ. As a shorthand, we will denote the first derivative of 𝛾𝛾𝛾 as

̇𝛾𝛾𝛾 ∶= 𝑑𝛾𝛾𝛾
𝑑𝑡 = (𝑑𝛾1𝑑𝑡 , … , 𝑑𝛾𝑛𝑑𝑡 )

and the second by

̈𝛾𝛾𝛾 ∶= 𝑑2𝛾𝛾𝛾
𝑑𝑡2 = (𝑑

2𝛾1
𝑑𝑡2 , … , 𝑑

2𝛾𝑛
𝑑𝑡2 ) .

In Figure 1.9 we skectch a smooth and a non-smooth curve. Notice that the curve on the right is smooth,
except for the point 𝑥 .
We will work under the following assumption.

Assumption

All the parametrized curves in this lecture notes are assumed to be smooth.

Example 1.12

The circle
𝛾𝛾𝛾 (𝑡) = (cos(𝑡), sin(𝑡))

is a smooth parametrized curve, since both cos(𝑡) and sin(𝑡) are smooth functions. We have

̇𝛾𝛾𝛾 = (− sin(𝑡), cos(𝑡)) .
For example the derivative of 𝛾𝛾𝛾 at the point (0, 1) is given by

̇𝛾𝛾𝛾 (𝜋/2) = (− sin(𝜋/2), cos(𝜋/2)) = (−1, 0) .
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Figure 1.9: Example of smooth and non-smooth curves

The plot of the circle and the derivative vector at (−1, 0) can be seen in Figure 1.10.

1.4 Tangent vectors

Looking at Figure 1.10, it seems like the vector

̇𝛾𝛾𝛾 (𝜋/2) = (−1, 0)
is tangent to the circle at the point

𝛾𝛾𝛾 (𝜋/2) = (0, 1) .
Is this a coincidence? Not that all. Let us look at the definition of derivative at a point:

̇𝛾𝛾𝛾 (𝑡) ∶= lim𝛿→0
𝛾𝛾𝛾 (𝑡 + 𝛿) − 𝛾𝛾𝛾 (𝑡)

𝛿 .

If we just look at the quantity
𝛾𝛾𝛾 (𝑡 + 𝛿) − 𝛾𝛾𝛾 (𝑡)

𝛿
for non-negative 𝛿 , we see that this vector is parallel to the chord joining 𝛾𝛾𝛾 (𝑡) to 𝛾𝛾𝛾 (𝑡+𝛿), as shown in Figure 1.11
below. As 𝛿 → 0, the length of the chord tends to zero. However the direction of the chord becomes parallel

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Figure 1.10: Plot of Circle and Tangent Vector at (0, 1)
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to that of the tangent vector of the curve 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡). Since
𝛾𝛾𝛾 (𝑡 + 𝛿) − 𝛾𝛾𝛾 (𝑡)

𝛿 → ̇𝛾𝛾𝛾 (𝑡)
as 𝛿 → 0, we see that ̇𝛾𝛾𝛾 (𝑡) is parallel to the tangent of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡), as showin in Figure 1.11.

Figure 1.11: Approximating the tangent vector

The above remark motivates the following definition.

Definition 1.13: Tangent vector

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a parametrized curve. The tangent vector to 𝛾𝛾𝛾 at the point 𝛾𝛾𝛾 (𝑡) is defined as

𝜏 ∶= ̇𝛾𝛾𝛾 (𝑡) .

Example 1.14: Tangent vector to helix

The helix is described by the parametric curve

𝛾𝛾𝛾 ∶ ℝ → ℝ3

with
𝛾𝛾𝛾 1(𝑡) = cos(𝑡) , 𝛾𝛾𝛾 2(𝑡) = sin(𝑡) , 𝛾𝛾𝛾 3(𝑡) = 𝑡.
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This is plotted in Figure 1.12 below. The tangent vector at point 𝛾𝛾𝛾 (𝑡) is given by

̇𝛾𝛾𝛾 (𝑡) = (− sin(𝑡), cos(𝑡), 1) .
For example in Figure 1.12 we plot the tangent vector at time 𝑡 = 𝜋/2, that is,

̇𝛾𝛾𝛾 (𝜋/2) = (−1, 0, 𝜋/2) .
The above looks very similar to the tangent vector to the circle. Except that there is a 𝑧 component, and
that component is constant and equal to 1. Intuitively this means that the helix is lifting from the plane
𝑥𝑦 with constant speed with respect to the 𝑧-axis. We will soon give a name to this concept.

1.0
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0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

6
4
2

0
2
4
6

Figure 1.12: Plot of Helix with tangent vector

Remark 1.15: Avoiding potential ambiguities

Sometimes it will happen that a curve self intersects, meaning that there are two time instants 𝑡1 and 𝑡2
and a point 𝑝 ∈ ℝ𝑛 such that

𝑝 = 𝛾𝛾𝛾 (𝑡1) = 𝛾𝛾𝛾 (𝑡2) .
In this case there is ambiguity in talking about the tangent vector at the point 𝑝: in principle there are
two tangent vectors ̇𝛾𝛾𝛾 (𝑡1) and ̇𝛾𝛾𝛾 (𝑡2), and it could happen that

̇𝛾𝛾𝛾 (𝑡1) ≠ ̇𝛾𝛾𝛾 (𝑡1) .
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Thus the concept of tangent at 𝑝 is not well-defined. We need then to be more precise and talk about
tangent at a certain time-step 𝑡 , rather than at some point 𝑝. We however do not amend Definition 1.13,
but you should keep this potential ambiguity in mind.

Example 1.16: The Lemniscate, a self intersecting curve

For example consider 𝛾𝛾𝛾 ∶ [0, 2𝜋] → ℝ2 defined as

𝛾𝛾𝛾 1(𝑡) = sin(𝑡) , 𝛾𝛾𝛾 2(𝑡) = sin(𝑡) cos(𝑡) .
Such curve is called Lemniscate, see Wikipedia page, and is plotted in Figure 1.13 below. The orgin (0, 0)
is a point of self-intersection, meaning that

𝛾𝛾𝛾 (0) = 𝛾𝛾𝛾 (𝜋) = (0, 0) .
The tangent vector at point 𝛾𝛾𝛾 (𝑡) is given by

̇𝛾𝛾𝛾 (𝑡) = (cos(𝑡), cos2(𝑡) − sin2(𝑡))
and therefore we have two tangents at (0, 0), that is,

𝜏1 = ̇𝛾𝛾𝛾 (0) = (1, 1) , 𝜏2 = ̇𝛾𝛾𝛾 (𝜋) = (−1, 1) .

1.5 Length of curves

For a vector 𝑣 ∈ ℝ𝑛 with components
𝑣 = (𝑣1, … , 𝑣𝑛),

its length is defined by

‖𝑣‖ ∶=
√

𝑛
∑
𝑖=1

𝑣2𝑖 .

The above is just an extension of the Pythagoras theorem to ℝ𝑛, and the length of 𝑣 is computed from the
origin.

If we have a second vector 𝑢 ∈ ℝ𝑛, then the quantity

‖𝑢 − 𝑣‖ ∶=
√

𝑛
∑
𝑖=1

(𝑢𝑖 − 𝑣𝑖)2

measures the length of the difference between 𝑢 and 𝑣 .
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Figure 1.13: The Lemniscate curve
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Figure 1.14: Interpretation of ‖𝑣‖ in ℝ2

Figure 1.15: Interpretation of ‖𝑢 − 𝑣‖ in ℝ2
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We would like to define the concept of length of a curve. Intuitively, one could proceed by approximation
as in the figure below.

Figure 1.16: Approximating the length of 𝛾𝛾𝛾

In formulae, this means choosing some time instants

𝑡0, … , 𝑡𝑚 ∈ (𝑎, 𝑏) .
The length of the segment connecting 𝛾𝛾𝛾 (𝑡𝑖−1) to 𝛾𝛾𝛾 (𝑡𝑖) is given by

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ .
Thus

𝐿(𝛾𝛾𝛾 ) ≈
𝑚
∑
𝑖=1

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ . (1.8)

Intuitively, if we increase the number of points 𝑡𝑖, the quantity on the RHS of (1.8) should approximate 𝐿(𝛾𝛾𝛾 )
better and better. Let us make this precise.

Definition 1.17: Partition

Let (𝑎, 𝑏) be an interval. A partition 𝒫 of [𝑎, 𝑏] is a vector of time instants

𝒫 = (𝑡0, … , 𝑡𝑘) ∈ [𝑎, 𝑏]𝑚+1
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with
𝑡0 = 𝑎 < 𝑡1 < … < 𝑡𝑚−1 < 𝑡𝑚 = 𝑏 .

If 𝒫 is a partition of [𝑎, 𝑏], we define its maximum length as

‖𝒫 ‖ ∶= max1≤𝑖≤𝑚 |𝑡𝑖 − 𝑡𝑖−1| .

Note that ‖𝒫 ‖ measures how fine the partition 𝒫 is.

Definition 1.18: Length of approximating polygonal curve

Suppose 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 is a parametrized curve and 𝒫 a partition of [𝑎, 𝑏]. We define the length of the
polygonal curve connecting the points

𝛾𝛾𝛾 (𝑡0) , 𝛾𝛾𝛾 (𝑡1) , … , 𝛾𝛾𝛾 (𝑡𝑚)
as

𝐿(𝛾𝛾𝛾 , 𝒫 ) ∶=
𝑚
∑
𝑖=1

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ .

If ‖𝒫 ‖ becomes smaller and smaller, that is, the partition 𝒫 is finer and finer, it is reasonable to say that

𝐿(𝛾𝛾𝛾 , 𝒫 )
is approximating the length of 𝛾𝛾𝛾 . We take this as definition of length.

Definition 1.19: Rectifiable curve and length

Suppose 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 is a parametrized curve. We say that 𝛾𝛾𝛾 is rectifiable if the limit

𝐿(𝛾𝛾𝛾 ) = lim
‖𝑃‖→0

𝐿(𝛾𝛾𝛾 , 𝒫 )

exists finite. In such case we call 𝐿(𝛾𝛾𝛾 ) the length of 𝛾𝛾𝛾 .

This definition definitely corresponds to our geometrical intuition of length of a curve.

Question 1.20

How do we use such definition in practice to compute the length of a given curve 𝛾𝛾𝛾?
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Thankfully, when 𝛾𝛾𝛾 is smooth, the length 𝐿(𝛾𝛾𝛾 ) can be characterized in terms of ̇𝛾𝛾𝛾 . Indeed, when 𝛿 is small,
then the quantity

‖𝛾𝛾𝛾 (𝑡 + 𝛿) − 𝛾𝛾𝛾 (𝑡)‖
is approximating the length of 𝛾𝛾𝛾 between 𝛾𝛾𝛾 (𝑡) and 𝛾𝛾𝛾 (𝑡 + 𝛿). Multiplying and dividing by 𝛿 we obtain

‖𝛾𝛾𝛾 (𝑡 + 𝛿) − 𝛾𝛾𝛾 (𝑡)‖
𝛿 𝛿

which for small 𝛿 is close to
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝛿 .

We can now divide the time interval (𝑎, 𝑏) in steps 𝑡0, … , 𝑡𝑚 with |𝑡𝑖 − 𝑡𝑖−1| < 𝛿 and obtain

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ =
‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖

|𝑡𝑖 − 𝑡𝑖−1|
|𝑡𝑖 − 𝑡𝑖−1|

≈ ‖ ̇𝛾𝛾𝛾 (𝑡𝑖)‖ 𝛿
since 𝛿 is small. Therefore

𝐿(𝛾𝛾𝛾 ) ≈
𝑚
∑
𝑖=1

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ ≈
𝑚
∑
𝑖=1

‖ ̇𝛾𝛾𝛾 (𝑡𝑖)‖ 𝛿 .

The RHS is a Riemann sum, therefore

𝐿(𝛾𝛾𝛾 ) ≈ ∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 .

The above argument can be made rigorous, as we see in the next theorem.

Theorem 1.21: Characterizing the length of 𝛾𝛾𝛾
Assume 𝛾𝛾𝛾 ∶ [𝑎, 𝑏] → ℝ𝑛 is a parametrized curve, with [𝑎, 𝑏] bounded. Then 𝛾𝛾𝛾 is rectifiable and

𝐿(𝛾𝛾𝛾 ) = ∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 . (1.9)

Proof

Step 1. The integral in (1.9) is bounded.
Since 𝛾𝛾𝛾 is smooth, in particular ̇𝛾𝛾𝛾 is continuous. Since [𝑎, 𝑏] is bounded, then ̇𝛾𝛾𝛾 is bounded, that is

sup
𝑡∈[𝑎,𝑏]

‖ ̇𝛾𝛾𝛾 (𝑡)‖ ≤ 𝐶

for some constant 𝐶 ≥ 0. Therefore

∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 ≤ 𝐶(𝑏 − 𝑎) < ∞ .
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Figure 1.17: Approximating 𝐿(𝛾𝛾𝛾 ) via ̇𝛾𝛾𝛾

Step 2. Writing (1.9) as limit.
Recalling that

𝐿(𝛾𝛾𝛾 ) = lim
‖𝒫 ‖→0

𝐿(𝛾𝛾𝛾 , 𝒫 ) ,

whenever the limit is finite, in order to show (1.9) we then need to prove

𝐿(𝛾𝛾𝛾 , 𝒫 ) → ∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡

as ‖𝒫 ‖ → 0. Showing the above means proving that: for every 𝜀 > 0 there exists a 𝛿 > 0 such that, if 𝒫
is a partition of [𝑎, 𝑏] such that ‖𝒫 ‖ < 𝛿 , then

|∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 − 𝐿(𝛾𝛾𝛾 , 𝒫 )| < 𝜀 . (1.10)

Step 3. First estimate in (1.10).
This first estimate is easy, and only relies on the Fundamental Theorem of Calculus. To be more precise,

we will show that each polygonal has shorter length than ∫𝑏𝑎 ‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 . To this end, take an arbitrary
partition 𝒫 = (𝑡0, … , 𝑡𝑚) of [𝑎, 𝑏]. Then for each 𝑖 = 1, … , 𝑚 we have

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ = ‖∫
𝑡𝑖

𝑡𝑖−1
̇𝛾𝛾𝛾 (𝑡) 𝑑𝑡‖ ≤ ∫

𝑡𝑖

𝑡𝑖−1
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡
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where we used the Fundamental Theorem of calculus, and usual integral properties. Therefore by defi-
nition

𝐿(𝛾𝛾𝛾 , 𝒫 ) =
𝑚
∑
𝑖=1

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖

≤
𝑚
∑
𝑖=1

∫
𝑡𝑖

𝑡𝑖−1
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡

= ∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 .

We have then shown

𝐿(𝛾𝛾𝛾 , 𝒫 ) ≤ ∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 (1.11)

for all partitions 𝒫 .
Step 4. Second estimate in (1.10).
The second estimate is more delicate. We need to carefully construct a polygonal so that its length is

close to ∫𝑏𝑎 ‖ ̇𝛾𝛾𝛾 ‖ 𝑑𝑡 . This will be possible by uniform continuity of ̇𝛾𝛾𝛾 . Indeed, note that ̇𝛾𝛾𝛾 is continuous on
the compact set [𝑎, 𝑏]. Therefore it is uniformly continuous by the Heine-Borel Theorem. Fix 𝜀 > 0. By
uniform continuity of ̇𝛾𝛾𝛾 there exists 𝛿 > 0 such that

|𝑡 − 𝑠| < 𝛿 ⟹ ‖ ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)‖ < 𝜀
𝑏 − 𝑎 . (1.12)

for all 𝑡 , 𝑠 ∈ [𝑎, 𝑏]. Let 𝒫 = (𝑡0, … , 𝑡𝑚) be a partition of [𝑎, 𝑏] with ‖𝒫 ‖ < 𝛿 . Recall that
‖𝒫 ‖ = max𝑖=1,…,𝑚 |𝑡𝑖 − 𝑡𝑖−1| .

Therefore the condition ‖𝒫 ‖ < 𝛿 implies
|𝑡𝑖 − 𝑡𝑖−1| < 𝛿 (1.13)

for each 𝑖 = 1, … , 𝑚. For all 𝑖 = 1, … , 𝑚 and 𝑠 ∈ [𝑡𝑖−1, 𝑡𝑖] we have

𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1) = ∫
𝑡𝑖

𝑡𝑖−1
̇𝛾𝛾𝛾 (𝑡) 𝑑𝑡

= ∫
𝑡𝑖

𝑡𝑖−1
̇𝛾𝛾𝛾 (𝑠) + ( ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)) 𝑑𝑡

= (𝑡𝑖 − 𝑡𝑖−1) ̇𝛾𝛾𝛾 (𝑠) + ∫
𝑡𝑖

𝑡𝑖−1
( ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)) 𝑑𝑡

Therefore

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ = ‖(𝑡𝑖 − 𝑡𝑖−1) ̇𝛾𝛾𝛾 (𝑠) + ∫
𝑡𝑖

𝑡𝑖−1
( ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)) 𝑑𝑡‖ (1.14)
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We can now use the reverse triangle inequality

|‖𝑥‖ − ‖𝑦‖ | ≤ ‖𝑥 − 𝑦‖ ,
for all 𝑥, 𝑦 ∈ ℝ𝑛, which implies

‖𝑥 + 𝑦‖ = ‖𝑥 − (−𝑦)‖ ≥ ‖𝑥‖ − ‖𝑦‖
for all 𝑥, 𝑦 ∈ ℝ𝑛. Applying the above to (1.14) we get

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ ≥ (𝑡𝑖 − 𝑡𝑖−1) ‖ ̇𝛾𝛾𝛾 (𝑠)‖ − ‖∫
𝑡𝑖

𝑡𝑖−1
( ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)) 𝑑𝑡‖ (1.15)

By standard properties of integral we also have

‖∫
𝑡𝑖

𝑡𝑖−1
( ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)) 𝑑𝑡‖ ≤ ∫

𝑡𝑖

𝑡𝑖−1
‖ ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)‖ 𝑑𝑡 ,

so that (1.15) implies

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ ≥ (𝑡𝑖 − 𝑡𝑖−1) ‖ ̇𝛾𝛾𝛾 (𝑠)‖ − ∫
𝑡𝑖

𝑡𝑖−1
‖ ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)‖ 𝑑𝑡 . (1.16)

Since 𝑡 , 𝑠 ∈ [𝑡𝑖−1, 𝑡𝑖], then
|𝑡 − 𝑠| ≤ |𝑡𝑖 − 𝑡𝑖−1| < 𝛿

where the last inequality follows by (1.13). Thus by uniform continuity (1.12) we get

‖ ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)‖ < 𝜀
𝑏 − 𝑎 .

We can therefore further estimate (1.16) and obtain

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ ≥ (𝑡𝑖 − 𝑡𝑖−1) ‖ ̇𝛾𝛾𝛾 (𝑠)‖ − ∫
𝑡𝑖

𝑡𝑖−1
‖ ̇𝛾𝛾𝛾 (𝑡) − ̇𝛾𝛾𝛾 (𝑠)‖ 𝑑𝑡

≥ (𝑡𝑖 − 𝑡𝑖−1) ‖ ̇𝛾𝛾𝛾 (𝑠)‖ − (𝑡𝑖 − 𝑡𝑖−1) 𝜀
𝑏 − 𝑎 𝑑𝑡 .

Dividing the above by 𝑡𝑖 − 𝑡𝑖−1 we get

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖
𝑡𝑖 − 𝑡𝑖−1

≥ ‖ ̇𝛾𝛾𝛾 (𝑠)‖ − 𝜀
𝑏 − 𝑎 .

Integrating the above over 𝑠 in the interval [𝑡𝑖−1, 𝑡𝑖] we get

‖𝛾𝛾𝛾 (𝑡𝑖) − 𝛾𝛾𝛾 (𝑡𝑖−1)‖ ≥ ∫
𝑡𝑖

𝑡𝑖−1
‖ ̇𝛾𝛾𝛾 (𝑠)‖ 𝑑𝑠 − 𝜀

𝑏 − 𝑎 (𝑡𝑖 − 𝑡𝑖−1) .
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Summing over 𝑖 = 1, … , 𝑚 we get

𝐿(𝒫 , 𝛾𝛾𝛾 ) ≥ ∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑠)‖ 𝑑𝑠 − 𝜀 (1.17)

since 𝑚
∑
𝑖=1

(𝑡𝑖 − 𝑡𝑖−1) = 𝑡𝑚 − 𝑡0 = 𝑏 − 𝑎 .

Conclusion.
Putting together (1.11) and (1.17) we get

∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑠)‖ 𝑑𝑠 − 𝜀 ≤ 𝐿(𝒫 , 𝛾𝛾𝛾 ) ≤ ∫

𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑠)‖ 𝑑𝑠

which implies (1.10), concluding the proof.

Thanks to the above theorem we have now a way to compute 𝐿(𝛾𝛾𝛾 ). Let us check that we have given a
meaningful definition of length by computing 𝐿(𝛾𝛾𝛾 ) on known examples.

Example 1.22: Length of Circle

The circle of radius 𝑅 is parametrized by 𝛾𝛾𝛾 ∶ [0, 2𝜋] → ℝ2 defined by

𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡)) .
Then

̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡))
and

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √ ̇𝛾 21 (𝑡) + ̇𝛾 22 (𝑡)
= 𝑅√sin2(𝑡) + cos2(𝑡) = 𝑅 .

Therefore

𝐿(𝛾𝛾𝛾 ) = ∫
2𝜋

0
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 = ∫

2𝜋

0
𝑅 𝑑𝑡 = 2𝜋𝑅

as expected.
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Example 1.23: Length of helix

Let us consider one full turn of the Helix of radius 𝑅 and rise 𝐻 . This is parametrized by

𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 𝐻 𝑡)
for 𝑡 ∈ [0, 2𝜋]. Then

̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡), 𝐻) ,
and

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √ ̇𝛾 21 + ̇𝛾 22 + ̇𝛾 23
= √𝑅2 sin2(𝑡) + 𝑅2 cos2(𝑡) + 𝐻 2 = √𝑅2 + 𝐻 2 .

Therefore

𝐿(𝛾𝛾𝛾 ) = ∫
2𝜋

0
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 = 2𝜋√𝑅2 + 𝐻 2 .

1.6 Arc-length

We have just shown in Theorem 1.21 that the length of a regular curve 𝛾𝛾𝛾 ∶ [𝑎, 𝑏] → ℝ𝑛 with [𝑎, 𝑏] bounded is
given by

𝐿(𝛾𝛾𝛾 ) = ∫
𝑏

𝑎
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 .

Using this formula, we introduce the notion of length of a portion of 𝛾𝛾𝛾 .

Definition 1.24: Arc-length

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a curve, with (𝑎, 𝑏) possibly unbounded. We define the arc-length of 𝛾𝛾𝛾 starting at
the point 𝛾𝛾𝛾 (𝑡0) as the function 𝑠 ∶ ℝ → ℝ defined by

𝑠(𝑡) ∶= ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 .

Remark 1.25

A few remarks:

• Arc-length is well-defined
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Figure 1.18: Arc-length of 𝛾𝛾𝛾 starting at 𝛾𝛾𝛾 (𝑡0)

Indeed, 𝛾𝛾𝛾 is smooth, and so ̇𝛾𝛾𝛾 is continuous. WLOG assume 𝑡 ≥ 𝑡0. Then

𝑠(𝑡) = ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 ≤ (𝑡 − 𝑡0) max

𝜏∈[𝑡0,𝑡]
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ < ∞ .

• We always have
𝑠(𝑡0) = 0 .

• We have
𝑡 > 𝑡0 ⟹ 𝑠(𝑡) ≥ 0

and
𝑡 < 𝑡0 ⟹ 𝑠(𝑡) ≤ 0 .

• Choosing a different starting point changes the arc-length by a constant:

For example define ̃𝑠 as the arc-length starting from ̃𝑡0

̃𝑠(𝑡) ∶= ∫
𝑡

̃𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 .
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Then by the properties of integral

𝑠(𝑡) = ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏

= ∫
̃𝑡0

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 + ∫

𝑡

̃𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏

= ∫
̃𝑡0

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 + ̃𝑠(𝑡) .

Hence
𝑠 = 𝑐 + ̃𝑠

with

𝑐 ∶= ∫
̃𝑡0

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 .

Note that 𝑐 is the arc-length of 𝛾𝛾𝛾 between the starting points 𝛾𝛾𝛾 (𝑡0) and 𝛾𝛾𝛾 ( ̃𝑡0).
• The arc-length is a differentiable function, with

̇𝑠(𝑡) = 𝑑
𝑑𝑡 ∫

𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 = ‖ ̇𝛾𝛾𝛾 (𝑡)‖ .

Since ̇𝛾𝛾𝛾 is continuous, the above follows by the Fundamental Theorem of Calculus.

Example 1.26: Circle

The circle of radius 𝑅 is parametrized by 𝛾𝛾𝛾 ∶ [0, 2𝜋] → ℝ2 defined by

𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡)) .
Then

̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡)) , ‖ ̇𝛾𝛾𝛾 (𝑡)‖ = 𝑅 .
Therefore, for any fixed 𝑡0 ∈ [0, 2𝜋] we have

𝑠(𝑡) = ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 = ∫

𝑡

𝑡0
𝑅 𝑑𝜏 = (𝑡 − 𝑡0)𝑅 .

In particular we see that ̇𝑠 = 𝑅 is constant.
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Example 1.27: Logarithmic spiral

The Logarithmic spiral is defined by 𝛾𝛾𝛾 ∶ [0, 2𝜋] → ℝ2 with

𝛾𝛾𝛾 (𝑡) = (𝑒𝑘𝑡 cos(𝑡), 𝑒𝑘𝑡 sin(𝑡)) ,
where 𝑘 ∈ ℝ, 𝑘 ≠ 0, is called the growth factor. Then

̇𝛾1(𝑡) = 𝑒𝑘𝑡(𝑘 cos(𝑡) − sin(𝑡))
̇𝛾2(𝑡) = 𝑒𝑘𝑡(𝑘 sin(𝑡) + cos(𝑡))

and so, after some calculations,
‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = ̇𝛾 21 + ̇𝛾 22 = (𝑘2 + 1)𝑒2𝑘𝑡 .

The arc-length starting from 𝑡0 is

𝑠(𝑡) = ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏

= √𝑘2 + 1∫
𝑡

𝑡0
𝑒𝑘𝜏 𝑑𝜏

= √𝑘2 + 1
𝑘 (𝑒𝑘𝑡 − 𝑒𝑘𝑡0) .

1.7 Scalar product in ℝ𝑛

Let us start by defining the scalar product in ℝ2.

Definition 1.28: Scalar product in ℝ2

Let 𝑢, 𝑣 ∈ ℝ2 and denote by 𝜃 ∈ [0, 𝜋] the angle formed by 𝑢 and 𝑣 . The scalar product between 𝑢 and 𝑣 is
defined by

𝑢 ⋅ 𝑣 ∶= |𝑢||𝑣 | cos(𝜃) .

Remark 1.29

The scalar product is maximized for 𝜃 = 0, for which we have

𝑢 ⋅ 𝑣 = |𝑢||𝑣 | cos(𝜃) = |𝑢||𝑣 | .
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Figure 1.19: Plot of Logarithmic Spiral with 𝑘 = 0.1
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Figure 1.20: Vectors 𝑢 and 𝑣 in ℝ2 forming angle 𝜃
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It is instead minimized for 𝜃 = 𝜋 , for which

𝑢 ⋅ 𝑣 = |𝑢||𝑣 | cos(𝜃) = −|𝑢||𝑣 | .

Definition 1.30: Orthogonal vectors

Let 𝑢, 𝑣 ∈ ℝ2. If
𝑢 ⋅ 𝑣 = 0

we say that 𝑢 and 𝑣 are orthogonal.

Proposition 1.31: Bilinearity and symmetry of scalar product

Let 𝑢, 𝑣 , 𝑤 ∈ ℝ2 and 𝜆 ∈ ℝ. Then

• Symmetry: 𝑢 ⋅ 𝑣 = 𝑣 ⋅ 𝑢
• Bilinearity: It holds

𝜆(𝑢 ⋅ 𝑣) = (𝜆𝑢) ⋅ 𝑣 = 𝑢 ⋅ (𝜆𝑣) ,
𝑢 ⋅ (𝑣 + 𝑤) = 𝑢 ⋅ 𝑣 + 𝑢 ⋅ 𝑤 .

We leave the proof to the reader. The above proposition is saying that the scalar product is bilinear and
symmetric.

Proposition 1.32: Scalar products written wrt euclidean coordinates

Denote by
𝑒1 = (1, 0) , 𝑒2 = (0, 1)

the euclidean basis of ℝ2. Let 𝑢, 𝑣 ∈ ℝ2 and denote by

𝑢 = (𝑢1, 𝑢2) = 𝑢1𝑒1 + 𝑢2𝑒2
𝑣 = (𝑣1, 𝑣2) = 𝑣1𝑒1 + 𝑣2𝑒2

their coordinates with respect to 𝑒1, 𝑒2. Then
𝑢 ⋅ 𝑣 = 𝑢1𝑣2 + 𝑢2𝑣2 .
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Proof

Note that
𝑒1 ⋅ 𝑒1 = 1 , 𝑒2 ⋅ 𝑒2 = 1 , 𝑒1 ⋅ 𝑒2 = 𝑒2 ⋅ 𝑒1 = 0 .

Using the bilinearity of scalar product we have

𝑢 ⋅ 𝑣 = (𝑢1𝑒1 + 𝑢2𝑒2) ⋅ (𝑣1𝑒1 + 𝑣2𝑒2)
= 𝑢1𝑣1𝑒1 ⋅ 𝑒1 + 𝑢1𝑣2𝑒1 ⋅ 𝑒2 + 𝑢2𝑣1𝑒2 ⋅ 𝑒1 + 𝑢2𝑣2𝑒2 ⋅ 𝑒2
= 𝑢1𝑣1 + 𝑢2𝑣2 .

The above proposition provides a way to generalize of the scalar product to ℝ𝑛..

Definition 1.33: Scalar product in ℝ𝑛

Let 𝑢, 𝑣 ∈ ℝ𝑛 and denote their coordinates by

𝑢 = (𝑢1, … , 𝑢𝑛) , 𝑢 = (𝑣1, … , 𝑣𝑛) .
We define the scalar product between 𝑢 and 𝑣 by

𝑢 ⋅ 𝑣 ∶=
𝑛
∑
𝑖=1

𝑢𝑖𝑣𝑖 .

With the above definition we still have that the scalar product is bilinear and symmetric, as detailed in the
following proposition:

Proposition 1.34: Bilinearity and symmetry of scalar product in ℝ𝑛

Let 𝑢, 𝑣 , 𝑤 ∈ ℝ𝑛 and 𝜆 ∈ ℝ. Then

• Symmetry: 𝑢 ⋅ 𝑣 = 𝑣 ⋅ 𝑢
• Bilinearity: It holds

𝜆(𝑢 ⋅ 𝑣) = (𝜆𝑢) ⋅ 𝑣 = 𝑢 ⋅ (𝜆𝑣) ,
𝑢 ⋅ (𝑣 + 𝑤) = 𝑢 ⋅ 𝑣 + 𝑢 ⋅ 𝑤 .

The proof of the above proposition is an easy check, and is left to the reader for exercise.

Definition 1.35

Let 𝑢, 𝑣 ∈ ℝ𝑛. We say that 𝑢 and 𝑣 are orthogonal if

𝑢 ⋅ 𝑣 = 0 .
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Proposition 1.36: Differentiating scalar product

Let 𝛾𝛾𝛾 , 𝜂𝜂𝜂 ∶ (𝑎, 𝑏) → ℝ𝑛 be parametrized curves. Then the scalar map

𝛾𝛾𝛾 ⋅ 𝜂𝜂𝜂 ∶ (𝑎, 𝑏) → ℝ
is smooth, and

𝑑
𝑑𝑡 (𝛾𝛾𝛾 ⋅ 𝜂𝜂𝜂) = ̇𝛾𝛾𝛾 ⋅ 𝜂𝜂𝜂 + 𝛾𝛾𝛾 ⋅ ̇𝜂𝜂𝜂

for all 𝑡 ∈ (𝑎, 𝑏).

Proof

Denote by
𝛾𝛾𝛾 = (𝛾𝛾𝛾 1, … , 𝛾𝛾𝛾 𝑛) , 𝜂𝜂𝜂 = (𝜂1, … , 𝜂𝑛)

the coordinates of 𝛾𝛾𝛾 and 𝜂𝜂𝜂. Clearly the map

𝑡 ↦ 𝛾𝛾𝛾 ⋅ 𝜂𝜂𝜂 =
𝑛
∑
𝑖=1

𝛾𝛾𝛾 𝑖𝜂𝑖

is smooth, being sum and product of smooth functions.
Concerning the formula, by definition of scalar product and linearity of the derivative we have

𝑑
𝑑𝑡 (𝛾𝛾𝛾 ⋅ 𝜂𝜂𝜂) =

𝑑
𝑑𝑡 (

𝑛
∑
𝑖=1

𝛾𝛾𝛾 𝑖𝜂𝑖)

=
𝑛
∑
𝑖=1

𝑑
𝑑𝑡 (𝛾𝛾𝛾 𝑖𝜂𝑖)

=
𝑛
∑
𝑖=1

̇𝛾𝑖𝜂𝑖 + ̇𝛾𝑖 ̇𝜂𝑖

= ̇𝛾𝛾𝛾 ⋅ 𝜂𝜂𝜂 + 𝛾𝛾𝛾 ⋅ ̇𝜂𝜂𝜂 ,
where in the second to last equality we used the product rule of differentiation.

1.8 Speed of a curve

Given a curve 𝛾𝛾𝛾 we defined the tangent vector at 𝛾𝛾𝛾 (𝑡) to be

̇𝛾𝛾𝛾 (𝑡) .
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The tangent vector measures the change of direction of the curve. Therefore the magnitude of ̇𝛾𝛾𝛾 can be
interpreted as the speed of the curve.

Definition 1.37

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a curve. We define the speed of 𝛾𝛾𝛾 at the point 𝛾𝛾𝛾 (𝑡) by
‖ ̇𝛾𝛾𝛾 (𝑡)‖ .

We say that 𝛾𝛾𝛾 is a unit-speed curve if

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = 1 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Remark 1.38

The derivative of the arc-length 𝑠 gives the speed of 𝛾𝛾𝛾 :

𝑠(𝑡) ∶= ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 ⟹ ̇𝑠(𝑡) = ‖ ̇𝛾𝛾𝛾 (𝑡)‖ .

The reason why we introduce unit speed curves is because they make calculations easy. This is essentially
because of the next proposition.

Proposition 1.39

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a unit speed curve. Then

̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 0
for all 𝑡 ∈ (𝑎, 𝑏).

Proof

Let us consider the identity

̇𝛾𝛾𝛾 (𝑡) ⋅ ̇𝛾𝛾𝛾 (𝑡) =
𝑛
∑
𝑖=1

̇𝛾𝛾𝛾 2𝑖 (𝑡) = ‖ ̇𝛾𝛾𝛾 (𝑡)‖2 . (1.18)

Since 𝛾𝛾𝛾 is unit speed we have
‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = 1 ∀ 𝑡 ∈ (𝑎, 𝑏) .
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and therefore 𝑑
𝑑𝑡 (‖ ̇𝛾𝛾𝛾 (𝑡)‖

2) = 0 ∀ 𝑡 ∈ (𝑎, 𝑏) . (1.19)

We can differentiate the LHS of (1.18) to get

𝑑
𝑑𝑡 ( ̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 ) = ̈𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 + ̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 2 ̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 . (1.20)

where we used Proposition 1.36 and symmetry of the scalar product. Differentiating (1.18) and using
(1.19)-(1.20) we conclude

2 ̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 0 ∀ 𝑡 ∈ (𝑎, 𝑏) .

Remark 1.40

Proposition 1.39 is saying that if 𝛾𝛾𝛾 is unit speed, then its tangent vector ̇𝛾𝛾𝛾 is always orthogonal to the
second derivative ̈𝛾𝛾𝛾 . This will be very useful in the future.

Figure 1.21: If 𝛾𝛾𝛾 is unit speed then ̇𝛾𝛾𝛾 and ̈𝛾𝛾𝛾 are orthogonal

1.9 Reparametrization

As we have observed in the Examples of Chapter 1, there is in general no unique way to parametrize a curve.
However we would like to understand when two parametrizations are related. In other words, we want to
clarify the concept of equivalence of two parametrizations.
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Definition 1.41: Diffeomorphism

Let 𝜙 ∶ (𝑎, 𝑏) → (𝑎̃, 𝑏̃). We say that 𝜙 is a diffeomorphism if the following conditions are satisfied:

1. 𝜙 is invertible, with inverse 𝜙−1 ∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏). Thus
𝜙−1 ∘ 𝜙 = 𝜙 ∘ 𝜙−1 = Id ,

where Id∶ ℝ → ℝ is the identity map on ℝ, that is,
Id(𝑡) = 𝑡 , ∀ 𝑡 ∈ ℝ .

2. 𝜙 is smooth,
3. 𝜙−1 is smooth.

Definition 1.42: Reparametrization

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a parametrized curve. A reparametrization of 𝛾𝛾𝛾 is another parametrized curve
̃𝛾𝛾𝛾 ∶ (𝑎̃, 𝑏̃) → ℝ𝑛 such that

̃𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝜙(𝑡)) ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) , (1.21)

where
𝜙 ∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏)

is a diffeomerphism. We call both 𝜙 and 𝜙−1 reparametrization maps.

Remark 1.43

A comment about the above definition. Given a parametrized curve 𝛾𝛾𝛾 , this identifies a 1D shape Γ ⊂ ℝ𝑛.
A reparametrization ̃𝛾𝛾𝛾 is just an equivalent way to describe Γ. For 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 to be reparametrizations of
each other, there must exist a smooth rule 𝜙 to switch from one to another, according to formula (1.21)

Example 1.44: Change of orientation

The map 𝜙 ∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏) defined by
𝜙(𝑡) ∶= −𝑡

is a diffeomoprhism. The inverse of 𝜙 is given by 𝜙−1∶ (𝑎, 𝑏) → (𝑎̃, 𝑏̃) defined by

𝜙−1(𝑡) = −𝑡 .
Note that 𝜙 can be used to reverse the orientation of a curve.
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Figure 1.22: Sketch of 1D shaper �parametrized by 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾

Example 1.45: Reversing orientation of circle

Consider the unit circle parametrized as usual by 𝛾𝛾𝛾 ∶ [0, 2𝜋] → ℝ2 defined as

𝛾𝛾𝛾 (𝑡) ∶= (cos(𝑡), sin(𝑡)) .
To reverse the orientation we can reparametrize 𝛾𝛾𝛾 by using the diffeomorphism

𝜙(𝑡) ∶= −𝑡 .
This way we obtain ̃𝛾𝛾𝛾 ∶= 𝛾𝛾𝛾 ∘ 𝜙 ∶ [0, 2𝜋] → [0, 2𝜋],

̃𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝜙(𝑡))
= (cos(−𝑡), sin(−𝑡))
= (cos(𝑡), − sin(𝑡)) ,

where in the last identity we used the properties of cos and sin. Notice that in this way, for example,

𝛾𝛾𝛾 (𝜋/2) = (0, 1) , 𝛾𝛾𝛾 (𝜋/2) = (0, −1) .
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Figure 1.23: Unit circle with usual parametrization 𝛾𝛾𝛾 , and with reversed orientation ̃𝛾𝛾𝛾

Example 1.46: Change of speed

Let 𝑘 > 0. The map 𝜙 ∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏) defined by

𝜙(𝑡) ∶= 𝑘𝑡
is a diffeomoprhism. The inverse of 𝜙 is given by 𝜙−1∶ (𝑎, 𝑏) → (𝑎̃, 𝑏̃) defined by

𝜙−1(𝑡) = 𝑡
𝑘 .

Note that 𝜙 can be used to change the speed of a curve:

• If 𝑘 > 1 the speed increases ,
• If 0 < 𝑘 < 1 the speed decreases.

Example 1.47: Doubling the speed of Lemniscate

Recall the Lemniscate
𝛾𝛾𝛾 (𝑡) ∶= (sin(𝑡), sin(𝑡) cos(𝑡)) , 𝑡 ∈ [0, 2𝜋] .

We can double the speed of the Lemniscate by using the Using the diffeomorphism

𝜙(𝑡) ∶= 2𝑡 .
This way we obtain ̃𝛾𝛾𝛾 ∶= 𝛾𝛾𝛾 ∘ 𝜙 ∶ [0, 𝜋] → [0, 2𝜋] with

̃𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝜙(𝑡)) = (sin(2𝑡), sin(2𝑡) cos(2𝑡)) .
In this case we have that

̇̃𝛾𝛾𝛾 (𝑡) = 2 ̇𝛾𝛾𝛾 (𝜙(𝑡)) .
The above follows by chain rule. Indeed, ̇𝜙 = 2, so that

̇̃𝛾𝛾𝛾 = 𝑑
𝑑𝑡 (𝛾𝛾𝛾 (𝜙(𝑡))) =

̇𝜙(𝑡) ̇𝛾𝛾𝛾 (𝜙(𝑡)) = 2 ̇𝛾𝛾𝛾 (𝜙(𝑡)) .
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Figure 1.24: Lemniscate curve

Important

The main reason we are interested in reparametrizations is because we want to parametrize curves by
arc-lenght: This means that, for a curve 𝛾𝛾𝛾 , we want to find a reparametrization ̃𝛾𝛾𝛾 such that ̃𝛾𝛾𝛾 is unit
speed:

‖ ̇̃𝛾𝛾𝛾 ‖ = 1 , ∀𝑡 ∈ (𝑎, 𝑏) .
We will see that this is not always possible.

Definition 1.48: Regular points

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a parametrized curve. We say that:

• 𝛾𝛾𝛾 (𝑡0) is a regular point if
̇𝛾𝛾𝛾 (𝑡0) ≠ 0 .

• A point 𝛾𝛾𝛾 (𝑡0) is singular if it is not regular.
• The curve 𝛾𝛾𝛾 is regular if every point of 𝛾𝛾𝛾 is regular, that is,

̇𝛾𝛾𝛾 (𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Note that when ̇𝛾𝛾𝛾 (𝑡0) = 0, this means the curve is stopping at time 𝑡0. Before making an example, let us prove
a useful lemma about diffeomorphisms.
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Lemma 1.49

Let 𝜙 ∶ (𝑎, 𝑏) → (𝑎̃, 𝑏̃) be a diffeomorphism. Then

̇𝜙(𝑡) ≠ 0 ∀ 𝑡 ∈ (𝑎, 𝑏) .

Proof

We know that 𝜙 is smooth with smooth inverse

𝜓 ∶= 𝜙−1 ∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏) .
In particular it holds

𝜓(𝜙(𝑡)) = 𝑡 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
We can differentiate both sides of the above expression to get

𝑑
𝑑𝑡 (𝜓 (𝜙(𝑡))) = 1 . (1.22)

We can differentiate the LHS by chain rule

𝑑
𝑑𝑡 (𝜓 (𝜙(𝑡))) =

̇𝜓 (𝜙(𝑡)) ̇𝜙(𝑡) .

From (1.22) we then get
̇𝜓 (𝜙(𝑡)) ̇𝜙(𝑡) = 1 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Since on the LHS we have a product, this means that none of the LHS terms vanishes, so that

̇𝜙(𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Example 1.50: A curve with one singular point

Consider the parabola
Γ ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑦 = 𝑥2, −1 ≤ 𝑥 ≤ 1} .

This can be parametrized in two ways by 𝛾𝛾𝛾 , 𝜂𝜂𝜂 ∶ [−1, 1] → ℝ2 defined as

𝛾𝛾𝛾 (𝑡) = (𝑡, 𝑡2) , 𝜂𝜂𝜂(𝑡) = (𝑡3, 𝑡6) .
Wewill see that the above parametrizations are not equivalent. This is intuitively clear, since the change
of variables map should be

𝜙(𝑡) = 𝑡3 .
This is smooth and invertible, with inverse

𝜙−1(𝑡) = 3√𝑥 .
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However 𝜙−1 is not smooth at 𝑡 = 0, and thus 𝜙 is not a diffeomorphism. Alternatively we could have
just noticed that

̇𝜙(𝑡) = 3𝑡2 ⟹ ̇𝜙(0) = 0 ,
and therefore 𝜙 cannot be a diffeomorphism due to Lemma 1.49.
Let us look at the derivatives:

̇𝛾𝛾𝛾 (𝑡) = (1, 2𝑡) , ̇𝜂𝜂𝜂(𝑡) = (3𝑡2, 6𝑡5) .
We notice a difference:

• 𝛾𝛾𝛾 is a regular parametrization,
• 𝜂𝜂𝜂(𝑡) is regular only for 𝑡 ≠ 0.

Indeed if we animate the plots of the above parametrizations, we see that:

• The point 𝛾𝛾𝛾 (𝑡) moves with constant horizontal speed
• The point 𝜂𝜂𝜂(𝑡) is decelerating for 𝑡 < 0, it stops at 𝑡 = 0, and then accelerates again for 𝑡 > 0.

Figure 1.25: Parabola Γ

Proposition 1.51: Regularity is invariant for reparametrization

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a parametrized curve and suppose that 𝛾𝛾𝛾 is regular, that is,

̇𝛾𝛾𝛾 (𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
Then every reparametrization of 𝛾𝛾𝛾 is also regular.
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Proof

Let ̃𝛾𝛾𝛾 ∶ (𝑎̃, 𝑏̃) → ℝ𝑛 be a reparametrization of 𝛾𝛾𝛾 . Then there exist 𝜙 ∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏) diffeomorphism such
that

̃𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝜙(𝑡)) , ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) .
By the chain rule we have

̇̃𝛾𝛾𝛾 (𝑡) = 𝑑
𝑑𝑡 (𝛾𝛾𝛾 (𝜙(𝑡))) = ̇𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙(𝑡) .

Therefore
̇̃𝛾𝛾𝛾 (𝑡) ≠ 0 ⟺ ̇𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙(𝑡) ≠ 0 . (1.23)

But we are assuming that 𝛾𝛾𝛾 is regular, so that

̇𝛾𝛾𝛾 (𝜙(𝑡)) ≠ 0 , ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) .
Thus (1.23) is equivalent to

̇̃𝛾𝛾𝛾 (𝑡) ≠ 0 ⟺ ̇𝜙(𝑡) ≠ 0 . (1.24)

Since 𝜙 is a diffeomorphism, by Lemma 1.49 we have that

̇𝜙(𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) .
By (1.24) we conclude that

̇̃𝛾𝛾𝛾 (𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) ,
proving that ̃𝛾𝛾𝛾 is regular.

Example 1.52

Let us go back to the parabola

Γ ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑦 = 𝑥2, −1 ≤ 𝑥 ≤ 1} ,
with the two parametrizations 𝛾𝛾𝛾 , 𝜂𝜂𝜂 ∶ [−1, 1] → ℝ2 with

𝛾𝛾𝛾 (𝑡) = (𝑡, 𝑡2) , 𝜂𝜂𝜂(𝑡) = (𝑡3, 𝑡6) .
We have that

̇𝛾𝛾𝛾 (𝑡) = (1, 2𝑡) , ̇𝜂𝜂𝜂(𝑡) = (3𝑡2, 6𝑡5) .
Therefore

• 𝛾𝛾𝛾 is a regular parametrization,
• 𝜂𝜂𝜂(𝑡) is regular only for 𝑡 ≠ 0.

Proposition 1.51 implies that 𝜂𝜂𝜂 is NOT a reparametrization of 𝛾𝛾𝛾 .
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Definition 1.53: Unit speed reparametrization

Let 𝛾𝛾𝛾 be a parametrized curve. A unit speed reparametrization of 𝛾𝛾𝛾 is a reparametrization ̃𝛾𝛾𝛾 such that
̃𝛾𝛾𝛾 is unit speed.

The next theorem states that a curve is regular if and only if it has a unit speed reparametrization. For the
proof, it is crucial to recall the definition of arc-length of a curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛, which is given by

𝑠(𝑡) ∶= ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 ,

for some arbitrary 𝑡0 ∈ (𝑎, 𝑏) fixed. Indeed, we will see that for 𝜙 regular the unit speed parametrization map
can be taken as

𝜙 = 𝑠−1 .

Theorem 1.54: Existence of unit speed reparametrization

Let 𝛾𝛾𝛾 be a parametrized curve. They are equivalent:

• 𝛾𝛾𝛾 is regular,
• 𝛾𝛾𝛾 has a unit speed reparametrization.

Proof

Step 1. Direct implication.
Assume 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 is regular, that is,

̇𝛾𝛾𝛾 (𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
Let 𝑠 ∶ (𝑎, 𝑏) → ℝ be the arc-length of 𝛾𝛾𝛾 starting at any point 𝑡0 ∈ (𝑎, 𝑏). By the Fundamental Theorem of
Calculus we have

̇𝑠(𝑡) = ‖ ̇𝛾𝛾𝛾 (𝑡)‖ (1.25)

so that
̇𝑠(𝑡) > 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Since 𝑠 is a scalar function, the above condition and the Inverse Function Theorem guarantee the ex-
istsence of a smooth inverse

𝑠−1 ∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏)
for some 𝛼̃ < ̃𝛽 . Define the reparametrization map 𝜙 as

𝜙 ∶= 𝑠−1

and the corresponding reparametrization of 𝛾𝛾𝛾 given by the curve

̃𝛾𝛾𝛾 ∶ (𝑎̃, 𝑏̃) → ℝ𝑛 , ̃𝛾𝛾𝛾 ∶= 𝛾𝛾𝛾 ∘ 𝜙 .
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We claim that ̃𝛾𝛾𝛾 is unit speed. Indeed, by definition

̃𝛾𝛾𝛾 ∶= 𝛾𝛾𝛾 ∘ 𝜙 ⟹ 𝛾𝛾𝛾 = ̃𝛾𝛾𝛾 ∘ 𝜙−1 = ̃𝛾𝛾𝛾 ∘ 𝑠 ,
or in other words

𝛾𝛾𝛾 (𝑡) = ̃𝛾𝛾𝛾 (𝑠(𝑡)) , ∀𝑡 ∈ (𝑎, 𝑏) .
Differentiating the above expression and using the chain rule we get

̇𝛾𝛾𝛾 (𝑡) = ̇̃𝛾𝛾𝛾 (𝑠(𝑡)) ̇𝑠(𝑡) = ̇̃𝛾𝛾𝛾 (𝑠(𝑡)) ‖ ̇𝛾𝛾𝛾 (𝑡)‖
where in the last equality we used (1.25). Taking the absolute value of the above yileds

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = ‖ ̇̃𝛾𝛾𝛾 (𝑠(𝑡))‖ ‖ ̇𝛾𝛾𝛾 (𝑡)‖ . (1.26)

Since 𝛾𝛾𝛾 is regular, we have
‖ ̇𝛾𝛾𝛾 (𝑡)‖ ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Therefore we can divide (1.26) by ‖ ̇𝛾𝛾𝛾 (𝑡)‖ and obtain

‖ ̇̃𝛾𝛾𝛾 (𝑠(𝑡))‖ = 1 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
By invertibility of 𝑠, the above holds if and only if

‖ ̇̃𝛾𝛾𝛾 (𝑡)‖ = 1 , ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) ,
showing that ̃𝛾𝛾𝛾 is a unit speed reparametrization of 𝛾𝛾𝛾 .
Step 2. Reverse implication.
Suppose there exists a unit speed reparametrization of 𝛾𝛾𝛾 denoted by

̃𝛾𝛾𝛾 ∶ (𝑎̃, 𝑏̃) → ℝ𝑛 , ̃𝛾𝛾𝛾 = 𝛾𝛾𝛾 ∘ 𝜙
for some reparametrization map 𝜙 ∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏). Differentiating ̃𝛾𝛾𝛾 = 𝛾𝛾𝛾 ∘ 𝜙 and using the chain rule we
get

̇̃𝛾𝛾𝛾 (𝑡) = ̇𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙(𝑡) .
Taking the norm

‖ ̇̃𝛾𝛾𝛾 (𝑡)‖ = ‖ ̇𝛾𝛾𝛾 (𝜙(𝑡))‖ | ̇𝜙(𝑡)| .
Since ̃𝛾𝛾𝛾 is unit speed we obtain

‖ ̇𝛾𝛾𝛾 (𝜙(𝑡))‖ | ̇𝜙(𝑡)| = 1 , ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) . (1.27)

Since 𝜙 is a diffeomorphism from (𝑎̃, 𝑏̃) into (𝑎, 𝑏), Lemma 1.49 guarantees that

̇𝜙(𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
In particular (1.27) implies

̇𝛾𝛾𝛾 (𝜙(𝑡)) ≠ 0 , ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) .
As 𝜙 is invertible, we also have

̇𝛾𝛾𝛾 (𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) ,
proving that 𝛾𝛾𝛾 is regular.
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The proof of Theorem 1.54 told us that, if 𝛾𝛾𝛾 is regular, then

̃𝛾𝛾𝛾 = 𝛾𝛾𝛾 ∘ 𝑠−1
is a unit speed reparametrization of 𝛾𝛾𝛾 . In the next proposition we show that the arc-length 𝑠 is essentially the
only unit-speed reparametrization of a regular curve.

Proposition 1.55: Arc-length and unit speed reparametrization

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a regular curve. Let ̃𝛾𝛾𝛾 ∶ (𝑎̃, 𝑏̃) → ℝ𝑛 be reparametrization of 𝛾𝛾𝛾 , so that

𝛾𝛾𝛾 (𝑡) = ̃𝛾𝛾𝛾 (𝜙(𝑡)), ∀ 𝑡 ∈ (𝑎, 𝑏) .
for some diffeomorphism 𝜙 ∶ (𝑎, 𝑏) → (𝑎̃, 𝑏̃). Denote by

𝑠(𝑡) ∶= ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 , 𝑡 ∈ (𝑎, 𝑏)

the arc-length of 𝛾𝛾𝛾 starting at any point 𝑡0 ∈ (𝑎, 𝑏). We have:

1. If ̃𝛾𝛾𝛾 is unit speed, then there exists 𝑐 ∈ ℝ such that

𝜙(𝑡) = ±𝑠(𝑡) + 𝑐 , ∀ 𝑡 ∈ (𝑎, 𝑏) . (1.28)

2. If 𝜙 is given by (1.28) for some 𝑐 ∈ ℝ, then ̃𝛾𝛾𝛾 is unit speed.

Proof

Step 1. First Point.
First note that a unit speed reparametrization ̃𝛾𝛾𝛾 of 𝛾𝛾𝛾 exists by Theorem 1.54, since 𝛾𝛾𝛾 is assumed to be
regular. Thus assume ̃𝛾𝛾𝛾 is unit speed reparametrization of 𝛾𝛾𝛾 . By differentiating both sides of

𝛾𝛾𝛾 (𝑡) = ̃𝛾𝛾𝛾 (𝜙(𝑡)), ∀ 𝑡 ∈ (𝑎, 𝑏) ,
we obtain

̇𝛾𝛾𝛾 (𝑡) = 𝑑
𝑑𝑡 ̃𝛾𝛾𝛾 (𝜙(𝑡)) = ̇̃𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙(𝑡) .

Taking the norms we then have

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = ‖ ̇̃𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙(𝑡)‖
= ‖ ̇̃𝛾𝛾𝛾 (𝜙(𝑡))‖ | ̇𝜙(𝑡)|
= | ̇𝜙(𝑡)| ,

where in the last equality we used that ̃𝛾𝛾𝛾 is unit speed, and so

‖ ̇̃𝛾𝛾𝛾 ‖ ≡ 1 .
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To summarize, so far we have proven that

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = | ̇𝜙(𝑡)| , ∀ 𝑡 ∈ (𝑎, 𝑏) .
Therefore

𝑠(𝑡) = ∫
𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 = ∫

𝑡

𝑡0
| ̇𝜙(𝜏 )| 𝑑𝜏 .

By the Fundamental Theorem of Calculus we get

̇𝑠(𝑡) = | ̇𝜙(𝑡)|
and therefore

𝜙 = ±𝑠 + 𝑐
for some 𝑐 ∈ ℝ, concluding the proof.
Step 2. Second Point.
Suppose that

𝜙 ∶= ±𝑠 + 𝑐
for some 𝑐 ∈ ℝ, so that 𝜙 ∶ (𝑎, 𝑏) → (𝑎̃, 𝑏̃). We have

̇𝜙(𝑡) = ± ̇𝑠(𝑡) = ± ‖ ̇𝛾𝛾𝛾 (𝑡)‖ ≠ 0 (1.29)

where the last term is non-zero since 𝛾𝛾𝛾 is regular. Therefore, due to the Inverse Function Theorem, 𝜙 is
invertible with smooth inverse. This proves that ̃𝛾𝛾𝛾 defined by

̃𝛾𝛾𝛾 ∶= 𝛾𝛾𝛾 ∘ 𝜓 , 𝜓 ∶= 𝜙−1 ,
is a reparametrization of 𝛾𝛾𝛾 . In particular

𝛾𝛾𝛾 = ̃𝛾𝛾𝛾 ∘ 𝜙 .
Differentiating the above, and recalling (1.29), we get

̇𝛾𝛾𝛾 (𝑡) = ̇̃𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙(𝑡) = ̇̃𝛾𝛾𝛾 (𝜙(𝑡)) (± ‖ ̇𝛾𝛾𝛾 (𝑡)‖) .
Taking the absolute value of the above yields

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = ‖ ̇̃𝛾𝛾𝛾 (𝜙(𝑡))‖ ‖ ̇𝛾𝛾𝛾 (𝑡)‖ .
Since 𝛾𝛾𝛾 is regular we can divide by ‖ ̇𝛾𝛾𝛾 (𝑡)‖ to get

‖ ̇̃𝛾𝛾𝛾 (𝜙(𝑡))‖ = 1 ∀ 𝑡 ∈ (𝑎, 𝑏) .
Since 𝜙 is invertible, the above is equivalent to

‖ ̇̃𝛾𝛾𝛾 (𝑡)‖ = 1 ∀ 𝑡 ∈ (𝑎̃, 𝑏̃) ,
proving that ̃𝛾𝛾𝛾 is a unit speed reparametrization.
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Remark 1.56

Let 𝛾𝛾𝛾 be regular. The above proposition tells us that they are equivalent:

1. Computing a unit speed reparametrization of 𝛾𝛾𝛾 ,
2. Computing 𝑠 the arc-length of 𝛾𝛾𝛾 .

In some cases however, unit speed reparametrization and arc-length are impossible to characterize in
terms of elementary functions, even for very simple curves.

Example 1.57: Twisted cubic

Define the twisted cubic 𝛾𝛾𝛾 ∶ ℝ → ℝ3 by

𝛾𝛾𝛾 (𝑡) = (𝑡, 𝑡2, 𝑡3) .
Therefore

̇𝛾𝛾𝛾 (𝑡) = (1, 2𝑡, 3𝑡2) ,
so that

̇𝛾𝛾𝛾 (𝑡) ≠ 0 , ∀ 𝑡 ∈ ℝ ,
meaning that 𝛾𝛾𝛾 is regular. In particular we have

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √1 + 4𝑡2 + 9𝑡4

so that the arc-length of 𝛾𝛾𝛾 is

𝑠(𝑡) = ∫
𝑡

𝑡0
√1 + 4𝜏2 + 9𝜏4 𝑑𝜏 .

Since 𝛾𝛾𝛾 is regular, by Proposition 1.55 we know that 𝛾𝛾𝛾 admits a unit speed reparametrization ̃𝛾𝛾𝛾 such that

𝛾𝛾𝛾 = ̃𝛾𝛾𝛾 ∘ 𝜙
with the diffeomorphism 𝜙 given by

𝜙(𝑡) = ±𝑠(𝑡) + 𝑐 = ±∫
𝑡

𝑡0
√1 + 4𝜏2 + 9𝜏4 𝑑𝜏 + 𝑐

for some 𝑐 ∈ ℝ. It can be shown that the above integral does not have a closed form in terms of elementary
functions. Therefore the unit speed parametrization ̃𝛾𝛾𝛾 cannot be computed explicitly.
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Figure 1.26: Plot of Twisted Cubic for t between -2 and 2

1.10 Closed curves

So far we have seen examples of:

• Curves which are infinite, or unbounded. This is for example the parabola

𝛾𝛾𝛾 (𝑡) ∶= (𝑡, 𝑡2) , ∀ 𝑡 ∈ ℝ ,
• Curves which are finite and have end-points, such as the semi-circle

𝛾𝛾𝛾 (𝑡) ∶= (cos(𝑡), sin(𝑡)) , ∀ 𝑡 ∈ [0, 𝜋] ,
• Curves which form loops, such as the circle

𝛾𝛾𝛾 (𝑡) ∶= (cos(𝑡), sin(𝑡)) , ∀ 𝑡 ∈ [0, 2𝜋] .
However there are examples of curves which are in between the above types.

Example 1.58

For example consider the curve 𝛾𝛾𝛾 ∶ ℝ → ℝ2

𝛾𝛾𝛾 (𝑡) ∶= (𝑡2 − 1, 𝑡3 − 𝑡) ∀ 𝑡 ∈ ℝ .
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This curve has two main properties:

• 𝛾𝛾𝛾 is unbounded: If define ̃𝛾𝛾𝛾 as the restriction of 𝛾𝛾𝛾 to the time interval [1, ∞), then ̃𝛾𝛾𝛾 is unbounded.
A point which starts at 𝛾𝛾𝛾 (1) = (0, 0) goes towards infinity.

• 𝛾𝛾𝛾 contains a loop: If we define ̃𝛾𝛾𝛾 as the restriction of 𝛾𝛾𝛾 to the time interval [−1, 1], then ̃𝛾𝛾𝛾 is a closed
loop starting at 𝛾𝛾𝛾 (−1) = (0, 0) and returnning at 𝛾𝛾𝛾 (1) = (0, 0).

Figure 1.27: Plot of curve 𝛾𝛾𝛾 (𝑡) = (𝑡2 − 1, 𝑡3 − 1) for 𝑡 ∈ [−2, 2]

The aim of this section is to make precise the concept of looping curve. To do that, we need to define
periodic curves.

Definition 1.59: Periodic curve

Let 𝛾𝛾𝛾 ∶ ℝ → ℝ𝑛 be a parametrized curve, and let 𝑇 ∈ ℝ. We say that 𝛾𝛾𝛾 is T-periodic if

𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝑡 + 𝑇 ) , ∀ 𝑡 ∈ ℝ .

Note that every curve is 0-periodic. Therefore to define a closed curve we need to rule out this case.
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Definition 1.60: Closed curve

Let 𝛾𝛾𝛾 ∶ ℝ → ℝ𝑛 be a parametrized curve. We say that 𝛾𝛾𝛾 is closed if:

• 𝛾𝛾𝛾 is not constant,
• 𝛾𝛾𝛾 is T-periodic for some 𝑇 ≠ 0.

Remark 1.61

We have the following basic facts:

1. If 𝛾𝛾𝛾 is 𝑇 -periodic, then a point moving around 𝛾𝛾𝛾 returns to its starting point after time 𝑇 .
This is exactly the definition of 𝑇 -periodicity. Indeed let 𝑝 = 𝛾𝛾𝛾 (𝑎) be the point in ques-
tion, then

𝛾𝛾𝛾 (𝑎 + 𝑇 ) = 𝛾𝛾𝛾 (𝑎) = 𝑝
by periodicity. Thus 𝛾𝛾𝛾 returns to 𝑝 after time 𝑇 .

2. If 𝛾𝛾𝛾 is 𝑇 -periodic, then 𝛾𝛾𝛾 is determined by its restriction to any interval of length |𝑇 |.
3. Conversely, suppose that 𝛾𝛾𝛾 ∶ [𝑎, 𝑏] → ℝ𝑛 satisfies

𝛾𝛾𝛾 (𝑎) = 𝛾𝛾𝛾 (𝑏) , 𝑑𝑘𝛾𝛾𝛾
𝑑𝑡𝑘 (𝑎) =

𝑑𝑘𝛾𝛾𝛾
𝑑𝑡𝑘 (𝑏)

for all 𝑘 ∈ ℕ. Set
𝑇 ∶= 𝑏 − 𝑎 .

Then 𝛾𝛾𝛾 can be extended to a 𝑇 -periodic curve ̃𝛾𝛾𝛾 ∶ ℝ → ℝ𝑛 defined by

̃𝛾𝛾𝛾 (𝑡) ∶= 𝛾𝛾𝛾 ( ̃𝑡) , ̃𝑡 ∶= 𝑡 − ⌊ 𝑡 − 𝑎
𝑏 − 𝑎⌋(𝑏 − 𝑎) , ∀ 𝑡 ∈ ℝ .

The above means that ̃𝛾𝛾𝛾 (𝑡) is defined by 𝛾𝛾𝛾 ( ̃𝑡) where ̃𝑡 is the unique point in [𝑎, 𝑏] such that

𝑡 = ̃𝑡 + 𝑘(𝑏 − 𝑎)
with 𝑘 ∈ ℤ defined by

𝑘 ∶= ⌊ 𝑡 − 𝑎
𝑏 − 𝑎⌋ ,

see figure below. In this way ̃𝛾𝛾𝛾 is 𝑇 -periodic.
4. If 𝛾𝛾𝛾 is 𝑇 -periodic, then it is also (−𝑇 )-periodic.

Because if 𝛾𝛾𝛾 is 𝑇 -periodic then

𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 ((𝑡 − 𝑇 ) + 𝑇 ) = 𝛾𝛾𝛾 (𝑡 − 𝑇 )
where in the first equality we used the trivial identity 𝑡 = (𝑡 −𝑇 )+𝑇 , while in the second
equality we used 𝑇 -periodicity of 𝛾𝛾𝛾 .
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5. If 𝛾𝛾𝛾 is 𝑇 -periodic for some 𝑇 ≠ 0, then it is 𝑇 -periodic for some 𝑇 > 0.
This is an immediate consequence of Point 4.

6. If 𝛾𝛾𝛾 is 𝑇 -periodic the 𝛾𝛾𝛾 is (𝑘𝑇 )-periodic, for all 𝑘 ∈ ℤ.

By point 4 we can assume WLOG that 𝑘 ≥ 0. We proceed by induction:

• The statement is true for 𝑘 = 1, since 𝛾𝛾𝛾 is 𝑇 -periodic.
• Assume now that 𝛾𝛾𝛾 is 𝑘𝑇 -periodic. Then

𝛾𝛾𝛾 (𝑡 + (𝑘 + 1)𝑇 ) = 𝛾𝛾𝛾 ((𝑡 + 𝑇 ) + 𝑘𝑇 )
= 𝛾𝛾𝛾 (𝑡 + 𝑇 ) (by 𝑘𝑇 -periodicity)
= 𝛾𝛾𝛾(𝑡) (by 𝑇 -periodicity)

showing that 𝛾𝛾𝛾 is (𝑘 + 1)𝑇 -periodic.
By induction we conclude that 𝛾𝛾𝛾 is (𝑘𝑇 )-periodic for all 𝑘 ∈ ℕ.

7. If 𝛾𝛾𝛾 is 𝑇1-periodic and 𝑇2-periodic then 𝛾𝛾𝛾 is (𝑘1𝑇1 + 𝑘2𝑇2)-periodic, for all 𝑘1, 𝑘2 ∈ ℤ.

By Point 6 we know that 𝛾𝛾𝛾 is 𝑘1𝑇1-periodic and 𝑘2𝑇2-periodic. Set 𝑇 ∶= 𝑘1𝑇1 + 𝑘2𝑇2. We
have

𝛾𝛾𝛾 (𝑡 + 𝑇 ) = 𝛾𝛾𝛾 ((𝑡 + 𝑘1𝑇1) + 𝑘2𝑇2)
= 𝛾𝛾𝛾 (𝑡 + 𝑘1𝑇1) (by 𝑘2𝑇2-periodicity)
= 𝛾𝛾𝛾(𝑡) (by 𝑘1𝑇1-periodicity)

showing that 𝛾𝛾𝛾 is (𝑘1𝑇1 + 𝑘2𝑇2)-periodic.

Figure 1.28: The points 𝑡 ∈ ℝ and ̃𝑡 ∈ [𝑎, 𝑏] from Point 3 in Remark 1.61. In this skecth 𝑡 = ̃𝑡 +3𝑇 , with 𝑇 = 𝑏−𝑎.

Definition 1.62

Let 𝛾𝛾𝛾 be a closed curve. The period of 𝛾𝛾𝛾 is the smallest 𝑇 > 0 such that 𝛾𝛾𝛾 is 𝑇 -periodic, that is
Period of 𝛾𝛾𝛾 ∶= min{𝑇 ∶ 𝑇 > 0 , 𝛾𝛾𝛾 is T-periodic} .

We need to show that the above definition is well-posed, i.e., that there exists such smallest 𝑇 > 0.
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Proposition 1.63

Let 𝛾𝛾𝛾 be a closed curve. Then there exists a smallest 𝑇 > 0 such that 𝛾𝛾𝛾 is 𝑇 -periodic. In other words, the
set

𝑆 ∶= {𝑇 ∶ 𝑇 > 0 , 𝛾𝛾𝛾 is T-periodic} .
admits positive minumum

𝑃 = min 𝑆 , 𝑃 > 0 .

Proof

We make 2 observations about the set 𝑆:

• Since 𝛾𝛾𝛾 is closed, we have that 𝛾𝛾𝛾 is 𝑇 -periodic for some 𝑇 ≠ 0. By Remark 1.61 Point 5, we know
that 𝑇 can be chosen such that 𝑇 > 0. Therefore

𝑆 ≠ ∅ .
• 𝑆 is bounded below by 0. This is by definition of 𝑆.

Thus, by the Axiom of Completeness of the Real Numbers, the set 𝑆 admits an infimum

𝑃 = inf 𝑆 .
The proof is concluded if we show that:
Claim. We have

𝑃 = min 𝑆 .
This is equivalent to saying that

𝑃 ∈ 𝑆 .
Proof of claim.
To see that 𝑃 ∈ 𝑆 we need to show that

1. 𝛾𝛾𝛾 is 𝑃-periodic,
2. 𝑃 > 0.

Since 𝑃 is the infimum of 𝑆, there exists an infimizing sequence {𝑇𝑛}𝑛∈ℕ ⊂ 𝑆 such that

𝑇𝑛 → 𝑃 .
WLOG we can choose 𝑇𝑛 decreasing, that is, such that

𝑇1 > 𝑇2 > … > 𝑇𝑛 > … > 0 .
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Proof of Point 1. As 𝑇𝑛 ∈ 𝑆, we have that 𝛾𝛾𝛾 is 𝑇𝑛-periodic. Then
𝛾𝛾𝛾 (𝑡 + 𝑇𝑛) = 𝛾𝛾𝛾 (𝑡) , ∀ 𝑡 ∈ ℝ , 𝑛 ∈ ℕ .

Since 𝑇𝑛 → 𝑃 , we can take the limit as 𝑛 → ∞ and use the continuity of 𝛾𝛾𝛾 to obtain

𝛾𝛾𝛾 (𝑡) = lim𝑛→∞ 𝛾𝛾𝛾 (𝑡 + 𝑇𝑛) = 𝛾𝛾𝛾 (𝑡 + 𝑃) , ∀ 𝑡 ∈ ℝ ,

showing that 𝛾𝛾𝛾 is 𝑃-periodic.
Proof of Point 2. Suppose by contradiction that

𝑃 = 0 .
Fix 𝑡 ∈ ℝ. Since 𝑇𝑛 > 0, we can find unique

𝑡𝑛 ∈ [0, 𝑇𝑛] , 𝑘𝑛 ∈ ℤ ,
such that

𝑡 = 𝑡𝑛 + 𝑘𝑛𝑇𝑛 ,
as shown in the figure below. Indeed, it is sufficient to define

𝑘𝑛 ∶= ⌊ 𝑡
𝑇𝑛
⌋ ∈ ℤ , 𝑡𝑛 ∶= 𝑡 − 𝑘𝑛𝑇𝑛 .

Since 𝑇𝑛 ∈ 𝑆, we know that 𝛾𝛾𝛾 is 𝑇𝑛-periodic. Remark 1.61 Point 6 implies that 𝛾𝛾𝛾 is also 𝑘𝑛𝑇𝑛-periodic, since
𝑘𝑛 ∈ ℤ. Thus

𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝑡𝑛 + 𝑘𝑛𝑇𝑛) (definition of 𝑡𝑛)
= 𝛾𝛾𝛾 (𝑡𝑛) (by 𝑘𝑛𝑇𝑛-periodicity) .

Therefore
𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝑡𝑛) , ∀ 𝑛 ∈ ℕ . (1.30)

Also notice that
0 ≤ 𝑡𝑛 ≤ 𝑇𝑛 , ∀ 𝑛 ∈ ℕ .

by construction. Since 𝑇𝑛 → 0, by the Squeeze Theorem we conclude that

𝑡𝑛 → 0 as 𝑛 → ∞ .
Using the continuity of 𝛾𝛾𝛾 , we can pass to the limit in (1.30) and obtain

𝛾𝛾𝛾 (𝑡) = lim𝑛→∞ 𝛾𝛾𝛾 (𝑡𝑛) = 𝛾𝛾𝛾 (0) .

Since 𝑡 ∈ ℝ was arbitrary, we have shown that

𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (0) , ∀ 𝑡 ∈ ℝ .
Therefore 𝛾𝛾𝛾 is constant. This is a contradiction, as we were assuming that 𝛾𝛾𝛾 is closed, and, in particular,
not constant.
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Figure 1.29: For each 𝑡 ∈ ℝ there exist unique 𝑘𝑛 ∈ ℤ and ̃𝑡𝑛 ∈ [0, 𝑇𝑛] such that 𝑡 = ̃𝑡 + 𝑘𝑛𝑇𝑛. In this skecth
𝑘𝑛 = 3.

Example 1.64

Some examples of closed curves:

• The circumference
𝛾𝛾𝛾 (𝑡) = (cos(𝑡), sin(𝑡)) , 𝑡 ∈ ℝ

is not costant and is 2𝜋-periodic. Thus 𝛾𝛾𝛾 is closed. The period of 𝛾𝛾𝛾 is 2𝜋 .
• The Lemniscate

𝛾𝛾𝛾 (𝑡) = (sin(𝑡), sin(𝑡) cos(𝑡)) , 𝑡 ∈ ℝ
is not costant and is 2𝜋-periodic. Thus 𝛾𝛾𝛾 is closed. The period of 𝛾𝛾𝛾 is 2𝜋 .

• Consider again the curve from Example 1.58

𝛾𝛾𝛾 (𝑡) ∶= (𝑡2 − 1, 𝑡3 − 𝑡) , 𝑡 ∈ ℝ .
According to our definition, 𝛾𝛾𝛾 is not periodic. Therefore 𝛾𝛾𝛾 is not closed. However there is a point
of self-intersection on 𝛾𝛾𝛾 , namely

𝑝 ∶= (0, 0) ,
for which we have

𝑝 = 𝛾𝛾𝛾 (−1) = 𝛾𝛾𝛾 (1) .

The last curve in the above example motivates the definition of self-intersecting curve.

Definition 1.65: Self-intersecting curve

Let 𝛾𝛾𝛾 ∶ ℝ → ℝ𝑛 be a parametrized curve. We say that 𝛾𝛾𝛾 is self-intersecting at a point 𝑝 on the curve if

1. There exist two times 𝑎 ≠ 𝑏 such that

𝑝 = 𝛾𝛾𝛾 (𝑎) = 𝛾𝛾𝛾 (𝑏) ,
2. If 𝛾𝛾𝛾 is closed with period 𝑇 , then 𝑏 − 𝑎 is not an integer multiple of 𝑇 .
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Remark 1.66

The second condition in the above definition is important: if we did not require it, then any closed curve
would be self-intersecting. Indeed consider a closed curve 𝛾𝛾𝛾 ∶ ℝ → ℝ𝑛 and let 𝑇 be its period. Then by
Point 6 in Remark 1.61 we have

𝛾𝛾𝛾 (𝑎) = 𝛾𝛾𝛾 (𝑎 + 𝑘𝑇 ) , ∀ 𝑎 ∈ ℝ, 𝑘 ∈ ℤ .
Therefore every point 𝛾𝛾𝛾 (𝑎)would be of self-intersection. Point 2 in the above definition rules this example
out. Indeed set 𝑏 ∶= 𝑎 + 𝑘𝑇 , then

𝑏 − 𝑎 = 𝑘𝑇 ,
meaning that 𝑏 − 𝑎 is an integer multiple of 𝑇 .

Example 1.67

Let us go back to the curve of Example 1.58, that is,

𝛾𝛾𝛾 (𝑡) ∶= (𝑡2 − 1, 𝑡3 − 𝑡) , 𝑡 ∈ ℝ .
We have that 𝛾𝛾𝛾 is not periodic, and therefore not closed. However 𝑝 = (0, 0) is a point of self-
intersection on 𝛾𝛾𝛾 , since we have

𝑝 = 𝛾𝛾𝛾 (−1) = 𝛾𝛾𝛾 (1) .

Example 1.68: The Limaçon

Define the parametrized curve 𝛾𝛾𝛾 ∶ ℝ → ℝ2 by

𝛾𝛾𝛾 (𝑡) = ((1 + 2 cos(𝑡)) cos(𝑡), (1 + 2 cos(𝑡)) sin(𝑡)) , ∀ 𝑡 ∈ ℝ .
Such curve, plotted bolow, is called limaçon (French for snail). This curve is non constant and 2𝜋-periodic.
Therefore it is closed. The period of 𝛾𝛾𝛾 is 2𝜋 . Moreover we have

𝛾𝛾𝛾 (𝑎) = 𝛾𝛾𝛾 (𝑏) = (0, 0) .
with 𝑎 = 2𝜋/3 and 𝑏 = 4𝜋/3. Note that

𝑏 − 𝑎 = 4𝜋
3 − 2𝜋

3 = 2𝜋
3

which is not an integer multiple of the period 2𝜋 . Therefore 𝛾𝛾𝛾 is self-intersecting at (0, 0).
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Figure 1.30: Limaçon curve

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



2 Curvature and Torsion

We have seen how to describe curves and reparametrized them. Now we want to look at local properties of
curves:

• How much does a curve twist?
• How much does a curve bend?

We will measure two quantities:

• Curvature: measures how much a curve 𝛾𝛾𝛾 deviates from a straight line.
• Torsion: measures how much a curve 𝛾𝛾𝛾 fails to lie on a plane.

For example a 2D spiral is curved, but still lies in a plane. Instead the Helix both deviates from a straight line
and pulls away from any fixed plane.

2.1 Curvature

We start with an informal discussion. Suppose 𝛾𝛾𝛾 is a straight line

𝛾𝛾𝛾 (𝑡) = a + 𝑡v
with a, v ∈ ℝ3. The tangent vector to 𝛾𝛾𝛾 is constant

̇𝛾𝛾𝛾 (𝑡) = v .
Whatever the definition of curvature will be, it has to hold that 𝛾𝛾𝛾 has zero curvature in this case. If we further
derive the tangent vector, we obtain

̈𝛾𝛾𝛾 (𝑡) = 000 .
Thus ̈𝛾𝛾𝛾 seems to be a good candidate for the definition of curvature of 𝛾𝛾𝛾 at the point 𝛾𝛾𝛾 (𝑡).
Suppose now that 𝛾𝛾𝛾 is a curve in ℝ2 with unit speed. We have proven that in this case

̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 0 ,
that is, the vector ̈𝛾𝛾𝛾 is orthogonal to the tangent ̇𝛾𝛾𝛾 at all times. Now let n(𝑡) be the unit vector orthogonal to
̇𝛾𝛾𝛾 (𝑡) at the point 𝛾𝛾𝛾 (𝑡). The amount that the curve 𝛾𝛾𝛾 deviates from its tangent at 𝛾𝛾𝛾 (𝑡) after time 𝑡0 is

(𝛾𝛾𝛾 (𝑡 + 𝑡0) − 𝛾𝛾𝛾 (𝑡)) ⋅ n(𝑡) , (2.1)
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Figure 2.1: Amount that 𝛾𝛾𝛾 deviates from tangent is (𝛾𝛾𝛾 (𝑡 + 𝑡0) − 𝛾𝛾𝛾 (𝑡)) ⋅ n(𝑡)

as seen in the figure below.

Equation (2.1) is what we take as measure of curvature. Since

̇𝛾𝛾𝛾 (𝑡) ⋅ ̈𝛾𝛾𝛾 (𝑡) = 0 and ̇𝛾𝛾𝛾 (𝑡) ⋅ n(𝑡) = 0 ,
we conclude that ̈𝛾𝛾𝛾 (𝑡) is parallel to n(𝑡). Since n(𝑡) is a unit vector, there exists a scalar 𝜅(𝑡) such that

̈𝛾𝛾𝛾 (𝑡) = 𝜅(𝑡)n(𝑡) .
As n is unitary, we have

𝜅(𝑡) = ‖ ̈𝛾𝛾𝛾 (𝑡)‖

Now, approximate 𝛾𝛾𝛾 at 𝑡 with its second order Taylor polynomial:

𝛾𝛾𝛾 (𝑡 + 𝑡0) = 𝛾𝛾𝛾 (𝑡) + ̇𝛾𝛾𝛾 (𝑡)𝑡0 +
̈𝛾𝛾𝛾 (𝑡)
2 𝑡20 + 𝑜(𝑡0)

where the remainder 𝑜(𝑡0) is such that

lim𝑡0→0
𝑜(𝑡0)
𝑡20

= 0 .

Therefore, discarding the remainder,

𝛾𝛾𝛾 (𝑡 + 𝑡0) − 𝛾𝛾𝛾 (𝑡) ≈ ̇𝛾𝛾𝛾 (𝑡)𝑡0 +
̈𝛾𝛾𝛾 (𝑡)
2 𝑡20 .
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Multiplying by n(𝑡) we get

(𝛾𝛾𝛾 (𝑡 + 𝑡0) − 𝛾𝛾𝛾 (𝑡)) ⋅ n(𝑡) ≈ ̇𝛾𝛾𝛾 (𝑡) ⋅ n(𝑡)𝑡0 +
̈𝛾𝛾𝛾 (𝑡) ⋅ n(𝑡)

2 𝑡20 .
Recalling that

̇𝛾𝛾𝛾 (𝑡) ⋅ n(𝑡) = 0 , ̈𝛾𝛾𝛾 (𝑡) ⋅ n(𝑡) = 𝜅(𝑡) ,
we then obtain

(𝛾𝛾𝛾 (𝑡 + 𝑡0) − 𝛾𝛾𝛾 (𝑡)) ⋅ n(𝑡) ≈ 1
2 𝜅(𝑡) 𝑡

20

Important

The amount that 𝛾𝛾𝛾 deviates from a straight line is proportional to

𝜅(𝑡) = ‖ ̈𝛾𝛾𝛾 (𝑡)‖ .

We take this as definition of curvature for a general unit speed curve in ℝ𝑛.

Definition 2.1

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a unit speed curve. The curvature of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is
𝜅𝛾𝛾𝛾 (𝑡) ∶= ‖ ̈𝛾𝛾𝛾 (𝑡)‖ .

Note that 𝜅(𝑡) is a function of time. Therefore the curvature of 𝛾𝛾𝛾 can change from point to point.

We now define curvature for curves which are regular, but not necessarily unit speed.

Definition 2.2

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a regular. The curvature of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is
𝜅𝛾𝛾𝛾 (𝑡) ∶= ‖ ̈̃𝛾𝛾𝛾 (𝜙(𝑡))‖ , ∀ 𝑡 ∈ (𝑎, 𝑏) ,

where ̃𝛾𝛾𝛾 is a unit speed reparametrization of 𝛾𝛾𝛾 , with 𝛾𝛾𝛾 = ̃𝛾𝛾𝛾 ∘ 𝜙.

Remark 2.3

The above definition is well posed:

• Since 𝛾𝛾𝛾 is regular, there exist a unit speed reparametrization ̃𝛾𝛾𝛾 of 𝛾𝛾𝛾 .
• If ̂𝛾𝛾𝛾 is another unit speed reaprametrization of 𝛾𝛾𝛾 , with 𝛾𝛾𝛾 = ̂𝛾𝛾𝛾 ∘ ̂𝜙, then

𝜅𝛾𝛾𝛾 (𝑡) = ‖ ̈̂𝛾𝛾𝛾 ( ̂𝜙(𝑡))‖ ,
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showing that there is no ambiguity in the definition of 𝜅𝛾𝛾𝛾 .

Indeed, since ̃𝛾𝛾𝛾 and ̂𝛾𝛾𝛾 are both reparametrizations of 𝛾𝛾𝛾 , then
𝛾𝛾𝛾 (𝑡) = ̃𝛾𝛾𝛾 ( ̃𝜙(𝑡)) , 𝛾𝛾𝛾 (𝑡) = ̂𝛾𝛾𝛾 ( ̂𝜙(𝑡))

for some diffeomorphisms ̃𝜙, ̂𝜙. Hence

̃𝛾𝛾𝛾 (𝑡) = ̂𝛾𝛾𝛾 (𝜙(𝑡)) , 𝜙 ∶= ̂𝜙 ∘ ( ̃𝜙)−1 , (2.2)

where 𝜙 is a diffeomorphism, since it is composition of diffeomorphisms. Differentiating
(2.2) we get

̇̃𝛾𝛾𝛾 (𝑡) = ̇̂𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙(𝑡) . (2.3)

Taking the norms of the above, and recalling that ̃𝛾𝛾𝛾 and ̂𝛾𝛾𝛾 are unit speed, we get

| ̇𝜙(𝑡)| = 1 , ∀ 𝑡 . (2.4)

Since 𝜙 is a diffeomorphism, we already know that | ̇𝜙| ≠ 0. As ̇𝜙 is continuous, this means
that the sign of ̇𝜙 is constant. Thus (2.4) implies

̇𝜙(𝑡) ≡ 1 or ̇𝜙(𝑡) ≡ −1 .
In both cases, we have

̈𝜙 ≡ 0 .
Differentiating (2.3) we then obtain

̈̃𝛾𝛾𝛾 (𝑡) = ̈̂𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙2(𝑡) + ̇̂𝛾𝛾𝛾 (𝜙(𝑡)) ̈𝜙(𝑡)
= ̈̂𝛾𝛾𝛾 (𝜙(𝑡)) ̇𝜙2(𝑡) .

Taking the norms and using again that | ̇𝜙| ≡ 1, we get that

‖ ̈̃𝛾𝛾𝛾 (𝑡)‖ = ‖ ̈̂𝛾𝛾𝛾 (𝜙(𝑡))‖ .

Recalling that 𝜙 = ̂𝜙 ∘ ( ̃𝜙)−1 we get

‖ ̈̃𝛾𝛾𝛾 ( ̃𝜙(𝑡))‖ = ‖ ̈̂𝛾𝛾𝛾 ( ̂𝜙(𝑡))‖ , ∀ 𝑡 ∈ (𝑎, 𝑏) .
Therefore

𝜅𝛾𝛾𝛾 (𝑡) = ‖ ̈̃𝛾𝛾𝛾 ( ̃𝜙(𝑡))‖ = ‖ ̈̂𝛾𝛾𝛾 ( ̂𝜙(𝑡))‖ .
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Remark 2.4: Methods for computing curvature

In summary, the curvature of a regular curve

𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛

is defined via unit speed reparametrizations of 𝛾𝛾𝛾 . To compute 𝜅 we do the following:

• We find a unit speed reparametrization ̃𝛾𝛾𝛾 of the regular curve 𝛾𝛾𝛾
• This can be done by computing 𝑠 the arc-length of 𝛾𝛾𝛾 , and then defining

̃𝛾𝛾𝛾 ∶= 𝛾𝛾𝛾 ∘ 𝜓 , 𝜓 ∶= 𝑠−1

• Then we compute
𝜅 ̃𝛾𝛾𝛾 (𝑡) = ‖ ̈̃𝛾𝛾𝛾 ‖ (𝑡)

• We obtain the curvature of 𝛾𝛾𝛾 by
𝜅𝛾𝛾𝛾 (𝑡) = 𝜅 ̃𝛾𝛾𝛾 (𝑡)

When 𝛾𝛾𝛾 is regular and has values in ℝ3, there is a way to compute 𝜅 without reparametrizing. To do this,
we will need the notion of cross product, or vector product. We will see this in the following sections.

Figure 2.2: Procedure for computing curvature 𝜅

We conclude with two examples in which we compute the curvature 𝜅 using unit speed reparametrizations.
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Example 2.5

Consider the circle of radius 𝑅 > 0:
𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡)) , 𝑡 ∈ [0, 2𝜋] .

To compute the curvature of 𝛾𝛾𝛾 we need to find a unit speed reparametrization. We have shown that:

𝛾𝛾𝛾 regular ⟹ 𝜙 = 𝑠−1 unit speed reparametrization

where 𝑠 is the arc length of 𝛾𝛾𝛾 :
𝑠(𝑡) ∶= ∫

𝑡

𝑡0
‖ ̇𝛾𝛾𝛾 (𝜏 )‖ 𝑑𝜏 .

In our case
̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡)) ⟹ ‖ ̇𝛾𝛾𝛾 (𝑡)‖ = 𝑅

and so 𝛾𝛾𝛾 is regular. However 𝛾𝛾𝛾 is not unit speed, therefore we need to find a unit speed reparametrization.
The arc length starting at 𝑡0 = 0 is

𝑠(𝑡) = ∫
𝑡

0
𝑅𝑑𝜏 = 𝑡𝑅 .

The inverse of 𝑠 is
𝜙(𝑡) ∶= 𝑠−1(𝑡) = 𝑡

𝑅 .
Therefore a unit speed reparametrization of 𝛾𝛾𝛾 is

̃𝛾𝛾𝛾 ∶= 𝛾𝛾𝛾 ∘ 𝜙
which reads

̃𝛾𝛾𝛾 (𝑡) ∶= (𝑅 cos ( 𝑡𝑅) , 𝑅 sin ( 𝑡𝑅)) .
We have

̇̃𝛾𝛾𝛾 (𝑡) = (− sin ( 𝑡𝑅) , cos (
𝑡
𝑅))

̈̃𝛾𝛾𝛾 (𝑡) = (− 1
𝑅 cos ( 𝑡𝑅) , −

1
𝑅 sin ( 𝑡𝑅))

Therefore the curvature of 𝛾𝛾𝛾 is

𝜅(𝑡) = ‖ ̈̃𝛾𝛾𝛾 (𝑡)‖ = 1
𝑅 .

In this case 𝜅(𝑡) is constant. The curvature also tells us that the smaller the circle, the higher the curvature.
For a large circle, like the Earth, the curvature is barely noticeable.

Before proceeding with the next example, let us give a short overview of the Hyperbolic functions.
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Remark 2.6: Hyperbolic functions

The Hyperbloic functions are the analogous of the trigonometric functions, but defined using the hyper-
bola rather than the circle. Their formulas can be obtained by means of the exponential function 𝑒𝑡 . We
have:

• Hyperbolic cosine: The even part of the function 𝑒𝑡 , that is,

cosh(𝑡) = 𝑒𝑡 + 𝑒−𝑡
2 = 𝑒2𝑡 + 1

2𝑒𝑡 = 1 + 𝑒−2𝑡
2𝑒−𝑡 .

• Hyperbolic sine: The odd part of the function 𝑒𝑡 , that is,

sinh(𝑡) = 𝑒𝑡 − 𝑒−𝑡
2 = 𝑒2𝑡 − 1

2𝑒𝑡 = 1 − 𝑒−2𝑡
2𝑒−𝑡 .

• Hyperbolic tangent: Defined by

tanh(𝑡) = sinh 𝑡
cosh 𝑡 =

𝑒𝑡 − 𝑒−𝑡
𝑒𝑡 + 𝑒−𝑡 =

𝑒2𝑡 − 1
𝑒2𝑡 + 1 .

• Hyperbolic cotangent: The reciprocal of tanh for 𝑡 ≠ 0,

coth 𝑡 = cosh 𝑡
sinh 𝑡 =

𝑒𝑡 + 𝑒−𝑡
𝑒𝑡 − 𝑒−𝑡 =

𝑒2𝑡 + 1
𝑒2𝑡 − 1 .

• Hyperbolic secant: The reciprocal of cosh

sech(𝑡) = 1
cosh 𝑡 =

2
𝑒𝑡 + 𝑒−𝑡 =

2𝑒𝑡
𝑒2𝑡 + 1 .

• Hyperbolic cosecant: The reciprocal of sinh for 𝑡 ≠ 0,

csch(𝑡) = 1
sinh 𝑡 =

2
𝑒𝑡 − 𝑒−𝑡 =

2𝑒𝑡
𝑒2𝑡 − 1 .

For a plot cosh, sinh, tanh see Figure 2.3 below. The properties of the hyperbolic functions which are of
interest to us are:

1. Identities:

cosh(𝑡) + sinh(𝑡) = 𝑒𝑡
cosh(𝑡) − sinh(𝑡) = 𝑒−𝑡
cosh2(𝑡) − sinh2(𝑡) = 1
sech2(𝑡) − tanh2(𝑡) = 1
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2. Derivatives:

𝑑
𝑑𝑡 [sinh(𝑡)] = cosh(𝑡)
𝑑
𝑑𝑡 [cosh(𝑡)] = sinh(𝑡)
𝑑
𝑑𝑡 [tanh(𝑡)] = 1 − tanh2(𝑡) = −csch2(𝑡)

3. Integrals:

∫
𝑡

𝑡0
sinh(𝑢) 𝑑𝑢 = cosh(𝑡) − cosh(𝑡0)

∫
𝑡

𝑡0
cosh(𝑢) 𝑑𝑢 = sinh(𝑡) − sinh(𝑡0)

∫
𝑡

𝑡0
tanh(𝑢) 𝑑𝑢 = log(cosh(𝑡)) − log(cosh(𝑡0))

Figure 2.3: Plot of cosh, sinh, tanh.
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Example 2.7: The Catenary

The catenary is the shape of a heavy chain suspended at its ends. The chain is only subjected to gravity,
see Figure 2.4. This shape looks similar to a parabola, but it is not a parabola. This was first noted by
Galilei, see this Wikipedia page. The profile of the hanging chain can be obtained via a minimization
problem, and one can show it is of the form

𝛾𝛾𝛾 (𝑡) = (𝑡, cosh(𝑡)) , 𝑡 ∈ ℝ .
See Figure 2.5 for a plot of 𝛾𝛾𝛾 . Let us check if 𝛾𝛾𝛾 is regular. We have

̇𝛾𝛾𝛾 (𝑡) = (1, sinh(𝑡))
so that

‖ ̇𝛾𝛾𝛾 ‖2 = 1 + sinh2(𝑡) = cosh2(𝑡) ⟹ ‖ ̇𝛾𝛾𝛾 ‖ = cosh(𝑡) .
Note that

cosh(𝑡) ≥ 1
showing that 𝛾𝛾𝛾 is regular. However

‖ ̇𝛾𝛾𝛾 (1)‖ = cosh(1) = 𝑒 + 𝑒−1
2 ≈ 1.54 ,

proving that 𝛾𝛾𝛾 is not unit speed. Let us then compute the arc length of 𝛾𝛾𝛾 starting at 𝑡0 = 0

𝑠(𝑡) = ∫
𝑡

0
‖ ̇𝛾𝛾𝛾 (𝑢)‖ 𝑑𝑢 = ∫

𝑡

0
cosh(𝑢) 𝑑𝑢 = sinh(𝑡)

since sinh(0) = 0. We need to invert 𝑠. We have

𝑠 = sinh(𝑡) ⟺ 𝑠 = 𝑒𝑡 − 𝑒−𝑡
2 ⟺ 𝑒2𝑡 − 2𝑠𝑒𝑡 − 1 = 0 ,

where the last equation was obtained multuplying both sides by 𝑒𝑡 . Now we substitute

𝑦 = 𝑒𝑡

and obtain
𝑒2𝑡 − 2𝑠𝑒𝑡 − 1 = 0 ⟺ 𝑦2 − 2𝑠𝑦 − 1 = 0 ⟺ 𝑦 = 𝑠 ± √1 + 𝑠2 .

Recalling that 𝑦 = 𝑒𝑡 , we only consider the positive solution, and obtain that

𝑒𝑡 = 𝑠 + √1 + 𝑠2 ⟹ 𝑡 = log (𝑠 + √1 + 𝑠2) .

We have proven that the inverse of the arc length 𝑠(𝑡) is

𝜓(𝑡) ∶= 𝑠−1(𝑡) = log (𝑡 + √1 + 𝑡2) .
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Therefore
̃𝛾𝛾𝛾 (𝑡) ∶= 𝛾𝛾𝛾 (𝜓 (𝑡))

is a unit speed reparametrization of 𝛾𝛾𝛾 . Substituting 𝜓 and using the definition of 𝛾𝛾𝛾 we have

̃𝛾𝛾𝛾 (𝑡) = (log (𝑡 + √1 + 𝑡2) , √1 + 𝑡2) .

We can now compute the curvature. We have:

̇̃𝛾𝛾𝛾 (𝑡) = ( 1
√1 + 𝑡2

, 𝑡
√1 + 𝑡2

)

̈̃𝛾𝛾𝛾 (𝑡) = (− 𝑡
(1 + 𝑡2)3/2 ,

1
(1 + 𝑡2)3/2)

Moreover

‖ ̈̃𝛾𝛾𝛾 (𝑡)‖2 = 𝑡2
(1 + 𝑡2)3 + 1

(1 + 𝑡2)3 = 1
(1 + 𝑡2)2 .

Therefore the curvature is
𝜅(𝑡) = ‖ ̈̃𝛾𝛾𝛾 (𝑡)‖ = 1

1 + 𝑡2 .

Figure 2.4: The catenary is the shape of a heavy chain suspended at its ends. Image from Wikipedia.
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Figure 2.5: Plot of the catenary curve 𝛾𝛾𝛾 (𝑡) = (𝑡, cosh(𝑡)).
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2.2 Vector product in ℝ3

The discussion in this section follows [2]. We start by defining orientation for a vector space.

Definition 2.8: Same orientation

Consider two ordered basis of ℝ3

𝐵 = (b1, b2, b3) , 𝐵̃ = (b̃1, b̃2, b̃3) .
We say that 𝐵 and 𝐵 have the same orientation if the matrix of change of basis has positive determinant.

When two basis 𝐵 and 𝐵 have the same orientation, we write

b ∼ b̃ .
The above is clearly an equivalence relation on the set of ordered basis. Therefore the set of ordered basis of
ℝ3 can be decomposed into equivalence classes. Since the determinant of the matrix of change of basis can
only be positive or negative, there are only two equivalence classes.

Definition 2.9: Orientation

The two equivalence classes determined by ∼ on the set of ordered basis are called orientations.

Definition 2.10: Positive orientation

Consider the standard basis of ℝ3
𝐸 = (e1, e2, e3)

where we set
e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) .

Then:

• The orientation corresponding to 𝐸 is called positive orientation of ℝ3.
• The orientation corresponding to the other equivalence class is called negative orientation of ℝ3.

For a basis 𝐵 of ℝ3 we say that:

• 𝐵 is a positive basis if it belongs to the class of 𝑒.
• 𝐵 is a negative basis if it does not belong to the class of 𝑒.
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Example 2.11

Since we are dealing with ordered basis, the order in which vectors appear is fundamental. For example,
we defined the equivalence class of

𝐸 = (e1, e2, e3) ,
to be the positive orientation of ℝ3. In particular 𝑒 is a positive basis.
Consider instead

𝐸 = (e2, e1, e3) .
The matrix of change of variables between 𝐸 and 𝐸 is

(e2|e1|e3) = (
0 1 0
1 0 0
0 0 1

)

and the latter has negative determinant. Thus 𝐸 does not belong to the class of 𝐸, and is therefore a
negative basis.

We are now ready to define the vector product in ℝ3.

Definition 2.12: Vector product in ℝ3

Let u, v ∈ ℝ3. The vector product of u and v is the unique vector

u × v ∈ ℝ3

which satisfies the property:

(u × v) ⋅w = |
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3
𝑤1 𝑤2 𝑤3

| , ∀w ∈ ℝ3 . (2.5)

Here |𝑎𝑖𝑗 | denotes the determinant of the matrix (𝑎𝑖𝑗), and

u =
3
∑
𝑖=1

𝑢𝑖e𝑖 , v =
3
∑
𝑖=1

𝑣𝑖e𝑖 , w =
3
∑
𝑖=1

𝑤𝑖e𝑖 ,

with (e1, e2, e3) standard basis of ℝ3.

The following proposition gives an explicit formula for computing u × v.
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Proposition 2.13

Let u, v ∈ ℝ3. Then
u × v = | 𝑢2 𝑢3

𝑣2 𝑣3 | e1 − | 𝑢1 𝑢3
𝑣1 𝑣3 | e2 + | 𝑢1 𝑢2

𝑣1 𝑣2 | e3 . (2.6)

Proof

Denote by (u × v)𝑖 the 𝑖-th component of u × v with respect to the standard basis, that is,

u × v =
3
∑
𝑖=1

(u × v)𝑖 e𝑖 .

We can use (2.5) with w = e1 to obtain

(u × v) ⋅ e1 = |
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3
1 0 0

| = | 𝑢2 𝑢3
𝑣2 𝑣3 |

where we used the Laplace expansion for computing the determinant of the 3×3matrix. As the standard
basis is orthonormal, by bilinearity of the scalar product we get

(u × v) ⋅ e1 =
3
∑
𝑖=1

(u × v)𝑖 e𝑖 ⋅ e1 = (u × v)𝑖 .

Therefore we have shown

(u × v)1 = | 𝑢2 𝑢3
𝑣2 𝑣3 | .

Similarly we obtain

(u × v)2 = |
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3
0 1 0

| = − | 𝑢1 𝑢3
𝑣1 𝑣3 |

and

(u × v)3 = |
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3
0 0 1

| = | 𝑢1 𝑢2
𝑣1 𝑣2 | ,

from which we conclude.

Sometimes we will denote formula (2.6) by

u × v = |
i j k
𝑢1 𝑢2 𝑢2
𝑣1 𝑣2 𝑣3

| .
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Let us collect some crucial properties of the vector product.

Proposition 2.14

The vector product in ℝ3 satisfies the following properties: For all u, v ∈ ℝ3

1. u × v = −v × u
2. u × v = 000 if and only if u and v are linearly dependent
3. (u × v) ⋅ u = 0, (u × v) ⋅ v = 0
4. For all w ∈ ℝ3, 𝑎, 𝑏 ∈ ℝ

(𝑎u + 𝑏w) × v = 𝑎u × v + 𝑏w ×w

The proof, which is based on the properties of determinants, is omitted.

Remark 2.15: Geometric interpretation of vector product

Let u, v ∈ ℝ3 be linearly independent. We make some observations:

1. Property 3 in Proposition 2.14 says that

(u × v) ⋅ u = 0 , (u × v) ⋅ v = 0 .
Therefore u × v is orthogonal to both u and v.

2. In particular u × v is orthogonal to the plane generated by u and v.

3. Since u and v are linearly independent, Property 2 in Proposition 2.14 says that

u × v ≠ 000

4. Therefore we have
(u × v) ⋅ (u × v) = ‖u × v‖2 > 0

5. On the other hand, using the definition of u × v with w = v ×w yields

(u × v) ⋅ (u × v) = |
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3

(u × v)1 (u × v)2 (u × v)3
|

6. Therefore the determinant of the matrix

(u|v|u × v)
is positive. This shows that

(u, v,u × v)
is a positive basis of ℝ3.
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7. For all u, v,x,y ∈ ℝ3 it holds

(u × v) ⋅ (x × y) = | u ⋅ x v ⋅ x
u ⋅ y v ⋅ y | . (2.7)

Indeed, one can check that the above formula holds for the standard vectors e𝑖, and thus the general
formula follows by linearity.

8. Using (2.7) we get

‖u × v‖2 = (u × v) ⋅ (u × v) = | u ⋅ u v ⋅ u
u ⋅ v v ⋅ v |

= ‖u‖2 ‖v‖2 − |u ⋅ v|2
= ‖u‖2 ‖v‖2 − ‖u‖2 ‖v‖2 cos2(𝜃)
= ‖u‖2 ‖v‖2 (1 − cos2(𝜃))
= ‖u‖2 ‖v‖2 sin2(𝜃)
= 𝐴2

where 𝐴 is the area of the parallelogram with sides u and v.

Figure 2.6: For u, v linearly independent, u × v is orthogonal to the plane generated by u, v. Moreover |u × v|
is the area of the parallelogram with sides u, v, and (u, v,u × v) is a positive basis of ℝ3
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Let us summarize the above remark.

Remark 2.16: Summary: Properties of u × v

Let u, v ∈ ℝ3 be linearly independent. Then

• u × v is orthogonal to the plane spanned by u, v
• ‖u × v‖ is equal to the area of the parallelogram with sides u, v
• u × v is such that

(u, v,u × v)
is a positive basis of ℝ3.

We conclude with noting that the cross product is not associative, and with a useful proposition for differen-
tiating the cross product of curves in ℝ3.

Proposition 2.17

The vector product is not associative. In particular, for all u, v,w ∈ ℝ3 it holds:

(u × v) ×w = (u ⋅w)v − (v ⋅w)u . (2.8)

The proof is omitted. It follows by observing that both sides of (2.8) are linear in u, v,w. Therefore it is
sufficient to verify (2.8) for the standard basis vectors e𝑖. This is left as an exercise.

Proposition 2.18

Suppose 𝛾𝛾𝛾 , 𝜂𝜂𝜂 ∶ (𝑎, 𝑏) → ℝ3 are parametrized curves. Then the curve

𝛾𝛾𝛾 × 𝜂𝜂𝜂 ∶ (𝑎, 𝑏) → ℝ3

is smooth, and
𝑑
𝑑𝑡 (𝛾𝛾𝛾 × 𝜂𝜂𝜂) = ̇𝛾𝛾𝛾 × 𝜂𝜂𝜂 + 𝛾𝛾𝛾 × ̇𝜂𝜂𝜂 . (2.9)

The proof is omitted. It follows immediately from formula (2.6).

2.3 Curvature formula in ℝ3

Given a unit speed curve
𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 82

we defined its curvature as
𝜅(𝑡) = ‖ ̈𝛾𝛾𝛾 (𝑡)‖ .

If 𝛾𝛾𝛾 is not unit speed then the curvature is not defined. However, when 𝛾𝛾𝛾 is regular, then we can find a
unit-speed reparametrization ̃𝛾𝛾𝛾 of 𝛾𝛾𝛾 , and compute 𝜅 as

𝜅(𝑡) = ‖ ̈̃𝛾𝛾𝛾 (𝑡)‖ .
If 𝛾𝛾𝛾 is a regular curve inℝ3, there is a way to compute 𝜅 without passing through ̃𝛾𝛾𝛾 . The formula for computing
𝜅 is as follows.

Proposition 2.19: Curvature formula

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a regular curve. The curvature 𝜅(𝑡) of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is given by

𝜅(𝑡) = ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖
‖ ̇𝛾𝛾𝛾 ‖3

. (2.10)

We delay the proof of the above Proposition, as this will get easier when the Frenet frame is introduced. For
a proof which does not make use of the Frenet frame, see the proof of Proposition 2.1.2 in [6].

For now we use (2.10) the above proposition to compute the curvature on specific curves.

Example 2.20

Consider the straight line
𝛾𝛾𝛾 (𝑡) = a + 𝑡v

for some a, v ∈ ℝ3 fixed, with v ≠ 000. Then
̇𝛾𝛾𝛾 (𝑡) = v , ̈𝛾𝛾𝛾 (𝑡) = 000 .

Therefore
‖ ̇𝛾𝛾𝛾 (𝑡)‖ = ‖v‖ ≠ 0

showing that 𝛾𝛾𝛾 is regular. We have
̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = v × 000 = 000 .

Therefore the curvature is

𝜅 = ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖
‖ ̇𝛾𝛾𝛾 ‖3

= 0 ,

as expected.
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Example 2.21

Consider the Helix of radius 𝑅 > 0 and rise 𝐻 > 0
𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 𝐻 𝑡) , 𝑡 ∈ ℝ .

Then

̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡), 𝐻)
̈𝛾𝛾𝛾 (𝑡) = (−𝑅 cos(𝑡), −𝑅 sin(𝑡), 0)

From this we deduce that
‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √𝑅2 + 𝐻 2 ,

showing that 𝛾𝛾𝛾 is regular. Finally

̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = | ̇𝛾2 ̇𝛾3
̈𝛾2 ̈𝛾3 | e1 − | ̇𝛾1 ̇𝛾3

̈𝛾1 ̈𝛾3 | e2 + | ̇𝛾1 ̇𝛾2
̈𝛾1 ̈𝛾2 | e3

= | 𝑅 cos(𝑡) 𝐻
−𝑅 sin(𝑡) 0 | e1 − | −𝑅 sin(𝑡) 𝐻

−𝑅 cos(𝑡) 0 | e2 + | −𝑅 sin(𝑡) 𝑅 cos(𝑡)
−𝑅 cos(𝑡) −𝑅 sin(𝑡) | e3

= (𝑅𝐻 sin(𝑡), −𝑅𝐻 cos(𝑡), 𝑅2 cos2(𝑡) + 𝑅2 sin2(𝑡))
= (𝑅𝐻 sin(𝑡), −𝑅𝐻 cos(𝑡), 𝑅2)

and therefore
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 𝑅√𝑅2 + 𝐻 2 .

By the general formula we have

𝜅 = ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖
‖ ̇𝛾𝛾𝛾 ‖3

= 𝑅(𝑅2 + 𝐻 2) 12
(𝑅2 + 𝐻 2) 32

= 𝑅
𝑅2 + 𝐻 2

We notice the following:

• If 𝐻 = 0 then the Helix is just a circle of radius 𝑅. In this case the curvature is

𝜅 = 1
𝑅

which agrees with the curvature computed for the circle of radius 𝑅.
• If 𝑅 = 0 then the Helix is just parametrizing the 𝑧-axis. In this case the curvature is

𝜅 = 0 ,
which agrees with the curvature of a straight line.
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2.4 Signed curvature of plane curves

In this section we assume to have plane curves, that is, curves with values in ℝ2. In this case we can give a
geometric interpretation for the sign of the curvature. This cannot be done in higher dimension.

Definition 2.22

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ2 be unit speed. We define the signed unit normal to 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) as the unit vector n(𝑡)
obtained by rotating ̇𝛾𝛾𝛾 (𝑡) anti-clockwise by an angle of 𝜋/2.

Definition 2.23

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ2 be unit speed. The signed curvature of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is the scalar 𝜅𝑠(𝑡) such that

̈𝛾𝛾𝛾 (𝑡) = 𝑘𝑠(𝑡)n(𝑡)

Remark 2.24

Notice that since n is a unit vector and 𝛾𝛾𝛾 is unit speed, then

|𝜅𝑠(𝑡)| = ‖ ̈𝛾𝛾𝛾 (𝑡)‖ = 𝜅(𝑡) .
Thus the signed curvature is related to the curvature by

𝜅𝑠(𝑡) = ±𝜅(𝑡) .

Remark 2.25

It can be shown that the signed curvature is the rate at which the tangent vector ̇𝛾𝛾𝛾 of the curve 𝛾𝛾𝛾 rotates.
The signed curvature is:

• positive if ̇𝛾𝛾𝛾 is rotating anti-clockwise
• negative if ̇𝛾𝛾𝛾 is rotating clockwise

In other words,

• 𝑘𝑠 > 0 means the curve is turning left,
• 𝑘𝑠 < 0 means the curve is turning right.

A rigorous justification of the above statement is found in Proposition 2.2.3 in [6].
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For curves which are not unit speed, we define the signed curvature as the signed curvature of the unit speed
reparametrization.

Definition 2.26

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ2 be regular and let ̃𝛾𝛾𝛾 be a unit speed reparametrization of 𝛾𝛾𝛾 . The signed curvature
of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is the scalar 𝜅𝑠(𝑡) such that

̈̃𝛾𝛾𝛾 (𝑡) = 𝑘𝑠(𝑡)n(𝑡) ,
where n(𝑡) is the unit vector obtained by rotating ̇̃𝛾𝛾𝛾 (𝑡) anti-clockwise by an angle 𝜋/2.

The signed curvature completely characterizes plane curves, in the sense of the following theorem.

Theorem 2.27: Characterization of plane curves

Let 𝜙 ∶ ℝ → ℝ be smooth. Then:

1. There exists a unit speed curve 𝛾𝛾𝛾 ∶ ℝ → ℝ2 such that its signed curvature 𝜅𝑠 satisfies
𝜅𝑠(𝑡) = 𝜙(𝑡) , ∀ 𝑡 ∈ ℝ .

2. Suppose that ̃𝛾𝛾𝛾 ∶ ℝ → ℝ2 is a unit speed curve such that its signed curvature 𝜅̃𝑠 satisfies
𝜅̃𝑠(𝑡) = 𝜙(𝑡) , ∀ 𝑡 ∈ ℝ .

Then
̃𝛾𝛾𝛾 = 𝛾𝛾𝛾

up to rotations and translations.

We do not prove the above theorem. For a proof, see Theorem 2.2.6 in [6].

2.5 Space curves

In this section we deal with space curves, that is, curves with values in ℝ3. There are several issues compare
to the plane case:

• A 3D counterpart of the signed curvature does not exist, since there is no notion of turning left or
turning right.

• We have seen in the previous section that the signed curvature completely characterizes plane curves.
In 3D however curvature is not enough to characterize curves: there exist 𝛾𝛾𝛾 and 𝜂𝜂𝜂 space curves such
that

𝜅𝛾𝛾𝛾 = 𝜅𝜂𝜂𝜂 , 𝛾𝛾𝛾 ≠ 𝜂𝜂𝜂 ,
that is, 𝛾𝛾𝛾 and 𝜂𝜂𝜂 have same curvature but are different curves.
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Example 2.28

Let 𝛾𝛾𝛾 be a circle of radius 𝑅 > 0
𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 0) ,

and 𝜂𝜂𝜂 be a helix of radius 𝑆 > 0 and rise 𝐻 > 0
𝜂𝜂𝜂(𝑡) = (𝑆 cos(𝑡), 𝑆 sin(𝑡), 𝐻 𝑡) .

We have computed that

𝜅𝛾𝛾𝛾 = 1
𝑅 , 𝜅𝜂𝜂𝜂 = 𝑆

𝑆2 + 𝐻 2 .
If we now choose 𝑅 = 2 and we impose that 𝜅𝛾𝛾𝛾 = 𝜅𝜂𝜂𝜂 we get

1
𝑅 = 𝑆

𝑆2 + 𝐻 2 ⟹ 𝐻 2 = 2𝑆 − 𝑆2

Therefore choosing 𝑆 = 1 and 𝐻 = 1 yields

𝜅𝛾𝛾𝛾 = 𝜅𝜂𝜂𝜂 , 𝛾𝛾𝛾 ≠ 𝜂𝜂𝜂 ..

Therefore curvature is not enough for characterizing space curves, and we need a new quantity. As we did
with curvature, we start by considering the simpler case of unit speed curves. We will also need to assume
that the curvature is never zero.

Definition 2.29: Principal normal vector

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a unit speed curve with

𝜅(𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
The principal normal vector to 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is

n(𝑡) ∶= 1
𝜅(𝑡) ̈𝛾𝛾𝛾 (𝑡) .

Remark 2.30

Since for 𝛾𝛾𝛾 unit speed we defined
𝜅(𝑡) ∶= ‖ ̈𝛾𝛾𝛾 (𝑡)‖ ,

we have that
‖n(𝑡)‖ = 1 ,
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thus n is a unit vector. Moreover n is orthogonal to ̇𝛾𝛾𝛾 , that is,
̇𝛾𝛾𝛾 ⋅ n = 0 .

This is because
̇𝛾𝛾𝛾 ⋅ n = 1

𝜅 ̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 0 ,
where the last equality follows from ̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 0, being 𝛾𝛾𝛾 unit speed.

Figure 2.7: Principal normal vector n(𝑡) to 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡).

Question 2.31

Why is the principal normal interesting? Because it can tell the difference beween a plane curve and a
space curve. See picture below.

Definition 2.32: Binormal vector

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a unit speed curve with

𝜅(𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
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Figure 2.8: Left: Principal normal to a circle. Note that n always points towards the origin 000. Right: Principal
normal to a helix. Note that n points towards the 𝑧-axis, but never towards the same point.

The binormal vector to 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is
b(𝑡) ∶= ̇𝛾𝛾𝛾 (𝑡) × n(𝑡) .

Definition 2.33: Orthonormal basis

Let v1, v2, v3 be vectors in ℝ3. We say that the triple

{v1, v2, v3}
is orthonormal if

‖𝑣𝑖‖ = 1 , 𝑣𝑖 ⋅ 𝑣𝑗 = 0 , for 𝑖 ≠ 𝑗 .

Proposition 2.34

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a unit speed curve with

𝜅(𝑡) ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
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Then the triple
𝐵 = ( ̇𝛾𝛾𝛾 (𝑡),n(𝑡), b(𝑡))

is a positive orthonormal basis of ℝ3 for all 𝑡 ∈ (𝑎, 𝑏).

Proof

Since 𝛾𝛾𝛾 is unit speed we have
‖ ̇𝛾𝛾𝛾 (𝑡)‖ ≡ 1 .

Moreover we have already observed that

‖n(𝑡)‖ ≡ 1 , ̇𝛾𝛾𝛾 (𝑡) ⋅ n(𝑡) ≡ 0 .
As b is defined by

b ∶= ̇𝛾𝛾𝛾 × n ,
by the properties of the vector product, see Proposition 2.14, it follows that

b ⋅ ̇𝛾𝛾𝛾 = 0 , b ⋅ n = 0 .
By the calculation in Remark 2.15 Point 8, we have that

‖b‖2 = ‖ ̇𝛾𝛾𝛾 ‖2‖n‖2 − | ̇𝛾𝛾𝛾 ⋅ n|2 = 1 .
This shows that the vectors

{ ̇𝛾𝛾𝛾 ,n, b}
are orthonormal. By the properties of the vector product, see Remark 2.15 Point 6, we also know that

( ̇𝛾𝛾𝛾 ,n, b)
is a positive basis of ℝ3.

Proposition 2.35

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a unit speed curve with 𝜅 ≠ 0. Then
b = ̇𝛾𝛾𝛾 × n , n = b × ̇𝛾𝛾𝛾 , ̇𝛾𝛾𝛾 = n × b . (2.11)
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Proof

The first equality in (2.11) is true by definition of b. For the other 2 equalities, recall formula (2.8):

(u × v) ×w = (u ⋅w)v − (v ⋅w)u , (2.12)

for all u, v,w ∈ ℝ3. Applying the above with

u = ̇𝛾𝛾𝛾 , v = n , w = ̇𝛾𝛾𝛾 ,
yields

( ̇𝛾𝛾𝛾 × n) × ̇𝛾𝛾𝛾 = ( ̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 )n − (n ⋅ ̇𝛾𝛾𝛾 ) ̇𝛾𝛾𝛾
= ‖ ̇𝛾𝛾𝛾 ‖2 n − 0
= n ,

where we used that ̇𝛾𝛾𝛾 is a unit vector and n ⋅ ̇𝛾𝛾𝛾 = 0. Therefore, by definition of b, we have

b × ̇𝛾𝛾𝛾 = ( ̇𝛾𝛾𝛾 × n) × ̇𝛾𝛾𝛾 = n

showing the second equality in (2.11). For showing the third equality in (2.11), we apply (2.12) with

u = ̇𝛾𝛾𝛾 , v = n , w = n ,
to get

( ̇𝛾𝛾𝛾 × n) × n = ( ̇𝛾𝛾𝛾 ⋅ n)n − (n ⋅ n) ̇𝛾𝛾𝛾
= 0 − ‖n‖2 ̇𝛾𝛾𝛾
= − ̇𝛾𝛾𝛾

where we used that n is a unit vector and ̇𝛾𝛾𝛾 ⋅n = 0. Therefore, by definition of b and anti-commutativity
of the vector product, we have

n × b = −b × n = −( ̇𝛾𝛾𝛾 × n) × n = ̇𝛾𝛾𝛾 ,
showing the last equality in (2.11).

Proposition 2.36

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a unit speed curve with 𝜅 ≠ 0. Then
ḃ(𝑡) = −𝜏(𝑡)n(𝑡) , (2.13)

for some 𝜏 (𝑡) ∈ ℝ.
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Proof

By definition of b and the formula of derivation of the cross product (2.9) we have

ḃ = 𝑑
𝑑𝑡 ( ̇𝛾𝛾𝛾 × n)

= ̈𝛾𝛾𝛾 × n + ̇𝛾𝛾𝛾 × ṅ
= ̇𝛾𝛾𝛾 × ṅ ,

where we used that
̈𝛾𝛾𝛾 × n = 0 ,

since n is defined by n ∶= ̈𝛾𝛾𝛾/𝜅, and therefore n and ̈𝛾𝛾𝛾 are parallel. Hence, we have proven that

ḃ = ̇𝛾𝛾𝛾 × ṅ . (2.14)

By the properties of the cross product we have that u × v is orthogonal to both u and v. Thus (2.14)
implies that

ḃ ⋅ ̇𝛾𝛾𝛾 = 0 .
Further, observe that

𝑑
𝑑𝑡 (b ⋅ b) = ḃ ⋅ b + b ⋅ ḃ = 2ḃ ⋅ b .

On the other hand, since b is a unit vector, we have

𝑑
𝑑𝑡 (b ⋅ b) = 𝑑

𝑑𝑡 (‖b‖
2) = 𝑑

𝑑𝑡 (1) = 0

Therefore
ḃ ⋅ b = 0 .

To summarize, we have shown that ḃ is orthogonal to b and ̇𝛾𝛾𝛾 . Since
( ̇𝛾𝛾𝛾 ,n, b)

is an orthonormal basis of ℝ3 we conclude that ḃ is parallel to n. Therefore there exists 𝜏 (𝑡) ∈ ℝ such
that

ḃ = −𝜏(𝑡)n(𝑡) ,
concluding the proof.

The scalar 𝜏 in equation (2.13) is called the torsion of 𝛾𝛾𝛾 .
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Definition 2.37: Torsion of unit speed curve

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a unit speed curve, with 𝜅 ≠ 0. The torsion of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is the unique scalar

𝜏 (𝑡) ∈ ℝ
such that

ḃ(𝑡) = −𝜏(𝑡)n(𝑡) .

Remark 2.38

In particular the torsion satisfies:
𝜏 (𝑡) = −ḃ(𝑡) ⋅ n(𝑡) .

The above can be immediately obtained by multiplying (2.13) by n. Indeed,

ḃ = −𝜏n ⟹ ḃ ⋅ n = −𝜏n ⋅ n = −𝜏 ,
since n is a unit vector.

Warning

We defined the torsion only for space curves 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 which are unit speed and have non-vanishing
curvature, that is, such that

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = 1 , 𝜅(𝑡) = ‖ ̈𝛾𝛾𝛾 (𝑡)‖ ≠ 0 ,
for all 𝑡 ∈ (𝑎, 𝑏).

We can extend the definition of torsion to regular curves 𝛾𝛾𝛾 with non-vanishing curvature. In this case the
torsion of 𝛾𝛾𝛾 is defined as the torsion of a unit speed reparametrization of 𝛾𝛾𝛾 .

Definition 2.39

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a regular curve with non-vanishing curvature. Let ̃𝛾𝛾𝛾 be a unit speed reparametriza-
tion of 𝛾𝛾𝛾 , with

𝛾𝛾𝛾 = ̃𝛾𝛾𝛾 ∘ 𝜙 , 𝜙 ∶ (𝑎, 𝑏) → (𝑎̃, 𝑏̃) .
We define the torsion of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) as

𝜏𝛾𝛾𝛾 (𝑡) ∶= 𝜏 ̃𝛾𝛾𝛾 (𝜙(𝑡)) ,
where 𝜏 ̃𝛾𝛾𝛾 (𝑠) denotes the torsion of ̃𝛾𝛾𝛾 at ̃𝛾𝛾𝛾 (𝑠).

As usual, it is possible to check that the above definition of torsion does not depend on the choice of unit speed
reparametrization ̃𝛾𝛾𝛾 . As with curvature, there is a general formula to compute the torsion without having to
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reparametrize.

Proposition 2.40: Torsion formula

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a regular curve with non-vanishing curvature. The torsion 𝜏 (𝑡) of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is given
by

𝜏 (𝑡) = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖2

.

We delay the proof of the above proposition for a bit. In the meantime, let us look at examples.

Example 2.41: Torsion Helix

Consider the Helix of radius 𝑅 > 0 and rise 𝐻 > 0
𝛾𝛾𝛾 (𝑡) = (𝑅 cos(𝑡), 𝑅 sin(𝑡), 𝐻 𝑡) , 𝑡 ∈ ℝ .

We have already shown that

‖ ̇𝛾𝛾𝛾 (𝑡)‖ = √𝑅2 + 𝐻 2 , 𝜅 = 𝑅
𝑅2 + 𝐻 2 .

Therefore the Helix is regular with non-vanishing curvature. The torsion can be then computed via the
formula

𝜏 (𝑡) = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖2

.

Let us compute the quantities appearing in the formula for 𝜏
̇𝛾𝛾𝛾 (𝑡) = (−𝑅 sin(𝑡), 𝑅 cos(𝑡), 𝐻)
̈𝛾𝛾𝛾 (𝑡) = (−𝑅 cos(𝑡), −𝑅 sin(𝑡), 0)
⃛𝛾𝛾𝛾 (𝑡) = (𝑅 sin(𝑡), −𝑅 cos(𝑡), 0)

Moreover we had already computed that

̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 = (𝑅𝐻 sin(𝑡), −𝑅𝐻 cos(𝑡), 𝑅2)
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖ = 𝑅√𝑅2 + 𝐻 2 .

Finally we compute
( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾 = 𝑅2𝐻 .

We are ready to find the torsion:

𝜏 = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖2

= 𝐻
𝑅2 + 𝐻 2 .
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Example 2.42: Curvature and Torsion of Circle

The Circle of radius 𝑅 > 0 is
𝛾𝛾𝛾 (𝑡) ∶= (𝑅 cos(𝑡), 𝑅 sin(𝑡), 0) .

The curvature and torsion of the Helix of radius 𝑅 and rise 𝐻 > 0 are

𝜅 = 𝑅
𝑅2 + 𝐻 2 , 𝜏 = 𝐻

𝑅2 + 𝐻 2 .

For 𝐻 = 0 the Helix coincides with the Circle 𝛾𝛾𝛾 . Therefore we can set 𝐻 = 0 in the above formulas to
obtain the curvature and torsion of the Circle

𝜅 = 1
𝑅 , 𝜏 = 0 .

From the above example we notice that the torsion of the circle is 0. This is true in general for space curves
which are contained in a plane: we will prove this result in general. For the moment, let us give an example
for which this happens, that is, an example of space curve 𝛾𝛾𝛾 which is contained in a plane.

Example 2.43

Define the space curve

𝛾𝛾𝛾 (𝑡) ∶= (45 cos(𝑡), 1 − sin(𝑡), −35 cos(𝑡)) ,
for 𝑡 ∈ ℝ. As seen in the plot below, 𝛾𝛾𝛾 is just a Circle which has been rotated an translated. Therefore 𝛾𝛾𝛾
is contained in a plane, and we expect curvature and torsion to be

𝜅 = 1
𝑅, 𝜏 = 0 ,

for some 𝑅 > 0, radius of the Circle 𝛾𝛾𝛾 . Let us proceed with the calculations:

̇𝛾𝛾𝛾 = (−45 sin(𝑡), − cos(𝑡), 35 sin(𝑡))

so that
‖ ̇𝛾𝛾𝛾 ‖2 = 16

25 sin2(𝑡) + cos2(𝑡) + 9
25 sin2(𝑡) = 1 ,

showing that 𝛾𝛾𝛾 is regular and unit speed. Further

̈𝛾𝛾𝛾 = (−45 cos(𝑡), sin(𝑡), 35 cos(𝑡)) .

As 𝛾𝛾𝛾 is unit speed, we have

𝜅 = ‖ ̈𝛾𝛾𝛾 ‖ = 16
25 cos2(𝑡) + sin2(𝑡) + 9

25 cos2(𝑡) = 1 .
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As 𝛾𝛾𝛾 is unit speed, the normal vector is

n = 1
𝜅 ̈𝛾𝛾𝛾 = (−45 cos(𝑡), sin(𝑡), 35 cos(𝑡)) .

We can then compute the binormal

b = ̇𝛾𝛾𝛾 × n

= |
i j k

−4
5 sin(𝑡) − cos(𝑡) 3

5 sin(𝑡)
−4
5 cos(𝑡) sin(𝑡) 3

5 cos(𝑡)
|

= (−35 cos2(𝑡) − 3
5 sin2(𝑡), −1225 cos(𝑡) sin(𝑡) + 12

25 cos(𝑡) sin(𝑡), −45 sin2(𝑡) − 4
5 cos2(𝑡))

= (−35, 0, −
4
5) .

Therefore
ḃ = 0 ,

and we obtain that the torsion is
𝜏 = −ḃ ⋅ n = 0 .

x
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Figure 2.9: Plot of the curve in example above
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2.6 Frenet frame

For a unit speed curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 with non-vanishing curvature we computed the triple

{ ̇𝛾𝛾𝛾 ,n, b} .
We saw that the above is a positive orthonormal basis of ℝ3. We also used this triple to compute curvature 𝜅
and torsion 𝜏 of 𝛾𝛾𝛾 :

𝜅 = ‖ ̈𝛾𝛾𝛾 ‖ , 𝜏 = −ḃ ⋅ n .
This triple is so important that it has a name.

Definition 2.44: Frenet frame

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be unit speed with 𝜅 ≠ 0. The positive orthonormal basis

{ ̇𝛾𝛾𝛾 ,n, b}
is called Frenet frame of 𝛾𝛾𝛾 .

We can also define the Frenet frame for regular curves with non-vanishing curvature.

Definition 2.45

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be regular with 𝜅 ≠ 0. The Frenet frame of 𝛾𝛾𝛾 is defined as the Frenet frame of a unit
speed reparametrization ̃𝛾𝛾𝛾 of 𝛾𝛾𝛾 .

Remark 2.46

We should check that the above definition is well-posed:

• Note that ̃𝛾𝛾𝛾 is unit speed. Moreover the curvature of 𝜅 ̃𝛾𝛾𝛾 is given by

𝜅 ̃𝛾𝛾𝛾 (𝑡) = 𝜅𝛾𝛾𝛾 (𝜙(𝑡))
for some 𝜙 diffeomorphism. Therefore 𝜅 ̃𝛾𝛾𝛾 ≠ 0 as we are assuming 𝜅𝛾𝛾𝛾 ≠ 0. Therefore the Frenet-
Frame of ̃𝛾𝛾𝛾 is well defined.

• If ̂𝛾𝛾𝛾 is another unit speed reparametrization of 𝛾𝛾𝛾 , then the Frenet frame generated by ̂𝛾𝛾𝛾 coincides
with the one generated by ̃𝛾𝛾𝛾 . The proof is left as an exercise.

From the Frenet frame we can define the Frenet-Serret equations.
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Theorem 2.47: Frenet-Serret equations

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be unit speed with 𝜅 ≠ 0. The Frenet-Serret equations are
̈𝛾𝛾𝛾 = 𝜅n

ṅ = −𝜅 ̇𝛾𝛾𝛾 + 𝜏b
ḃ = −𝜏n

Proof

The first Frenet-Serret equation
̈𝛾𝛾𝛾 = 𝜅n (2.15)

holds by definition of n and 𝜅. The third Frenet-Serret equation

ḃ = −𝜏n (2.16)

holds by Proposition 2.36. Now, recall that in Proposition 2.35 we have proven

b = ̇𝛾𝛾𝛾 × n , n = b × ̇𝛾𝛾𝛾 , ̇𝛾𝛾𝛾 = n × b . (2.17)

Differentiating the second equation in (2.17) and using (2.15)-(2.16) we get

ṅ = ḃ × ̇𝛾𝛾𝛾 + b × ̈𝛾𝛾𝛾
= (−𝜏n × ̇𝛾𝛾𝛾 ) + b × 𝜅n
= 𝜏( ̇𝛾𝛾𝛾 × n) − 𝜅(n × b)
= 𝜏b − 𝜅 ̇𝛾𝛾𝛾 ,

where in the last equality we used the first and third equations in (2.17). The above is exactly the second
Frenet-Serret equation.

Remark 2.48

We can write the Frenet-Serret ODE sysyem in vectorial form. To this end, introduce the matrix

𝐹 ∶= (
0 𝜅 0
−𝜅 0 𝜏
0 𝜏 0

) .
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It is immediate to check that the Frenet-Serret equations are equivalent to

(
̈𝛾𝛾𝛾

ṅ
ḃ
) = 𝐹 (

̇𝛾𝛾𝛾
n
b
) .

Important: Summary

Recall that:

1. Curvature 𝜅 is defined only for regular curves.
2. Torsion 𝜏 is defined only for regular curves with non-vanishing 𝜅.

The two strategies for computing 𝜅 and 𝜏 are discussed in the diagram in Figure 2.10 below.

Let us conclude the section with an example. We compute the Frenet frame of the helix. As a consequence
we obtain curvature and torsion.

Example 2.49: Frenet frame of helix

Consider the helix of radius 1 and rise 1 given by

𝛾𝛾𝛾 (𝑡) = (cos(𝑡), sin(𝑡), 𝑡) ,
for 𝑡 ∈ ℝ. We now proceed following the diagram at Figure 2.10. We ask the first question:

Is 𝛾𝛾𝛾 unit speed?

We have that
̇𝛾𝛾𝛾 (𝑡) = (− sin(𝑡), cos(𝑡), 1) ,

and therefore
‖ ̇𝛾𝛾𝛾 ‖ = √2 .

This shows that 𝛾𝛾𝛾 is regular but not unit speed. We ask the second question in the diagram:

Can we find a unit speed reparametrization of 𝛾𝛾𝛾?
Let us try. We compute the arc length of 𝛾𝛾𝛾 starting at 𝑡0 = 0

𝑠(𝑡) ∶= ∫
𝑡

0
‖ ̇𝛾𝛾𝛾 (𝑢)‖ 𝑑𝑢 = √2 𝑡 .
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Figure 2.10: Summary for computing 𝜅 and 𝜏 for regular curve 𝛾𝛾𝛾 .
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The arc length is invertible with
𝜓(𝑡) ∶= 𝑠−1(𝑡) = 𝑡

√2
.

Therefore a unit speed reparametrization of 𝛾𝛾𝛾 is given by

̃𝛾𝛾𝛾 (𝑡) ∶= 𝛾𝛾𝛾 (𝜓 (𝑡)) = (cos ( 𝑡
√2

) , sin ( 𝑡
√2

) , 𝑡
√2

) .

The next step in the diagram is

Compute Frenet frame { ̇𝛾𝛾𝛾 ,n, b} and curvature 𝜅, torsion 𝜏
We compute

̇̃𝛾𝛾𝛾 (𝑡) = 1
√2

(− sin ( 𝑡
√2

) , cos ( 𝑡
√2

) , 1)

̈̃𝛾𝛾𝛾 (𝑡) = 1
2 (− cos ( 𝑡

√2
) , − sin ( 𝑡

√2
) , 0)

Therefore the curvature is
𝜅(𝑡) = ‖ ̈̃𝛾𝛾𝛾 (𝑡)‖ = 1

2 .
From the curvature we obtain the principal normal vector

n(𝑡) = 1
𝜅(𝑡)

̈̃𝛾𝛾𝛾 (𝑡) = (− cos ( 𝑡
√2

) , − sin ( 𝑡
√2

) , 0) .

We can now compute the binormal

b(𝑡) = ̇̃𝛾𝛾𝛾 × n

= 1
√2

|||||

i j k
− sin ( 𝑡

√2) cos ( 𝑡
√2) 1

− cos ( 𝑡
√2) − sin ( 𝑡

√2) 0

|||||
= 1

√2
(sin ( 𝑡

√2
) , − cos ( 𝑡

√2
) , 1) .

We have therefore computed the Frenet frame of 𝛾𝛾𝛾 . This is given by

̇̃𝛾𝛾𝛾 (𝑡) = 1
√2

(− sin ( 𝑡
√2

) , cos ( 𝑡
√2

) , 1)

n(𝑡) = (− cos ( 𝑡
√2

) , − sin ( 𝑡
√2

) , 0)

b(𝑡) = 1
√2

(sin ( 𝑡
√2

) , − cos ( 𝑡
√2

) , 1) .
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See below for a picture of the Frenet frame of the helix. Given the Frenet frame, we can compute the
torsion via the formula

𝜏 (𝑡) = −ḃ ⋅ n .
Indeed, we have

ḃ = 1
2 (cos (

𝑡
√2

) , − sin ( 𝑡
√2

) , 0)

and therefore

ḃ ⋅ n = 1
2 (− cos2 ( 𝑡

√2
) − sin2 ( 𝑡

√2
)) = −12 .

The torsion is then
𝜏 (𝑡) = −ḃ ⋅ n = 1

2 .
The Frenet-Frame of the unit-speed Helix is plotted in Figure 2.11.

x
y

z

Figure 2.11: Frenet frame of the helix of radius 1 and rise 1.

2.7 Consequences of Frenet-Serret

The most important consequence of the Frenet-Serret equations is that they allow to fully characterize space
curves in terms of curvature and torsion. Precisely, the following theorem holds.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 102

Theorem 2.50: Characterization of space curves

Let 𝜅, 𝜏 ∶ ℝ → ℝ be smooth functions, with 𝜅 > 0. Then:

1. There exists aunit speed curve 𝛾𝛾𝛾 ∶ ℝ → ℝ3 such that its curvature 𝜅𝛾𝛾𝛾 and torsion 𝜏𝛾𝛾𝛾 satisfy

𝜅𝛾𝛾𝛾 (𝑡) = 𝜅(𝑡) , 𝜏𝛾𝛾𝛾 (𝑡) = 𝜏(𝑡) , ∀ 𝑡 ∈ ℝ .

2. Suppose that ̃𝛾𝛾𝛾 ∶ ℝ → ℝ3 is a unit speed curve such that its curvature 𝜅̃ ̃𝛾𝛾𝛾 and torsion 𝜏 ̃𝛾𝛾𝛾 satisfy

𝜅 ̃𝛾𝛾𝛾 (𝑡) = 𝜅(𝑡) , 𝜏 ̃𝛾𝛾𝛾 (𝑡) = 𝜏(𝑡) , ∀ 𝑡 ∈ ℝ .
Then

̃𝛾𝛾𝛾 = 𝛾𝛾𝛾
up to rotations and translations.

The proof of Theorem 2.50 is omitted, and it can be found in Theorem 2.3.6 in [6].

Theorem 2.50 is a very strong result. It is saying two things:

1. If we prescribe curvature and torsion, then there exists a unit speed curve which has such curvature
and torsion.

2. If two unit speed curves have same curvature and torsion, then they must be the same curve, up to
translations and rotations.

In other words, curvature and torsion fully characterize space curves. This result is the 3D counterpart of
Theorem 2.27, which said that signed curvature characterizes 2D curves.

Example 2.51

In Example 2.43 we have considered the unit speed curve

𝛾𝛾𝛾 (𝑡) ∶= (45 cos(𝑡), 1 − sin(𝑡), −35 cos(𝑡)) ,

for 𝑡 ∈ [0, 2𝜋]. We have computed that

𝜅𝛾𝛾𝛾 = 1 , 𝜏𝛾𝛾𝛾 = 0 .
If we plot 𝛾𝛾𝛾 , we clearly see that 𝛾𝛾𝛾 is just obtained by translating and rotating a unit circle, see plot below.
Theorem 2.50 enables us to rigorously prove this claim. Indeed, consider the unit speed circle

̃𝛾𝛾𝛾 (𝑡) ∶= (cos(𝑡), sin(𝑡), 0) ,
for 𝑡 ∈ [0, 2𝜋]. In Example 2.42 we have proven that curvature and torsion are

𝜅 ̃𝛾𝛾𝛾 = 1 , 𝜏 ̃𝛾𝛾𝛾 = 1 .
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Therefore
𝜅𝛾𝛾𝛾 = 𝜅 ̃𝛾𝛾𝛾 , 𝜏𝛾𝛾𝛾 = 𝜏 ̃𝛾𝛾𝛾 ,

and by Theorem 2.50 we conclude that 𝛾𝛾𝛾 is equal to ̃𝛾𝛾𝛾 up to rotations and translations.

x
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Figure 2.12: Plot of the curve in example above

Another consequence of the Frenet-Serret equations is that they allow us to finally prove the curvature and
torsion formulas given in Proposition 2.19 and Proposition 2.40. For reader’s convenience we recall these two
results.

Proposition 2.52: Curvature and torsion formulas

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a regular curve. The curvature 𝜅(𝑡) of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is given by

𝜅(𝑡) = ‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖
‖ ̇𝛾𝛾𝛾 ‖3

.

Suppose in addition that 𝛾𝛾𝛾 has non-vanishing curvature. The torsion 𝜏 (𝑡) of 𝛾𝛾𝛾 at 𝛾𝛾𝛾 (𝑡) is given by

𝜏 (𝑡) = ( ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ) ⋅ ⃛𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 × ̈𝛾𝛾𝛾 ‖2

.
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Before proceeding with the proof, we need to establish some notation.

Notation: Compact notation for arc length reparametrization

Suppose 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 is regular and denote by

𝑠 ∶ (𝑎, 𝑏) → (𝑎̃, 𝑏̃) , 𝑡 ↦ 𝑠(𝑡)
its arc length. We already know that in this case 𝑠 invertible, with inverse 𝑠−1 giving a unit speed
reparametrization ̃𝛾𝛾𝛾 ∶ (𝑎̃, 𝑏̃) → ℝ𝑛 of 𝛾𝛾𝛾 , defined by

̃𝛾𝛾𝛾 = 𝛾𝛾𝛾 ∘ 𝜓 , 𝜓 ∶= 𝑠−1∶ (𝑎̃, 𝑏̃) → (𝑎, 𝑏)
Sometimes it is more convenient to adopt more compact notation. In the new notation the unit speed
reparametrization ̃𝛾𝛾𝛾 is denoted by 𝛾𝛾𝛾 (𝑠):

𝑡 ↦ ̃𝛾𝛾𝛾 (𝑡) ⇝ 𝑠 ↦ 𝛾𝛾𝛾 (𝑠) .
Thus, the reparametrization is denoted with the same symbol 𝛾𝛾𝛾 , but this time 𝛾𝛾𝛾 is considered as a function
of the arc length parameter

𝑠 ∈ (𝑎̃, 𝑏̃) .
We will denote:

• The derivative of 𝑠 by
𝑑𝑠
𝑑𝑡

• The derivative of 𝜓 = 𝑠−1 by
𝑑𝑡
𝑑𝑠 .

Moreover:

• The derivative of 𝛾𝛾𝛾 (𝑡) is denoted by

𝑑𝛾𝛾𝛾
𝑑𝑡 (𝑡) = ̇𝛾𝛾𝛾 (𝑡) , 𝑡 ∈ (𝑎, 𝑏)

• The derivative of 𝛾𝛾𝛾 (𝑠) is denoted by

𝑑𝛾𝛾𝛾
𝑑𝑠 (𝑠) = ̇𝛾𝛾𝛾 (𝑠) , 𝑠 ∈ (𝑎̃, 𝑏̃) .

We also have new notations for the chain rule:

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 105

• The chain rule for 𝛾𝛾𝛾 is the old notations is:

𝛾𝛾𝛾 (𝑡) = ̃𝛾𝛾𝛾 (𝑠(𝑡)) ⟹ ̇𝛾𝛾𝛾 (𝑡) = ̇̃𝛾𝛾𝛾 (𝑠(𝑡)) ̇𝑠(𝑡) , 𝑡 ∈ (𝑎, 𝑏) .
In the new notations the above chain rule is written

𝑑𝛾𝛾𝛾
𝑑𝑡 (𝑡) =

𝑑𝛾𝛾𝛾
𝑑𝑠 (𝑠(𝑡))

𝑑𝑠
𝑑𝑡 (𝑡) , 𝑡 ∈ (𝑎, 𝑏) .

We will often omit the dependence on the point 𝑡 by writing

𝑑𝛾𝛾𝛾
𝑑𝑠 = 𝑑𝛾𝛾𝛾

𝑑𝑡
𝑑𝑡
𝑑𝑠 .

• The chain rule for the reparametrization ̃𝛾𝛾𝛾 in the old notation is:

̃𝛾𝛾𝛾 (𝑡) = 𝛾𝛾𝛾 (𝜓 (𝑡)) ⟹ ̇̃𝛾𝛾𝛾 (𝑡) = ̇𝛾𝛾𝛾 (𝜓 (𝑡)) ̇𝜓 (𝑡) , 𝑡 ∈ (𝑎̃, 𝑏̃) .
In the new notations the above chain rule is written

𝑑𝛾𝛾𝛾
𝑑𝑠 (𝑠) =

𝑑𝛾𝛾𝛾
𝑑𝑡 (𝜓 (𝑠))

𝑑𝑡
𝑑𝑠 (𝑠) , 𝑠 ∈ (𝑎̃, 𝑏̃) ,

since ̇𝜓 is written 𝑑𝑡/𝑑𝑠 in the new notations. Without dependence on the point 𝑠, the above reads

𝑑𝛾𝛾𝛾
𝑑𝑠 = 𝑑𝛾𝛾𝛾

𝑑𝑡
𝑑𝑡
𝑑𝑠 .

Example 2.53: How to use the new notations

Let 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 be as above. We know that ̃𝛾𝛾𝛾 is unit speed. Thus 𝛾𝛾𝛾 (𝑠) is unit speed with respect to 𝑠, that is,
‖ ̇𝛾𝛾𝛾 (𝑠)‖ = 1 , ∀ 𝑠 ∈ (𝑎̃, 𝑏̃) . (2.18)

As an exercise, let us check that (2.18) holds, using the new notations. By chain rule we have

‖ ̇𝛾𝛾𝛾 (𝑠)‖ = ‖𝑑𝛾𝛾𝛾𝑑𝑠 (𝑠)‖

= ‖𝑑𝛾𝛾𝛾𝑑𝑡 (𝜓 (𝑠))‖ |
𝑑𝑡
𝑑𝑠 (𝑠)|

= ‖ ̇𝛾𝛾𝛾 (𝜓 (𝑠))‖ | 𝑑𝑡𝑑𝑠 (𝑠)| .
Now, recall that

𝑑𝑠
𝑑𝑡 (𝑡) = ̇𝑠(𝑡) = ‖ ̇𝛾𝛾𝛾 (𝑡)‖ , ∀ 𝑡 ∈ (𝑎, 𝑏) . (2.19)
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According to the new notations and the inverse function theorem,

𝑑𝑡
𝑑𝑠 (𝑠) =

1
(𝑑𝑠𝑑𝑡 (𝜓 (𝑠)))

= 1
‖ ̇𝛾𝛾𝛾 (𝜓 (𝑠))‖ , ∀ 𝑠 ∈ (𝑎̃, 𝑏̃) ,

where we used (2.19) evaluated at 𝑡 = 𝜓(𝑠). Thus

‖ ̇𝛾𝛾𝛾 (𝑠)‖ = ‖ ̇𝛾𝛾𝛾 (𝜓 (𝑠))‖ | 𝑑𝑡𝑑𝑠 (𝑠)|
= ‖ ̇𝛾𝛾𝛾 (𝜓 (𝑠))‖ 1

‖ ̇𝛾𝛾𝛾 (𝜓 (𝑠))‖
= 1 ,

concluding (2.18).

Let us highlight the main feature of the above notation.

Important: New Notation!

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 be a regular curve:

1. We denote by
𝑡 ↦ 𝛾𝛾𝛾 (𝑡) , 𝑡 ∈ (𝑎, 𝑏)

the given curve 𝛾𝛾𝛾 .
2. We denote by

𝑠 ↦ 𝛾𝛾𝛾 (𝑠) , 𝑠 ∈ (𝑎̃, 𝑏̃)
the arc length reparametrization of the curve 𝛾𝛾𝛾 . The parameter 𝑠 is the arc length parameter.
In particular 𝛾𝛾𝛾 (𝑠) is unit speed with respect to 𝑠.

We will heavily rely on the new notations for proving Proposition 2.52.

Proof: Proof of Proposition 2.52

We only prove the formula for 𝜅, as the one for 𝜏 can be obtained similarly, just with more calculations.
For a proof see Proposition 2.3.1 in [6].
Since 𝛾𝛾𝛾 is regular, we can reparametrize 𝛾𝛾𝛾 by arc length 𝑠(𝑡). We denote the arc lenght reparametrization
by 𝛾𝛾𝛾 (𝑠). We know that 𝛾𝛾𝛾 (𝑠) is unit speed, that is,

‖𝑑𝛾𝛾𝛾𝑑𝑠 ‖ = 1 .
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Therefore is well define the Frenet frame

{t(𝑠),n(𝑠), b(𝑠)} , t(𝑠) ∶= ̇𝛾𝛾𝛾 (𝑠) = 𝑑𝛾𝛾𝛾
𝑑𝑠 (𝑠) .

The Frenet-Serret equations are

̇t(𝑠) = 𝜅(𝑠)n(𝑠)
ṅ(𝑠) = −𝜅(𝑠)t(𝑠) + 𝜏(𝑠)b(𝑠)
ḃ(𝑠) = −𝜏(𝑠)n(𝑠)

By chain rule
𝑑𝛾𝛾𝛾
𝑑𝑡 = 𝑑𝛾𝛾𝛾

𝑑𝑠
𝑑𝑠
𝑑𝑡 = (𝑑𝑠𝑑𝑡 ) t .

Differentiating the above we infer

𝑑2𝛾𝛾𝛾
𝑑𝑡2 = 𝑑

𝑑𝑡 [(
𝑑𝑠
𝑑𝑡 ) t]

= 𝑑2𝑠
𝑑𝑡2 t + (𝑑𝑠𝑑𝑡 )

𝑑t
𝑑𝑡 .

By chain rule we have
𝑑t
𝑑𝑡 =

𝑑t
𝑑𝑠

𝑑𝑡
𝑑𝑠 ,

and therefore

𝑑2𝛾𝛾𝛾
𝑑𝑡2 = 𝑑2𝑠

𝑑𝑡2 t + (𝑑𝑠𝑑𝑡 )
𝑑t
𝑑𝑡

= 𝑑2𝑠
𝑑𝑡2 t + (𝑑𝑠𝑑𝑡 )

2 𝑑t
𝑑𝑠 .

Hence

̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡) = 𝑑𝛾𝛾𝛾
𝑑𝑡 ×

𝑑2𝛾𝛾𝛾
𝑑𝑡2

= (𝑑𝑠𝑑𝑡 ) t × [
𝑑2𝑠
𝑑𝑡2 t + (𝑑𝑠𝑑𝑡 )

2 𝑑t
𝑑𝑠 ]

= [(𝑑𝑠𝑑𝑡 ) (
𝑑2𝑠
𝑑𝑡2 ) t × t] + [(𝑑𝑠𝑑𝑡 )

3
t × 𝑑t

𝑑𝑠 ]

= (𝑑𝑠𝑑𝑡 )
3
t × 𝑑t

𝑑𝑠 ,
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since t × t = 0 by the properties of the cross product. Now we recall that

𝑑t
𝑑𝑠 = 𝜅(𝑠)n(𝑠)

by the first Frenet-Serret equation. Moreover

𝑑𝑠
𝑑𝑡 (𝑡) = ‖ ̇𝛾𝛾𝛾 (𝑡)‖2 .

Therefore

̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡) = (𝑑𝑠𝑑𝑡 )
3
t × 𝑑t

𝑑𝑠
= ‖ ̇𝛾𝛾𝛾 (𝑡)‖3 𝜅(𝑠(𝑡)) t × n
= ‖ ̇𝛾𝛾𝛾 (𝑡)‖3 𝜅(𝑠(𝑡)) b ,

where in the last line we used the definition of b

b(𝑠) = ̇𝛾𝛾𝛾 (𝑠) × n(𝑠) = t(𝑠) × n(𝑠) .
We can now take the norms and obtain

‖ ̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡)‖ = ‖ ̇𝛾𝛾𝛾 (𝑡)‖3 𝜅(𝑠(𝑡)) ‖b‖
= ‖ ̇𝛾𝛾𝛾 (𝑡)‖3 𝜅(𝑠(𝑡))

using that ‖b‖ = 1. As 𝛾𝛾𝛾 is regular, we can divide by ‖ ̇𝛾𝛾𝛾 (𝑡)‖3 and obtain

𝜅(𝑠(𝑡)) = ‖ ̇𝛾𝛾𝛾 (𝑡) × ̈𝛾𝛾𝛾 (𝑡)‖
‖ ̇𝛾𝛾𝛾 (𝑡)‖3

.

Recalling that the curvature of 𝛾𝛾𝛾 at 𝑡 is defined as the curvature of 𝛾𝛾𝛾 (𝑠) at 𝑠(𝑡), we conclude that the above
is the desired formula.

We now state and prove two more results which directly follow from the Frenet-Serret equations. They state,
respectivley:

1. A curve has torsion 𝜏 = 0 if and only if it is contained in a plane.

2. A curve has constant curvature and zero torsion if and only if it is part of a circle.

Before proceeding, we recall the following.
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Remark 2.54: Equation of a plane

The general equation of a plane 𝜋𝜋𝜋𝑑 in ℝ3 is given by

𝜋𝜋𝜋𝑑 = {x ∈ ℝ3 ∶ x ⋅ P = 𝑑} ,
for some vector P ∈ ℝ3 and scalar 𝑑 ∈ ℝ. Note that:

• If 𝑑 = 0, the condition
x ⋅ P = 0

is saying that the plane 𝜋𝜋𝜋0 contains all the points x in ℝ3 which are orthogonal to P. In particular
𝜋𝜋𝜋0 contains the origin 000.

• If 𝑑 ≠ 0, then 𝜋𝜋𝜋𝑑 is the translation of 𝜋𝜋𝜋0 by the quantity 𝑑 in direction P.

In both cases, P is the normal vector to the plane, as shown in Figure 2.13 below.

Figure 2.13: The plane 𝜋𝜋𝜋0 is the set of points of ℝ3 orthogonal to P. The plane 𝜋𝜋𝜋𝑑 is obtained by translating
𝜋𝜋𝜋0 by a quantity 𝑑 in direction P.

Proposition 2.55

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be regular and such that 𝜅 ≠ 0. They are equivalent:

1. The torsion of 𝛾𝛾𝛾 satisfies 𝜏 (𝑡) = 0 for all 𝑡 ∈ (𝑎, 𝑏).
2. The image of 𝛾𝛾𝛾 is contained in a plane, that is, there exists a vector P ∈ ℝ3 and a scalar 𝑑 ∈ ℝ such
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that
𝛾𝛾𝛾 (𝑡) ⋅ P = 𝑑 , ∀𝑡 ∈ (𝑎, 𝑏) .

Proof

Without loss of generality we can assume that 𝛾𝛾𝛾 is unit speed. Indeed, if we were to consider ̃𝛾𝛾𝛾 a unit
speed reparametrization of 𝛾𝛾𝛾 , then

• ̃𝛾𝛾𝛾 would still be contained in the same plane in which 𝛾𝛾𝛾 is contained.
• The torsion of ̃𝛾𝛾𝛾 would not change, i.e., it would still be identically zero.

Thefore the Frenet frame of 𝛾𝛾𝛾 exists. We denote it by

{ ̇𝛾𝛾𝛾 (𝑡),n(𝑡), b(𝑡)} .
Step 1. Suppose that 𝜏 = 0 for all 𝑡 . By the Frenet-Serret equations we have

ḃ = −𝜏(𝑡)n = 000 ,
so that b(𝑡) is constant. As by definition

b = ̇𝛾𝛾𝛾 × n ,
we conclude that the vectors ̇𝛾𝛾𝛾 (𝑡) and n(𝑡) always span the same plane, which has constant normal vector
b. Intuition suggests that 𝛾𝛾𝛾 should be contained in such plane, see Figure Figure 2.14 below. Indeed, recall
that the Frenet frame is orthonormal. Hence

̇𝛾𝛾𝛾 ⋅ b = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
Then 𝑑

𝑑𝑡 (𝛾𝛾𝛾 ⋅ b) = ̇𝛾𝛾𝛾 ⋅ b + 𝛾𝛾𝛾 ⋅ ḃ = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) ,
since ḃ = 0. Thus 𝛾𝛾𝛾 ⋅ b is a constant scalar function, meaning that there exists costant 𝑑 ∈ ℝ such that

𝛾𝛾𝛾 (𝑡) ⋅ b = 𝑑 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
The says that 𝛾𝛾𝛾 is contained in a plane.
Step 2. Suppose that 𝛾𝛾𝛾 is contained in a plane. Hence there exists P ∈ ℝ3 and 𝑑 ∈ ℝ such that

𝛾𝛾𝛾 (𝑡) ⋅ P = 𝑑 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
We can differentiate the above equation twice to obtain

̇𝛾𝛾𝛾 ⋅ P = 0 , ̈𝛾𝛾𝛾 ⋅ P = 0 ,
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where we used that P and 𝑑 are constant. By Frenet-Serret we have

̈𝛾𝛾𝛾 (𝑡) = 𝜅(𝑡)n(𝑡) .
Therefore the already proven relation ̈𝛾𝛾𝛾 ⋅ P = 0 implies

𝜅(𝑡)n(𝑡) ⋅ P = 0 .
As we are assuming 𝜅 ≠ 0, we deduce that

n(𝑡) ⋅ P = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
We have shown that ̇𝛾𝛾𝛾 (𝑡) and n(𝑡) are both orthogonal to P. Since b(𝑡) is orthogonal to ̇𝛾𝛾𝛾 (𝑡) and n(𝑡), we
conclude that b(𝑡) is parallel to P. Hence, there exists 𝜆(𝑡) ∈ ℝ such that

b(𝑡) = 𝜆(𝑡)P ∀ 𝑡 ∈ (𝑎, 𝑏) . (2.20)

Since ‖b‖ = 1 and P is constant, from (2.20) we conclude that 𝜆(𝑡) is constant. Differentiating (2.20) we
obtain

ḃ(𝑡) = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
By definition of torsion we thus have

𝜏 (𝑡) = −ḃ ⋅ n(𝑡) = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .

Proposition 2.56

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a unit speed curve. They are equivalent:

1. The image of 𝛾𝛾𝛾 is contained in a circle of radius 1/𝑐.
2. The curvature and torsion of 𝛾𝛾𝛾 satisfy

𝜅(𝑡) = 𝑐 , 𝜏 (𝑡) = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) ,
for some constant 𝑐 ∈ ℝ.

Proposition 2.56 is actually a consequence of Theorem 2.50, and of the fact that we have computed that for a
circle of radius 𝑅 one has

𝜅 = 1
𝑅 , 𝜏 = 0 .

Therefore, by Theorem 2.50, every unit speed curve 𝛾𝛾𝛾 with constant curvature and torsion must be equal to
a circle, up to rigid motions.

Nevertheless, we still give a proof of Proposition 2.56, to show yet another application of the Frenet-Serret
equations.
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Figure 2.14: If b is constant, then 𝛾𝛾𝛾 lies in the plane spanned by ̇𝛾𝛾𝛾 and n.

Proof

Step 1. Suppose the image of 𝛾𝛾𝛾 is contained in a circle of radius 1/𝑐. Then, up to a translation, 𝛾𝛾𝛾 is
parametrized by

𝛾𝛾𝛾 (𝑡) = (1𝑐 cos(𝑡), 1𝑐 sin(𝑡), 0)
for 𝑡 in some interval (𝑎̃, 𝑏̃). We have already seen that in this case

𝜅 = 𝑐 , 𝜏 = 0 ,
concluding the proof.
Step 2. Suppose that

𝜅(𝑡) = 𝑐 , 𝜏 (𝑡) = 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) ,
for some constant 𝑐 ∈ ℝ. Since 𝛾𝛾𝛾 is unit speed, its Frenet-Serret equations are:

̈𝛾𝛾𝛾 = 𝜅n = 𝑐n
ṅ = −𝜅 ̇𝛾𝛾𝛾 + 𝜏b = −𝑐 ̇𝛾𝛾𝛾
ḃ = −𝜏n = 0

In particular ḃ = 0 and so b is a constant vector. As seen in the proof Proposition 2.55, this implies that
𝛾𝛾𝛾 is contained in a plane 𝜋𝜋𝜋 orthogonal to b, see Figure 2.14. As 𝑐 is constant we get

𝑑
𝑑𝑡 (𝛾𝛾𝛾 +

1
𝑐 n) = ̇𝛾𝛾𝛾 + 1

𝑐 ṅ = ̇𝛾𝛾𝛾 − 1
𝑐 𝑐 ̇𝛾𝛾𝛾 = 0 ,
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where we used the second Frenet-Serret equation. Therefore

𝛾𝛾𝛾 (𝑡) + 1
𝑐 n(𝑡) = p , 𝑡 ∈ (𝑎, 𝑏) ,

for some constant point p ∈ ℝ3. In particular

‖𝛾𝛾𝛾 (𝑡) − p‖ = ‖−1𝑐 n(𝑡)‖ =
1
𝑐 ,

since n is a unit vector. The above shows that 𝛾𝛾𝛾 is contained in a sphere of radius 1/𝑐 and center p. In
formulas:

𝛾𝛾𝛾 ((𝑎, 𝑏)) ⊂ 𝒮 ∶= {x ∈ ℝ3 ∶ ‖x − p‖ = 1/𝑐} .
The intersection of 𝒮 with the plane 𝜋𝜋𝜋 is a circle 𝒞 with some radius 𝑅. Since

𝛾𝛾𝛾 ((𝑎, 𝑏)) ⊂ 𝜋𝜋𝜋 , 𝛾𝛾𝛾 ((𝑎, 𝑏)) ⊂ 𝒮 ,
this implies

𝛾𝛾𝛾 ((𝑎, 𝑏)) ⊂ 𝜋𝜋𝜋 ∩ 𝒮 = 𝒞 . (2.21)

Thus 𝛾𝛾𝛾 parametrizes part of 𝒞 . From Step 1 it follows that the curvature and torsion of 𝛾𝛾𝛾 must satisfy

𝜅 = 1
𝑅 , 𝜏 = 0 .

Since we already know that 𝜅 = 𝑐, we conclude that 𝑅 = 1/𝑐. Therefore the circle 𝒞 has radius 1/𝑐 and
the thesis follows by (2.21).
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3 Topology

So far we have worked in ℝ𝑛, where for example we have the notions of open set, continuous function and
compact set. Topology is what allows us to extend these notions to arbitrary sets.

Definition 3.1: Topological space

Let 𝑋 be a set and 𝒯 a collection of subsets of 𝑋 . We say that 𝒯 is a topology on 𝑋 if the following 3
properties hold:

• (A1) We have ∅, 𝑋 ∈ 𝒯 ,

• (A2) If {𝐴𝑖}𝑖∈𝐼 is an arbitrary family of elements of 𝒯 , then

⋃
𝑖∈𝐼

𝐴𝑖 ∈ 𝒯 .

• (A3) If 𝐴, 𝐵 ∈ 𝒯 then
𝐴 ∩ 𝐵 ∈ 𝒯 .

Further, we say:

• The pair (𝑋 , 𝒯 ) is a topological space.
• The elements of 𝑋 are called points.
• The sets in the topology 𝒯 are called open sets.

Remark 3.2

The intersection property of 𝒯 , Property (A3) in Definition 3.1, is equivalent to the following:

• (A3’) If 𝐴1, … , 𝐴𝑀 ∈ 𝒯 for some 𝑀 ∈ ℕ, then

𝑀
⋂
𝑛=1

𝐴𝑛 ∈ 𝒯 .

The equivalence between (A3) and (A3’) can be immediately obtained by induction.
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Warning

Notice:

• The union property (A2) of 𝒯 holds for an arbitrary number of sets, even uncountable!
• The intersection property (A3’) of 𝒯 holds only for a finite number of sets.

There are two main examples of topologies that one should always keep in mind. These are:

• Trivial topology: The topology with the smallest possible number of sets.
• Discrete topology: The topology with the highest possible number of sets.

Definition 3.3: Trivial topology

Let 𝑋 be a set. The trivial topology on 𝑋 is the topology 𝒯 defined by

𝒯 ∶= {∅, 𝑋} .

Let us check that 𝒯 is indeed a topology. We need to verify the 3 properties of a topology:

• (A1) We clearly have ∅, 𝑋 ∈ 𝒯 .
• (A2) The only non-trivial union to check is the one between ∅ and 𝑋 . We have

∅ ∪ 𝑋 = 𝑋 ∈ 𝒯 .
• (A3) The only non-trivial intersection to check is the one between ∅ and 𝑋 . We have

∅ ∩ 𝑋 = ∅ ∈ 𝒯 .
Therefore 𝒯 is a topology on 𝑋 .

Definition 3.4: Discrete topology

Let 𝑋 be a set. The discrete topology on 𝑋 is the topology 𝒯 defined by

𝒯 ∶= {𝐴 ∶ 𝐴 ⊆ 𝑋} ,
that is, every subset of 𝑋 is open.

Let us check that 𝒯 is a topology:

• (A1) We have ∅, 𝑋 ∈ 𝒯 , since ∅ and 𝑋 are subsets of 𝑋 .

• (A2) The arbitrary union of subsets of 𝑋 is still a subset of 𝑋 . Therefore

⋃
𝑖∈𝐼

𝐴𝑖 ∈ 𝒯 ,

whenever 𝐴𝑖 ∈ 𝒯 for all 𝑖 ∈ 𝐼 .
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• (A3) The intersection of two subsets of 𝑋 is still a subset of 𝑋 . Therefore

𝐴 ∩ 𝐵 ∈ 𝒯 ,
whenever 𝐴, 𝐵 ∈ 𝒯 .

Therefore 𝒯 is a topology on 𝑋 .

We anticipated that topology is the extension of familiar concepts of open set, continuity, etc. that we have in
ℝ𝑛. Let us see how the usual definition of open set of ℝ𝑛 can fit in our new abstract framework of topology.

Definition 3.5: Open set of ℝ𝑛

Let 𝐴 ⊆ ℝ𝑛. We say that the set 𝐴 is open if it holds:

∀x ∈ 𝐴 , ∃ 𝑟 > 0 s.t. 𝐵𝑟 (x) ⊆ 𝐴 , (3.1)

where 𝐵𝑟 (x) is the ball of radius 𝑟 > 0 centered at x

𝐵𝑟 (x) ∶= {y ∈ ℝ𝑛 ∶ ‖y − x‖ < 𝑟} ,
and the Euclidean norm of x ∈ ℝ𝑛 is defined by

‖x‖ ∶=
√

𝑛
∑
𝑖=1

𝑥2𝑖 .

See Figure 3.1 for a schematic picture of an open set.

Definition 3.6: Euclidean topology of ℝ𝑛

The Euclidean topology on ℝ𝑛 is the topology 𝒯 defined by

𝒯 ∶= {𝐴 ∶ 𝐴 ⊆ ℝ𝑛 , 𝐴 is open} .

We need to check that the above definition is well-posed, in the sense that we have to prove that 𝒯 is a
topology on ℝ𝑛.
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Figure 3.1: The set 𝐴 ⊆ ℝ𝑛 is open if for every x ∈ 𝐴 there exists 𝑟 > 0 such that 𝐵𝑟 (x) ⊆ 𝐴.

Proof: Well-posedness of Definition 3.6

Let us check that 𝒯 is a topology on ℝ𝑛:

• (A1) We have ∅, ℝ𝑛 ∈ 𝒯 : Indeed ∅ is open because there is no point x for which (3.1) needs to be
checked. Moreover ℝ𝑛 is open because (3.1) holds with any radius 𝑟 > 0.

• (A2) Let 𝐴𝑖 ∈ 𝒯 for all 𝑖 ∈ 𝐼 and define the union set

𝐴 ∶= ⋃
𝑖∈𝐼

𝐴𝑖 .

We need to check that 𝐴 is open. Let x ∈ 𝐴. By definition of union, there exists an index 𝑖0 ∈ 𝐼
such that x ∈ 𝐴𝑖0 . Since 𝐴𝑖0 is open, by (3.1) there exists 𝑟 > 0 such that 𝐵𝑟 (x) ⊆ 𝐴𝑖0 . As 𝐴𝑖0 ⊆ 𝐴,
we conclude that 𝐵𝑟 (x) ⊆ 𝐴. Thus 𝐴 is open and 𝐴 ∈ 𝒯 .

• (A3) Let 𝐴, 𝐵 ∈ 𝒯 . We need to check that 𝐴 ∩ 𝐵 is open. Let x ∈ 𝐴 ∩ 𝐵. Therefore x ∈ 𝐴 and
x ∈ 𝐵. Since 𝐴 and 𝐵 are open, by (3.1) there exist 𝑟1, 𝑟2 > 0 such that 𝐵𝑟1(x) ⊆ 𝐴 and 𝐵𝑟2(x) ⊆ 𝐵.
Set 𝑟 ∶= min{𝑟1, 𝑟2}. Then

𝐵𝑟 (x) ⊆ 𝐵𝑟1(x) ⊆ 𝐴 , 𝐵𝑟 (x) ⊆ 𝐵𝑟2(x) ⊆ 𝐵 ,
Hence 𝐵𝑟 (x) ⊆ 𝐴 ∩ 𝐵, showing that 𝐴 ∩ 𝐵 open, so that 𝐴 ∩ 𝐵 ∈ 𝒯 .

This proves that 𝒯 is a topology on ℝ𝑛.

Let us make a basic bus useful observation: balls in ℝ𝑛 are open for the Euclidean topology.
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Proposition 3.7

Let ℝ𝑛 be equipped with 𝒯 the Euclidean topology. Let 𝑟 > 0 and x ∈ ℝ𝑛. Then
𝐵𝑟 (x) ∈ 𝒯 .

Proof

We need to shown that 𝐵𝑟 (x) satisfies (3.1). Therefore, let y ∈ 𝐵𝑟 (x). In particular

‖x − y‖ < 𝑟 . (3.2)

Define
𝜀 ∶= 𝑟 − ‖x − y‖ .

Note that 𝜀 > 0 by (3.2). We claim that
𝐵𝜀(y) ⊆ 𝐵𝑟 (x) , (3.3)

see Figure 3.2. Indeed, let z ∈ 𝐵𝜀(y). By triangle inequality we have

‖z − x‖ ≤ ‖x − y‖ + ‖y − z‖ < ‖x − y‖ + 𝜀 = 𝑟 ,
where we used that ‖y − z‖ < 𝜀 and the definition of 𝜀. Hence z ∈ 𝐵𝑟 (x), proving (3.3). This proves that
𝐵𝑟 (x) satisfies (3.1), and is therefore open.

3.1 Closed sets

The opposite of open sets are closed sets.

Definition 3.8: Closed set

Let (𝑋 , 𝒯 ) be a topological space. A set 𝐶 ⊆ 𝑋 is closed if

𝐶𝑐 ∈ 𝒯 ,
where 𝐶𝑐 ∶= 𝑋 ∖ 𝐶 is the complement of 𝐶 in 𝑋 .

In words, a set is closed if its complement is open.
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Figure 3.2: The ball 𝐵𝜀(y) is contained in 𝐵𝑟 (x) if 𝜀 ∶= 𝑟 − ‖x − y‖.
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Warning

There are sets which are neither open nor closed. For example consider ℝ equipped with Euclidean
topology. Then the interval

𝐴 ∶= [0, 1)
is neither open nor closed.

For the moment we do not have the tools to prove this. We will have them shortly.

We could have defined a topology starting from closed sets. We would have had to replace the properties (A1)-
(A2)-(A3) with suitable properties for closed sets. Such properties are detailed in the following proposition.

Proposition 3.9

Let (𝑋 , 𝒯 ) be a topological space. Properties (A1)-(A2)-(A3) of 𝒯 are equivalent to (C1)-(C2)-(C3), where

• (C1) ∅, 𝑋 are closed.
• (C2) If 𝐶𝑖 is closed for all 𝑖 ∈ 𝐼 , then

⋂
𝑖∈𝐼

𝐶𝑖

is closed.
• (C3) If 𝐶1, 𝐶2 are closed then

𝐶1 ∪ 𝐶2
is closed.

Proof

We have 3 points to check:

• The equivalence between (A1) and (C1) is clear, since

∅𝑐 = 𝑋 , 𝑋 𝑐 = ∅ .

• Suppose 𝐶𝑖 are closed for all 𝑖 ∈ 𝐼 . Therefore 𝐶𝑐𝑖 are open for all 𝑖 ∈ 𝐼 . By De Morgan’s laws we
have that

(⋂
𝑖∈𝐼

𝐶𝑖)
𝑐
= ⋃

𝑖∈𝐼
𝐶𝑐𝑖

showing that
⋂
𝑖∈𝐼

𝐶𝑖 is closed ⟺ ⋃
𝑖∈𝐼

𝐶𝑐𝑖 is open .

Therefore (A2) and (C2) are equivalent.

• Suppose 𝐶1, 𝐶2 are closed. Therefore 𝐶𝑐1, 𝐶𝑐2 are open. By De Morgan’s laws we have that

(𝐶1 ∪ 𝐶2)𝑐 = 𝐶𝑐1 ∩ 𝐶𝑐2
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showing that
𝐶1 ∪ 𝐶2 is closed ⟺ 𝐶𝑐1 ∩ 𝐶𝑐2 is open .

Therefore (A3) and (C3) are equivalent.

As a consequence of the above proposition, we can define a topology by declaring what the closed sets are.
We then need to verify that (C1)-(C2)-(C3) are satisfied by such topology. Let us make an example.

Example 3.10: The Zariski topology

Let (𝕂, +, ⋅) be a field. Define
𝑋 ∶= 𝕂𝑛 ∶= {(𝑎1, … , 𝑎𝑛) ∶ 𝑎𝑖 ∈ 𝕂} .

Consider the set of polynomials with coefficients in the field

𝕂[𝑥1, … , 𝑥𝑛] .
Therefore 𝑓 ∈ 𝕂[𝑥1, … , 𝑥𝑛] has the form

𝑓 (𝑥1, … , 𝑥𝑛) = 𝜆1𝑥1 + … + 𝜆𝑛𝑥𝑛 ,
where 𝜆1, … , 𝜆𝑛 are given elements of 𝕂. For 𝐼 ⊂ 𝕂[𝑥1, … , 𝑥𝑛] define

𝑉 (𝐼 ) ∶= {(𝑎1, … , 𝑎𝑛) ∈ 𝕂𝑛 ∶ 𝑓 (𝑎1, … , 𝑎𝑛) = 0 , ∀ 𝑓 ∈ 𝐼 } .
Define

𝒞 ∶= {𝑉 (𝐼 ) ∶ 𝐼 ⊂ 𝕂[𝑥1, … , 𝑥𝑛]} .
Then 𝒞 satisfies (C1), (C2) and (C3). This is an easy check, and is left as exercise. 𝒞 is called the Zariski
Topology on the field 𝕂𝑛. This is used in algebraic geometry to study Affine Varieties, an algebraic
version of surfaces, see Wikipedia page.

3.2 Comparing topologies

Consider the situation where you have two topologies 𝒯1 and 𝒯2 on the same set 𝑋 . We would like to have
some notions of comparison between 𝒯1 and 𝒯2.
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Definition 3.11: Finer and coarser topology

Let 𝑋 be a set and let 𝒯1, 𝒯2 be topologies on 𝑋 . Suppose that

𝒯2 ⊆ 𝒯1 .
We say that:

• 𝒯1 is finer than 𝒯2.
• 𝒯2 is coarser than 𝒯1.

If it holds
𝒯2 ⊊ 𝒯1 ,

we say that:

• 𝒯1 is strictly finer than 𝒯2.
• 𝒯2 is strictly coarser than 𝒯1.

We say that 𝒯1 and 𝒯2 are the same topology if

𝒯1 = 𝒯2 .

Example 3.12

Let 𝑋 be a set and consider the trivial and discrete topologies

𝒯trivial = {∅, 𝑋} , 𝒯discrete = {𝐴 ∶ 𝐴 ⊆ 𝑋} .
Then

𝒯trivial ⊊ 𝒯discrete ,
so that 𝒯discrete is strictly finer than 𝒯trivial.

Another interesting example is given by the cofinite topology on ℝ. The sets in this topology are open if
they are either empty, or coincide with ℝ with a finite number of points removed.

Example 3.13: Cofinite topology on ℝ
Consider the following family 𝒯cofinite of subsets of ℝ

𝒯cofinite ∶= {𝑈 ⊆ ℝ ∶ 𝑈 𝑐 is finite, or 𝑈 𝑐 = ℝ} .
Then (ℝ, 𝒯cofinite) is a topological space, and 𝒯cofinite is called the cofinite topology. We have that

𝒯cofinite ⊊ 𝒯euclidean .
Exercise: Show that 𝒯cofinite is a topology on ℝ and that 𝒯cofinite ⊊ 𝒯euclidean.
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3.3 Convergence

We have generalized the notion of open set to arbitrary sets. Next we generalize the notion of convergence
of sequences.

Definition 3.14: Convergent sequence

Let (𝑋 , 𝒯 ) be a topological. Consider a sequence {𝑥𝑛}𝑛∈ℕ ⊆ 𝑋 and a point 𝑥 ∈ 𝑋 . We say that 𝑥𝑛
converges to 𝑥0 if the following property holds:

∀ 𝑈 ∈ 𝒯 s.t. 𝑥0 ∈ 𝑈 , ∃ 𝑁 = 𝑁(𝑈 ) ∈ ℕ s.t. 𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 . (3.4)

Notation

The convergence of 𝑥𝑛 to 𝑥0 is denoted by

𝑥𝑛 → 𝑥0 or lim𝑛→∞ 𝑥𝑛 = 𝑥0 .

Let us analyze the definition of convergence in the topologies we have encountered so far. We will have
that:

• Trivial topology: Every sequence converges to every point.
• Discrete topology: A sequence converges if and only if it is eventually constant.
• Euclidean topology: Topological convergence coincides with classical notion of convergence.

We now precisely state and prove the above claims.

Proposition 3.15: Convergence for trivial topology

Let (𝑋 , 𝒯 ) be topological space, with 𝒯 the trivial topology, that is,

𝒯 = {∅, 𝑋} .
Let {𝑥𝑛} ⊆ 𝑋 be a sequence and 𝑥0 ∈ 𝑋 a point. Then

𝑥𝑛 → 𝑥0 .
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Proof

To show that 𝑥𝑛 → 𝑥0 we need to check that (3.4) holds. Therefore, let 𝑈 ∈ 𝒯 with 𝑥0 ∈ 𝑈 . We have two
cases:

• 𝑈 = ∅: This case is not possible, since 𝑥0 cannot be in 𝑈 .

• 𝑈 = 𝑋 : Take 𝑁 = 1. Since 𝑈 is the whole space, then 𝑥𝑛 ∈ 𝑈 for all 𝑛 ≥ 1.

As these are all the open sets, we conclude that 𝑥𝑛 → 𝑥0.

Warning

This example is saying that in general the topological limit of a sequence is not unique!

Proposition 3.16: Convergence for discrete topology

Let (𝑋 , 𝒯 ) be topological space, with 𝒯 the discrete topology, that is,

𝒯 = {𝐴 ∶ 𝐴 ⊆ 𝑋} .
Let {𝑥𝑛} ⊆ 𝑋 be a sequence and 𝑥0 ∈ 𝑋 a point. They are equivalent:

1. 𝑥𝑛 → 𝑥0.
2. {𝑥𝑛} is eventually constant, that is, there exists 𝑁 ∈ ℕ such that

𝑥𝑛 = 𝑥0 , ∀ 𝑛 ≥ 𝑁 .

Proof

Part 1. Assume that 𝑥𝑛 → 𝑥0.
We have to prove that {𝑥𝑛} is eventually constant. To this end, let

𝑈 = {𝑥0} .
Then 𝑈 ∈ 𝒯 . Since 𝑥𝑛 → 𝑥0, by (3.4) there exists 𝑁 ∈ ℕ such that

𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 .
As 𝑈 = {𝑥0}, the above is saying that 𝑥𝑛 = 𝑥0 for all 𝑛 ≥ 𝑁 . Hence 𝑥𝑛 is eventually constant.
Part 2. Assume that 𝑥𝑛 is eventually equal to 𝑥0.
By assumption there exists 𝑁 ∈ ℕ such that

𝑥𝑛 = 𝑥0 , ∀ 𝑛 ≥ 𝑁 . (3.5)
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Let 𝑈 ∈ 𝒯 be an open set such that 𝑥0 ∈ 𝑈 . By (3.5) we have that

𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 .
Since 𝑈 was arbitrary, we conclude that 𝑥𝑛 → 𝑥0.

Before proceeding to examining convergence in the Euclidean topology, let us recall the classical definition
of convergence in ℝ𝑛.

Definition 3.17: Classical convergence in ℝ𝑛

Let {x𝑛} ⊆ ℝ𝑛 and x0 ∈ ℝ𝑛. We say that x𝑛 converges x0 in the classical sense if

lim𝑛→∞ ‖x𝑛 − x0‖ = 0 .

The above is equivalent to: For all 𝜀 > 0 there exists 𝑁 ∈ ℕ such that

‖x𝑛 − x0‖ < 𝜀 , ∀ 𝑛 ≥ 𝑁 .

Proposition 3.18: Convergence for Euclidean topology

Let ℝ𝑛 be equipped with 𝒯 the Euclidean topology. Let {x𝑛} ⊆ ℝ𝑛 be a sequence and x0 ∈ ℝ𝑛 a point.
They are equivalent:

1. x𝑛 → x0 with respect to 𝒯 .
2. x𝑛 → x0 in the classical sense.

Proof

Part 1. Assume x𝑛 → x0 with respect to 𝒯 .
Fix 𝜀 > 0 and consider the set

𝑈 ∶= 𝐵𝜀(x0) .
By Proposition 3.7 we know that 𝑈 ∈ 𝒯 . Moreover x0 ∈ 𝑈 . By the convergence x𝑛 → x0 with respect to
𝒯 , there exists 𝑁 ∈ ℕ such that

x𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 .
As 𝑈 = 𝐵𝜀(x0), the above reads

‖x𝑛 − x0‖ < 𝜀 , ∀ 𝑛 ≥ 𝑁 ,
showing that x𝑛 → x0 in the classical sense.
Part 2. Assume x𝑛 → x0 in the classical sense.
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Let 𝑈 ∈ 𝒯 be such that x0 ∈ 𝑈 . By definition of Euclidean topology, this means that there exists 𝑟 > 0
such that

𝐵𝑟 (x0) ⊆ 𝑈 .
As x𝑛 → x0 in the classical sense, there exists 𝑁 ∈ ℕ such that

‖x𝑛 − x0‖ < 𝑟 , ∀ 𝑛 ≥ 𝑁 .
The above is equivalent to

x𝑛 ∈ 𝐵𝑟 (x0) , ∀ 𝑛 ≥ 𝑁 .
Since 𝐵𝑟 (x0) ⊆ 𝑈 , we have proven that

x𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 .
Since 𝑈 is arbitrary, we conclude that x𝑛 → x0 with respect to 𝒯 .

Notation

Since classical convergence in ℝ𝑛 agrees with topological convergence with respect to 𝒯 , we will just
say that x𝑛 → x0 in ℝ𝑛 without ambiguity.

We conclude with a useful proposition which relates convergences when multiple topologies are present.

Proposition 3.19

Let 𝑋 be a set and 𝒯1, 𝒯2 be topologies on 𝑋 . Suppose that

𝒯2 ⊆ 𝒯1 .
Let {𝑥𝑛} ⊂ 𝑋 and 𝑥0 ∈ 𝑋 . We have

𝑥𝑛 → 𝑥0 in 𝒯1 ⟹ 𝑥𝑛 → 𝑥0 in 𝒯2 .

Proof

Assume 𝑥𝑛 → 𝑥0 in 𝒯1. We need to prove that 𝑥𝑛 → 𝑥0 in 𝒯2. Therefore, let 𝑈 ∈ 𝒯2 be such that 𝑥0 ∈ 𝑈 .
Since 𝒯2 ⊆ 𝒯1, we have that 𝑈 ∈ 𝒯1. As 𝑥𝑛 → 𝑥0 in 𝒯1, there exists 𝑁 ∈ ℕ such that

𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 .
Since 𝑈 ∈ 𝒯2, the above proves 𝑥𝑛 → 𝑥0 in 𝒯2.
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3.4 Metric spaces

We will now define a class of topological spaces known as metric spaces.

Definition 3.20: Distance

Let 𝑋 be a set. A distance on 𝑋 is a function

𝑑 ∶ 𝑋 × 𝑋 → ℝ
such that, for all 𝑥, 𝑦 , 𝑧 ∈ 𝑋 they hold:

• (M1) Positivity: The distance is non-negative

𝑑(𝑥, 𝑦) ≥ 0 .
Moreover

𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 .
• (M2) Symmetry: The distance is symmetric

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) .

• (M3) Triangle Inequality: It holds

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) .

Definition 3.21: Metric space

Let 𝑋 be a set and 𝑑 ∶ 𝑋 × 𝑋 → ℝ be a distance on 𝑋 . We say that the pair (𝑋 , 𝑑) is a metric space.

Example 3.22: ℝ𝑛 as metric space

The Euclidean norm naturally induces a distance over ℝ𝑛 by setting

𝑑(x,y) ∶= ‖x − y‖ .
Then (ℝ𝑛, 𝑑) is a metric space.

It is trivial to check that the Euclidean distance satisfies (M1) and (M2). To show (M3), recall-
ing the triangle inequality in ℝ𝑛:

‖x + y‖ ≤ ‖x‖ + ‖y‖ ,
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for all x,y ∈ ℝ𝑛. Using the above we obtain

𝑑(x,y) = ‖x − y‖
= ‖(x − z) + (z − y)‖
≤ ‖x − z‖ + ‖z − y‖
= 𝑑(x, z) + 𝑑(z,y) ,

proving that 𝑑 satisfies (M3). This prove that (ℝ𝑛, 𝑑) is a metric space.

Example 3.23: 𝑝-distance on ℝ𝑛

For x,y ∈ ℝ𝑛 and 𝑝 ∈ [1,∞) define

𝑑𝑝(x,y) ∶= (
𝑛
∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖|𝑝)
1
𝑝
.

Note that 𝑑2 coincides with the Euclidean distance. For 𝑝 = ∞ we set

𝑑∞(x,y) ∶= max𝑖=1…,𝑛 |𝑥𝑖 − 𝑦𝑖| .

We have that (ℝ𝑛, 𝑑𝑝) is a metric space.

Indeed properties (M1)-(M2) hold trivially. The triangle inequality is also trivially satisfied
by 𝑑∞. We are left with checking the triangle inequality for 𝑑𝑝 with 𝑝 ≥ 1. To this end, define

‖x‖𝑝 ∶= (
𝑛
∑
𝑖=1

|𝑥𝑖|𝑝)
1
𝑝
.

Minkowski’s inequality, see Wikipedia page, states that

‖x + y‖𝑝 ≤ ‖x‖𝑝 + ‖y‖𝑝 ,
for all x,y ∈ ℝ𝑛. Therefore

𝑑𝑝(x,y) = ‖x − y‖𝑝
= ‖(x − z) + (z − y)‖𝑝
≤ ‖x − z‖𝑝 + ‖z − y‖𝑝
= 𝑑𝑝(x, z) + 𝑑𝑝(z,y) ,

proving that 𝑑𝑝 satisfies (M3). Hence (ℝ𝑛, 𝑑𝑝) is a metric space.
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A metric 𝑑 on a set 𝑋 naturally induces a topology which is compatible with the metric.

Definition 3.24: Topology induced by the metric

Let (𝑋 , 𝑑) be a metric space. We define the topology 𝒯𝑑 induced by the metric 𝑑 as the collection of
sets 𝑈 ⊆ 𝑋 that satisfy the following property:

∀ 𝑥 ∈ 𝑈 , ∃ 𝑟 ∈ ℝ, 𝑟 > 0 s.t. 𝐵𝑟 (𝑥) ⊆ 𝑈 ,
where 𝐵𝑟 (𝑥) is the ball centered at 𝑥 of radius 𝑟 . This is defined by

𝐵𝑟 (𝑥) ∶= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) < 𝑟} .

We need to check that the above definition is well-posed, that is, we need to show that 𝒯𝑑 is actually a
topology on 𝑋 . The proof follows, line by line, the proof that the Euclidean topology is indeed a topology,
see proof immediately below Definition 3.6. This is left as an exercise.

Example 3.25: Topology induced by Euclidean distance

Consider the metric space (ℝ𝑛, 𝑑) with 𝑑 the Euclidean distance. Then

𝒯𝑑 = 𝒯euclidean ,
where 𝒯euclidean is the Euclidean topology on ℝ𝑛.

Exercise: Prove the above statement. It is an immediate consequence of definitions.

Example 3.26: Discrete distance

Let 𝑋 be a set. Define the function 𝑑 ∶ 𝑋 × 𝑋 → ℝ by

𝑑(𝑥, 𝑦) ∶= {0 if 𝑥 = 𝑦
1 if 𝑥 ≠ 𝑦

Then (𝑋 , 𝑑) is a metric space, and 𝑑 is called the discrete distance. Moreover

𝒯𝑑 = 𝒯discrete

where 𝒯discrete is the discrete topology on 𝑋 .

Exercise: Prove that (𝑋 , 𝑑) is a metric space and 𝒯𝑑 = 𝒯discrete.

The following proposition tells us that balls in a metric space 𝑋 are open sets. Moreover balls are the building
blocks of all open sets in 𝑋 . The proof is left as an exercise.
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Proposition 3.27

Let (𝑋 , 𝑑) be a metric space and 𝒯𝑑 the topology induced by 𝑑 . Then:

• For all 𝑥 ∈ 𝑋 , 𝑟 > 0 we have 𝐵𝑟 (𝑥) ⊆ 𝒯𝑑 .
• 𝑈 ∈ 𝒯𝑑 if and only if

𝑈 = ⋃
𝑖∈𝐼

𝐵𝑟𝑖(𝑥𝑖) ,

with 𝐼 family of indices and 𝑥𝑖 ∈ 𝑋 , 𝑟𝑖 > 0.

We now define the concept of equivalent metrics.

Definition 3.28: Equivalent metrics

Let 𝑋 be a set and 𝑑1, 𝑑2 be metrics on 𝑋 . We say that 𝑑1 and 𝑑2 are equivalent if

𝒯𝑑1 = 𝒯𝑑2 .

The following proposition gives a sufficent condition for the equivalence of two metrics.

Proposition 3.29

Let 𝑋 be a set and 𝑑1, 𝑑2 be metrics on 𝑋 . Suppose that there exists a constant 𝛼 > 0 such that

1
𝛼 𝑑2(𝑥, 𝑦) ≤ 𝑑1(𝑥, 𝑦) ≤ 𝛼 𝑑2(𝑥, 𝑦) , ∀ 𝑥, 𝑦 ∈ 𝑋 .

Then 𝑑1 and 𝑑2 are equivalent metrics.

The proof of Proposition 3.29 is trivial, and is left as an exercise.

Example 3.30

Let 𝑝 > 1. The metrics 𝑑𝑝 and 𝑑∞ on ℝ𝑛 are equivalent.

This follows from Proposition 3.29 and the estimate

𝑑∞(x,y) ≤ 𝑑𝑝(x,y) ≤ 𝑛 𝑑∞(x,y) , ∀x , y ∈ ℝ𝑛 .
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Warning

If two metrics are equivalent, that does not mean they have the same balls. For example the balls of the
metrics 𝑑1, 𝑑2 and 𝑑∞ on ℝ𝑛 look very different, see Figure 3.3.

Figure 3.3: Balls 𝐵𝑟 (0) for the metrics 𝑑2, 𝑑∞, 𝑑1 in ℝ2.

We can characterize the convergence of sequences in metric spaces.

Proposition 3.31: Convergence in metric space

Suppose (𝑋 , 𝑑) is a metric space and denote by 𝒯𝑑 the topology induce by 𝑑 . Let {𝑥𝑛} ⊆ 𝑋 and 𝑥0 ∈ 𝑋 .
They are equivalent:

1. 𝑥𝑛 → 𝑥0 with respect to the topology 𝒯𝑑 .
2. 𝑑(𝑥𝑛, 𝑥0) → 0 in ℝ.
3. For all 𝜀 > 0 there exists 𝑁 ∈ ℕ such that

𝑥𝑛 ∈ 𝐵𝑟 (𝑥0) , ∀ 𝑛 ≥ ℕ .

The proof is similar to the one of Proposition 3.18, and it is left as an exercise.

3.5 Interior, closure and boundary

We now define interior, closure and boundary of a set 𝐴 contained in a topological space.

Definition 3.32: Interior of a set

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. The interior of 𝐴 is the set

Int𝐴 ∶= ⋃
𝑈⊆𝐴
𝑈∈𝒯

𝑈 .
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Remark 3.33

The definition of Int𝐴 is well-posed, since ∅ ⊆ 𝐴 and ∅ ∈ 𝒯 . Therefore the union is taken over a
non-empty family.

Proposition 3.34

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. Then Int𝐴 is the largest open set contained in 𝐴, that
is:

1. Int𝐴 is open.
2. Int𝐴 ⊆ 𝐴.
3. If 𝑉 ∈ 𝒯 and 𝑉 ⊆ 𝐴, then 𝑉 ⊆ Int𝐴.
4. 𝐴 is open if and only if

𝐴 = Int𝐴 .

Proof

We have:

1. Int𝐴 is open, since it is union of open sets, see property (A2).

2. Int𝐴 ⊆ 𝐴, since Int𝐴 is union of sets contained in 𝐴.

3. Suppose 𝑉 ∈ 𝒯 and 𝑉 ⊆ 𝐴. Therefore

𝑉 ⊆ ⋃
𝑈⊆𝐴
𝑈∈𝒯

𝑈 = Int𝐴 .

4. Suppose that 𝐴 is open. Then
𝐴 ⊆ ⋃

𝑈⊆𝐴
𝑈∈𝒯

𝑈 = Int𝐴 .

As we already know that Int𝐴 ⊆ 𝐴, we conclude that 𝐴 = Int𝐴.
Conversely, suppose that 𝐴 = Int𝐴. Since Int𝐴 is open, then also 𝐴 is open.

Definition 3.35: Closure of a set

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. The closure of 𝐴 is the set

𝐴 ∶= ⋂
𝐴⊆𝐶

𝐶 closed

𝐶 ,
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that is, 𝐴 is the intersection of all closed sets containing 𝐴.

Remark 3.36

The definition of 𝐴 is well-posed, since 𝐴 ⊆ 𝑋 , and 𝑋 is closed. Therefore the intersection is taken over
a non-empty family.

Proposition 3.37

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. Then 𝐴 is the smallest closed set containing 𝐴, that
is:

1. 𝐴 is closed.
2. 𝐴 ⊆ 𝐴.
3. If 𝑉 is closed 𝐴 ⊆ 𝑉 , then 𝐴 ⊆ 𝑉 .
4. 𝐴 is closed if and only if

𝐴 = 𝐴 .

Proof

We have:

1. 𝐴 is closed, since it is intersection of closed sets, see property (C2).

2. 𝐴 ⊆ 𝐴, since 𝐴 is intersection of sets which contain 𝐴.

3. Suppose 𝑉 is closed and 𝐴 ⊆ 𝑉 . Therefore

𝐴 = ⋂
𝐴⊆𝐶

𝐶 closed

𝐶 ⊆ 𝑉 .

4. Suppose that 𝐴 is closed. Then
𝐴 = ⋂

𝐴⊆𝐶
𝐶 closed

𝐶 ⊆ 𝐴 ,

showing that 𝐴 ⊆ 𝐴. As we already know that 𝐴 ⊆ 𝐴, we conclude that 𝐴 = 𝐴.
Conversely, suppose that 𝐴 = 𝐴. Since 𝐴 is closed, then also 𝐴 is closed.
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Lemma 3.38

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. They are equivalent:

1. 𝑥0 ∈ 𝐴.
2. For every 𝑈 ∈ 𝒯 such that 𝑥0 ∈ 𝑈 , it holds

𝑈 ∩ 𝐴 ≠ ∅ .

Proof

We prove the contronominal statement:

𝑥0 ∉ 𝐴 ⟺ ∃ 𝑈 ∈ 𝒯 s.t. 𝑥0 ∈ 𝑈 , 𝑈 ∩ 𝐴 = ∅ .
Let us check the two implications hold:

• Suppose 𝑥0 ∉ 𝐴. Then 𝑥0 ∈ 𝑈 ∶= (𝐴)𝑐 . Note that 𝑈 is open, since 𝑈 𝑐 = 𝐴 is closed. We have

𝐴 ∩ 𝑈 = 𝐴 ∩ (𝐴)𝑐 = ∅ ,
since 𝐴 ⊆ 𝐴.

• Assume there exists 𝑈 ∈ 𝒯 such that 𝑥0 ∈ 𝑈 and 𝑈 ∩𝐴 = ∅. Therefore 𝐴 ⊆ 𝑈 𝑐 . Since 𝑈 is open, 𝑈 𝑐
is closed. Then

𝐴 = ⋂
𝐴⊆𝐶

𝐶 closed

𝐶 ⊆ 𝑈 𝑐 .

Since 𝑥0 ∉ 𝑈 𝑐 , we conclude that 𝑥0 ∉ 𝐴.

Definition 3.39: Boundary of a set

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. The boundary of 𝐴 is the set

𝜕𝐴 ∶= 𝐴 ∖ Int𝐴 .

Proposition 3.40

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. Then 𝜕𝐴 is closed.
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Proof

We can write
𝜕𝐴 = 𝐴 ∖ Int𝐴 = 𝐴 ∩ (Int𝐴)𝑐 .

Note that 𝐴 is closed and (Int𝐴)𝑐 is closed, since Int𝐴 is open. Then 𝜕𝐴 is intersection of two closed
sets, and in hence closed by (C2).

We can characterize 𝐴 as the set of limit points of sequences in 𝐴.

Definition 3.41

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 . The set of limit points of 𝐴 is defined as

𝐿(𝐴) ∶= {𝑥 ∈ 𝑋 ∶ ∃ {𝑥𝑛} ⊆ 𝐴 s.t. 𝑥𝑛 → 𝑥} .

Proposition 3.42

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. Let {𝑥𝑛} ⊆ 𝐴 and 𝑥0 ∈ 𝑋 be such that 𝑥𝑛 → 𝑥0. Then
𝑥0 ∈ 𝐴. Therefore

𝐿(𝐴) ⊆ 𝐴 .

Proof

Suppose by contradiction 𝑥0 ∉ 𝐴, so that
𝑥0 ∈ (𝐴)𝑐 .

Since (𝐴)𝑐 is open and 𝑥𝑛 → 𝑥0, there exists 𝑁 ∈ ℕ such that

𝑥𝑛 ∈ (𝐴)𝑐 , ∀ 𝑛 ≥ 𝑁 .
This is a contradiction, since we were assuming that {𝑥𝑛} ⊆ 𝐴. This shows 𝑥0 ∈ 𝐴 and therefore 𝐿(𝐴) ⊆ 𝐴.

Warning

The converse of Proposition 3.42 is false in general, that is,

𝐴 ⊄ 𝐿(𝐴) .
We show a counterexample of the above in Example 3.43. The above relation holds in the so-called first
countable topological spaces, such as metric spaces, see Proposition 3.44 below.
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Example 3.43: Co-countable topology

Let 𝑋 = ℝ with the co-countable topology

𝒯 ∶= {𝐴 ⊆ ℝ ∶ 𝐴𝑐 = ℝ or 𝐴𝑐 countable } .
The set

𝐴 = (−∞, 0]
is not closed and 𝐴 = ℝ. Moreover, convergent sequences in (𝑋 , 𝒯 ) are eventually constant. Therefore
𝐿(𝐴) = 𝐴, showing that 𝐴 ⊄ 𝐿(𝐴).

Exercise: Prove all the above statements.

In metric spaces we can characterize the interior of a set and the closure in the following way.

Proposition 3.44

Let (𝑋 , 𝑑) be a metric space. Denote by 𝒯𝑑 the topology induced by 𝑑 . Let 𝐴 ⊆ 𝑋 . We have

Int𝐴 = {𝑥 ∈ 𝐴 ∶ ∃ 𝑟 > 0 s.t. 𝐵𝑟 (𝑥) ⊆ 𝐴} . (3.6)

and
𝐴 = 𝐿(𝐴) ∶= {𝑥 ∈ 𝑋 s.t. ∃ {𝑥𝑛} ⊆ 𝐴 s.t. 𝑥𝑛 → 𝑥} . (3.7)

Proof

The proof of (3.6) is left as an exercise. Let us prove (3.7). The inclusion 𝐿(𝐴) ⊆ 𝐴 holds by Proposition
3.42. We are left to show that

𝐴 ⊆ 𝐿(𝐴) .
To this end, let 𝑥0 ∈ 𝐴. For 𝑛 ∈ ℕ, consider the ball 𝐵1/𝑛(𝑥0). Since 𝐵1/𝑛(𝑥0) ∈ 𝒯𝑑 and 𝑥0 ∈ 𝐵𝜀(𝑥0), we can
apply Lemma 3.38 and deduce that

𝐵1/𝑛(𝑥0) ∩ 𝐴 ≠ ∅ .
Let 𝑥𝑛 ∈ 𝐵1/𝑛(𝑥0) ∩ 𝐴. Since 𝑛 was arbitrary, we have constructed a sequence {𝑥𝑛} ⊆ 𝐴 such that

𝑥𝑛 ∈ 𝐵1/𝑛(𝑥0) , ∀ 𝑛 ∈ ℕ .
In particular, we have that

𝑑(𝑥𝑛, 𝑥0) < 1
𝑛 → 0

as 𝑛 → ∞. Thus 𝑥𝑛 → 𝑥0, showning that 𝑥0 ∈ 𝐿(𝐴).
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Example 3.45

Consider ℝ with the Euclidean topology and 𝐴 ∶= [0, 1). We have that

Int𝐴 = (0, 1) , 𝐴 = [0, 1] , 𝜕𝐴 = {0, 1} .
In particular

Int𝐴 ≠ 𝐴 , 𝐴 ≠ 𝐴 ,
showing that 𝐴 is neither open, nor closed.

The proof of the above statements is left as an exercise.

3.6 Density

Definition 3.46: Density

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. We say that 𝐴 is dense in 𝑋 if

𝐴 ∩ 𝑈 ≠ ∅ , ∀ 𝑈 ∈ 𝒯 , 𝑈 ≠ ∅ .

Density can be characterized in terms of closure.

Proposition 3.47

Let (𝑋 , 𝒯 ) be a topological space and 𝐴 ⊆ 𝑋 a set. They are equivalent:

1. 𝐴 is dense in 𝑋 .
2. It holds

𝐴 = 𝑋 .

Proof

Part 1. Let 𝐴 be dense in 𝑋 . Suppose by contradiction that

𝐴 ≠ 𝑋 .
This means (𝐴)𝑐 ≠ ∅. Note that (𝐴)𝑐 is open, being 𝐴 closed. By density of 𝐴 in 𝑋 we have

𝐴 ∩ (𝐴)𝑐 ≠ ∅ .
Since 𝐴 ⊆ 𝐴, the above is a contradiction.
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Part 2. Suppose that 𝐴 = 𝑋 . Let 𝑈 ∈ 𝒯 with 𝑈 ≠ ∅. By contradiction, assume that

𝐴 ∩ 𝑈 = ∅ .
Therefore 𝐴 ⊆ 𝑈 𝑐 . As 𝑈 𝑐 is closed, we have

𝐴 ⊆ 𝑈 𝑐 ,
because 𝐴 is the smallest closed set containing 𝐴. Recalling that 𝐴 = 𝑋 , we conclude that 𝑈 𝑐 = 𝑋 .
Therefore 𝑈 = ∅, which is a contradiction.

Example 3.48

Consider ℝ with the Euclidean topology.

1. We have that the set of integers ℤ is closed in ℝ. Indeed,
ℤ𝑐 = ⋃

𝑧∈ℤ
(𝑧, 𝑧 + 1) .

Since (𝑧, 𝑧 + 1) is open in ℝ, by (A2) we conclude that ℤ𝑐 is open, so that ℤ is closed. Therefore

ℤ = ℤ ,
showing that ℤ is not dense in ℝ.

2. The rational numbers ℚ are instead dense in ℝ, as proven in the Analysis module. Therefore

ℚ = ℝ .
It is also easy to check that

Intℚ = ∅ .
Therefore

Intℚ ≠ ℚ , ℚ ≠ ℚ ,
showing that ℚ is neither open, nor closed.

Example 3.49

Consider ℝ with the cofinite topology

𝒯cofinite ∶= {𝑈 ⊂ ℝ ∶ 𝑈 𝑐 is finite, or 𝑈 𝑐 = ℝ} .
We have that

ℤ = ℝ ,
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showing that ℤ is dense in ℝ.

Proof. Suppose 𝐶 is a closed set such that ℤ ⊆ 𝐶 . By definition of 𝒯cofinite we have 𝐶 = ℝ or
𝐶 finite. Since ℤ ⊆ 𝐶 and ℤ is not finite, we conclude 𝐶 = ℝ. This proves that ℝ is the only
closed set containing ℤ, and so ℤ = ℝ.

3.7 Hausdorff spaces

Hausdorff space are topological spaces in which points can be separated by means of disjoint open sets.

Definition 3.50

Let (𝑋 , 𝒯 ) be a topological space. We say that 𝑋 is a Hausdorff space if for every two points 𝑥, 𝑦 ∈ 𝑋
with 𝑥 ≠ 𝑦 there exist 𝑈 , 𝑉 ∈ 𝒯 such that

𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , 𝑈 ∩ 𝑉 = ∅ .

The main example of Hausdorff spaces are metrizable spaces.

Proposition 3.51

Let (𝑋 , 𝑑) be a metric space with 𝒯𝑑 the topology induced by 𝑑 . Then (𝑋 , 𝒯𝑑) is a Hausdorff space.

Proof

Let 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 . Set
𝜀 ∶= 1

2 𝑑(𝑥, 𝑦) ,
and define

𝑈 ∶= 𝐵𝜀(𝑥) , 𝑉 ∶= 𝐵𝜀(𝑦) .
By Proposition 3.27 we know that 𝑈 , 𝑉 ∈ 𝒯𝑑 . Moreover 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 . We are left to show that

𝑈 ∩ 𝑉 = ∅ .
Suppose by contradiction that 𝑈 ∩ 𝑉 ≠ ∅ and let 𝑧 ∈ 𝑈 ∩ 𝑉 . Therefore

𝑑(𝑥, 𝑧) < 𝜀 , 𝑑(𝑦 , 𝑧) < 𝜀 .
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By triangle inequality we have

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) < 𝜀 + 𝜀 = 𝑑(𝑥, 𝑦) ,
where in the last inequality we used the definition of 𝜀. This is a contradiction. Therefore 𝑈 ∩ 𝑉 = ∅ and
(𝑋 , 𝒯𝑑) is Hausdorff.

In general, every metrizable space is Hausdorff.

Definition 3.52: Metrizable space

Let (𝑋 , 𝒯 ) be a topological space. We say that the topology 𝒯 is metrizable if there exists a metric 𝑑 on
𝑋 such that

𝒯 = 𝒯𝑑 ,
with 𝒯𝑑 the topology induced by 𝑑 .

Corollary 3.53

Let (𝑋 , 𝒯 ) be a metrizable space. Then 𝑋 is Hausforff.

Proof

Since (𝑋 , 𝒯 ) is metrizable, there exists a metric 𝑑 on 𝑋 such that

𝒯 = 𝒯𝑑 .
By Proposition 3.51 we know that (𝑋 , 𝒯𝑑) is Hausdorff. Hence (𝑋 , 𝒯 ) is Hausdorff.

As a conseuqence of Corollary 3.53 we have that spaces which are not metrizable are not Hausdorff. Let us
make a few examples.

Example 3.54: Trivial topology is not Hausdorff

Let (𝑋 , 𝒯 ) be a topological space with 𝒯 trivial topology. Assume that 𝑋 has more than one element.
Then 𝑋 is not Hausdorff.

Indeed, let 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 . Suppose by contradiction that 𝑋 is Hausdorff. Then there
exist 𝑈 , 𝑉 ∈ 𝒯 such that

𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , 𝑈 ∩ 𝑉 = ∅ .
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Recall that
𝒯 = {∅, 𝑋} .

Since 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 , we deduce that 𝑈 and 𝑉 are non-empty. Since 𝑈 and 𝑉 are open, the
only possibility is that

𝑈 = 𝑉 = 𝑋 .
In this case we have

𝑈 ∩ 𝑉 = 𝑋 ∩ 𝑋 = 𝑋 ≠ ∅ ,
leading to a contradiciton. Hence 𝑋 is not Hausdorff.

Example 3.55: Cofinite topology on ℝ
Consider the following family 𝒯 of subsets of ℝ

𝒯 ∶= {𝑈 ⊆ ℝ ∶ 𝑈 𝑐 is finite, or 𝑈 𝑐 = ℝ} .
Then (ℝ, 𝒯 ) is a topological space which is not Hausdorff. The topology 𝒯 is called the cofinite topol-
ogy.

Exercise: Show that (ℝ, 𝒯 ) is not Hausdorff.

Example 3.56

Consider the following family 𝒯 of subsets of ℝ
𝒯 ∶= {𝑈 = (−∞, 𝑎) ∶ − ∞ ≤ 𝑎 ≤ ∞} .

Then (ℝ, 𝒯 ) is a topological space which is not Hausdorff.

We start by showing that (ℝ, 𝒯 ) is a topological space. We need to check the properties of
topologies:

• (A1) We have that
(∞,∞) = ∅ ∈ 𝒯 , (−∞,∞) = ℝ ∈ 𝒯 .

• (A2) Suppose that 𝐴𝑖 ∈ 𝒯 for all 𝑖 ∈ 𝐼 . By definition

𝐴𝑖 = (−∞, 𝑎𝑖) , −∞ ≤ 𝑎𝑖 ≤ ∞ .
Set

𝑎 ∶= sup
𝑖∈𝐼

𝑎𝑖 , 𝐴 ∶= (−∞, 𝑎) .

Note that 𝑎 always exists, and possibly 𝑎 = ∞. Moreover 𝐴 ∈ 𝒯 . We claim

𝐴 = ⋃
𝑖∈𝐼

𝐴𝑖 . (3.8)
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To prove (3.8) first suppose that 𝑥 ∈ 𝐴. Then 𝑥 < 𝑎. Set 𝜀 ∶= 𝑎 − 𝑥 , so that 𝜀 > 0. By
definition of supremum there exists 𝑖0 ∈ 𝐼 such that

𝑎 − 𝜀 < 𝑎𝑖0 .
From the above, and from the definition of 𝜀, we deduce

𝑎𝑖0 > 𝑎 − 𝜀 = 𝑎 − 𝑎 + 𝑥 = 𝑥 ,
showing that 𝑥 ∈ (−∞, 𝑎𝑖0) = 𝐴𝑖0 . Therefore

𝐴 ⊆ ⋃
𝑖∈𝐼

𝐴𝑖 .

Conversely, assume that 𝑥 ∈ ∪𝑖∈𝐼 𝐴𝑖. Therefore there exists 𝑖0 ∈ 𝐼 such that 𝑥 ∈ 𝐴𝑖0 =
(−∞, 𝑎𝑖0). In particular

𝑥 < 𝑎𝑖0 ≤ sup
𝑖∈𝐼

𝑎𝑖 = 𝑎 ,

showing that 𝑥 ∈ (−∞, 𝑎) = 𝐴. Therefore

⋃
𝑖∈𝐼

𝐴𝑖 ⊆ 𝐴 ,

and (3.8) is proven.

• (A3) Let 𝐴, 𝐵 ∈ 𝒯 . Therefore

𝐴 = (−∞, 𝑎) , 𝐵 = (−∞, 𝑏) ,
for some 𝑎, 𝑏 ∈ [−∞,∞]. Set

𝑈 ∶= 𝐴 ∩ 𝐵 , 𝑧 ∶= min{𝑎, 𝑏} .
It is immediate to check that

𝑈 = (−∞, 𝑧) ,
showing that 𝑈 ∈ 𝒯 .

Therefore (ℝ, 𝒯 ) is a topological space. We now show that (ℝ, 𝒯 ) is not Hausdorff. Suppose
by contradiction that (ℝ, 𝒯 ) is Hausdorff. Let 𝑥, 𝑦 ∈ ℝ with 𝑥 ≠ 𝑦 . By assumption there
exist 𝑈 , 𝑉 ∈ 𝒯 such that

𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , 𝑈 ∩ 𝑉 = ∅ .
By definition of 𝒯 there exist 𝑎, 𝑏 ∈ [−∞,∞] such that

𝑈 = (−∞, 𝑎) , 𝑉 = (−∞, 𝑏) .
Since 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 , in particular 𝑈 and 𝑉 are non-empty. Therefore 𝑎, 𝑏 > −∞. Set

𝑧 ∶= min{𝑎, 𝑏} , 𝑍 ∶= 𝑈 ∩ 𝑉 = (−∞, 𝑧) .
As 𝑎, 𝑏 > −∞, we have 𝑧 > −∞. Therefore 𝑍 ≠ ∅. This is a contradiction, since 𝑈 ∩ 𝑉 = ∅.
Therefore (ℝ, 𝒯 ) is not Hausdorff.
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In Hausdorff spaces the limit of a sequence is unique.

Proposition 3.57: Uniqueness of limit in Hausdorff spaces

Let (𝑋 , 𝒯 ) be a Hausdorff space. If a sequence {𝑥𝑛} ⊆ 𝑋 converges, then the limit is unique.

Proof

Let {𝑥𝑛} ⊆ 𝑋 be a convergent sequence. Suppose by contradiction that

𝑥𝑛 → 𝑥0 , 𝑥𝑛 → 𝑦0
in 𝑋 , for some 𝑥0, 𝑦0 ∈ 𝑋 with 𝑥0 ≠ 𝑦0. Since 𝑋 is Hausdorff, there exist 𝑈 , 𝑉 ∈ 𝒯 such that

𝑥0 ∈ 𝑈 , 𝑦0 ∈ 𝑉 , 𝑈 ∩ 𝑉 = ∅ .
As 𝑥𝑛 → 𝑥0 and 𝑈 ∈ 𝒯 with 𝑥0 ∈ 𝑈 , there exists 𝑁1 ∈ ℕ such that

𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁1 .
Similarly, since 𝑥𝑛 → 𝑦0 and 𝑉 ∈ 𝒯 with 𝑦0 ∈ 𝑈 , there exists 𝑁2 ∈ ℕ such that

𝑥𝑛 ∈ 𝑉 , ∀ 𝑛 ≥ 𝑁2 .
Take 𝑁 ∶= max{𝑁1, 𝑁2}. Then

𝑥𝑛 ∈ 𝑈 ∩ 𝑉 , ∀ 𝑛 ≥ 𝑁 .
Since 𝑈 ∩ 𝑉 = ∅, the above is a contradiction. Therefore the limit of 𝑥𝑛 is unique.

3.8 Continuity

We extend the notion of continuity to topological spaces. To this end, we need the concept of pre-image of a
set under a function.

Definition 3.58: Images and Pre-images

Let 𝑋, 𝑌 be sets and 𝑓 ∶ 𝑋 → 𝑌 be a function.

• Let 𝑈 ⊆ 𝑋 . The image of 𝑈 under 𝑓 is the subset of 𝑌 defined by

𝑓 (𝑈 ) ∶= {𝑦 ∈ 𝑌 ∶ ∃ 𝑥 ∈ 𝑋 s.t. 𝑦 = 𝑓 (𝑥)} = {𝑓 (𝑥) ∶ 𝑥 ∈ 𝑋} .
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• Let 𝑉 ⊆ 𝑌 . The pre-image of 𝑉 under 𝑓 is the subset of 𝑋 defined by

𝑓 −1(𝑉 ) ∶= {𝑥 ∈ 𝑋 ∶ 𝑓 (𝑥) ∈ 𝑉 } .

Warning

The notation 𝑓 −1(𝑉 ) does not mean that we are inverting 𝑓 . In fact, the pre-image is defined for all
functions.

Let us gather useful properties of images and pre-images.

Proposition 3.59

Let 𝑋, 𝑌 be sets and 𝑓 ∶ 𝑋 → 𝑌 . We denote with the letter 𝐴 sets in 𝑋 and with the letter 𝐵 sets in 𝑌 . We
have

• 𝐴 ⊆ 𝑓 −1(𝑓 (𝐴))
• 𝐴 = 𝑓 −1(𝑓 (𝐴)) if 𝑓 is injective
• 𝑓 (𝑓 −1(𝐵)) ⊆ 𝐵
• 𝑓 (𝑓 −1(𝐵)) = 𝐵 if 𝑓 is surjective
• If 𝐴1 ⊆ 𝐴2 then 𝑓 (𝐴1) ⊆ 𝑓 (𝐴2)
• If 𝐵1 ⊆ 𝐵2 then 𝑓 −1(𝐵1) ⊆ 𝑓 −1(𝐵2)
• If 𝐴𝑖 ⊆ 𝑋 for 𝑖 ∈ 𝐼 we have

𝑓 (⋃
𝑖∈𝐼

𝐴𝑖) = ⋃
𝑖∈𝐼

𝑓 (𝐴𝑖)

𝑓 (⋂
𝑖∈𝐼

𝐴𝑖) ⊆ ⋂
𝑖∈𝐼

𝑓 (𝐴𝑖)

• If 𝐵𝑖 ⊆ 𝑌 for 𝑖 ∈ 𝐼 we have

𝑓 −1 (⋃
𝑖∈𝐼

𝐵𝑖) = ⋃
𝑖∈𝐼

𝑓 −1(𝐵𝑖)

𝑓 −1 (⋂
𝑖∈𝐼

𝐵𝑖) = ⋂
𝑖∈𝐼

𝑓 −1(𝐵𝑖)

Suppose 𝑍 is another set and 𝑔 ∶ 𝑌 → 𝑍 . Let 𝐶 ⊆ 𝑍 . Then

(𝑔 ∘ 𝑓 )(𝐴) = 𝑔(𝑓 (𝐴))
(𝑔 ∘ 𝑓 )−1(𝐶) = 𝑓 −1(𝑔−1(𝐶))
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It is a good exercise to try and prove a few of the above properties. We omit the proof. We can now define
continuous functions between topological spaces.

Definition 3.60: Continuous function

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. Let 𝑓 ∶ 𝑋 → 𝑌 be a function.

• Let 𝑥0 ∈ 𝑋 . We say that 𝑓 is continuous at 𝑥0 if it holds:

∀ 𝑉 ∈ 𝒯𝑌 s.t. 𝑓 (𝑥0) ∈ 𝑉 , ∃ 𝑈 ∈ 𝒯𝑋 s.t. 𝑥0 ∈ 𝑈 , 𝑓 (𝑈 ) ⊆ 𝑉 .

• We say that 𝑓 is continuous from (𝑋 , 𝒯𝑋 ) to (𝑌 , 𝒯𝑌 ) if 𝑓 is continuous at each point 𝑥0 ∈ 𝑋 .

The following proposition presents a useful characterization of continuous functions in terms of pre-
images.

Proposition 3.61

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. Let 𝑓 ∶ 𝑋 → 𝑌 be a function. They are equivalent:

1. 𝑓 is continuous from (𝑋 , 𝒯𝑋 ) to (𝑌 , 𝒯𝑌 ).
2. It holds:

𝑓 −1(𝑉 ) ∈ 𝒯𝑋 , ∀ 𝑉 ∈ 𝒯𝑌 .

Important

In other words, a function 𝑓 ∶ 𝑋 → 𝑌 is continuous if and only if the pre-image of open sets in 𝑌 are
open sets in 𝑋 .

The proof of Proposition 3.61 is simple, but very tedious. We choose to skip it.

Example 3.62

Let 𝑋 be a set and 𝒯1, 𝒯2 be topologies on 𝑋 . Define the identity map

Id𝑋 ∶ (𝑋 , 𝒯1) → (𝑋 , 𝒯2) , Id𝑋 (𝑥) ∶= 𝑥 .
They are equivalent:

1. Id𝑋 is continuous from (𝑋 , 𝒯1) to (𝑋 , 𝒯2).
2. 𝒯1 is finer than 𝒯2

𝒯2 ⊆ 𝒯1 .
Indeed, Id𝑋 is continuous if and only if

Id−1𝑋 (𝑉 ) ∈ 𝒯1 , ∀ 𝑉 ∈ 𝒯2 .
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But Id−1𝑋 (𝑉 ) = 𝑉 , so that the above reads

𝑉 ∈ 𝒯1 , ∀ 𝑉 ∈ 𝒯2 ,
which is equivalent to 𝒯2 ⊆ 𝒯1.

Let us compare our new definition of contiuity with the classical notion of continuity in ℝ𝑛. Let us recall the
definition of continuous function in ℝ𝑛.

Definition 3.63: Continuity in the classical sense

Let 𝑓 ∶ ⊆ ℝ𝑛 → ℝ𝑚. We say that 𝑓 is continuous at x0 if it holds:

∀ 𝜀 > 0 , ∃ 𝛿 > 0 s.t. ‖𝑓 (x) − 𝑓 (x0)‖ < 𝜀 if ‖x − x0‖ < 𝛿 .

Proposition 3.64

Let 𝑓 ∶ ℝ𝑛 → ℝ𝑚 and suppose ℝ𝑛, ℝ𝑚 are equipped with the Euclidean topology. Let x0 ∈ ℝ𝑛. They are
equivalent:

1. 𝑓 is continuous at x0 in the topological sense.
2. 𝑓 is continuous at x0 in the classical sense.

Proof

Part 1. Suppose that 𝑓 is continuous at x0 in the topological sense. Let 𝜀 > 0 and consider the set

𝑉 ∶= 𝐵𝜀(𝑓 (x0)) .
We have that 𝑉 ⊂ ℝ𝑚 is open and 𝑓 (x0) ∈ 𝑉 . As 𝑓 is continuous in the topological sense, there exists
𝑈 ⊂ ℝ𝑛 open with x0 ∈ 𝑈 and such that

𝑓 (𝑈 ) ⊂ 𝑉 = 𝐵𝜀(𝑓 (x0)) . (3.9)

Since 𝑈 is open and x0 ∈ 𝑈 , there exists 𝛿 > 0 such that

𝐵𝛿 (x0) ⊂ 𝑈 .
By the above inclusion and (3.9) we conclude that

𝑓 (𝐵𝛿 (x0)) ⊂ 𝑓 (𝑈 ) ⊂ 𝑉 = 𝐵𝜀(𝑓 (x0)) .
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This is equivalent to
x ∈ 𝐵𝛿 (x0) ⟹ 𝑓 (x) ∈ 𝐵𝜀(𝑓 (x0)) ,

which reads
‖x − x0‖ < 𝛿 ⟹ ‖𝑓 (x) − 𝑓 (x0)‖ < 𝜀 .

Therefore 𝑓 is continuous at x0 in the classical sense.
Part 2. Suppose 𝑓 is continuous at 𝑥0 in the classical sense. Let 𝑉 ⊂ ℝ𝑚 be open and such that 𝑓 (x0) ∈ 𝑉 .
Since 𝑉 is open, there exists 𝜀 > 0 such that

𝐵𝜀(𝑓 (x0)) ⊂ 𝑉 . (3.10)

Since 𝑓 is continous in the classical sense, there exists 𝛿 > 0 such that

‖x − x0‖ < 𝛿 ⟹ ‖𝑓 (x) − 𝑓 (x0)‖ < 𝜀 .
The above is equivalent to

x ∈ 𝐵𝛿 (x0) ⟹ 𝑓 (x) ∈ 𝐵𝜀(𝑓 (x0)) . (3.11)

Set
𝑈 ∶= 𝐵𝛿 (x0)

and note that 𝑈 is open in ℝ𝑛 and x0 ∈ 𝑈 . By definition of image of a set, (3.11) reads

𝑓 (𝑈 ) = 𝑓 (𝐵𝛿 (x0)) ⊆ 𝐵𝜀(𝑓 (x0)) .
Recalling (3.10) we conclude that

𝑓 (𝑈 ) ⊂ 𝑉 .
In summary, we have shown that given 𝑉 ⊂ ℝ𝑚 open and such that 𝑓 (x0) ∈ 𝑉 , there exists 𝑈 open in ℝ𝑛
such that x0 ∈ 𝑈 and 𝑓 (𝑈 ) ⊂ 𝑉 . Therefore 𝑓 is continuous at x0 in the topological sense.

A similar proof yields the characterization of continuity in metric spaces. The proof is left as an exercise.

Proposition 3.65

Let (𝑋 , 𝑑𝑋 ) and (𝑌 , 𝑑𝑌 ) be metric spaces. Denote by 𝒯𝑋 and 𝒯𝑌 the topologies induced by the metrics.
Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑥0 ∈ 𝑋 . They are equivalent:

1. 𝑓 is continuous at 𝑥0 in the topological sense.
2. It holds:

∀ 𝜀 > 0 , ∃ 𝛿 > 0 s.t. 𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑥0)) < 𝜀 if 𝑑𝑋 (𝑥, 𝑥0) < 𝛿 .

Let us examine continuity in the cases of the trivial and discrete topologies.
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Example 3.66

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be a topological space. Suppose that 𝒯𝑌 is the trivial topology, that is,

𝒯𝑌 = {∅, 𝑌 } .
Then every function 𝑓 ∶ 𝑋 → 𝑌 is continuous.

Indeed, we know that 𝑓 is continuous if and only if it holds:

𝑓 −1(𝑉 ) ∈ 𝒯𝑋 , ∀ 𝑉 ∈ 𝒯𝑌 .
We have two cases:

• 𝑉 = ∅: Then
𝑓 −1(𝑉 ) = 𝑓 −1(∅) = ∅ ∈ 𝒯𝑋 .

• 𝑉 = 𝑌 : Then
𝑓 −1(𝑉 ) = 𝑓 −1(𝑌 ) = 𝑋 ∈ 𝒯𝑋 .

Therefore 𝑓 is continuous.

Example 3.67

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. Suppose that 𝒯𝑌 is the discrete topology, that is,

𝒯𝑌 = {𝑉 s.t. 𝑉 ⊆ 𝑌 } .
Let 𝑓 ∶ 𝑋 → 𝑌 . They are equivalent:

1. 𝑓 is continuous from 𝑋 to 𝑌 .
2. 𝑓 −1({𝑦}) ∈ 𝒯𝑋 for all 𝑦 ∈ 𝑌 .

Indeed, suppose that 𝑓 is continuous. Then

𝑓 −1(𝑉 ) ∈ 𝒯𝑋 , ∀ 𝑉 ∈ 𝒯𝑌 .
As 𝑉 = {𝑦} ∈ 𝒯𝑌 , we conclude that 𝑓 −1({𝑦}) ∈ 𝒯𝑋 .

Conversely, assume that 𝑓 −1({𝑦}) ∈ 𝒯𝑋 for all 𝑦 ∈ 𝑌 . Let 𝑉 ∈ 𝒯𝑌 . Trivially, we have

𝑉 = ⋃
𝑦∈𝑉

{𝑦} .

Therefore

𝑓 −1(𝑉 ) = 𝑓 −1 (⋃
𝑦∈𝑉

{𝑦}) = ⋃
𝑦∈𝑉

𝑓 −1({𝑦}) .

As 𝑓 −1({𝑦}) ∈ 𝒯𝑋 for all 𝑦 ∈ 𝑌 , by property (A2) we conclude that 𝑓 −1(𝑉 ) ∈ 𝒯𝑋 . Therefore
𝑓 is continuous.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 149

In a topological space, continuity preserves limits of sequences.

Proposition 3.68

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. Let 𝑓 ∶ 𝑋 → 𝑌 be continuous. Let {𝑥𝑛} ⊂ 𝑋 and 𝑥0 ∈ 𝑋 .
We have

𝑥𝑛 → 𝑥0 in 𝑋 ⟹ 𝑓 (𝑥𝑛) → 𝑓 (𝑥0) in 𝑌 .

Proof

Let 𝑉 ∈ 𝒯𝑌 be such that 𝑓 (𝑥0) ∈ 𝑉 . Since 𝑓 is continuous there exists 𝑈 ∈ 𝒯𝑋 with 𝑥0 ∈ 𝑈 such that

𝑓 (𝑈 ) ⊂ 𝑉 .
Since 𝑈 ∈ 𝒯𝑋 and 𝑥𝑛 → 𝑥0 in 𝑋 , there exists 𝑁 ∈ ℕ such that

𝑥𝑛 ∈ 𝑈 , ∀ 𝑛 ≥ 𝑁 .
Therefore

𝑓 (𝑥𝑛) ∈ 𝑓 (𝑈 ) , ∀ 𝑛 ≥ 𝑁 .
Seeing that 𝑓 (𝑈 ) ⊂ 𝑉 , we conclude

𝑓 (𝑥𝑛) ∈ 𝑉 , ∀ 𝑛 ≥ 𝑁 ,
showing that 𝑓 (𝑥𝑛) → 𝑓 (𝑥0) in 𝑌 .

Warning

The converse implication of Proposition 3.68 is false. That is, even if it holds

𝑥𝑛 → 𝑥0 in 𝑋 ⟹ 𝑓 (𝑥𝑛) → 𝑓 (𝑥0) in 𝑌 .
for all sequences {𝑥𝑛} ⊂ 𝑋 , the function 𝑓 might not be continuous. A counterexample is given in
Example 3.70 below.
For the above to hold, it is necessary for the topologies on 𝑋 and 𝑌 to be first countable, as for example
is the case for metrizable topologies, see Proposition 3.69 below.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 150

Proposition 3.69

Let (𝑋 , 𝑑𝑋 ) and (𝑌 , 𝑑𝑌 ) be metric spaces. Let 𝑓 ∶ 𝑋 → 𝑌 and suppose that for all convergent sequences
{𝑥𝑛} ⊆ 𝑋 , the sequence {𝑓 (𝑥𝑛)} is convergent in 𝑌 . Then 𝑓 is continuous.

Proof

Suppose by contradiction 𝑓 is not continuous at some point 𝑥0 ∈ 𝑋 . Then there exists 𝜀0 > 0 such that,
for all 𝛿 > 0 it holds

𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑥0)) > 𝜀0 , 𝑑𝑋 (𝑥, 𝑥0) < 𝛿 .
We can therefore choose 𝛿 = 1/𝑛 and construct a sequence {𝑥𝑛} ⊆ 𝑋 such that

𝑑𝑌 (𝑓 (𝑥𝑛), 𝑓 (𝑥0)) > 𝜀0 , 𝑑𝑋 (𝑥𝑛, 𝑥0) < 1
𝑛 , ∀ 𝑛 ∈ ℕ .

Therefore 𝑥𝑛 → 𝑥0 in 𝑋 . Define the sequence

𝑦𝑛 ∶= {𝑥𝑛 if 𝑛 even
𝑥0 if 𝑛 odd

As 𝑥𝑛 → 𝑥0, we have 𝑦𝑛 → 𝑥0. However {𝑓 (𝑦𝑛)} does not converge to any point in 𝑌 : Indeed {𝑓 (𝑦𝑛)}
cannot converge to 𝑓 (𝑥0), since for 𝑛 even we have

𝑑𝑌 (𝑓 (𝑦𝑛), 𝑓 (𝑥0)) = 𝑑𝑌 (𝑓 (𝑥𝑛), 𝑓 (𝑥0)) > 𝜀0 .
Also {𝑓 (𝑦𝑛)} cannot converge to a point 𝑦 ≠ 𝑓 (𝑥0), since for 𝑛 odd

𝑑𝑌 (𝑓 (𝑦𝑛), 𝑦) = 𝑑𝑌 (𝑓 (𝑥0), 𝑦) > 0 .
Hence, we have produced a sequence {𝑦𝑛} which is convergent, but such that {𝑓 (𝑦𝑛)} does not converge.
This contradicts our assumption. Hence 𝑓 must be continuous.

Example 3.70

Consider ℝ with the co-countable topology:

𝒯cc ∶= {𝐴 ⊆ ℝ ∶ 𝐴𝑐 = ℝ or 𝐴𝑐 countable} .
Sequences in (ℝ, 𝒯cc) converge if and only if they are eventually constant. Also consider the discrete
topology on ℝ, denoted by 𝒯discrete. We have seen that sequences in (ℝ, 𝒯discrete) converge if and only if
they are eventually constant. Consider the identity function

𝑓 ∶ (ℝ, 𝒯cc) → (ℝ, 𝒯discrete) , 𝑓 (𝑥) ∶= 𝑥 .
We have that:
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• 𝑓 is not continuous: Indeed {𝑥} ∈ 𝒯discrete but

𝑓 −1({𝑥}) = {𝑥} ∉ 𝒯cc ,
since {𝑥}𝑐 is neither ℝ, nor countable.

• If {𝑥𝑛} is convergent in 𝒯cc, then it is eventually constant. Therefore {𝑓 (𝑥𝑛)} is eventually constant,
and so it is convergent in 𝒯discrete.

Let us make an observation on continuity of compositions.

Proposition 3.71

Let (𝑋 , 𝒯𝑋 ), (𝑌 , 𝒯𝑌 ), (𝑍 , 𝒯𝑍 ) be topological spaces. Let

𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑌 → 𝑍 ,
be given functions. If 𝑓 and 𝑔 are continuous, then

(𝑔 ∘ 𝑓 )∶ 𝑋 → 𝑍
is continuous.

Proof

Let 𝐶 ∈ 𝒯𝑍 . As 𝑔 is continuous, we have that

𝑔−1(𝐶) ∈ 𝒯𝑌 .
Since 𝑓 is continuous, we also have

𝑓 −1(𝑔−1(𝐶)) ∈ 𝒯𝑋 .
Therefore

(𝑔 ∘ 𝑓 )−1(𝐶) = 𝑓 −1(𝑔−1(𝐶)) ∈ 𝒯𝑋 ,
so that 𝑔 ∘ 𝑓 is continuous.

We conclude the section by introducing homeomorphisms.

Definition 3.72: Homeomoprhim

Let (𝑋 , 𝒯𝑋 ), (𝑌 , 𝒯𝑌 ) be topological space. A function 𝑓 ∶ 𝑋 → 𝑌 is called an homeomorphism if they
hold:
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1. 𝑓 is continuous.
2. There exists 𝑔 ∶ 𝑌 → 𝑋 continuous such that

𝑔 ∘ 𝑓 = Id𝑋 , 𝑓 ∘ 𝑔 = Id𝑌 .

The above is saying that 𝑓 is a homeomorphism if it is continuous and has continuous inverse. Homeomor-
phisms are the way we say that two topological spaces look the same.

3.9 Subspace topology

Any subset 𝑌 in a topological space 𝑋 inherits naturally a topological structure. Such structure is called
subspace topology.

Definition 3.73: Subspace topology

Let (𝑋 , 𝒯 ) be a topological space and 𝑌 ⊆ 𝑋 a subset. Define the family of sets

𝒮 ∶= {𝐴 ⊂ 𝑌 ∶ ∃ 𝑈 ∈ 𝒯 s.t. 𝐴 = 𝑈 ∩ 𝑌 } .
The family 𝒮 is called subspace topology on 𝑌 induced by the inclusion 𝑌 ⊂ 𝑋 .

Proof: Well-posedness of Definition 3.73

We have to show that (𝑌 , 𝒮 ) is a topological space:

• (A1) ∅ ∈ 𝒮 since
∅ = ∅ ∩ 𝑌

and ∅ ∈ 𝒯 . Similarly we have 𝑌 ∈ 𝒮 , since

𝑌 = 𝑋 ∩ 𝑌 ,
and 𝑋 ∈ 𝒯 .

• (A2) Let 𝐴𝑖 ∈ 𝒮 for 𝑖 ∈ 𝐼 . By definition there exist 𝑈𝑖 ∈ 𝒯 such that

𝐴𝑖 = 𝑈𝑖 ∩ 𝑌 , ∀ 𝑖 ∈ 𝐼 .
Therefore

⋃
𝑖∈𝐼

𝐴𝑖 = ⋃
𝑖∈𝐼

(𝑈𝑖 ∩ 𝑌 ) = (⋃
𝑖∈𝐼

𝑈𝑖) ∩ 𝑌 .

The above proves that ∪𝑖∈𝐼 𝐴𝑖 ∈ 𝒮 , since ∪𝑖∈𝐼 𝑈𝑖 ∈ 𝒯 .
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• (A3) Let 𝐴1, 𝐴2 ∈ 𝒮 . By definition there exist 𝑈1, 𝑈2 ∈ 𝒯 such that

𝐴1 = 𝑈1 ∩ 𝑌 , 𝐴2 = 𝑈2 ∩ 𝑌
Therefore

𝐴1 ∩ 𝐴2 = (𝑈1 ∩ 𝑌 ) ∩ (𝑈2 ∩ 𝑌 ) = (𝑈1 ∩ 𝑈2) ∩ 𝑌
The above proves that 𝐴1 ∩ 𝐴2 ∈ 𝒮 , since 𝑈1 ∩ 𝑈2 ∈ 𝒯 .

If the set 𝑌 is open, then sets are open in the subspace topology if and only if they are open in 𝑋 .

Proposition 3.74

Let (𝑋 , 𝒯 ) be a topological space and 𝑌 ∈ 𝒯 a subset. Let 𝐴 ⊂ 𝑌 . Then
𝐴 ∈ 𝒮 ⟺ 𝐴 ∈ 𝒯 .

Proof

Suppose 𝐴 ∈ 𝒮 . Then there exists 𝑈 ∈ 𝒯 such that

𝐴 = 𝑈 ∩ 𝑌 .
Since 𝑈 , 𝑌 ∈ 𝒯 , by property (A3) of topologies it follows that

𝐴 = 𝑈 ∩ 𝑌 ∈ 𝒯 .
Conversely, assume that 𝐴 ∈ 𝒯 . Then

𝐴 = 𝐴 ∩ 𝑌 ,
showing that 𝐴 ∈ 𝒮 .

Warning

Let (𝑋 , 𝒯 ) be a topological space, 𝐴 ⊂ 𝑌 ⊂ 𝑋 . In general we could have

𝐴 ∈ 𝒮 and 𝐴 ∉ 𝒯
For example consider 𝑋 = ℝ with 𝒯 the euclidean topology. Consider the subset 𝑌 = [0, 2)
and equip 𝑌 with the subspace topology 𝒮 . Let 𝐴 = [0, 1). Then 𝐴 ∉ 𝒯 but 𝐴 ∈ 𝒮 , since

𝐴 = (−1, 1) ∩ 𝑌
and (−1, 1) ∈ 𝒯 .
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Example 3.75

Let 𝑋 = ℝ be equipped with 𝒯 the euclidean topology. Let 𝒮 be the subspace topology on ℤ. Then 𝒮
coincides with the discrete topology.

Proof. The set {𝑧} is open in 𝒮 for all 𝑧 ∈ ℤ. Indeed,

{𝑧} = (𝑧 − 1, 𝑧 + 1) ∩ ℤ
and (𝑧 − 1, 𝑧 + 1) ∈ 𝒯 . Thus {𝑧} ∈ 𝒮 . Let now 𝐴 ⊆ ℤ. Then

𝐴 = ⋃
𝑧∈𝐴

{𝑧} ,

and therefore 𝐴 ∈ 𝒮 by (A2). This proves that

𝒮 = {𝐴 s.t. 𝐴 ⊆ ℤ} ,
that is, 𝒮 is the discrete topology on ℤ.

3.10 Topological basis

We have seen that in metric spaces every open set is union of open balls, see Propostion 3.27. We can then
regard the open balls as building blocks for the whole topology. In this context, we call the open balls a basis
for the topology.

We can generalize the concept of basis to arbitrary topological spaces.

Definition 3.76: Topological basis

Let (𝑋 , 𝒯 ) be a topological space and letℬ ⊆ 𝒯 . We say thatℬ is a topological basis for the topology
𝒯 if for all 𝑈 ∈ 𝒯 there exist open sets {𝐵𝑖} ⊆ ℬ, with 𝐼 family of indices, such that

𝑈 = ⋃
𝑖∈𝐼

𝐵𝑖 . (3.12)

Example 3.77

1. Let (𝑋 , 𝒯 ) be a topological space. Then ℬ ∶= 𝒯 is a basis for 𝒯 .

This is true because one can just take 𝐵 = 𝑈 in (3.12).

2. (𝑋 , 𝑑) metric space with topology 𝒯𝑑 induced by the metric. Then

ℬ ∶= {𝐵𝑟 (𝑥) ∶ 𝑥 ∈ 𝑋 , 𝑟 > 0}
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is a basis for 𝒯𝑑 .

This is true by Propostion 3.27.

3. Let (𝑋 , 𝒯 ) with 𝑋 the discrete topology. Then

ℬ ∶= {{𝑥} ∶ 𝑥 ∈ 𝑋}
is a basis for 𝒯 .

This is true because for any 𝑈 ∈ 𝒯 we have

𝑈 = ⋃
𝑥∈𝑈

{𝑥} .

Proposition 3.78

Let (𝑋 , 𝒯 ) be a topological space and ℬ a basis for 𝒯 . They hold:

• (B1) We have
⋃
𝐵∈ℬ

𝐵 = 𝑋 .

• (B2) If 𝑈1, 𝑈2 ∈ ℬ then there exist {𝐵𝑖} ⊆ ℬ such that

𝑈1 ∩ 𝑈2 = ⋃
𝑖∈𝐼

𝐵𝑖 .

Proof

• (B1) This holds because 𝑋 ∈ 𝒯 . Therefore by definition of basis there exist 𝐵𝑖 ∈ ℬ such that

𝑋 = ⋃
𝑖∈𝐼

𝐵𝑖 .

Therefore taking the union over all 𝐵 ∈ ℬ yields 𝑋 , and (B1) follows.

• (B2) Let 𝑈1, 𝑈2 ∈ ℬ. Then 𝑈1, 𝑈2 ∈ 𝒯 , since ℬ ⊆ 𝒯 . By property (A3) we get that 𝑈1 ∩ 𝑈2 ∈ 𝒯 .
Since ℬ is a basis we conclude (B2).

Properties (B1) and (B2) from Proposition 3.78 are sufficient for generating a topology.
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Proposition 3.79

Let 𝑋 be a set and ℬ a collection of subsets of 𝑋 such that (B1)-(B2) hold. Define

𝒯 ∶= {𝑈 ⊆ 𝑋 ∶ 𝑈 = ⋃
𝑖∈𝐼

𝐵𝑖 , 𝐵𝑖 ∈ ℬ} .

Then:

1. 𝒯 is a topology on 𝑋 .

2. ℬ is a basis for 𝒯 .

Proof

1. We need to verify that 𝒯 is a topology:

• (A1) We have that 𝑋 ∈ 𝒯 by (B1). Moreover ∅ ∈ 𝒯 , since ∅ can be obtained as empty union.
Therefore (A1) holds.

• (A2) Let 𝑈𝑖 ∈ 𝒯 for all 𝑖 ∈ 𝐼 . By definition of 𝒯 we have

𝑈𝑖 = ⋃
𝑘∈𝐾𝑖

𝐵𝑖𝑘

for some family of indices 𝐾𝑖 and 𝐵𝑖𝑘 ∈ ℬ. Therefore

𝑈 ∶= ⋃
𝑖∈𝐼

𝑈𝑖 = ⋃
𝑖∈𝐼 , 𝑘∈𝐾𝑖

𝐵𝑖𝑘 ,

showing that 𝑈 ∈ 𝒯 .

• (A3) Suppose that 𝑈1, 𝑈2 ∈ 𝒯 . Then

𝑈1 = ⋃
𝑖∈𝐼1

𝐵1𝑖 , 𝑈2 = ⋃
𝑖∈𝐼2

𝐵2𝑖

for 𝐵1𝑖 , 𝐵2𝑖 ∈ ℬ. From the above we have

𝑈1 ∩ 𝑈2 = ⋃
𝑖∈𝐼1, 𝑘∈𝐼2

𝐵1𝑖 ∩ 𝐵2𝑘 .

From property (B2) we have that for each pair of indices (𝑖, 𝑘) the set 𝐵1𝑖 ∩ 𝐵2𝑘 is the union of sets in
ℬ. Therefore 𝑈1 ∩ 𝑈2 is union of sets in ℬ, showing that 𝑈1 ∩ 𝑈2 ∈ 𝒯 .

2. This trivially follows from defintion of 𝒯 and definition of basis.
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3.11 Product topology

Given two topological spaces (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) we would like to equip the cartesian product

𝑋 × 𝑌 = {(𝑥, 𝑦) ∶ 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 }
with a topology. We proceed as follows.

Proposition 3.80

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. Define the family ℬ of subsets of 𝑋 × 𝑌 as

ℬ ∶= {𝑈 × 𝑉 ∶ 𝑈 ∈ 𝒯𝑋 , 𝑉 ∈ 𝒯𝑌 } ⊂ 𝑋 × 𝑌 .
Then ℬ satisfies properties (B1) and (B2) from Proposition 3.78.

The proof is an easy check, and is left as an exercise. As ℬ satisfies (B1)-(B2), by Proposition 3.79 we know
that

𝒯𝑋×𝑌 ∶= {𝑈 × 𝑉 ∶ 𝑈 × 𝑉 = ⋃
𝑖∈𝐼

𝐵𝑖 , , 𝐵𝑖 ∈ ℬ} (3.13)

is a topology on 𝑋 × 𝑌 .

Definition 3.81: Product topology

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces. We call 𝒯𝑋×𝑌 at (3.13) the product topology on 𝑋 × 𝑌 .

Example 3.82

Letℝ be equippedwith the Euclidean topology. The product topology onℝ×ℝ coincideswith the topology
on ℝ2 equipped with the Euclidean topology.

Consider the projection maps
𝜋𝑋 ∶ 𝑋 × 𝑌 → 𝑋 , 𝜋𝑋 (𝑥, 𝑦) ∶= 𝑥

and
𝜋𝑌 ∶ 𝑋 × 𝑌 → 𝑌 , 𝜋𝑌 (𝑥, 𝑦) ∶= 𝑦
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Proposition 3.83

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces and equip 𝑋 × 𝑌 with the product topology 𝒯𝑋×𝑌 . Then
𝜋𝑋 and 𝜋𝑌 are continuous.

Proof

Let 𝑈 ∈ 𝒯𝑋 . Then
𝜋−1𝑋 (𝑈 ) = 𝑈 × 𝑌 .

We have that 𝑈 × 𝑌 ∈ 𝒯𝑋×𝑌 since 𝑈 ∈ 𝒯𝑋 and 𝑌 ∈ 𝒯𝑌 . Therefore 𝜋𝑋 is continuous. The proof that 𝜋𝑌 is
continuous is similar, and is left as an exercise.

The following proposition gives a useful criterion to check whether a map into 𝑋 × 𝑌 is continuous.

Proposition 3.84

Let (𝑋 , 𝒯𝑋 ) and (𝑌 , 𝒯𝑌 ) be topological spaces and equip 𝑋 × 𝑌 with the product topology 𝒯𝑋×𝑌 . Let
(𝑍 , 𝒯𝑍 ) be a topological space and

𝑓 ∶ 𝑍 → 𝑋 × 𝑌
a function. They are equivalent:

1. 𝑓 is continuous.
2. The compositions

𝜋𝑋 ∘ 𝑓 ∶ 𝑍 → 𝑋 , 𝜋𝑌 ∘ 𝑓 ∶ 𝑍 → 𝑌
are continuous.

The proof is left as an exercise.

3.12 Connectedness

Suppose that (𝑋 , 𝒯 ) is a topological space. By property (A1) we have that

∅ , 𝑋 ∈ 𝒯
Therefore

∅𝑐 = 𝑋 , 𝑋 𝑐 = ∅
are closed. It follows that ∅ and 𝑋 are both open and closed.
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Definition 3.85: Connected space

Let (𝑋 , 𝒯 ) be a topological space. We say that:

• 𝑋 is connected if the only subsets of 𝑋 which are both open and closed are ∅ and 𝑋 .
• 𝑋 is disconnected if it is not connected.

The following proposition gives two extremely useful equivalent definitions of connectedness. Before stating
it, we define the concept of proper set.

Definition 3.86: Proper subset

Let 𝑋 be a set. A subset 𝐴 ⊆ 𝑋 is proper if

𝐴 ≠ ∅ , 𝐴 ≠ 𝑋 .

Proposition 3.87: Equivalent definition for connectedness

Let (𝑋 , 𝒯 ) be a topological space. They are equivalent:

1. 𝑋 is disconnected.
2. 𝑋 is the disjoint union of two proper open subsets.
3. 𝑋 is the disjoint union of two proper closed subsets.

Proof

Part 1. Point 1 implies Points 2 and 3.
Suppose 𝑋 is disconnected. Then there exists 𝑈 ⊆ 𝑋 which is open, closed, and such that

𝑈 ≠ ∅ , 𝑈 ≠ 𝑋 . (3.14)

Define
𝐴 ∶= 𝑈 , 𝐵 ∶= 𝑈 𝑐 .

By definition of complement we have

𝑋 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .
Moreover:

• 𝐴 and 𝐵 are both open and closed, since 𝑈 is both open and closed.

• 𝐴 and 𝐵 are proper, since (3.14) holds.
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Therefore we conclude Points 2, 3.
Part 2. Point 2 implies Point 1. Suppose 𝐴, 𝐵 are open, proper, and such that

𝑋 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .
This implies

𝐴𝑐 = 𝑋 ∖ 𝐴 = 𝐵 ,
showing that 𝐴𝑐 is open, and hence 𝐴 is closed. Therefore 𝐴 is proper, open and closed, showing that 𝑋
is disconnected.
Part 3. Point 3 implies Point 1. Suppose 𝐴, 𝐵 are closed, proper, and such that

𝑋 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .
This implies

𝐴𝑐 = 𝑋 ∖ 𝐴 = 𝐵 ,
showing that 𝐴𝑐 is closed, and hence 𝐴 is open. Therefore 𝐴 is proper, open and closed, showing that 𝑋
is disconnected.

In the following we will use Point 2 and Point 3 in Proposition 3.87 as equivalent definitions of disconnected
topological space.

Example 3.88

Consider the set 𝑋 = {0, 1} with the subspace topology induced by the inclusion 𝑋 ⊂ ℝ, where ℝ is
equipped with the Euclidean topology 𝒯euclidean. Then 𝑋 is disconnected.

Proof. Note that
𝑋 = {0} ∪ {1} , {0} ∩ {1} = ∅ .

The set {0} is open for the subspace topology, since

{0} = 𝑋 ∩ (−1, 1) , (−1, 1) ∈ 𝒯euclidean .
Similarly, also {1} is open for the subspace topology, since

{1} = 𝑋 ∩ (0, 2) , (0, 2) ∈ 𝒯euclidean .
Clearly

{0} ≠ ∅ , {1} ≠ ∅ ,
showing that 𝑋 is disconnected.
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Example 3.89

Let 𝑝 ∈ ℝ. The set 𝑋 = ℝ ∖ {𝑝} is disconnected.

Proof. Define the sets
𝐴 = (−∞, 𝑝) , 𝐵 = (𝑝,∞) .

Then 𝐴, 𝐵 are proper subsets of 𝑋 , since 𝑝 ∉ 𝑋 . Moreover

𝑋 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .
Finally we have that𝐴, 𝐵 are open for the subspace topology, since they are open in ℝ. There-
fore 𝑋 is disconnected.

Example 3.90

Let 𝑛 ≥ 2 and 𝐴 ⊆ ℝ𝑛 be open and connected. Let 𝑝 ∈ 𝐴. Then 𝑋 = 𝐴 ∖ {𝑝} is connected.

Exercise: Prove that 𝑋 is connected.

The next theorem shows that connectedness is preserved by continuous maps.

Theorem 3.91

Let (𝑋 , 𝒯𝑋 ), (𝑌 , 𝒯𝑌 ) be topological spaces. Suppose that 𝑓 ∶ 𝑋 → 𝑌 is continuous and let 𝑓 (𝑋) ⊆ 𝑌 be
equipped with the subspace topology. If 𝑋 is connected, then 𝑓 (𝑋) is connected.

Proof

Suppose that 𝐴, 𝐵 are open in 𝑓 (𝑋) and such that

𝑓 (𝑋) = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .
if we show that

𝐴 = ∅ or 𝐵 = ∅ (3.15)

the proof is concluded. Since 𝐴, 𝐵 are open for the subspace topology, there exist 𝐴, 𝐵 ∈ 𝒯𝑌 such that

𝐴 = 𝐴 ∩ 𝑓 (𝑋) , 𝐵 = 𝐵 ∩ 𝑓 (𝑋) . (3.16)

Since 𝑓 (𝑋) = 𝐴 ∪ 𝐵 we have

𝑋 = 𝑓 −1(𝐴 ∪ 𝐵)
= 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵)
= 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵)
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where in the last equality we used (3.16). Since 𝐴 ∩ 𝐵 = ∅, we also have that

𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵) = 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵)
= 𝑓 −1(𝐴 ∩ 𝐵)
= 𝑓 −1(∅)
= ∅

where in the first equality we used (3.16). By continuity of 𝑓 we have that

𝑓 −1(𝐴) , 𝑓 −1(𝐵) ∈ 𝒯𝑋 .
Therefore, using that 𝑋 is connected, we deduce that

𝑓 −1(𝐴) = ∅ or 𝑓 −1(𝐵) = ∅ .
The above implies

𝐴 ∩ 𝑓 (𝑋) = ∅ or 𝐵 ∩ 𝑓 (𝑋) = ∅ .
Recalling (3.16), we obtain (3.15), ending the proof.

An immediate corollary of Theorem 3.91 is that connectedness is a topological invariant, e.g., connectedness
is preserved by homeomorphisms.

Corollary 3.92

Let (𝑋 , 𝒯𝑋 ), (𝑌 , 𝒯𝑌 ) be homeomorhic topological spaces. Then

𝑋 is connected ⟺ 𝑌 is connected

The proof follows immediately by Theorem 3.91, and is left to the reader as an exercise.

Example 3.93

Let 𝑛 ≥ 2. ℝ𝑛 not homeomorphic to ℝ.
Proof. Suppose by contradiction that there exists an omeomorphism

𝑓 ∶ ℝ𝑛 → ℝ .
Define 𝑝 = 𝑓 (0) and the restriction

𝑔 ∶ ℝ𝑛 ∖ {0} → ℝ ∖ {𝑝} , 𝑔(𝑥) = 𝑓 (𝑥) .
Since 𝑔 is a restriction of an omeomorphism, then 𝑔 is an omeomorphism. We have that
ℝ𝑛 ∖ {0} is connected, as a consequence of
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Example 3.90. Hence, by Corollary 3.92, we infer that ℝ ∖ {𝑝} is connected. This is a contra-
diction, since ℝ ∖ {𝑝} is disconnected, as shown in Example 3.89.

Example 3.94

Define the 1D unit circle
𝕊1 ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 1} .

Then 𝕊1 and [0, 1] are not homeomorphic.

Proof. Suppose by contradiction that there exists and omeomorphism

𝑓 ∶ [0, 1] → 𝕊1 .
The restriction of 𝑓 to [0, 1] ∖ {12 } defines an omeomorphism

𝑔 ∶ ([0, 1] ∖ {12}) → (𝕊1 ∖ {p}) , p ∶= 𝑓 (12) .

The set [0, 1] ∖ {12 } is disconnected, since

[0, 1] ∖ {1/2} = [0, 1/2) ∪ (1/2, 1]
with [0, 1/2) and (1/2, 1] open for the subset topology, non-empty and disjoint. Therefore,
using that 𝑔 is an omeomorphism, we conclude that also 𝕊1 ∖ {p} is disconnected. Let 𝜃0 ∈
[0, 2𝜋) be the unique angle such that

p = (cos(𝜃0), sin(𝜃0)) .
Thus 𝕊1 ∖ {p} is parametrized by

𝛾𝛾𝛾 (𝑡) ∶= (cos(𝑡), sin(𝑡)) , 𝑡 ∈ (𝜃0, 𝜃0 + 2𝜋) .
Since 𝛾𝛾𝛾 is continuous and (𝜃0, 𝜃0+2𝜋) is connected, by Theorem 3.91, we conclude that 𝕊1∖{p}
is connected. Contradiction.

3.13 Intermediate Value Theorem

Another consequence of Theorem 3.91 is a generalization of the Intermediate Value Theorem to arbitrary
topological spaces. Before providing statement and proof of such Theorem, we need to characterize the
connected subsets of ℝ.
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Definition 3.95: Interval

A subset 𝐼 ⊂ ℝ is an interval if it holds:

∀ 𝑎, 𝑏 ∈ 𝐼 , 𝑥 ∈ ℝ s.t. 𝑎 < 𝑥 < 𝑏 ⟹ 𝑥 ∈ 𝐼 .

Theorem 3.96

Let ℝ be equipped with the Euclidean topology and let 𝐼 ⊆ ℝ. They are equivalent:

1. 𝐼 is connected.
2. 𝐼 is an interval.

Proof

Part 1. Suppose 𝐼 is connected. If 𝐼 = {𝑝} for some 𝑝 ∈ ℝ then 𝐼 is an interval and the thesis is achieved.
Otherwise there exist 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. Assume that 𝑥 ∈ ℝ is such that

𝑎 < 𝑥 < 𝑏 .
We need to show that 𝑥 ∈ 𝐼 . Suppose by contradiction that 𝑥 ∉ 𝐼 and define the open sets

𝐴 = (−∞, 𝑥) , 𝐵 = (𝑥,∞) .
Then

𝐴 = (−∞, 𝑥) ∩ 𝐼 , 𝐵 = (𝑥,∞) ∩ 𝐼
are open in 𝐼 for the subspace topology. Clearly

𝐴 ∩ 𝐵 = ∅ .
Moreover

𝐼 = 𝐴 ∪ 𝐵
since 𝑥 ∉ 𝐼 . We have:

• Since 𝑎 < 𝑥 and 𝑎 ∈ 𝐼 , we have that 𝑎 ∈ 𝐴. Therefore 𝐴 ≠ ∅.
• Similarly, 𝑏 > 𝑥 and 𝑏 ∈ 𝐼 , therefore 𝑏 ∈ 𝐵. Hence 𝐵 ≠ ∅.

Therefore 𝐼 is disconnected, which is a contradiction.
Part 2. Suppose 𝐼 is an interval. Suppose by contradiction that 𝐼 is disconnected. Then there exist 𝐴, 𝐵
proper and closed, such that

𝐼 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅ .
Since 𝐴 and 𝐵 are proper, there exist points 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. WLOG we can assume 𝑎 < 𝑏. Define

𝛼 = sup 𝑆 , 𝑆 ∶= {𝑥 ∈ ℝ∶ [𝑎, 𝑥) ∩ 𝐼 ⊆ 𝐴} .
Note that 𝛼 exists finite since 𝑏 is an upper bound for the set 𝑆.
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Suppose by contradiction 𝑏 is not an upper bound for 𝑆. Hence there exists 𝑥 ∈ ℝ such that
[𝑎, 𝑥) ∩ 𝐼 ⊆ 𝐴 and that 𝑥 > 𝑏. As 𝑏 > 𝑎, we conclude that 𝑏 ∈ [𝑎, 𝑥) ∩ 𝐼 ⊆ 𝐴. Thus 𝑏 ∈ 𝐴, which
is a contradiction, since 𝑏 ∈ 𝐵 and 𝐴 ∩ 𝐵 = ∅.

Moreover we have that 𝛼 ∈ 𝐴.

This is because the supremum 𝛼 is the limit of a sequence in 𝑆, and hence of a sequence in
𝐴. Therefore 𝛼 belongs to 𝐴. Since 𝐴 is closed, we infer 𝛼 ∈ 𝐴.

Note that 𝐴𝑐 = 𝐵, which is closed. Therefore 𝐴𝑐 is closed, showing that 𝐴 is open. As 𝛼 ∈ 𝐴 and 𝐴 is
open in 𝐼 , there exists 𝜀 > 0 such that

(𝛼 − 𝜀, 𝛼 + 𝜀) ∩ 𝐼 ⊆ 𝐴 .
In particular

[𝑎, 𝛼 + 𝜀) ∩ 𝐼 ⊆ 𝐴 ,
showing that 𝛼 + 𝜀 ∈ 𝑆. This is a contradiction, since 𝛼 is the supremum of 𝑆.

We are finally ready to prove the Intermediate Value Theorem.

Theorem 3.97: Intermediate Value Theorem

Let (𝑋 , 𝒯 ) be a connected topological space. Suppose that 𝑓 ∶ 𝑋 → ℝ is continuous. Suppose that
𝑎, 𝑏 ∈ 𝑋 are such that 𝑓 (𝑎) < 𝑓 (𝑏). It holds:

∀ 𝑐 ∈ ℝ s.t. 𝑓 (𝑎) < 𝑐 < 𝑓 (𝑏) , ∃ 𝜉 ∈ 𝑋 s.t. 𝑓 (𝜉 ) = 𝑐 .

Proof

As 𝑓 is continuous and 𝑋 is connected, by Theorem 3.91 we know that 𝑓 (𝑋) is connected in ℝ. By
Theorem 3.96 we have that 𝑓 (𝑋) is an interval. Since 𝑎, 𝑏 ∈ 𝑋 it follows 𝑓 (𝑎), 𝑓 (𝑏) ∈ 𝑓 (𝑋). Therefore, if
𝑐 ∈ ℝ is such that

𝑓 (𝑎) < 𝑐 < 𝑓 (𝑏)
we conclude that 𝑐 ∈ 𝑓 (𝑋), since 𝑓 (𝑋) is an interval. Hence there exists 𝜉 ∈ 𝑋 such that 𝑓 (𝜉 ) = 𝑐.

3.14 Path connectedness
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Definition 3.98: Path connectedness

Let (𝑋 , 𝒯 ) be a topological space. We say that 𝑋 is path connected if for every 𝑥, 𝑦 ∈ 𝑋 there exist
𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏, and a continuous function

𝛼 ∶ [𝑎, 𝑏] → 𝑋
such that

𝛼(𝑎) = 𝑥 , 𝛼(𝑏) = 𝑦 .

Example 3.99

Let 𝐴 ⊂ ℝ𝑛 be convex. Then 𝐴 is path connected.

A is convex if for all 𝑥, 𝑦 ∈ 𝐴 the segment connecting 𝑥 to 𝑦 is contained in 𝐴, namely,

[𝑥, 𝑦] ∶= {(1 − 𝑡)𝑥 + 𝑡𝑦 ∶ 𝑡 ∈ [0, 1]} ⊆ 𝐴 .
Therefore we can define

𝛼 ∶ [0, 1] → 𝐴 , 𝛼(𝑡) ∶= (1 − 𝑡)𝑥 + 𝑡𝑦 .
Clearly 𝛼 is continuous, and 𝛼(0) = 𝑥, 𝛼(1) = 𝑦 .

It turns out that path-connectedness implies connectedness.

Theorem 3.100

Let (𝑋 , 𝒯 ) be a path connected topological space. Then 𝑋 is connected.

Proof

Suppose that 𝑋 = 𝐴 ∪ 𝐵 with 𝐴, 𝐵 ∈ 𝒯 and non-empty. In order to conclude that 𝑋 is connected, we
need to show that

𝐴 ∩ 𝐵 ≠ ∅ .
Since 𝐴 and 𝐵 are non-empty, we can find two points 𝑥 ∈ 𝐴 and 𝑏 ∈ 𝐵. As 𝑋 is path connected, there
exists 𝛼 ∶ [0, 1] → 𝑋 continuous such that

𝛼(0) = 𝑥 , 𝛼(1) = 𝑦 .
In particular

𝛼−1(𝐴) ≠ ∅ , 𝛼−1(𝐵) ≠ ∅ .
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Moreover

[0, 1] = 𝛼−1(𝑋)
= 𝛼−1(𝐴 ∪ 𝐵)
= 𝛼−1(𝐴) ∪ 𝛼−1(𝐵) .

As 𝛼 is continuous, 𝛼−1(𝐴) and 𝛼−1(𝐵) are open in [0, 1]. Suppose by contradiction that 𝐴∩𝐵 = ∅. Then
𝛼−1(𝐴) ∩ 𝛼−1(𝐵) = 𝛼−1(𝐴 ∩ 𝐵) = 𝛼−1(∅) = ∅ .

Hence [0, 1] is disconnected, which is a contradiction. Therefore 𝐴 ∩ 𝐵 ≠ ∅ and 𝑋 is connected.

The converse of the above theorem does not hold. A counterexample is given by the so-called topologist
curve, which will be examined in Proposition 3.102. Prior to this, we need a basic Lemma.

Lemma 3.101

Let (𝑋 , 𝒯 ) be a topological space. Let 𝐴, 𝑈 ⊆ 𝑋 with 𝐴 connected and 𝑈 open and closed. Suppose that
𝐴 ∩ 𝑈 ≠ ∅, then 𝐴 ⊆ 𝑈 .

Proof

The following set identities hold for any pair of sets 𝑈 and 𝐴:

𝐴 = (𝐴 ∩ 𝑈 ) ∪ (𝐴 ∩ 𝑈 𝑐)
∅ = (𝐴 ∩ 𝑈 ) ∩ (𝐴 ∩ 𝑈 𝑐)

Now, suppose by contradiction 𝐴 ⊈ 𝑈 . This means 𝐴 ∩ 𝑈 𝑐 ≠ ∅. By assumption we also have 𝐴 ∩ 𝑈 ≠ ∅.
Moreover the sets 𝐴 ∩ 𝑈 and 𝐴 ∩ 𝑈 𝑐 are open for the subspace topology on 𝐴, since 𝑈 and 𝑈 𝑐 are open in
𝑋 . Hence 𝐴 is the disjoint union of non-empty open sets, showing that 𝐴 is disconnected. Contradiction.
We conclude that 𝐴 ⊆ 𝑈 .

Proposition 3.102: Topologist curve

Consider ℝ2 with the Euclidean topology and define the sets

𝑋 ∶= 𝐴 ∪ 𝐵
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where

𝐴 ∶= {(𝑡, sin (1𝑡 )) ∶ 𝑡 > 0}
𝐵 ∶= {(0, 𝑡) ∶ 𝑡 ∈ [−1, 1]}

Then 𝑋 is connected, but not path connected.

Proof

Step 1. 𝑋 is not path connected.
Let 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. There is no continuous function 𝛼 ∶ [0, 1] → 𝑋 such that 𝛼(0) = 𝑥 and 𝛼(1) = 𝑦 . If
such 𝛼 existed, then we would obtain a continuous extension for 𝑡 = 0 of the function

𝑓 (𝑡) = sin (1𝑡 ) , 𝑥 > 0

which is not possible. Hence 𝑋 is not path connected.
Step 2. Preliminary facts.

• 𝐴 is connected: Define the curve 𝛾𝛾𝛾 ∶ (0, ∞) → ℝ2 by

𝛾𝛾𝛾 (𝑡) ∶= (𝑡, sin (1𝑡 )) .

Clearly 𝛾𝛾𝛾 is continuous. Since (0, ∞) is connected, by Theorem 3.91 we have that 𝛾𝛾𝛾 ((0, ∞)) = 𝐴 is
connected.

• 𝐵 is connected: Indeed 𝐵 is homeomorphic to the interval [−1, 1]. Since [−1, 1] is connected, by
Corollary 3.92 we conclude that 𝐵 is connected.

• 𝐴 = 𝑋 : This is because each point 𝑦 ∈ 𝐵 is of the form 𝑦 = (0, 𝑡0) for some 𝑡0 ∈ [−1, 1]. By
continuity of sin and the Intermediate Value Theorem there exists some 𝑧 > 0 such that

sin(𝑧) = 𝑡0 .
Therefore 𝑧𝑛 ∶= 𝑧 + 2𝑛𝜋 satisfies

𝑧𝑛 → ∞ , sin(𝑧𝑛) = 𝑡0 , ∀ 𝑛 ∈ ℕ .
Define 𝑠𝑛 ∶= 1/𝑧𝑛. Trivially

𝑠𝑛 → 0 , sin ( 1𝑠𝑛
) = 𝑡0 , ∀ 𝑛 ∈ ℕ .
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Therefore we obtain
(𝑠𝑛, sin ( 1𝑠𝑛

)) → (0, 𝑡0) .

Hence the set 𝐵 is contained in the set 𝐿(𝐴) of limit points of 𝐴. Since we are in ℝ2, we have that
𝐿(𝐴) = 𝐴, proving that 𝐵 ⊆ 𝐴. Thus 𝐴 = 𝐴 ∪ 𝐵 = 𝑋 .

Step 3. 𝑋 is connected.
Let 𝑈 ⊆ 𝑋 be non-empty, open and closed. If we prove that 𝑈 = 𝑋 , we conclude that 𝑋 is connected. Let
us proceed.
Since 𝑈 is non-empty, we can fix a point 𝑥 ∈ 𝑈 . We have two possibilities:

• 𝑥 ∈ 𝐴: In this case 𝐴 ∩ 𝑈 ≠ ∅. Since 𝐴 is connected and 𝑈 is open and closed, by Lemma 3.101 we
conclude 𝐴 ⊆ 𝑈 . As 𝑈 is closed and contains 𝐴, then 𝐴 ⊆ 𝑈 . But we have shown that

𝐴 = 𝑋 ,
and therefore 𝑈 = 𝑋 .

• 𝑥 ∈ 𝐵: Then 𝑈 ∩ 𝐵 ≠ ∅. Since 𝐵 is connected and 𝑈 is open and closed, we can invoke Lemma 3.101
and conclude that 𝐵 ⊆ 𝑈 . Since (0, 0) ∈ 𝐵, it follows that

(0, 0) ∈ 𝑈 .
As 𝑈 is open in 𝑋 , and 𝑋 has the subspace topology induced by the inclusion 𝑋 ⊆ ℝ2, there exists
an open set 𝑊 of ℝ2 such that

𝑈 = 𝑋 ∩ 𝑊 .
Therefore (0, 0) ∈ 𝑊 . As 𝑊 is open in ℝ2, there exists a radius 𝜀 > 0 such that

𝐵𝜀(0, 0) ⊆ 𝑊 .
Hence

𝑋 ∩ 𝐵𝜀(0, 0) ⊆ 𝑋 ∩ 𝑊 = 𝑈 .
The ball 𝐵𝜀(0, 0) contains points of 𝐴, and therefore

𝐴 ∩ 𝑈 ≠ ∅ .
Since 𝐴 is connected and 𝑈 is open and closed, we can again use Lemma 3.101 and obtain that
𝐴 ⊆ 𝑈 . Since we already had 𝐵 ⊆ 𝑈 , and since 𝑈 ⊆ 𝑋 = 𝐴 ∪ 𝐵, we conclude hence 𝑈 = 𝑋 .

Therefore 𝑈 = 𝑋 in all possible cases, showing that 𝑋 is connected.
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4 Surfaces

Curves are 1D objects in ℝ3, parametrized via functions 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3. There is only one available direction
in which to move on a curve:

• 𝑡 ↦ 𝛾𝛾𝛾 (𝑡) moves forward on the curve
• 𝑡 ↦ 𝛾𝛾𝛾 (−𝑡) moves backward on the curve

Figure 4.1: Sketch of a curve 𝛾𝛾𝛾 .
Surfaces are 2D objects in ℝ3. There are two directions in which one can move on a surface.

Question 4.1

How to dercribe a surface mathematically?

A curve Γ ⊆ ℝ3 can be described with one function 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → Γ. The idea is that Γ looks locally like ℝ.
A surface 𝒮 cannot be described, in general, with just one function 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 , with 𝑈 ⊆ ℝ2 open set. The
idea is that, to describe 𝒮 , one needs to piece together many local charts 𝜎𝜎𝜎 𝑖∶ 𝑈𝑖 → 𝒮 with 𝑈𝑖 ⊆ ℝ2 open.
Such charts have to cover the whole surface 𝒮 , e.g.

𝒮 = ⋃
𝑖
𝜎𝜎𝜎 𝑖(𝑈𝑖) .
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Figure 4.2: Sketch of a surfaces: Sphere, Torus, Möbius band.

Figure 4.3: A curve Γ can be described by a function 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → Γ.
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Figure 4.4: A surface 𝒮 can be described by a family of charts 𝜎𝜎𝜎 𝑖∶ 𝑈𝑖 → 𝒮 with 𝑈𝑖 ⊆ ℝ2 open set.

4.1 Preliminaries

Before proceeding with the formal definition of surface, we need to establish some basic notation and termi-
nology regarding linear algebra, the topology of ℝ𝑛, and calculus for smooth maps from ℝ𝑛 into ℝ𝑚.

4.1.1 Linear algebra

Definition 4.2: Bilinear form

Let 𝑉 be a vector space and 𝐵∶ 𝑉 × 𝑉 → ℝ. We say that:

• 𝐵 is bilinear if

𝐵(𝜆1v1 + 𝜆2v2,w) = 𝜆1𝐵(v1,w) + 𝜆2𝐵(v2,w) ,
𝐵(w, 𝜆1v1 + 𝜆2v2) = 𝜆1𝐵(w, v1) + 𝜆2𝐵(w, v2) .

for all v𝑖,w ∈ 𝑉 , 𝜆𝑖 ∈ ℝ.
• 𝐵 is symmetric if

𝐵(v,w) = 𝐵(w, v)
for all v,w ∈ 𝑉 .

A bilinear map 𝐵 is called bilinear form on 𝑉 .
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Notation

Let 𝑉 be a vector space with basis {v1, … , v𝑛}. Then, for a vector v ∈ 𝑉 there exist coefficients 𝜆1, … , 𝜆𝑛
such that

v = 𝜆1v1 + … + 𝜆𝑛v𝑛 .
We denote the vector of coefficients of v by the column vector

x ∶= (𝜆1, … , 𝜆𝑛)𝑇 ∈ ℝ𝑛 .
The coefficients of a vector w are denoted by

y ∶= (𝜇1, … , 𝜇𝑛)𝑇 .

Bilinear forms can be represented by a matrix.

Remark 4.3: Matrix representation for bilinear forms

Let {v1, … , v𝑛} be a basis for the vector space 𝑉 . Given a bilinear form 𝐵∶ 𝑉 ×𝑉 → ℝwe define the matrix

𝑀 ∶= (𝐵(v𝑖, v𝑗))𝑛𝑖,𝑗=1 ∈ ℝ𝑛×𝑛 .

Then
𝐵(v,w) = x𝑇 𝑀 y .

Proof. We can write v and w in cordinates as

v =
𝑛
∑
𝑖=1

𝜆𝑖v𝑖 , w =
𝑛
∑
𝑖=1

𝜇𝑖v𝑖 ,

for suitable coefficients 𝜆𝑖, 𝜇𝑖 ∈ ℝ. Using bilinearity of 𝐵 we get

𝐵(v,w) = 𝐵 (
𝑛
∑
𝑖=1

𝜆𝑖v𝑖,
𝑛
∑
𝑗=1

𝜇𝑗v𝑗)

=
𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝜇𝑗𝐵(v𝑖, v𝑗)

= x𝑇𝑀y .
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Definition 4.4: Quadratic form

Let 𝑉 be a vector space and 𝐵∶ 𝑉 × 𝑉 → ℝ be a bilinear form. The quadratic form associated to 𝐵 is the
map

𝑄∶ 𝑉 → ℝ , 𝑄(v) ∶= 𝐵(v, v) .

A symmetric bilinear form is uniquely determinded by its quadratic form, as stated in the following proposi-
tion.

Proposition 4.5

Let 𝐵∶ 𝑉 × 𝑉 → ℝ be a symmetric bilinear form and 𝑄∶ 𝑉 → ℝ the associated quadratic form. Then

𝐵(𝑢, 𝑣) = 1
2 (𝑄(v +w) − 𝑄(v) − 𝑄(w)) .

for all v,w ∈ 𝑉 .

The proof is an easy check, and is left as an exercise.

Definition 4.6: Inner product

Let 𝑉 be a vector space. An inner product on 𝑉 is a symmetric bilinear form ⟨⋅, ⋅⟩ ∶ 𝑉 × 𝑉 → ℝ such that

⟨v, v⟩ > 0 , ∀ v ∈ 𝑉 .
Moreover:

• The length of a vector v ∈ 𝑉 with respect to 𝐵 is defined as

‖v‖ ∶= √⟨v, v⟩ .

• Two vectors v,w ∈ 𝑉 are orthogonal if

⟨v,w⟩ = 0 .

Example 4.7

Let 𝑉 = ℝ𝑛 and consider the euclidean scalar product

v ⋅w =
𝑛
∑
𝑖=1

𝑣𝑖𝑤𝑖 ,
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where v = (𝑣1, … , 𝑣𝑛), w = (𝑤1, … , 𝑤𝑛). Then
⟨v,w⟩ ∶= v ⋅w

is an inner product on ℝ𝑛.

Proposition 4.8

Let 𝑉 be a vector space and ⟨⋅, ⋅⟩ an inner product on 𝑉 . There exists an orthonormal basis {v1, … , v𝑛}
of 𝑉 , that is, such that

⟨v𝑖, v𝑗⟩ = {1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

In particular, the matrix 𝑀 associated to ⟨⋅, ⋅⟩ is the identity.

Definition 4.9: Linear map

Let 𝑉 ,𝑊 be vector spaces and 𝐿∶ 𝑉 → 𝑊 . We say that 𝐿 is linear if

𝐿(𝜆v + 𝜇w) = 𝜆𝐿(v) + 𝜇𝐿(w)
for all v,w ∈ 𝑉 and 𝜆, 𝜇 ∈ ℝ.

Remark 4.10: Matrix representation of linear maps

Let 𝑉 ,𝑊 be vector spaces and 𝐿∶ 𝑉 → 𝑊 be a linear map. Let {v1, … , v𝑛} be a basis of 𝑉 and {w1, … ,w𝑚}
be a basis of 𝑊 . Then there exists a matrix 𝑀 ∈ ℝ𝑚×𝑛 such that

𝐿v = 𝑀x , ∀ v ∈ 𝑉 .
Specifically, 𝑀 ∈ ℝ𝑛×𝑛 is called the matrix associated to 𝐿 with respect to the basis {v1, … , v𝑛} of 𝑉 and
{w1… ,w𝑚} of 𝑊 , and is defined by

𝑀 ∶= (
𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 … 𝑎𝑚𝑛
) ,

where the coefficients 𝑎𝑖𝑗 are such that

𝐿(v𝑗) = 𝑎1𝑗w1 + … + 𝑎𝑚𝑗w𝑚 =
𝑚
∑
𝑖=1

𝑎𝑖𝑗w𝑖 .
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In other words, the columns of 𝑀 are given by the coordinates of the vectors 𝐿(v𝑖) with respect to the
basis {w1, … ,w𝑚}.

Definition 4.11: Eigenvalues and eigenvectors

Let 𝑉 be a vector space and 𝐿∶ 𝑉 → 𝑉 a linear map. We say that 𝜆 ∈ ℝ is an eigenvalue of 𝐿 if

𝐿(v) = 𝜆v
for some v ∈ 𝑉 with v ≠ 0. Such v is called eigenvector of 𝐿 associated to the eigenvalue 𝜆.

Definition 4.12: Self-adjoint map

Let 𝑉 be a vector space, ⟨⋅, ⋅⟩ an inner product and 𝐿∶ 𝑉 → 𝑉 a linear map. We say that 𝐿 is self-adjoint
if

⟨v, 𝐿(w)⟩ = ⟨𝐿(v),w⟩ , ∀ v, w ∈ 𝑉 .

Theorem 4.13: Spectral Theorem

Let 𝑉 be a vector space, ⟨⋅, ⋅⟩ an inner product, and 𝐿∶ 𝑉 → 𝑉 a self-adjoint linear map. There exist an
orthonormal basis of 𝑉

{v1, … , v𝑛} ,
where v𝑖 are eigenvectors of 𝐿, that is,

𝐿v𝑖 = 𝜆𝑖v𝑖
for some eigevalue 𝜆𝑖 ∈ ℝ. In particular, the matrix of 𝐿 with respect to the basis {v1, … , v𝑛} is diagonal:

𝑀 = diag(𝜆1, … , 𝜆𝑛) =
⎛
⎜
⎜
⎝

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

⎞
⎟
⎟
⎠
.

There is also a matrix version of the spectral theorem. To state it, we need to introduce some terminology.

Definition 4.14

Let 𝐴 ∈ ℝ𝑛×𝑛 be a matrix. We say that:
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• 𝐴 is symmetric if
𝐴𝑇 = 𝐴 .

• 𝐴 is orthogonal if
𝐴𝑇𝐴 = 𝐼 ,

where 𝐼 is the identity matrix.

Remark 4.15

Let 𝐿∶ 𝑉 → 𝑉 be linear and 𝐴 ∈ ℝ𝑛×𝑛 be the matrix associated to 𝐿 with respect to any basis {v1, … , v𝑛}
of 𝑉 . They are equivalent:

• 𝐿 is self-adjoint,
• 𝐴 is symmetric.

Definition 4.16: Matrix eigenvalues

Let 𝐴 ∈ ℝ𝑛×𝑛 be a matrix. An eigenvalue of 𝐴 is a number 𝜆 ∈ ℝ such that

𝐴v = 𝜆v ,
for some v ∈ ℝ𝑛 with v ≠ 0. The vector v is called an eigenvector of 𝐴 with eigenvalue 𝜆.

Remark 4.17

Let 𝐴 ∈ ℝ𝑛×𝑛. The eigenvalues of 𝜆 of 𝐴 can be computed by solving the characteristic equation

𝑃(𝜆) = 0 ,
where 𝑃 is the characteristic polynomial of 𝐴, defined by

𝑃(𝜆) ∶= det(𝐴 − 𝜆𝐼 ) .

Remark 4.18

Let 𝐿∶ 𝑉 → 𝑉 be a linear map and 𝐴 the associated matrix with respect to any basis of 𝑉 . Then
𝐿(v) = 𝐴x , ∀ v ∈ 𝑉 ,

where x ∈ ℝ𝑛 is the vector of coordinates of v. They are equivalent:
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• 𝜆 is an eigenvalue of 𝐿 of eigenvector v,
• 𝜆 is an eigenvalue of 𝐴 of eigenvector x.

Theorem 4.19: Spectral Theorem for matrices

Let 𝐴 ∈ ℝ𝑛×𝑛 be a symmetric matrix. Consider ℝ𝑛 equipped with the euclidean scalar product. There
exist an orthonormal basis of 𝑉

{v1, … , v𝑛} ,
where v𝑖 are eigenvectors of 𝐴, that is,

𝐴v𝑖 = 𝜆𝑖v𝑖
for some eigevalue 𝜆𝑖 ∈ ℝ. Moreover

𝐴 = 𝑃𝐷𝑃𝑇 ,
where

𝑃 ∶= (v1| … |v𝑛)

𝐷 ∶= diag(𝜆1, … , 𝜆𝑛) =
⎛
⎜
⎜
⎝

𝜆1 0 … 0
0 𝜆1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

⎞
⎟
⎟
⎠
.

Remark 4.20

The corresponedence between Theorem 4.13 and Theorem 4.19 is as follows. Let 𝐴 ∈ ℝ𝑛×𝑛 be symmetric
and {w1, … ,w𝑛} be any orthonormal basis of the vector space 𝑉 . Define the linear map 𝐿∶ 𝑉 → 𝑉 such
that

𝐿(v𝑗) =
𝑛
∑
𝑖=1

𝑎𝑖𝑗w𝑖 , ∀ 𝑗 = 1, … , 𝑛 .

In this way 𝐴 is the matrix associated to 𝐿 with respect to the basis {w1, … ,w𝑛}. Then 𝐿 is self-adjoint.
Moreover 𝐿 and 𝐴 have the same eigenvalues. By the Spectral Theorem there exists an orthonormal
basis {v1, … , v𝑛} of 𝑉 such that the matrix of 𝐿 with respect to such basis, say 𝐷, is diagonal. Then

𝐴 = 𝑃𝐷𝑃𝑇

where 𝑃 is the matrix of change of basis between {w1, … ,w𝑛} and {v1, … , v𝑛}, that is, 𝑃 = (𝑝𝑖𝑗) where

w𝑗 =
𝑛
∑
𝑖=1

𝑝𝑖𝑗v𝑖 .
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4.1.2 Topology of ℝ𝑛

The Euclidean norm on ℝ𝑛 is denoted by

‖x‖ ∶=
√

𝑛
∑
𝑖=1

𝑥2𝑖 , x = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 .

The Euclidean norm induces the distance

𝑑(x,y) ∶= ‖x − y‖ =
√

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 .

Definition 4.21: Euclidean Topology

The pair (ℝ𝑛, 𝑑) is a metric space. The topology induced by the metric 𝑑 is called the Euclidean topology,
denoted by 𝒯 . In this chapter we will always assume that ℝ𝑛 is equipped with the Euclidean topology
𝒯 .

Definition 4.22: Open Sets

A set 𝑈 ⊆ ℝ𝑛 is open if for all x ∈ 𝑈 there exists 𝜀 > 0 such that 𝐵𝜀(x) ⊆ 𝑈 , where

𝐵𝜀(x) ∶= {y ∈ ℝ𝑛 ∶ ‖x − y‖ < 𝜀}
is the open ball of radius 𝜀 > 0 and centered at x. In this case we denote 𝑈 ∈ 𝒯 , with 𝒯 the Euclidean
topology in ℝ𝑛.

Definition 4.23: Closed Sets

A set 𝑉 ⊆ ℝ𝑛 is closed if 𝑉 𝑐 ∶= ℝ𝑛 ∖ 𝑈 is open.

Example 4.24

• The 𝑛-dimensional unit sphere
𝕊𝑛 = {x ∈ ℝ𝑛+1 ∶ ‖𝑥‖ = 1}

is not open in ℝ𝑛+1, since for any x ∈ 𝕊𝑛 we have

𝐵𝜀(x) ⊈ 𝕊𝑛 .
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• The 𝑛-dimensional unit cube

𝐶 ∶= {x ∈ ℝ𝑛 ∶ |𝑥1| + … + |𝑥𝑛| < 1}
is open in ℝ𝑛, since one can always find 𝜀 > 0 small enough so that

𝐵𝜀(x) ⊈ 𝐶 .

• The set
𝑉 ∶= {x ∈ ℝ𝑛 ∶ |𝑥1| + … + |𝑥𝑛| ≥ 1}

is closed, since 𝑉 𝑐 = 𝐶 is the unit cube, which is open.

Definition 4.25: Subspace Topology

Given a subset 𝐴 ⊆ ℝ𝑛 the subspace topology on 𝐴 is the family of sets

𝒯𝐴 ∶= {𝑈 ⊆ 𝐴 ∶ ∃ 𝑊 ∈ 𝒯 s.t. 𝑈 = 𝐴 ∩ 𝑊 } .
If 𝑈 ∈ 𝒯𝐴 we say that 𝑈 is open in 𝐴.

4.1.3 Smooth functions

We recall some basic facts about smooth functions from ℝ𝑛 into ℝ𝑚. For a vector valued function 𝑓 ∶ ℝ𝑛 → ℝ𝑚
we denote its components by

𝑓 = (𝑓1, … , 𝑓𝑚) .

Definition 4.26: Continuous Function

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 with 𝑈 open. We say that 𝑓 is continuous at x ∈ 𝑈 if ∀ 𝜀 > 0, , ∃ 𝛿 > 0 such that

‖x − y‖ < 𝛿 ⟹ ‖𝑓 (x) − 𝑓 (y)‖ < 𝜀 .
We say that 𝑓 is continuous in 𝑈 if it is continuous for all x ∈ 𝑈 .
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Remark 4.27

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → 𝑉 ⊆ ℝ𝑚, with 𝑈 , 𝑉 open. We have that 𝑓 is continuous if and only if 𝑓 −1(𝐴) is open in
𝑈 , for all 𝐴 open in 𝑉 .

Definition 4.28: Homeomorphism

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → 𝑉 ⊆ ℝ𝑚 with 𝑈 , 𝑉 open. We say that 𝑓 is a homeomorphism if 𝑓 is continuous and
there exists inverse 𝑓 −1∶ 𝑉 → 𝑈 continuous.

Definition 4.29: Differentiable Function

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 with 𝑈 open. We say that 𝑓 is differentiable at x ∈ 𝑈 if there exists a linear map
𝑑𝑓x∶ ℝ𝑛 → ℝ𝑚 such that

lim𝜀→0
𝑓 (x + 𝜀h) − 𝑓 (x) − 𝜀 𝑑𝑓x(h)

𝜀 = 0 ,
for all h ∈ ℝ𝑛, where the limit is taken in ℝ𝑚. The map 𝑑𝑓x is called the differential of 𝑓 at x.

We denote by {e𝑖}𝑛𝑖=1 the standard basis of ℝ𝑛.

Definition 4.30: Partial Derivative

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 with 𝑈 open be differentiable. The partial derivative of 𝑓 at x ∈ 𝑈 in direction e𝑖
is given by

𝜕𝑓
𝜕𝑥𝑖

∶= lim𝜀→0
𝑓 (x + 𝜀e𝑖) − 𝑓 (x)

𝜀 .

Definition 4.31: Jacobian Matrix

The linear map 𝑑𝑓x∶ ℝ𝑛 → ℝ𝑚 can be represented in matrix form, with respect to the Euclidean basis,
by the Jacobian matrix

𝐽 𝑓 (𝑥) ∶= ( 𝜕𝑓𝑖𝜕𝑥𝑗
)
𝑖,𝑗
∈ ℝ𝑚×𝑛 .

If 𝑚 = 𝑛 then 𝐽 𝑓 ∈ ℝ𝑛×𝑛 is a square matrix and we can compute its determinant, denoted by

det(𝐽 𝑓 ) .
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Definition 4.32: Multi-index notation

For a multi-index
𝛼 ∶= (𝛼1, … , 𝛼𝑛) ∈ ℕ𝑛

we denote by

|𝛼 | ∶=
𝑛
∑
𝑖=1

|𝛼𝑖|

the length of the multi-index.

Definition 4.33: Smooth Function

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 with 𝑈 open. We say that 𝑓 is smooth if the derivatives

𝜕 |𝛼 |𝑓
𝑑x𝛼 ∶= 𝜕𝛼1

𝜕𝑥𝛼11
⋯ 𝜕𝛼𝑛

𝜕𝑥𝛼𝑛𝑛
𝑓

exist for each multi-index 𝛼 ∈ ℕ𝑛. Note that in this case all the derivatives of 𝑓 are automatically
continuous.

Notation: Gradient and partial derivatives

Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ be smooth. We denote the partial derivatives by

𝜕𝑥𝑖𝑓 ∶= 𝜕𝑓
𝜕𝑥𝑖

, 𝜕𝑥𝑖𝑥𝑗𝑓 ∶= 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

, 𝜕𝑥𝑖𝑥𝑗𝑥𝑘𝑓 ∶= 𝜕3𝑓
𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

.

For 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ smooth we denote the gradient by

∇𝑓 (x) = (𝑓𝑥1(x), … , 𝑓𝑥𝑛(x)) .

Example 4.34

The functions 𝑓 ∶ ℝ2 → ℝ and 𝑔 ∶ ℝ2 → ℝ3 defined by

𝑓 (𝑥, 𝑦) ∶= cos(𝑥)𝑦 , 𝑔(𝑥, 𝑦) ∶= (𝑥2, 𝑦2, 𝑥 − 𝑦)
are both smooth.
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Definition 4.35: Diffeomorphism

Let 𝑓 ∶ 𝑈 → 𝑉 with 𝑈 ⊆ ℝ𝑛 and 𝑉 ⊆ ℝ𝑛 open. We say that 𝑓 is a diffeomorphism between 𝑈 and 𝑉 if
𝑓 is smooth and there exists smooth inverse 𝑓 −1∶ 𝑉 → 𝑈 .

We recall, without proof, the Inverse Function Theorem. Please note that in the statement the function 𝑓 is
defined from ℝ𝑛 into ℝ𝑛.

Theorem 4.36: Inverse Function Theorem

Let 𝑓 ∶ 𝑈 → ℝ𝑛 with 𝑈 ⊆ ℝ𝑛 open. Suppose 𝑓 is a smooth function and

det 𝐽 𝑓 (x0) ≠ 0 ,
for some x0 ∈ 𝑈 . Then there exist open sets 𝑈0, 𝑉 ⊆ ℝ𝑛 such that x0 ∈ 𝑈0, 𝑓 (x0) ∈ 𝑉 and 𝑓 ∶ 𝑈0 → 𝑉 is a
diffeomorphism.

Warning

Even if
det 𝐽 𝑓 (x) ≠ 0 ,

for all x ∈ 𝑈 , it is not guaranteed that 𝑓 is a diffeomorphism between 𝑈 and 𝑓 (𝑈 ).

Non-vanishing Jacobian determinant is a necessary condition for being a diffeomorphism.

Proposition 4.37

Let 𝑓 ∶ 𝑈 → ℝ𝑛 with 𝑈 ⊆ ℝ𝑛 open. Suppose 𝑓 is a diffeomorphism on 𝑈 . Then

det 𝐽 𝑓 (x) ≠ 0 , ∀x ∈ 𝑈 .

Example 4.38

Define 𝑓 ∶ ℝ2 → ℝ2 by
𝑓 (𝑥, 𝑦) ∶= (cos(𝑥) sin(𝑦), sin(𝑥) sin(𝑦)) .

Then

𝐽 𝑓 (𝑥, 𝑦) = ( − sin(𝑥) sin(𝑦) cos(𝑥) cos(𝑦)
cos(𝑥) sin(𝑦) sin(𝑥) cos(𝑦) ) .
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and

det 𝐽 𝑓 (𝑥, 𝑦) = − sin2(𝑥) cos(𝑦) sin(𝑦) − cos2(𝑥) cos(𝑦) sin(𝑦)
= − sin(𝑦) cos(𝑦)
= −12 sin(2𝑦) .

Therefore
det 𝐽 𝑓 (𝑥, 𝑦) ≠ 0 ⟺ 𝑦 ≠ 𝑛𝜋

2 , 𝑛 ∈ ℕ .
Hence 𝑓 is a diffeomorphism away from the lines

𝐿𝑛 ∶= {(𝑥, 𝑛𝜋2 ) ∶ 𝑥 ∈ ℝ} .

4.2 Definition of Surface

We give our main definition of surface in ℝ3.
Definition 4.39: Surface

Let 𝒮 ⊆ ℝ3 be a connected set. We say that 𝒮 is a surface if for every point p ∈ 𝒮 there exist an open
set 𝑈 ⊆ ℝ2 and a smooth map

𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮
such that

• p ∈ 𝜎𝜎𝜎(𝑈 )
• 𝜎𝜎𝜎(𝑈 ) is open in 𝒮
• 𝜎𝜎𝜎 is a homeomorphism between 𝑈 and 𝜎𝜎𝜎(𝑈 )

Further:

• The homeomorphism 𝜎𝜎𝜎 is called a surface chart at p.
• For each 𝑖 ∈ 𝐼 suppose to have a surface chart

𝜎𝜎𝜎 𝑖∶ 𝑈𝑖 → 𝜎𝜎𝜎(𝑈𝑖) ⊆ 𝒮 .
We say that the family

𝒜 = {𝜎𝜎𝜎 𝑖}𝑖∈𝐼
is an atlas of 𝒮 if

𝒮 = ⋃
𝑖∈𝐼

𝜎𝜎𝜎 𝑖(𝑈𝑖) .
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Remark 4.40

• A surface chart 𝜎𝜎𝜎 is a map
𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 ,

with 𝑈 ⊆ ℝ2 open. Therefore smoothness of 𝜎𝜎𝜎 is intended in the classical sense.

• Given a chart 𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ), the set 𝑈 is open in ℝ2 while 𝜎𝜎𝜎(𝑈 ) is open in 𝒮 with the subspace
topology. This means that there exists 𝑊 ⊆ ℝ3 open such that

𝜎𝜎𝜎(𝑈 ) = 𝑊 ∩ 𝒮 .

• The omeomorphism condition is saying that 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 looks locally (around p) like an open set
𝑈 ⊆ ℝ2.

Figure 4.5: Sketch of the surface 𝒮 and chart 𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 . The set 𝑈 ⊆ ℝ2 is open in ℝ2 and 𝜎𝜎𝜎(𝑈 ) is
open in 𝒮 . This means there exists 𝑊 open in ℝ3 such that 𝜎𝜎𝜎(𝑈 ) = 𝒮 ∩ 𝑊 .

Notation

• Points in 𝑈 will be denoted with the pair (𝑢, 𝑣).
• Partial derivatives of a chart 𝜎𝜎𝜎 = 𝜎𝜎𝜎(𝑢, 𝑣) will be denoted by

𝜎𝜎𝜎𝑢 ∶= 𝜕𝜎𝜎𝜎
𝜕𝑢 , 𝜎𝜎𝜎 𝑣 ∶= 𝜕𝜎𝜎𝜎

𝜕𝑣 .
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Similar notations are adopted for higher order derivatives, e.g.,

𝜎𝜎𝜎𝑢𝑢 ∶= 𝜕2𝜎𝜎𝜎
𝜕𝑢2 , 𝜎𝜎𝜎𝑢𝑣 ∶= 𝜕2𝜎𝜎𝜎

𝜕𝑢𝜕𝑣 ,

𝜎𝜎𝜎 𝑣𝑢 ∶= 𝜕2𝜎𝜎𝜎
𝜕𝑣𝜕𝑢 , 𝜎𝜎𝜎 𝑣𝑣 ∶= 𝜕2𝜎𝜎𝜎

𝜕𝑣2 ,

• Components of 𝜎𝜎𝜎 will be denoted by

𝜎𝜎𝜎 = (𝜎1, 𝜎2, 𝜎3) .

Example 4.41: 2D Plane in ℝ3

Planes in ℝ3 are surfaces with atlas containing one chart. Namely, a plane 𝜋 ⊆ ℝ3 is described by

𝜋 = {x ∈ ℝ3 ∶ x ⋅w = 𝜆} .
Let

• p,q ∈ ℝ3 be ortoghonal to each other and to w.
• a ∈ 𝜋 be any point in the plane.

If x ∈ 𝜋 then x − a is parallel to the plane and 𝜋 can be equivalently represented as

𝜋 = {a + 𝑢p + 𝑣q ∶ 𝑢, 𝑣 ∈ ℝ} .
Define the map

𝜎𝜎𝜎 ∶ ℝ2 → 𝜋 , 𝜎𝜎𝜎(𝑢, 𝑣) ∶= a + 𝑢p + 𝑣q .
We have:

• 𝜎𝜎𝜎 is smooth.
• ℝ2 is obviously open.
• 𝜎𝜎𝜎(ℝ2) is open in 𝜋 , since 𝜎𝜎𝜎(ℝ2) = 𝜋 .
• The inverse of 𝜎𝜎𝜎 is

𝜎𝜎𝜎−1∶ 𝜋 → ℝ2 , 𝜎𝜎𝜎−1(x) = ((x − a) ⋅ p, (x − a) ⋅ q) .
• As 𝜎𝜎𝜎−1 is continuous, then 𝜎𝜎𝜎 is a homeomorphism between ℝ2 and 𝜋 .

Therefore 𝜎𝜎𝜎 is a chart for 𝜋 . Since
𝜎𝜎𝜎(ℝ2) = 𝜋 ,

we have that {𝜎𝜎𝜎} is an atlas for 𝜋 , and hence 𝜋 is a surface.
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Figure 4.6: A plane 𝜋 is a surface with atlas containing a single chart 𝜎𝜎𝜎 ∶ ℝ2 → 𝜋 .

Example 4.42: Unit cylinder

Consider the infinite unit cylinder

𝒮 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 1} .
𝒮 is a surface with an atlas consisting of two charts:

𝜎𝜎𝜎 𝑖∶ 𝑈𝑖 → ℝ3 , 𝜎𝜎𝜎 𝑖(𝑢, 𝑣) ∶= (cos(𝑢), sin(𝑢), 𝑣)
for 𝑖 = 1, 2, where

𝑈1 ∶= (0, 3𝜋2 ) × ℝ , 𝑈2 ∶= (𝜋, 5𝜋2 ) × ℝ .

Indeed:

• 𝜎𝜎𝜎 𝑖 is smooth.
• 𝑈𝑖 is clearly open in ℝ2.
• One can check that 𝜎𝜎𝜎 𝑖(𝑈𝑖) is open in 𝒮 .
• 𝜎𝜎𝜎 𝑖 is a homeomorphism of 𝑈𝑖 in 𝜎𝜎𝜎(𝑈𝑖).
• {𝜎𝜎𝜎1, 𝜎𝜎𝜎2} is an atlas for 𝒮 , since

𝒮 = 𝜎𝜎𝜎1(𝑈1) ∪ 𝜎𝜎𝜎2(𝑈2) .
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Figure 4.7: Unit cylinder 𝒮 is a surface with atlas 𝒜 = {𝜎𝜎𝜎1, 𝜎𝜎𝜎2}. Depicted are the images 𝜎𝜎𝜎1(𝑈1) and 𝜎𝜎𝜎2(𝑈2).

Important

Consider again the unit cylinder

𝒮 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 1} .
Define the map

𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 , 𝜎𝜎𝜎(𝑢, 𝑣) ∶= (cos(𝑢), sin(𝑢), 𝑣)
where

𝑈 ∶= [0, 2𝜋] × ℝ .
Clearly we have

𝜎𝜎𝜎(𝑈 ) = 𝒮 .
However {𝜎𝜎𝜎} is not an atlas for 𝒮 , since 𝜎𝜎𝜎 is not a chart. This is because 𝜎𝜎𝜎 is not invertible, as for example

𝜎𝜎𝜎(0, 0) = 𝜎𝜎𝜎(2𝜋, 0) .
Therefore 𝜎𝜎𝜎 cannot be an omeomorphism between 𝑈 and 𝒮 .
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Example 4.43: Graph of a function

Let 𝑈 ⊆ ℝ2 be open and 𝑓 ∶ 𝑈 → ℝ be smooth. The graph of 𝑓 is the set

Γ𝑓 ∶= {(𝑢, 𝑣 , 𝑓 (𝑢, 𝑣)) ∶ (𝑢, 𝑣) ∈ 𝑈 } .
We have that Γ𝑓 is a surface with atlas given by

𝒜 = {𝜎𝜎𝜎}
where 𝜎𝜎𝜎 ∶ 𝑈 → Γ𝑓 is

𝜎𝜎𝜎(𝑢, 𝑣) ∶= (𝑢, 𝑣 , 𝑓 (𝑢, 𝑣)) .

Let us check that Γ𝑓 is a surface:

• 𝜎𝜎𝜎 is smooth since 𝑓 is smooth.
• 𝑈 is open in ℝ2 by assumption.
• 𝜎𝜎𝜎(𝑈 ) = Γ𝑓 , and therefore 𝜎𝜎𝜎(𝑈 ) is open in Γ𝑓 .
• The inverse of 𝜎𝜎𝜎 is given by 𝜎̃𝜎𝜎 ∶ Γ𝑓 → 𝑈 defined as

𝜎̃𝜎𝜎(𝑢, 𝑣 , 𝑓 (𝑢, 𝑣)) ∶= (𝑢, 𝑣) .
Clearly 𝜎̃𝜎𝜎 is continuous.

• Therefore 𝜎𝜎𝜎 is a homeomorphism of 𝑈 into Γ𝑓 .
• 𝒜 = {𝜎𝜎𝜎} is an atlas for Γ𝑓 , since

Γ𝑓 = 𝜎𝜎𝜎(𝑈 ) .

Let us conclude the section with an example of a set which is not a surface.

Example 4.44: Circular cone

Consider the circular cone
𝒮 ∶= {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 𝑧2} .

Then 𝒮 is not a surface. This is essentially consequence of the fact that

𝒮 ∖ {000}
is a disconnected set.
To see that 𝒮 is not a surface, suppose there exists an atlas {𝜎𝜎𝜎 𝑖} of 𝒮

𝜎𝜎𝜎 𝑖∶ 𝑈𝑖 → 𝜎𝜎𝜎 𝑖(𝑈𝑖) ⊆ 𝒮 .
In particular there exists a chart 𝜎𝜎𝜎 such that

000 ∈ 𝜎𝜎𝜎(𝑈 ) .
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Let x0 ∈ 𝑈 be the point such that
𝜎𝜎𝜎(x0) = 000 .

Since 𝑈 is open in ℝ2, there exists 𝜀 > 0 such that 𝐵𝜀(x0) ⊆ 𝑈 . Since 𝜎𝜎𝜎 is a homeomorphism, we deduce
that

𝜎𝜎𝜎(𝐵𝜀(x0))
is open in 𝒮 . Hence there exists an open set 𝑊 in ℝ3 such that

𝜎𝜎𝜎(𝐵𝜀(x0)) = 𝜎𝜎𝜎(𝑈 ) ∩ 𝑊 .
As 000 ∈ 𝜎𝜎𝜎(𝐵𝜀(x0)), we conclude that 000 ∈ 𝑊 . Since 𝑊 is open in ℝ3, there exists 𝛿 > 0 such that

𝐵𝛿 (000) ⊆ 𝑊 .
In particular we deduce that

𝐵𝛿 (000) ∩ 𝜎𝜎𝜎(𝑈 ) ⊆ 𝜎𝜎𝜎(𝐵𝜀(x0)) .
Hence 𝜎𝜎𝜎(𝐵𝜀(x0)) contains points of both 𝒮− and 𝒮+, with

𝒮− ∶= 𝒮 ∩ {𝑧 < 0} , 𝒮+ ∶= 𝒮 ∩ {𝑧 > 0} .
This implies that

𝑉 ∶= 𝜎𝜎𝜎(𝐵𝜀(x0)) ∖ {000}
is disconnected, with disconnection given by

𝑉 = (𝑉 ∩ 𝒮−) ∪ (𝑉 ∩ 𝒮+) .
However 𝑉 is homeomorphic to

𝐵𝜀(x0) ∖ {x0} ,
which is instead connected. Contradiction. Hence 𝒮 is not a surface.

4.3 Regular Surfaces

We have defined a regular curve to be a map 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ𝑛 such that

‖𝛾𝛾𝛾 (𝑡)‖ ≠ 0 , ∀ 𝑡 ∈ (𝑎, 𝑏) .
This allowed us to define tangent vectors and, eventually, Frenet frame.

We want to do something similar for surfaces: We look for a condition that eventually will allow us to define
tangent planes. This is why we introduce regular charts and regular surfaces.
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Figure 4.8: The circular cone is not a surface. This is because 𝒮 ∖ {000} is disconnected.

Definition 4.45: Regular Chart

Let 𝑈 ⊆ ℝ2 be open. A map
𝜎𝜎𝜎 = 𝜎𝜎𝜎(𝑢, 𝑣)∶ 𝑈 → ℝ3

is called a regular chart if the partial derivatives

𝜎𝜎𝜎𝑢(𝑢, 𝑣) = 𝑑𝜎𝜎𝜎
𝑑𝑢 (𝑢, 𝑣) , 𝜎𝜎𝜎 𝑣 (𝑢, 𝑣) = 𝑑𝜎𝜎𝜎

𝑑𝑣 (𝑢, 𝑣)

are linearly independent vectors of ℝ3 for all (𝑢, 𝑣) ∈ 𝑈 .

The following gives more insight into the regularity condition.

Proposition 4.46

Let 𝑈 ⊆ ℝ2 be open and consider a map
𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 .

They are equivalent:

1. 𝜎𝜎𝜎 is a regular chart.
2. The differential 𝑑𝜎𝜎𝜎x∶ ℝ2 → ℝ3 is injective for all x ∈ 𝑈 .
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3. The Jacobian matrix

𝐽𝜎𝜎𝜎(𝑢, 𝑣) = (
𝜎1𝑢 𝜎1𝑣
𝜎2𝑢 𝜎2𝑣
𝜎3𝑢 𝜎3𝑣

)

has rank 2 for all (𝑢, 𝑣) ∈ 𝑈 .
4. It holds

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ≠ 0 ∀ (𝑢, 𝑣) ∈ 𝑈 .

Proof

Part 1. Equivalence of Point 1 and Point 4.
By the properties of vector product, we have that

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ≠ 0 ∀(𝑢, 𝑣) ∈ 𝑈
if and only if 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent for all (𝑢, 𝑣) ∈ 𝑈 .
Part 2. Equivalence of Point 2 and Point 3.
The differential 𝑑𝜎𝜎𝜎x∶ ℝ2 → ℝ3 is represented in matrix form by the Jacobian

𝐽𝜎𝜎𝜎(𝑢, 𝑣) = (
𝜎1𝑢 𝜎1𝑣
𝜎2𝑢 𝜎2𝑣
𝜎3𝑢 𝜎3𝑣

)

By standard linear algebra results, 𝐽𝜎𝜎𝜎 has rank 2 if and only if 𝑑𝜎𝜎𝜎 is injective.
Part 3. Equivalence of Point 1 and Point 3.
A 3 × 2matrix has rank 2 if and only if its columns are linearly independent. Since the columns of 𝐽𝜎𝜎𝜎 are
𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 , we conclude that 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent.

We are now ready to define regular surfaces.

Definition 4.47: Regular surface

Let 𝒮 be a surface. Let
𝒜 = {𝜎𝜎𝜎 𝑖}𝑖∈𝐼 ,

be an atlas for 𝒮 . We say that:

• 𝒜 is a regular atlas if the map 𝜎𝜎𝜎 𝑖 is a regular chart for all 𝑖 ∈ 𝐼 .
• 𝒮 is a regular surface if there exists a regular atlas for 𝒮 .
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Example 4.48: 2D Plane in ℝ3

Let a,p,q ∈ ℝ3, with p and q orthogonal. We have shown that the plane

𝜋 = {a + 𝑢p + 𝑣q ∶ 𝑢, 𝑣 ∈ ℝ}
is a surface with atlas 𝒜 = {𝜎𝜎𝜎}, where

𝜎𝜎𝜎 ∶ ℝ2 → 𝜋 , 𝜎𝜎𝜎(𝑢, 𝑣) ∶= a + 𝑢p + 𝑣q .
Then 𝜋 is a regular surface, because 𝜎𝜎𝜎 is a regular chart. To see this, compute

𝜎𝜎𝜎𝑢 = p , 𝜎𝜎𝜎 𝑣 = q .
Since p and q are orthogonal, then they are linearly independent. Thus 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly indepen-
dent, and 𝜎𝜎𝜎 is a regular chart.

Example 4.49: Unit cylinder

Consider the infinite unit cylinder

𝒮 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 1} .
We have seen that 𝒮 is a surface with atlas 𝒜 = {𝜎𝜎𝜎1, 𝜎𝜎𝜎2} where we define

𝜎𝜎𝜎 ∶ ℝ2 → ℝ3 , 𝜎𝜎𝜎(𝑢, 𝑣) ∶= (cos(𝑢), sin(𝑢), 𝑣)
and

𝜎𝜎𝜎1 ∶= 𝜎𝜎𝜎|𝑈1 , 𝜎𝜎𝜎2 ∶= 𝜎𝜎𝜎|𝑈2 ,
𝑈1 ∶= (0, 3𝜋2 ) × ℝ , 𝑈2 ∶= (𝜋, 5𝜋2 ) × ℝ .

We have that 𝒮 is a regular surface, since the atlas 𝒜 is regular. Indeed:

𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑢), 0) , 𝜎𝜎𝜎 𝑣 = (0, 0, 1) ,
and therefore

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (cos(𝑢), sin(𝑢), 0) , ‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = 1 .
This implies

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ≠ 0 , ∀ (𝑢, 𝑣) ∈ ℝ2 ,
showing that 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent. Therefore 𝜎𝜎𝜎1 and 𝜎𝜎𝜎2 are regular charts, being restric-
tions of 𝜎𝜎𝜎 .
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Example 4.50: Graph of a function

Let 𝑈 ⊆ ℝ2 be open and 𝑓 ∶ 𝑈 → ℝ be smooth. The graph of 𝑓 is the set

Γ𝑓 ∶= {(𝑢, 𝑣 , 𝑓 (𝑢, 𝑣)) ∶ (𝑢, 𝑣) ∈ 𝑈 } .
We have seen that Γ𝑓 is surface with atlas given by 𝒜 = {𝜎𝜎𝜎}, where 𝜎𝜎𝜎 ∶ 𝑈 → Γ𝑓 is

𝜎𝜎𝜎(𝑢, 𝑣) ∶= (𝑢, 𝑣 , 𝑓 (𝑢, 𝑣)) .
We have that Γ𝑓 is regular, since 𝒜 is a regular atlas. Indeed,

𝜎𝜎𝜎𝑢 = (1, 0, 𝑓𝑢) , 𝜎𝜎𝜎 𝑣 = (0, 1, 𝑓𝑣 ) ,
and so

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (−𝑓𝑢 , −𝑓𝑣 , 1) ≠ 000 ,
since the last component never vanishes. Therefore 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent and 𝜎𝜎𝜎 is a regular
chart.

Example 4.51: Unit sphere

Consider the unit sphere in ℝ3

𝕊2 ∶= {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1} .
We have that 𝕊2 is a regular surface, with regular atlas

𝒜 = {𝜎𝜎𝜎 𝑖}6𝑖=1 ,
defined as follows: Let

𝑈 ∶= {(𝑢, 𝑣) ∈ ℝ2∶ 𝑢2 + 𝑣2 < 1}
be the unit open ball in ℝ2 and define 𝜎𝜎𝜎 𝑖∶ 𝑈 → ℝ3 by

𝜎𝜎𝜎1(𝑢, 𝑣) = (𝑢, 𝑣 , √1 − 𝑢2 − 𝑣2)
𝜎𝜎𝜎2(𝑢, 𝑣) = (𝑢, 𝑣 , −√1 − 𝑢2 − 𝑣2)
𝜎𝜎𝜎3(𝑢, 𝑣) = (𝑢, √1 − 𝑢2 − 𝑣2, 𝑣)
𝜎𝜎𝜎4(𝑢, 𝑣) = (𝑢, −√1 − 𝑢2 − 𝑣2, 𝑣)
𝜎𝜎𝜎5(𝑢, 𝑣) = (√1 − 𝑢2 − 𝑣2, 𝑢, 𝑣)
𝜎𝜎𝜎6(𝑢, 𝑣) = (−√1 − 𝑢2 − 𝑣2, 𝑢, 𝑣 , )

Exercise: Check that 𝕊2 is a regular surface.
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Remark 4.52: Spherical coordinates

The equivalent of polar coordinates in dimension 3 are spherical coordinates. A point (𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∖ {000}
can be represented in spherical coordinates by

𝑥 = 𝜌 cos(𝜃) cos(𝜙)
𝑦 = 𝜌 cos(𝜃) sin(𝜙)
𝑧 = 𝜌 sin(𝜃)

where
𝜌 ∶= √𝑥2 + 𝑦2 + 𝑧2 , 𝜙 ∈ [0, 2𝜋] , 𝜃 ∈ [−𝜋2 ,

𝜋
2 ] ,

with the angles 𝜙 and 𝜃 as in Figure Figure 4.9.

It is clear that 𝑧 = 𝜌 sin(𝜃), by basic trigonometry. To compute 𝑥 and 𝑦 , we note that the
segment joining 000 to p has length

𝐿 = 𝜌 cos 𝜃 .
Therefore we get

𝑥 = 𝐿 cos(𝜙) = 𝜌 cos(𝜃) cos(𝜙)
𝑦 = 𝐿 sin(𝜙) = 𝜌 cos(𝜃) sin(𝜙)

concluding.

Example 4.53: Unit sphere in spherical coordinates

Consider again the unit sphere in ℝ3

𝕊2 ∶= {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1} .
We want to give an alternative atlas for 𝕊2 based on spherical coordinates. To this end, define

𝑈 ∶= {(𝜃, 𝜙) ∈ ℝ2 ∶ − 𝜋
2 < 𝜃 < 𝜋

2 , 0 < 𝜙 < 2𝜋}

and 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 by
𝜎𝜎𝜎(𝜃, 𝜙) ∶= (cos(𝜃) cos(𝜙), cos(𝜃) sin(𝜙), sin(𝜃)) .

We have:

• 𝜎𝜎𝜎 is smooth.

• 𝑈 is open in ℝ2.
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Figure 4.9: Spherical coordinates in ℝ3.

• Moreover
𝜎𝜎𝜎(𝑈 ) = 𝕊2 ∖ {(𝑥, 0, 𝑧) ∈ ℝ3 ∶ 𝑥 ≥ 0} ,

as seen also in the left picture in Figure 4.10.

• The set 𝜎𝜎𝜎(𝑈 ) is evidently open in 𝕊2.
• It is easy to check that 𝜎𝜎𝜎 is invertible, with continuous inverse.

• Thus 𝜎𝜎𝜎 is a homeomorphism from 𝑈 into 𝜎𝜎𝜎(𝑈 ).
Let us check that 𝜎𝜎𝜎 is a regular chart:

𝜎𝜎𝜎 𝜃 = (− sin(𝜃) cos(𝜙), − sin(𝜃) sin(𝜙), cos(𝜃))
𝜎𝜎𝜎𝜙 = (− cos(𝜃) sin(𝜙), cos(𝜃) cos(𝜙), 0) .

Therefore
𝜎𝜎𝜎 𝜃 × 𝜎𝜎𝜎𝜙 = (− cos2(𝜃) cos(𝜙), − cos2(𝜃) sin(𝜙), − sin(𝜃) cos(𝜃)) ,

from which
‖𝜎𝜎𝜎 𝜃 × 𝜎𝜎𝜎𝜙‖ = | cos(𝜃)| .

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 197

Since (𝜃, 𝜙) ∈ 𝑈 , we have 𝜃 ∈ (−𝜋/2, 𝜋/2), and so

‖𝜎𝜎𝜎 𝜃 × 𝜎𝜎𝜎𝜙‖ = | cos(𝜃)| ≠ 0 ,
showing that 𝜎𝜎𝜎 𝜃 and 𝜎𝜎𝜎𝜙 are linearly independent, and 𝜎𝜎𝜎 is regular.
Since 𝜎𝜎𝜎(𝑈 ) ≠ 𝕊2, the chart 𝜎𝜎𝜎 does not form an atlas. We need a second chart. An option is to define
𝜎̃𝜎𝜎 ∶ 𝑈 → ℝ3 by

𝜎̃𝜎𝜎 ∶= (− cos(𝜃) cos(𝜙), − sin(𝜃), − cos(𝜃) sin(𝜙)) .
Notice that 𝜎̃𝜎𝜎 is obtained by rotating 𝜎𝜎𝜎 by 𝜋 about the 𝑧-axis and by 𝜋/2 about the 𝑦-axis, as seen in the
right picture in Figure 4.10. It is an exercise to check that 𝜎̃𝜎𝜎 is a regular chart.
Since we have

𝜎̃𝜎𝜎(𝑈 ) = 𝕊2 ∖ {(𝑥, 𝑦 , 0) ∈ ℝ3 ∶ 𝑥 ≤ 0} ,
it is immediate to see that

𝕊2 = 𝜎𝜎𝜎(𝑈 ) ∪ 𝜎̃𝜎𝜎(𝑈 ) .
Hence

𝒜 ∶= {𝜎𝜎𝜎, 𝜎̃𝜎𝜎}
is a regular atlas for 𝕊2.
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Figure 4.10: Image of the charts of the sphere from the above example.

Let us make an example of a non-regular surface.
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Example 4.54

The surface parametrized by
𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣2, 𝑣3) , ∀(𝑢, 𝑣) ∈ ℝ2

is not regular. This is because
𝜎𝜎𝜎𝑢 = (1, 0, 0) , 𝜎𝜎𝜎 𝑣 = (0, 2𝑣 , 3𝑣2)

and therefore
𝜎𝜎𝜎 𝑣 (𝑢, 0) = (0, 0, 0) ,

showing that 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly dependent along the line

𝐿 = {(𝑢, 0) ∶ 𝑢 ∈ ℝ} .
Hence 𝜎𝜎𝜎 is not a regular chart.
Looking at Figure Figure 4.11, it is clear that 𝒮 is not regular, since 𝒮 has a cusp along the line 𝜎𝜎𝜎(𝐿).
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Figure 4.11: Example of non-regular surface.

4.4 Level surfaces
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Definition 4.55: Level surface

Let 𝑉 ⊆ ℝ3 be an open set and 𝑓 ∶ 𝑉 → ℝ be smooth. The level surface associated with 𝑓 is the set

𝒮𝑓 ∶= 𝑓 −1(0) = {(𝑥, 𝑦 , 𝑧) ∈ 𝑉 ∶ 𝑓 (𝑥, 𝑦 , 𝑧) = 0} .

We now give a result concerning regularity of level surfaces. The proof, rather technical, is based on the
Implicit Function Theorem and can be found in Proposition 3.1.25 of [1]. We decide to omit it.

Theorem 4.56

Let 𝑉 ⊆ ℝ3 be an open set and 𝑓 ∶ 𝑉 → ℝ be smooth. Consider the level surface

𝒮𝑓 = {(𝑥, 𝑦 , 𝑧) ∈ 𝑉 ∶ 𝑓 (𝑥, 𝑦 , 𝑧) = 0} .
Suppose that

∇𝑓 (𝑥, 𝑦 , 𝑧) ≠ 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .
Then 𝒮𝑓 is a regular surface.

Example 4.57

We want to determine if the set defined by the equation

𝒮 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 1}
is a regular surface. Note that 𝒮 is a unit cylinder: From Example 4.49 we already know that 𝒮 is a
regular surface.
Let us prove that 𝒮 is regular by using Theorem 4.56. To this end, define the open set

𝑉 ∶= ℝ3 ∖ {(0, 0, 𝑧) ∶ 𝑧 ∈ ℝ} .
Note that 𝑉 is obtained by removing the 𝑧-axis from ℝ3. Also define the function 𝑓 ∶ ℝ3 → ℝ by

𝑓 (𝑥, 𝑦 , 𝑧) ∶= 𝑥2 + 𝑦2 − 1 .
We have

∇𝑓 (𝑥, 𝑦 , 𝑧) = (2𝑥, 2𝑦, 0) ≠ 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .
Since

𝒮 = 𝒮𝑓 ,
by Theorem 4.56 we conclude that 𝒮 is a regular surface.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 200

Example 4.58: Circular cone

We saw that the circular cone

𝒮 ∶= {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 𝑧2} .
is not a surface. However the positive sheet

𝒮+ ∶= {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 = 𝑧2 , 𝑧 > 0} .
is a regular surface, see Figure 4.12 Indeed, define the open set

𝑉 ∶= {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑧 > 0}
and the function 𝑓 ∶ 𝑉 → ℝ by

𝑓 (𝑥, 𝑦 , 𝑧) ∶= 𝑥2 + 𝑦2 − 𝑧2 .
We have

∇𝑓 (𝑥, 𝑦 , 𝑧) = (2𝑥, 2𝑦, −2𝑧) ≠ 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .
Since

𝒮+ = 𝒮𝑓 ,
by Theorem 4.56 we conclude that 𝒮 is a regular surface.
As a side note, a regular atlas for 𝒮+ is given by 𝒜 = {𝜎𝜎𝜎} where 𝜎𝜎𝜎 ∶ ℝ2 → ℝ3 is defined by

𝜎𝜎𝜎(𝑢, 𝑣) ∶= (𝑢, 𝑣 , √𝑢2 + 𝑣2) .
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Figure 4.12: Positive sheet of circular cone.
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4.5 Reparametrizations

We have defined the reparametrization of curves. In a similar way, one can reparametrize surface charts.

Definition 4.59

Suppose that 𝑈 , 𝑈 ⊆ ℝ2 are open sets and

𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 , 𝜎̃𝜎𝜎 ∶ 𝑈 → ℝ3 ,
are surface charts. We say that 𝜎̃𝜎𝜎 is a reparametrization of 𝜎𝜎𝜎 if there exists a diffeomorphism

Φ∶ 𝑈 → 𝑈 ,
such that

𝜎̃𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ ,
that is,

𝜎̃𝜎𝜎(𝑢̃, ̃𝑣 ) = 𝜎𝜎𝜎(Φ(𝑢̃, ̃𝑣 )) , ∀ (𝑢̃, ̃𝑣 ) ∈ 𝑈 .
We call Φ a reparametrization map.

Figure 4.13: Schematic illustration of surface chart 𝜎𝜎𝜎 and reparametrization 𝜎̃𝜎𝜎 .
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We will show that reparametrizations of regular charts are regular. To prove this, first we need to recall the
chain rule for multivariable functions.

Remark 4.60: Chain rule

Suppose that 𝑈 , 𝑈 ⊆ ℝ2 are open sets,
𝑓 ∶ 𝑈 → ℝ3

is smooth, and
Φ∶ 𝑈 → 𝑈

is a diffeomorphism. Define ̃𝑓 ∶ 𝑈 → ℝ3 by composition:
̃𝑓 ∶= 𝑓 ∘ Φ .

Explicitly, the above means
̃𝑓 (𝑢̃, ̃𝑣 ) = 𝑓 (Φ(𝑢̃, ̃𝑣 )) , ∀ (𝑢̃, ̃𝑣 ) ∈ 𝑈 .

We denote the components of 𝑓 , ̃𝑓 and Φ by
̃𝑓 = ( ̃𝑓 1, ̃𝑓 2, ̃𝑓 3) , 𝑓 = (𝑓 1, 𝑓 2, 𝑓 3) , Φ = (Φ1, Φ2) .

The Jacobians are

𝐽 ̃𝑓 = (
̃𝑓 1̃𝑢 ̃𝑓 1̃𝑣̃𝑓 2̃𝑢 ̃𝑓 2̃𝑣̃𝑓 3̃𝑢 ̃𝑓 3̃𝑣

) , 𝐽 𝑓 = (
𝑓 1𝑢 𝑓 1𝑣
𝑓 2𝑢 𝑓 2𝑣
𝑓 3𝑢 𝑓 3𝑣

) , 𝐽Φ = ( Φ1̃𝑢 Φ1̃𝑣
Φ2̃𝑢 Φ2̃𝑣

) .

The chain rule states that
𝐽 ̃𝑓 (𝑢̃, ̃𝑣 ) = 𝐽𝑓 (Φ(𝑢̃, ̃𝑣 )) 𝐽Φ(𝑢̃, ̃𝑣 ) .

By expanding the above identity we obtain the chain rule in vectorial form
̃𝑓𝑢̃(𝑢̃, ̃𝑣 ) = 𝑓𝑢(Φ(𝑢̃, ̃𝑣 ))Φ1̃𝑢(𝑢̃, ̃𝑣 ) + 𝑓𝑣 (Φ(𝑢̃, ̃𝑣 ))Φ2̃𝑢(𝑢̃, ̃𝑣 )
̃𝑓 ̃𝑣 (𝑢̃, ̃𝑣 ) = 𝑓𝑢(Φ(𝑢̃, ̃𝑣 ))Φ1̃𝑣 (𝑢̃, ̃𝑣 ) + 𝑓𝑣 (Φ(𝑢̃, ̃𝑣 ))Φ2̃𝑣 (𝑢̃, ̃𝑣 )

As done previously, we introduce compact notation for reparametrizations and chain rule. Specifically,
we denote the components of the diffeomorphism Φ by

Φ1 ⇝ (𝑢̃, ̃𝑣 ) ↦ 𝑢(𝑢̃, ̃𝑣 )
Φ2 ⇝ (𝑢̃, ̃𝑣 ) ↦ 𝑣(𝑢̃, ̃𝑣 )

Accordingly, the Jacobian of Φ is denoted as:

𝐽Φ = ( Φ1̃𝑢 Φ1̃𝑣
Φ2̃𝑢 Φ2̃𝑣

) ⇝ (
𝜕𝑢
𝜕𝑢̃

𝜕𝑢
𝜕 ̃𝑣𝜕𝑣

𝜕𝑢̃
𝜕𝑣
𝜕 ̃𝑣

) .

Hence, the chain rule in vectorial form reads

̃𝑓𝑢̃ = 𝑓𝑢 𝜕𝑢𝜕𝑢̃ + 𝑓𝑣 𝜕𝑣𝜕𝑢̃
̃𝑓 ̃𝑣 = 𝑓𝑢 𝜕𝑢𝜕 ̃𝑣 + 𝑓𝑣 𝜕𝑣𝜕 ̃𝑣
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We will now prove that the reparametrization of a regular chart is regular.

Proposition 4.61

Suppose that 𝑈 , 𝑈 ⊆ ℝ2 are open sets and

𝜎𝜎𝜎 ∶ 𝑈 → ℝ3

is a regular chart. Assume given a diffeomorphism

Φ∶ 𝑈 → 𝑈 .
The reparametrization 𝜎̃𝜎𝜎 ∶ 𝑈 → ℝ3 defined by

𝜎̃𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ
is a regular chart.

Proof

Since 𝜎𝜎𝜎 is a regular chart we have that 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent. Hence

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ≠ 0 .
To see that 𝜎̃𝜎𝜎 is regular it is sufficient to prove that

𝜎̃𝜎𝜎 𝑢̃ × 𝜎̃𝜎𝜎 ̃𝑣 ≠ 0 . (4.1)

By chain rule we have

𝜎̃𝜎𝜎 𝑢̃ = 𝜎𝜎𝜎𝑢 𝜕𝑢𝜕𝑢̃ + 𝜎𝜎𝜎 𝑣 𝜕𝑣𝜕𝑢̃
𝜎̃𝜎𝜎 ̃𝑣 = 𝜎𝜎𝜎𝑢 𝜕𝑢𝜕 ̃𝑣 + 𝜎𝜎𝜎 𝑣 𝜕𝑣𝜕 ̃𝑣
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By the properties of vector product we get

𝜎̃𝜎𝜎 𝑢̃ × 𝜎̃𝜎𝜎 ̃𝑣 = (𝜎𝜎𝜎𝑢 𝜕𝑢𝜕𝑢̃ + 𝜎𝜎𝜎 𝑣 𝜕𝑣𝜕𝑢̃ ) × (𝜎𝜎𝜎𝑢
𝜕𝑢
𝜕 ̃𝑣 + 𝜎𝜎𝜎 𝑣 𝜕𝑣𝜕 ̃𝑣 )

= 𝜕𝑢
𝜕𝑢̃

𝜕𝑢
𝜕 ̃𝑣 (𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎𝑢) + 𝜕𝑢

𝜕𝑢̃
𝜕𝑣
𝜕 ̃𝑣 (𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 )

+ 𝜕𝑣
𝜕𝑢̃

𝜕𝑢
𝜕 ̃𝑣 (𝜎𝜎𝜎 𝑣 × 𝜎𝜎𝜎𝑢) + 𝜕𝑣

𝜕𝑢̃
𝜕𝑣
𝜕 ̃𝑣 (𝜎𝜎𝜎 𝑣 × 𝜎𝜎𝜎 𝑣 )

= (𝜕𝑢𝜕𝑢̃
𝜕𝑣
𝜕 ̃𝑣 − 𝜕𝑣

𝜕𝑢̃
𝜕𝑢
𝜕 ̃𝑣 ) (𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 )

= det(
𝜕𝑢
𝜕𝑢̃

𝜕𝑢
𝜕 ̃𝑣𝜕𝑣

𝜕𝑢̃
𝜕𝑣
𝜕 ̃𝑣

) (𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 )

= det 𝐽Φ (𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ) .
Since Φ is a diffeomorphism, we have that

det 𝐽Φ ≠ 0 ,
from which we conclude (4.1).

4.6 Transition maps

Consider the situation in which two regular charts have overlapping image.
It is natural to ask wether these maps are reparametrizations of each other on the overlapping region, see
Figure 4.14. If such reparametrization exists, it is called a transition map.

Definition 4.62: Transition map

Let 𝒮 be a regular surface and

𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 , 𝜎̃𝜎𝜎 ∶ 𝑈 → 𝜎̃𝜎𝜎(𝑈 ) ⊆ 𝒮
be regular charts. Assume that the images of 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 overlap, that is,

𝐼 ∶= 𝜎𝜎𝜎(𝑈 ) ∩ 𝜎̃𝜎𝜎(𝑈 ) ≠ ∅ .
The set 𝐼 is open in 𝒮 , since it is intersection of open sets. Define the sets

𝑉 ∶= 𝜎𝜎𝜎−1(𝐼 ) ⊆ 𝑈 , 𝑉 ∶= 𝜎̃𝜎𝜎−1(𝐼 ) ⊆ 𝑈 ,
The sets 𝑉 and 𝑉 are open and by construction

𝜎𝜎𝜎(𝑉 ) = 𝜎̃𝜎𝜎(𝑉 ) = 𝐼 .
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Figure 4.14: If the two regular charts 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 have overlapping image, then they are reparametrization of each
other, through a transition map Φ.
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Therefore they are well defined the restrictions

𝜎𝜎𝜎|𝑉 ∶ 𝑉 → 𝐼 , 𝜎̃𝜎𝜎 |𝑉 ∶ 𝑉 → 𝐼 ,
which are homeomorphisms. The homeomorphism

Φ∶ 𝑉 → 𝑉 , Φ ∶= 𝜎𝜎𝜎−1 ∘ 𝜎̃𝜎𝜎
is called a transition map from 𝜎𝜎𝜎 to 𝜎̃𝜎𝜎 .

The theorem below states that transition maps between regular charts are diffeomorphisms. The proof is
slightly technical and is based on the Implicit Function Theorem. We decide to omit it. The interested reader
can find a proof at Page 117 of [6].

Theorem 4.63

Let 𝒮 be a regular surface. The transition maps between regular charts are diffeomorphisms.

We can now use Theorem 4.63 to show that transition maps are reparametrizations.

Proposition 4.64

Let 𝒮 be a regular surface and

𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 , 𝜎̃𝜎𝜎 ∶ 𝑈 → 𝜎̃𝜎𝜎(𝑈 ) ⊆ 𝒮
be regular charts. Assume that the images of 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 overlap, that is,

𝜎𝜎𝜎(𝑈 ) ∩ 𝜎̃𝜎𝜎(𝑈 ) ≠ ∅ .
Then there exist open sets

𝑉 ⊆ 𝑈 , 𝑉 ⊆ 𝑈 ,
and a diffeomorphism

Φ∶ 𝑉 → 𝑉
such that 𝜎̃𝜎𝜎 |𝑉 is a reparametrization of 𝜎𝜎𝜎|𝑉 , that is,

𝜎̃𝜎𝜎 |𝑉 = (𝜎𝜎𝜎|𝑉 ) ∘ Φ .
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Proof

Define
𝐼 ∶= 𝜎𝜎𝜎(𝑈 ) ∩ 𝜎̃𝜎𝜎(𝑈 ) ≠ ∅ .

Note that this set is open in 𝒮 , being intersection of open sets. Set

𝑉 ∶= 𝜎𝜎𝜎−1(𝐼 ) , 𝑉 ∶= 𝜎̃𝜎𝜎−1(𝐼 ) .
The sets 𝑉 and 𝑉 are open, since 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 are homeomorphisms, and hence are continuous. By construc-
tion we have

𝜎𝜎𝜎(𝑉 ) = 𝜎̃𝜎𝜎(𝑉 ) = 𝐼 .
Therefore they are well defined the restrictions

𝜎𝜎𝜎|𝑉 ∶ 𝑉 → 𝐼 , 𝜎̃𝜎𝜎 |𝑉 ∶ 𝑉 → 𝐼 ,
which are homeomorphisms. Consider the transition map

Φ∶ 𝑉 → 𝑉 , Φ ∶= 𝜎𝜎𝜎−1 ∘ 𝜎̃𝜎𝜎 .
By Theorem 4.63 we know that Φ is a diffeomorphism. Hence

𝜎̃𝜎𝜎 |𝑉 = (𝜎𝜎𝜎|𝑉 ) ∘ Φ ,
with Φ diffeomorphism, showing that 𝜎̃𝜎𝜎 |𝑉 is a reparametrization of 𝜎𝜎𝜎|𝑉 .

Important

Proposition 4.64 allows us to define properties of surfaces using charts, as long as we check that the
property in question does not depend on reparametrization.

4.7 Functions between surfaces

We would like to define a concept of smooth function

𝑓 ∶ 𝒮1 → 𝒮2 ,
where 𝒮1 and 𝒮2 are regular surfaces. So far we know what a smooth function from ℝ𝑛 into ℝ𝑚 is. The idea
is to use surface charts to define such 𝑓 .
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Definition 4.65

Let 𝒮1 and 𝒮2 be regular surfaces and let

𝑓 ∶ 𝒮1 → 𝒮2

be a map. We say that:

• 𝑓 is smooth at p ∈ 𝒮1 if there exist charts 𝜎𝜎𝜎 𝑖∶ 𝑈𝑖 → 𝒮𝑖 for 𝑖 = 1, 2 such that

p ∈ 𝜎𝜎𝜎1(𝑈1) , 𝑓 (p) ∈ 𝜎𝜎𝜎2(𝑈2)
and

(𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎1)∶ 𝑈1 → 𝑈2
is smooth.

• 𝑓 is smooth if it is smooth for each p ∈ 𝒮1.

• 𝑓 is a diffeomorphism if 𝑓 is smooth and invertible, with smooth inverse.

Figure 4.15: Sketch function 𝑓 smooth at p between the surfaces 𝒮1 and 𝒮2.

Remark 4.66

• Definition 4.65 makes sense because 𝜎𝜎𝜎−12 exists.
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• The map 𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎1 is only defined for x ∈ 𝑈1 such that

𝑓 (𝜎𝜎𝜎1(x)) ∈ 𝜎𝜎𝜎2(𝑈2) .

• The function 𝜎𝜎𝜎−12 ∘𝑓 ∘𝜎𝜎𝜎1 maps from ℝ2 into ℝ2, therefore differentiability is intended in the classical
sense.

• Definition 4.65 does not depend on the choice of charts 𝜎𝜎𝜎1 and 𝜎𝜎𝜎2
Indeed, suppose that 𝜎̃𝜎𝜎 𝑖∶ 𝑈𝑖 → 𝒮𝑖 are charts such that

p ∈ 𝜎̃𝜎𝜎1(𝑈1) , 𝑓 (p) ∈ 𝜎̃𝜎𝜎2(𝑈2) .
In particular we have

𝜎𝜎𝜎 𝑖(𝑈𝑖) ∩ 𝜎̃𝜎𝜎 𝑖(𝑈𝑖) ≠ ∅ .
As 𝒮1 and 𝒮2 are regular surfaces, by Theorem 4.63 there exist open sets

𝑉𝑖 ⊆ 𝑈𝑖 , 𝑉𝑖 ⊆ 𝑈𝑖 ,
and transition maps

Φ𝑖∶ 𝑉𝑖 → 𝑉𝑖
which are diffeomorphisms and satisfy

𝜎̃𝜎𝜎 𝑖 = 𝜎𝜎𝜎 𝑖 ∘ Φ𝑖 .
Hence

𝜎̃𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎̃𝜎𝜎1 = 𝜎̃𝜎𝜎−12 ∘ (𝜎𝜎𝜎2 ∘ 𝜎𝜎𝜎−12 ) ∘ 𝑓 ∘ (𝜎𝜎𝜎1 ∘ 𝜎𝜎𝜎−11 ) ∘ 𝜎̃𝜎𝜎1
= (𝜎̃𝜎𝜎−12 ∘ 𝜎𝜎𝜎2) ∘ (𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎1) ∘ (𝜎𝜎𝜎−11 ∘ 𝜎̃𝜎𝜎1)
= Φ−12 ∘ (𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎1) ∘ Φ−11 .

Since Φ−1𝑖 and 𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎1 are smooth, we conclude that

𝜎̃𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎̃𝜎𝜎1
is smooth. Hence Definition 4.65 does not depend on the choice of charts.
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Proposition 4.67

If 𝑓 ∶ 𝒮1 → 𝒮2 and 𝑔 ∶ 𝒮2 → 𝒮3 are smooth maps (resp. diffeomorphisms) between surfaces, then the
composition

(𝑔 ∘ 𝑓 )∶ 𝒮1 → 𝒮3
is smooth (resp. a diffeomorphisms).

Proof

Fix p ∈ 𝒮1 and choose charts
𝜎𝜎𝜎 𝑖∶ 𝑈𝑖 → 𝒮𝑖

such that
p ∈ 𝜎𝜎𝜎1(𝑈1) , 𝑓 (p) ∈ 𝜎𝜎𝜎2(𝑈2) , 𝑔(𝑓 (p)) ∈ 𝜎𝜎𝜎3(𝑈3) .

Since 𝑓 and 𝑔 are smooth we have that the maps

𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎1 , 𝜎𝜎𝜎−13 ∘ 𝑔 ∘ 𝜎𝜎𝜎2 ,
are smooth. Hence

𝜎𝜎𝜎−13 ∘ (𝑔 ∘ 𝑓 ) ∘ 𝜎𝜎𝜎1 = (𝜎𝜎𝜎−13 ∘ 𝑔 ∘ 𝜎𝜎𝜎2) ∘ (𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎1)
is smooth, ending the proof.

Definition 4.68

Let 𝒮1 and 𝒮2 be regular surfaces. We say that 𝒮1 and 𝒮2 are diffeomorphic if there exists 𝑓 ∶ 𝒮1 → 𝒮2
diffeomorphism.

The key ideas around diffeomorphisms are:

• Two diffeomorphic surfaces are essentially the same. Indeed, it is immediate to show that being diffeo-
morphic is an equivalence relation on the set of regular surfaces.

• Two diffeomorphic surfaces have essentially the same charts, as shown in the next proposition.

Proposition 4.69

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 be a diffeomorphism. If 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 is a regular chart
for 𝒮 at p, then

𝜎̃𝜎𝜎 ∶= 𝑓 ∘ 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮
is a regular chart for 𝒮 at 𝑓 (p).
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Proof

Let 𝜎𝜎𝜎2∶ 𝑈2 → 𝒮 be a regular chart for 𝒮 at 𝑓 (p). By definition of diffeomorphism between surfaces, the
map

Φ ∶= 𝜎𝜎𝜎−12 ∘ 𝑓 ∘ 𝜎𝜎𝜎 ∶ 𝑈 → 𝑈2
is a diffeomorphism. Therfore

(𝑓 ∘ 𝜎𝜎𝜎)(𝑢, 𝑣) = 𝜎𝜎𝜎2 (Φ(𝑢, 𝑣))
withΦ diffeomorphism, meaning that 𝑓 ∘𝜎𝜎𝜎 is a reparametrization of 𝜎𝜎𝜎2. Since 𝜎𝜎𝜎2 is regular, by Proposition
4.61 we deduce that 𝑓 ∘ 𝜎𝜎𝜎 is regular.

We conclude with the definition of local diffeomorphism between surfaces.

Definition 4.70: Local diffeomorphism

Let 𝒮1 and 𝒮2 be regular surfaces. A smooth map 𝑓 ∶ 𝒮1 → 𝒮2 is called a local diffeomorphism if for
each point p ∈ 𝒮1 there exists an open set 𝑉 ⊆ 𝒮1 such that 𝑓 (𝑉 ) ⊆ 𝒮2 is open and

𝑓 ∶ 𝑉 → 𝑓 (𝑉 )
is a diffeomorphism between surfaces.

The above definition is well posed since open subsets of surfaces are themselves surfaces.

4.8 Tangent space

We have seen that tangent vectors to regular curves allow to define the Frenet Frame, curvature and torsion.
Eventually, these quantities are sufficient to characterize a curve. The anolgue concept of tangent vector for
surfaces is called the tangent space. To avoid clumsy terminology, we make the following assumption.

Assumption 4.71

From now on, all the surfaces will be regular and all the charts will be regular.
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Definition 4.72: Tangent vectors and tangent space

Let 𝒮 be a surface and p ∈ 𝒮 . A tangent vector to 𝒮 at p is any vector v ∈ ℝ3 such that

v = ̇𝛾𝛾𝛾 (0) ,
where 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → ℝ3 is a smooth curve such that

𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝒮 , 𝛾𝛾𝛾 (0) = p ,
where 𝜀 > 0. The tangent space of 𝒮 at p is the set

𝑇p𝒮 ∶= {v ∈ ℝ3 ∶ v tangent vector of 𝒮 at p} .

Figure 4.16: Tangent space 𝑇p𝒮 of surface 𝒮 at the point p. A tangent vector v coincides with ̇𝛾𝛾𝛾 (0) for some
𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮 such that 𝛾𝛾𝛾 (0) = p.

Let us start with the most basic example: We want to compute the tangent space to an open set in ℝ2.
Example 4.73

Let 𝑈 ⊆ ℝ2 be open and p ∈ 𝑈 . Then
𝑇p𝑈 = ℝ2 .
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Proof. Let v ∈ 𝑇p𝑈 . By definition there exists a smooth curve

𝛾 ∶ (−𝜀, 𝜀) → 𝑈
such that 𝛾𝛾𝛾 (0) = p and ̇𝛾𝛾𝛾 (0) = v. Since 𝑈 ⊆ ℝ2, it follows that 𝛾𝛾𝛾 is a plane curve, so that

v = ̇𝛾𝛾𝛾 (0) ∈ ℝ2 .
Conversely, let v ∈ ℝ2. Since p ∈ 𝑈 and 𝑈 is open, there exists 𝜀 > 0 such that 𝐵𝜀(𝑝) ⊆ 𝑈 .
Define the curve

𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → ℝ3 , 𝛾𝛾𝛾 (𝑡) ∶= p + 𝑡v .
By construction

𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝐵𝜀(p) ⊆ 𝑈 , 𝛾𝛾𝛾 (0) = p , ̇𝛾𝛾𝛾 (0) = v ,
showing that v ∈ 𝑇p𝑈 .

In the above example we have seen that 𝑇p𝑈 = ℝ2. This property holds in general for 𝑇p𝒮 with 𝒮 regular
surface. Before proving this fact, we need a lemma.

Lemma 4.74

Let 𝒮 be regular and p ∈ 𝒮 . Let 𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 be a regular chart at p, with

𝜎𝜎𝜎(𝑢0, 𝑣0) = p .
We have:

1. Suppose 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → ℝ3 is a smooth curve such that

𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝜎𝜎𝜎(𝑈 ) , 𝛾𝛾𝛾 (0) = p .
Then there exist smooth functions

𝑢, 𝑣 ∶ (−𝜀, 𝜀) → ℝ
such that

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) , ∀ 𝑡 ∈ (−𝜀, 𝜀) ,
and

𝑢(0) = 𝑢0 , 𝑣(0) = 𝑣0 .
2. Conversely, assume 𝑢, 𝑣 ∶ (−𝜀, 𝜀) → ℝ are smooth functions such that

𝑢(0) = 𝑢0 , 𝑣(0) = 𝑣0 .
Then

𝛾𝛾𝛾 (𝑡) ∶= 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡))
is a smooth curve such that

𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝒮 , 𝛾𝛾𝛾 (0) = p .
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Proof

Denote the coordinates of 𝜎𝜎𝜎 by

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑓 (𝑢, 𝑣), 𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣)) .
The differential of 𝜎𝜎𝜎 is

𝑑𝜎𝜎𝜎 = (
𝑓𝑢 𝑓𝑣
𝑔𝑢 𝑔𝑣
ℎ𝑢 ℎ𝑣

) .

Since 𝜎𝜎𝜎 is regular, by definition 𝑑𝜎𝜎𝜎 has rank-2 at (𝑢0, 𝑣0). This means that at least one of the 3 minors

( 𝑓𝑢 𝑓𝑣
𝑔𝑢 𝑔𝑣 ) , ( 𝑓𝑢 𝑓𝑣

ℎ𝑢 ℎ𝑣 ) , ( 𝑔𝑢 𝑔𝑣
ℎ𝑢 ℎ𝑣 ) .

is invertible. WLOG assume the first is invertible (the proof in case the other two are invertible is similar.)
Define the map

𝐹 ∶ 𝑈 ⊆ ℝ2 → ℝ2 , 𝐹 (𝑢, 𝑣) = (𝑓 (𝑢, 𝑣), 𝑔(𝑢, 𝑣)) .
We have

𝑑𝐹 = ( 𝑓𝑢 𝑓𝑣
𝑔𝑢 𝑔𝑣 ) ,

which is invertible at (𝑢0, 𝑣0) by assumption. Hence, by the Inverse Function Theorem, there exist

• 𝑊 ⊆ 𝑈 ⊆ ℝ2 open set with (𝑢0, 𝑣0) ∈ 𝑊 ,
• 𝑉 ⊆ ℝ2 open set with 𝐹(𝑢0, 𝑣0) ∈ 𝑉 ,

such that
𝐹 ∶ 𝑊 → 𝑉

is a diffeomorphism. Hence
𝐹−1∶ 𝑉 → 𝑊

is smooth. Since 𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝜎𝜎𝜎(𝑈 ), it is well defined the composition

𝐹−1 ∘ 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝑊 ⊆ 𝑈 .
Moreover such composition is smooth, being 𝐹−1 and 𝛾𝛾𝛾 smooth. Therefore

(𝐹−1 ∘ 𝛾𝛾𝛾 )(𝑡) = (𝑢(𝑡), 𝑣(𝑡)) (4.2)

with 𝑢, 𝑣 smooth. As 𝛾𝛾𝛾 (0) = p, by definition of 𝐹 we have

(𝑢(0), 𝑣(0)) = (𝐹−1 ∘ 𝛾𝛾𝛾 )(0) = 𝐹−1(p) = (𝑢0, 𝑣0) ,
showing that

𝑢(0) = 𝑢0 , 𝑣(0) = 𝑣0 .
Moreover, applying 𝜎𝜎𝜎 to both sides of (4.2) yields

𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) = 𝜎𝜎𝜎((𝐹−1 ∘ 𝛾𝛾𝛾 ))(𝑡) = 𝛾𝛾𝛾 (𝑡) ,
as we wanted to show.
The converse statement is trivial.
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We are now ready to characterize 𝑇p𝒮 when 𝒮 is a regular surface.

Theorem 4.75

Let 𝒮 be a (regular) surface and p ∈ 𝒮 . Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a chart at p. Denote by (𝑢0, 𝑣0) ∈ 𝑈 a point
such that

𝜎𝜎𝜎(𝑢0, 𝑣0) = p .
Then

𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } ∶= {𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 ∶ 𝜆, 𝜇 ∈ ℝ} ,
where 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are evaluated at (𝑢0, 𝑣0). In particular

𝑇p𝒮 = ℝ2 .

Proof

Let 𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 be a chart at 𝑝. If we show that

𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 }
then we deduce

𝑇p𝒮 = ℝ2 ,
since 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent.
Step 1. Suppose v ∈ 𝑇p𝒮 . By definition there exists a smooth curve 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮 such that

𝛾𝛾𝛾 (0) = p , ̇𝛾𝛾𝛾 (0) = v .
By continuity, we can take 𝜀 small enough so that

𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝜎𝜎𝜎(𝑈 ) .
By Lemma 4.74 there exist smooth functions 𝑢, 𝑣 ∶ (−𝜀, 𝜀) → ℝ such that

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) , ∀ 𝑡 ∈ (−𝜀, 𝜀) ,
and

𝑢(0) = 𝑢0 , 𝑣(0) = 𝑣0 .
Therefore, by chain rule,

̇𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎𝑢(𝑢(𝑡), 𝑣(𝑡)) ̇𝑢(𝑡) + 𝜎𝜎𝜎 𝑣 (𝑢(𝑡), 𝑣(𝑡)) ̇𝑣 (𝑡) .
Evaluating the above at 𝑡 = 0 yields

v = ̇𝛾𝛾𝛾 (0)
= 𝜎𝜎𝜎𝑢(𝑢(0), 𝑣(0)) ̇𝑢(0) + 𝜎𝜎𝜎 𝑣 (𝑢(0), 𝑣(0)) ̇𝑣 (0)
= 𝜎𝜎𝜎𝑢(𝑢0, 𝑣0) ̇𝑢(0) + 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0) ̇𝑣 (0) ,

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 216

which shows
v ∈ span{𝜎𝜎𝜎𝑢(𝑢0, 𝑣0), 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0)} .

Step 2. Suppose that
v ∈ span{𝜎𝜎𝜎𝑢(𝑢0, 𝑣0), 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0)} .

Then there exist 𝜆, 𝜇 ∈ ℝ such that

v = 𝜆𝜎𝜎𝜎𝑢(𝑢0, 𝑣0) + 𝜇𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0) .
Define the curve

𝛾𝛾𝛾 (𝑡) ∶= 𝜎𝜎𝜎(𝑢0 + 𝜆𝑡, 𝑣0 + 𝜇𝑡) , 𝑡 ∈ (−𝜀, 𝜀) .
We have

𝛾𝛾𝛾 (0) = 𝜎𝜎𝜎(𝑢0, 𝑣0) = p .
Therefore, for 𝜀 sufficiently small, we have

𝛾𝛾𝛾 (−𝜀, 𝜀) ⊆ 𝜎𝜎𝜎(𝑈 ) .
By chain rule

̇𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎𝑢(𝑢0 + 𝜆𝑡, 𝑣0 + 𝜇𝑡)𝜆 + 𝜎𝜎𝜎 𝑣 (𝑢0 + 𝜆𝑡, 𝑣0 + 𝜇𝑡)𝜇 ,
and therefore

̇𝛾𝛾𝛾 (0) = 𝜎𝜎𝜎𝑢(𝑢0, 𝑣0)𝜆 + 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0)𝜇 = v .
This proves that v ∈ 𝑇p𝒮 , ending the proof.

Therefore 𝑇p𝒮 is always two-dimensional. This justifies the following definition.

Definition 4.76: Tangent plane

Let 𝒮 be a regular surface and p ∈ 𝒮 . The set

𝑇p𝒮
is called the tangent plane to 𝒮 at p.

Remark 4.77

By definition 𝑇p𝒮 is a vector subspace of ℝ3. As such, it holds that

000 ∈ 𝑇p𝒮 .
To see this, take the curve 𝛾𝛾𝛾 (𝑡) ≡ p. Then 𝛾𝛾𝛾 (0) = p and ̇𝛾𝛾𝛾 (0) = 000, showing that 000 ∈ 𝑇p𝒮 .
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Therefore 𝑇p𝒮 is a plane through the origin, no matter where the point p ∈ 𝒮 is located. When we draw
the tangent plane as a plane resting on the surface, see Figure 4.16, we are not drawing 𝑇p𝒮 , but rather
the plane

p + 𝑇p𝒮 ,
which is the affine tangent plane through p ∈ 𝒮 .

It is possible to give a cartesian equation for the tangent plane

𝑇p𝒮
and for the affine tangent plane

p + 𝑇p𝒮 .

Proposition 4.78: Equation of tangent plane

Let 𝒮 be a regular surface and p ∈ 𝒮 . Let 𝜎𝜎𝜎 be a regular chart at p, with

𝜎𝜎𝜎(𝑢0, 𝑣0) = p = (𝑥0, 𝑦0, 𝑧0) .
Let

n ∶= 𝜎𝜎𝜎𝑢(𝑢0, 𝑣0) × 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0) .
The equation of the tangent plane 𝑇p𝒮 is given by

n1𝑥 + n2𝑦 + n3𝑧 = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 ,
where n = (n1,n2,n3). The equation of the affine tangent plane p + 𝑇p𝒮 is given by

n1(𝑥 − 𝑥0) + n2(𝑦 − 𝑥0) + n3(𝑧 − 𝑧0) = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 .

Proof

By Theorem 4.75 we know that

𝑇p𝒮 = span{𝜎𝜎𝜎𝑢(𝑢0, 𝑣0), 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0)} .
By the properties of cross product, the vector n is orthogonal to both 𝜎𝜎𝜎𝑢(𝑢0, 𝑣0) and 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0). Therefore
it is orthogonal to 𝑇p𝒮 . The equation for 𝑇p𝒮 is then

(𝑥, 𝑦 , 𝑧) ⋅ n = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 .
In particular, the equation for the affine tangent plane p + 𝑇p𝒮 is

(𝑥, 𝑦 , 𝑧) ⋅ n = 𝑘 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 ,
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for some 𝑘 ∈ ℝ. To compute 𝑘, it is sufficient to evaluate the above equation at p, since p belongs to
p + 𝑇p𝒮 . We obtain

𝑘 = p ⋅ n .
Hence the equation for p + 𝑇p𝒮 is

(𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0) ⋅ n = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 ,
ending the proof.

Example 4.79

Consider the surface 𝒮 defined by the chart

𝜎𝜎𝜎(𝑢, 𝑣) ∶= (√1 − 𝑣 cos(𝑢), √1 − 𝑣 sin(𝑢), 𝑣) .
We want to compute the equation for the tangent plane 𝑇p𝒮 , and for the affine tangent plane p + 𝑇p𝒮 .
First, we need to check that 𝜎𝜎𝜎 is regular. We have

𝜎𝜎𝜎𝑢 = (−√1 − 𝑣 sin(𝑢), √1 − 𝑣 cos(𝑢), 0)
𝜎𝜎𝜎 𝑣 = (12(1 − 𝑣)−1/2 cos(𝑢), 12(1 − 𝑣)−1/2 sin(𝑢), 1)

As the last component of 𝜎𝜎𝜎𝑢 is 0 and the last component of 𝜎𝜎𝜎 𝑣 is 1, we conclude that 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly
independent. Thus 𝜎𝜎𝜎 is regular.
Suppose p ∈ 𝒮 is such that

𝜎𝜎𝜎(𝑢0, 𝑣0) = p
for some (𝑢0, 𝑣0) ∈ ℝ2. By Theorem 4.75 we have

𝑇p𝒮 = span{𝜎𝜎𝜎𝑢(𝑢0, 𝑣0), 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0)} .
To find the equation of 𝑇p𝒮 we compute:

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = |
i j k

−√1 − 𝑣 sin(𝑢) √1 − 𝑣 cos(𝑢) 0
1
2(1 − 𝑣)−1/2 cos(𝑢) 1

2(1 − 𝑣)−1/2 sin(𝑢) 1
|

= (√1 − 𝑣 cos(𝑢), √1 − 𝑣 sin(𝑢), −12)
For

(𝑢0, 𝑣0) = (𝜋4 , 0)
we have

p = 𝜎𝜎𝜎(𝑢0, 𝑣0) = (√22 , √22 , 0) ,
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and therefore

n = (𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 )(𝑢0, 𝑣0) = (√22 , √22 , −12) .

The equation for 𝑇p𝒮 is therefore

(𝑥, 𝑦 , 𝑧) ⋅ n = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 .
The above reads

√2
2 𝑥 + √2

2 𝑦 − 1
2 𝑧 = 0 .

The equation for p + 𝑇p𝒮 is instead

√2
2 𝑥 + √2

2 𝑦 − 1
2 𝑧 = 𝑘 ,

for some 𝑘 ∈ ℝ. To compute 𝑘, note that p ∈ p + 𝑇p𝒮 , and therefore

√2
2

√2
2 + √2

2
√2
2 = 𝑘 ⟹ 𝑘 = 1 .

The equation for p + 𝑇p𝒮 is then
√2
2 𝑥 + √2

2 𝑦 − 1
2 𝑧 = 1 .

Remark 4.80: Tangent space and derivations

The definition of tangent plane depends on the fact that 𝒮 is contained in ℝ3. This is a serious drawback
in many applications, as the surface 𝒮 does not necessarily need to be Euclidean. There is a way to get
rid of such dependence, and give an intrinsic definition of tangent plane, depending only on the point p
and the surface 𝒮 .
The basic idea is as follows: If 𝑈 ⊆ ℝ2 is open and p ∈ 𝑈 , then 𝑇p𝑈 = ℝ2. We can associate to any point
v ∈ 𝑇p𝑈 a directional derivative acting on smooth functions 𝑓 ∶ 𝑈 → ℝ:

v = (𝑣1, 𝑣2) ↦ 𝜕
𝜕𝑣 |𝑝 = 𝑣1 𝜕

𝜕𝑥1
|
𝑝
+ 𝑣2 𝜕

𝜕𝑥2
|
𝑝

The above directional derivative is called a derivation.
The point is that derivations do not need to be defined through vectors, but can be defined as follows: 𝐷
is a derivation if

• 𝐷∶ 𝐶∞(𝑈 ) → ℝ is a linear operator, where 𝐶∞(𝑈 ) is the set of smooth functions 𝑓 ∶ 𝑈 → ℝ,
• 𝐷 satisfies the Leibnitz rule

𝐷(𝑓 𝑔) = 𝑓 (p)𝐷(𝑔) + 𝑔(p)𝐷(𝑓 ) , ∀ 𝑓 , 𝑔 ∈ 𝐶∞(𝑈 ) .
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The tangent plane at p can then be defined as

𝑇p𝑈 = {𝐷 derivation at p} .
Therefore

𝑇p𝑈 ⊆ (𝐶∞(𝑈 ))∗ ,
the dual space of smooth functions.
It is possible to do such construction directly on 𝒮 , by introducing the concepts of:

• germ of a function
• algebra of derivations, acting on germs

An in depth discussion can be found in Chapter 3.4 of [1].

4.9 Differential of smooth functions

Let 𝑓 ∶ 𝑈 → 𝑉 with 𝑈 , 𝑉 ⊆ ℝ2 open. Suppose 𝑓 is smooth. The differential of 𝑓 at p ∈ 𝑈 is a linear map

𝑑𝑓p∶ ℝ2 → ℝ2 .
We have seen that

𝑇p𝑈 = ℝ2
and therefore we can interpret 𝑑𝑓p as a map between tangent planes:

𝑑𝑓p∶ ℝ2 → ℝ2 .

Similarly, if 𝑓 ∶ 𝒮 → 𝒮 is a smooth map between surfaces, we can define its differential at p ∈ 𝒮 as a linear
map

𝑑𝑓p∶ 𝑇p𝒮 → 𝑇𝑓 (p)𝒮 .
To define such map, we need the following lemma.

Lemma 4.81

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 a smooth map. For v ∈ 𝑇p𝒮 let 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮 be such
that

𝛾𝛾𝛾 (0) = p , ̇𝛾𝛾𝛾 (0) = v .
Define

̃𝛾𝛾𝛾 ∶= 𝑓 ∘ 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮 .
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Then ̃𝛾𝛾𝛾 is a smooth curve into ℝ3 and

ṽ ∈ 𝑇𝑓 (p)𝒮 , ṽ ∶= ̇̃𝛾𝛾𝛾 (0) .

Proof

Note that
̃𝛾𝛾𝛾 = 𝑖 ∘ 𝑓 ∘ 𝛾𝛾𝛾 ,

with 𝑖∶ 𝒮 → ℝ3 inclusion map. Since 𝑖, 𝑓 , 𝛾𝛾𝛾 are smooth, we conclude that ̃𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → ℝ3 is smooth.
Moreover

̃𝛾𝛾𝛾 (0) = 𝑓 (𝛾𝛾𝛾 (0)) = 𝑓 (p) ,
and therefore

ṽ ∶= ̇̃𝛾𝛾𝛾 (0) ∈ 𝑇𝑓 (p)𝒮 ,
by definition of tangent space.

Definition 4.82: Differential of smooth function

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 a smooth map. The differential 𝑑𝑓p of 𝑓 at p is defined
as the map

𝑑𝑓p∶ 𝑇p𝒮 → 𝑇𝑓 (p)𝒮 , 𝑑𝑓p(v) ∶= ṽ ,
where ṽ is as in Lemma 4.81.

We now show that 𝑑𝑓p is well-defined and linear. Moreover we provide a representation of 𝑑𝑓p as a matrix.

Proposition 4.83

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 a smooth map. Denote the differential of 𝑓 by

𝑑𝑓p∶ 𝑇p𝒮 → 𝑇𝑓 (p)𝒮 .
We have:

1. 𝑑𝑓p(v) does not depend on the choice of 𝛾𝛾𝛾 .
2. 𝑑𝑓p is linear, that is,

𝑑𝑓p(𝜆v + 𝜇w) = 𝜆𝑑𝑓p(v) + 𝜇𝑑𝑓p(w) ,
for all v,w ∈ 𝑇p𝒮 and 𝜆, 𝜇 ∈ ℝ.

3. Let
𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 , 𝜎̃𝜎𝜎 ∶ 𝑈 → 𝒮 ,
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be regular charts at p and 𝑓 (p), respectively. Denote by

(𝑢, 𝑣) ↦ (𝛼(𝑢, 𝑣), 𝛽(𝑢, 𝑣))
the components of the smooth map

Ψ ∶= 𝜎̃𝜎𝜎−1 ∘ 𝑓 ∘ 𝜎𝜎𝜎 ∶ 𝑈 → 𝑈 .
In particular

𝜎̃𝜎𝜎(𝛼(𝑢, 𝑣), 𝛽(𝑢, 𝑣)) = 𝑓 (𝜎𝜎𝜎(𝑢, 𝑣)) , ∀ (𝑢, 𝑣) ∈ 𝑈 .
The matrix of the linear map 𝑑𝑓p with respect to the basis

{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } on 𝑇p𝒮 , {𝜎̃𝜎𝜎 𝑢̃ , 𝜎̃𝜎𝜎 ̃𝑣 } on 𝑇𝑓 (p)𝒮 ,
is given by the Jacobian of the map Ψ, that is,

𝑑p𝑓 = 𝐽Ψ = ( 𝛼𝑢 𝛼𝑣
𝛽𝑢 𝛽𝑣 ) .

For a proof, see the discussion at page 87 of [6].

Proposition 4.84

The following hold:

1. If 𝒮 is a regular surface and p ∈ 𝒮 , the differential at p of the identity map

𝐼 ∶ 𝒮 → 𝒮 , 𝐼 (𝑥) ∶= 𝑥 ,
is the identity map

𝐼 ∶ 𝑇p(𝒮 ) → 𝑇p(𝒮 ) , 𝐼 (𝑣) ∶= 𝑣 .
2. If 𝒮1, 𝒮2 and 𝒮3 are regular surfaces and

𝑓 ∶ 𝒮1 → 𝒮2 , 𝑔 ∶ 𝒮2 → 𝒮3 ,
are smooth maps, then

𝑑p(𝑔 ∘ 𝑓 ) = 𝑑𝑓 (p)𝑔 ∘ 𝑑p𝑓 ,
for all p ∈ 𝑇p𝒮1.

3. If 𝒮1, 𝒮2 are regular surfaces and
𝑓 ∶ 𝒮1 → 𝒮2 ,

is a diffeomorphism, then the differential

𝑑p∶ 𝑇p𝒮1 → 𝑇𝑓 (p)𝒮2
is invertible for all p ∈ 𝒮1.
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For a proof see Proposition 4.4.5 in [6]. The above proposition says that the differential of diffeomorphism is
invertible. The converse statement is true locally.

Theorem 4.85

Let 𝒮1 and 𝒮2 be regular surfaces. Suppose that

𝑓 ∶ 𝒮1 → 𝒮2

is smooth. They are equivalent:

1. 𝑓 is a local diffeomorphism.
2. The differential 𝑑p𝑓 ∶ 𝑇p𝒮1 → 𝑇𝑓 (p)𝒮2 is invertible for all p ∈ 𝒮1.

The proof is based on the Inverse Function Theorem, see Proposition 4.4.6 in [6].

4.10 Examples of Surfaces

4.10.1 Level surfaces

We have already seen level surfaces. Let us recall the defintion.

Definition 4.86: Level surface

Let 𝑉 ⊆ ℝ3 be an open set and 𝑓 ∶ 𝑉 → ℝ be smooth. The level surface associated with 𝑓 is the set

𝒮𝑓 ∶= 𝑓 −1(0) = {(𝑥, 𝑦 , 𝑧) ∈ 𝑉 ∶ 𝑓 (𝑥, 𝑦 , 𝑧) = 0} .

The following Theorem gives a sufficient condition for 𝒮𝑓 to be a regular surface.

Theorem 4.87

Let 𝑉 ⊆ ℝ3 be an open set and 𝑓 ∶ 𝑉 → ℝ be smooth. Suppose that

∇𝑓 (𝑥, 𝑦 , 𝑧) ≠ 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .
Then 𝒮𝑓 is a regular surface.

Let us give a characterization of the tangent plane to 𝒮𝑓 .
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Proposition 4.88

Let 𝑉 ⊆ ℝ3 be an open set and 𝑓 ∶ 𝑉 → ℝ be smooth. Suppose that

∇𝑓 (𝑥, 𝑦 , 𝑧) ≠ 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ 𝑉 .
Then ∇𝑓 (p) is orthogonal to 𝑇p𝒮𝑓 . In particular, the equation of 𝑇p𝒮𝑓 is given by

𝜕𝑥𝑓 (p)𝑥 + 𝜕𝑦𝑓 (p)𝑦 + 𝜕𝑧𝑓 (p)𝑧 = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 .
The equation for p + 𝑇p𝒮𝑓 is given by

𝜕𝑥𝑓 (p)(𝑥 − 𝑥0) + 𝜕𝑦𝑓 (p)(𝑦 − 𝑦0) + 𝜕𝑧𝑓 (p)(𝑧 − 𝑧0) = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 ,
where p = (𝑥0, 𝑦0, 𝑧0).

Proof

Let v ∈ 𝑇p𝒮𝑓 . By definition there exists a smooth curve

𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮𝑓 ⊆ ℝ3

such that
𝛾𝛾𝛾 (0) = p , ̇𝛾𝛾𝛾 (0) = v .

Since 𝛾𝛾𝛾 (𝑡) ∈ 𝒮𝑓 , we have that
𝑓 (𝛾𝛾𝛾 (𝑡)) = 0 , ∀ 𝑡 ∈ (−𝜀, 𝜀) .

By chain rule we get
∇𝑓 (𝛾𝛾𝛾 (𝑡)) ⋅ ̇𝛾𝛾𝛾 (𝑡) = 0 , ∀ 𝑡 ∈ (−𝜀, 𝜀) .

Evaluating the above at 𝑡 = 0 yields

0 = ∇𝑓 (𝛾𝛾𝛾 (0)) ⋅ ̇𝛾𝛾𝛾 (0) = ∇𝑓 (p) ⋅ v ,
showing that v is orthogonal to ∇𝑓 (p). Since v is arbitrary, we conclude that ∇𝑓 (p) is orthogonal to 𝑇p𝒮𝑓 .
In particular, the equation for 𝑇p𝒮𝑓 is

∇𝑓 (p) ⋅ (𝑥, 𝑦 , 𝑧) = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 .
Therefore the equation for p + 𝑇p𝒮 is given by

∇𝑓 (p) ⋅ (𝑥, 𝑦 , 𝑧) = 𝑘 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 ,
for some 𝑘 ∈ ℝ. Since p ∈ p + 𝑇p𝒮 , we can substitute

(𝑥, 𝑦 , 𝑧) = (𝑥0, 𝑦0, 𝑧0) = p
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in the above equation to obtain
𝑘 = ∇𝑓 (p) ⋅ (𝑥0, 𝑦0, 𝑧0) .

Hence the equation for p + 𝑇p𝒮 is

∇𝑓 (p) ⋅ (𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0) = 0 , ∀ (𝑥, 𝑦 , 𝑧) ∈ ℝ3 .

4.10.2 Quadrics

Quadrics are level surfaces
𝑆𝑓 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑓 (𝑥, 𝑦 , 𝑧) = 0} ,

where

𝑓 (𝑥, 𝑦 , 𝑧) =𝑎1𝑥2 + 𝑎2𝑦2 + 𝑎3𝑧2 + 2𝑎4𝑥𝑦 + 2𝑎5𝑥𝑧 + 2𝑎6𝑦𝑧+
+ 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧 + 𝑐 ,

for some coefficients 𝑎𝑖, 𝑏𝑖, 𝑐 ∈ ℝ. Let

𝐴 = (
𝑎1 𝑎4 𝑎6
𝑎4 𝑎2 𝑎5
𝑎6 𝑎5 𝑎3

) ∈ ℝ3×3 ,

and
x = (𝑥, 𝑦 , 𝑧)𝑇 , b = (𝑏1, 𝑏2, 𝑏3)𝑇 .

Then 𝑓 can be represented by the quadratic form

𝑓 (x) = x𝑇𝐴x + b ⋅ x + 𝑐 .
The expression 𝑓 = 0 is called a quadric equation.

As stated in the following theorem, there are 14 quadrics in total. Out of these:

• 9 are interesting surfaces,
• 3 are planes,
• 1 is a line,
• 1 is a point.

Theorem 4.89

Suppose 𝒮 is a level surface defined by a quadric equation. Then, up to rigid motions, 𝒮 can be described
by one of the following equations:

1. Ellipsoid: 𝑥
2

𝑝2 + 𝑦2
𝑞2 + 𝑧2

𝑟2 = 1.
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2. Hyperboloid of one sheet: 𝑥
2

𝑝2 + 𝑦2
𝑞2 − 𝑧2

𝑟2 = 1

3. Hyperboloid of two sheets: 𝑥
2

𝑝2 − 𝑦2
𝑞2 − 𝑧2

𝑟2 = 1

4. Elliptic Paraboloid: 𝑥
2

𝑝2 + 𝑦2
𝑞2 = 𝑧

5. Hyperbolic Paraboloid: 𝑥
2

𝑝2 − 𝑦2
𝑞2 = 𝑧

6. Quadric Cone: 𝑥
2

𝑝2 + 𝑦2
𝑞2 − 𝑧2

𝑟2 = 0

7. Elliptic Cylinder: 𝑥
2

𝑝2 + 𝑦2
𝑞2 = 1

8. Hyperbolic Cylinder: 𝑥
2

𝑝2 − 𝑦2
𝑞2 = 1

9. Parabolic Cylinder: 𝑥
2

𝑝2 = 𝑦

10. Plane: 𝑥 = 0
11. Two parallel planes: 𝑥2 = 𝑝2

12. Two intersecting planes: 𝑥
2

𝑝2 − 𝑦2
𝑞2 = 0

13. Straight line: 𝑥
2

𝑝2 + 𝑦2
𝑞2 = 0

14. Single point: 𝑥
2

𝑝2 + 𝑦2
𝑞2 + 𝑧2

𝑟2 = 0

The proof of Theorem 4.89 follows by diagonalizing the symmetric matrix𝐴, and by studying the eigenvalues,
see Theorem 5.5.2 in [6].
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Example 4.90

The sphere is described by
𝑆 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1} .

This is an ellipsoid with
𝑝 = 𝑞 = 𝑟 = 1 .

In particular we can write the sphere as the quadric equation:

x𝑇 (
1 0 0
0 1 0
0 0 1

)x = 1 .

Example 4.91

Consider the level surface
𝒮 = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑓 (𝑥, 𝑦 , 𝑧) = 0}

with
𝑓 (𝑥, 𝑦 , 𝑧) = 𝑥2 + 2𝑦2 − 4𝑧2 + 2𝑥𝑦 + 𝑦𝑧 − 6𝑥𝑧 + 1 = 0 .

Therefore 𝒮 is a quadric. The matrix associated to 𝑓 is

𝐴 = (
1 1 −3
1 2 1/2
−3 1/2 −4

) .

Diagonalizing the matrix 𝐴 we obtain 𝐴 = 𝑃𝐷𝑃−1, with 𝑃 matrix of eigenvectors and

𝐷 = (
−5.51 0 0
0 1.55 0
0 0 2.96

) .

Therefore, up to changing basis via the matrix 𝑃 , 𝑆 can be described by the quadric equation

5.51𝑥̃2 − 1.55 ̃𝑦2 − 2.96 ̃𝑧2 = 1 ,
showing that 𝑆 is a Hyperboloid of two sheets.

4.10.3 Ruled surfaces

A ruled surface is a surface obtained as union of straight lines, called the rulings of the surface. By using
curves, ruled surfaces can be defined in the following way.
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Definition 4.92: Ruled surface

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a smooth curve and a∶ (𝑎, 𝑏) → ℝ3 a vector, such that ̇𝛾𝛾𝛾 (𝑡) and a(𝑡) are linearly
independent for all 𝑡 ∈ (𝑎, 𝑏). A ruled surface is a surface with chart

𝜎𝜎𝜎(𝑢, 𝑣) = 𝛾𝛾𝛾 (𝑢) + 𝑣a(𝑢) .
We say that:

• 𝛾𝛾𝛾 is the base curve
• The lines 𝑣 ↦ 𝑣a(𝑢) are the rulings

Proposition 4.93

A ruled surface 𝒮 is regular if 𝑣 is sufficiently small.

Proof

A chart for 𝒮 is
𝜎𝜎𝜎𝑢 = ̇𝛾𝛾𝛾 (𝑢) + 𝑣 ȧ(𝑢) , 𝜎𝜎𝜎 𝑣 = a(𝑢) ,

with ̇𝛾𝛾𝛾 and a linerly independent. Thus ̇𝛾𝛾𝛾 (𝑢) + 𝑣 ȧ(𝑢) and a are linearly independent for 𝑣 sufficiently
small.

The same base curve can yield multiple ruled surfaces. For example, if 𝛾𝛾𝛾 is a circle, we can obtain both the
unit cylinder and the Möbius band.

Example 4.94: Unit Cylinder

As seen in Example 4.49, the cylinder is a surface with atlas 𝒜 = {𝜎𝜎𝜎1, 𝜎𝜎𝜎2}, where 𝜎𝜎𝜎1 and 𝜎𝜎𝜎2 are suitable
restriction of

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), cos(𝑢), 𝑣) , (𝑢, 𝑣) ∈ [0, 2𝜋) × ℝ .
We have

𝜎𝜎𝜎(𝑢, 𝑣) = 𝛾𝛾𝛾 (𝑢) + 𝑣a(𝑢) ,
with

𝛾𝛾𝛾 (𝑢) ∶= (cos(𝑢), cos(𝑢), 0) , a = (0, 0, 1) .
Hence the unit cylinder is a ruled surface, see Figure 4.17.
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Figure 4.17: Unit cylinder is a ruled surface with base curve 𝛾𝛾𝛾 and rulings given by vertical lines.

Example 4.95: Möbius band

The Möbius band is a ruled surface with chart

𝜎𝜎𝜎 = 𝛾𝛾𝛾 (𝑢) + 𝑣a(𝑢) , 𝑢 ∈ (0, 2𝜋), 𝑣 ∈ (−12,
1
2) ,

where
𝛾𝛾𝛾 (𝑢) = (cos(𝑢), sin(𝑢), 0)

is the unit circle and
a = (− sin (𝑢2) cos(𝑢), − sin (𝑢2) sin(𝑢), cos (

𝑢
2))

is a vector which does a full rotation while going around the unit circle 𝛾𝛾𝛾 . This is shown in Figure 4.18.

4.10.4 Surfaces of Revolution

Surfaces of revolution are obtained by rotating a curve about the 𝑧-axis.
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Figure 4.18: The Möbius band is a ruled surface with base curve 𝛾𝛾𝛾 and rulings given by rotating vertical lines.

Definition 4.96: Surface of revolution

Let 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 be a smooth curve in the (𝑥, 𝑧)-plane, that is,
𝛾𝛾𝛾 (𝑢) = (𝑓 (𝑢), 0, 𝑔(𝑢)) .

Suppose that 𝑓 > 0. The surface obtained by rotating 𝛾𝛾𝛾 about the 𝑧-axis is called surface of revolution.
A chart for 𝒮 is given by

𝜎𝜎𝜎(𝑢, 𝑣) ∶= (𝑓 (𝑢) cos(𝑣), 𝑓 (𝑢) sin(𝑣), 𝑔(𝑢)) , 𝑢 ∈ (𝑎, 𝑏) , 𝑣 ∈ [0, 2𝜋) .

Proposition 4.97

A surface of revolution is regular if and only if 𝛾𝛾𝛾 is regular.
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Proof

We have

𝜎𝜎𝜎𝑢 = ( ̇𝑓 (𝑢) cos(𝑣), ̇𝑓 (𝑢) sin(𝑣), 𝑔̇(𝑢)) ,
𝜎𝜎𝜎 𝑣 = (−𝑓 (𝑢) sin(𝑣), 𝑓 (𝑢) cos(𝑣), 0) .

Therefore
𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = (𝑓 𝑔̇ cos(𝑣), − ̇𝑓 𝑔 sin(𝑣), 𝑓 ̇𝑓 )

and
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖2 = 𝑓 2 ( ̇𝑓 2 + 𝑔̇2) = 𝑓 2 ‖𝛾𝛾𝛾 ‖2 .

Recall that 𝑓 > 0 by definition, so that 𝑓 2 ≠ 0. Therefore 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent if and only
if 𝛾𝛾𝛾 is regular.

Example 4.98: Catenoid

The catenoid is the surface of revolution obtained by rotating the catenary about the 𝑧-axis, see Figure 4.19.
Recall that the catenary function is defined by

𝑓 (𝑢) = cosh(𝑢) .
Therefore the catenoid is obtained by rotating

𝛾𝛾𝛾 (𝑢) = (cosh(𝑢), 0, 𝑢) .
A chart for the catenoid is given by

𝜎𝜎𝜎(𝑢, 𝑣) = (cosh(𝑢) cos(𝑣), cosh(𝑢) sin(𝑣), 𝑢) ,
where 𝑢 ∈ ℝ and 𝑣 ∈ [0, 2𝜋). Note that 𝑓 > 0 and

̇𝛾𝛾𝛾 = (sinh(𝑢), 0, 1) , ‖ ̇𝛾𝛾𝛾 ‖2 = 1 + sinh(𝑢)2 ≥ 1 .
Therefore 𝛾𝛾𝛾 is regular. By Proposition 4.97 we conclude that the catenoid is a regular surface.

4.11 First fundamental form

In this section we introduce the first fundamental form of a surface. This will allow us to compute:

• Inner product between tangent vectors
• Angle between tangent vectors
• Area of surface regions
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Figure 4.19: The Catenoid is the surface of revolution obtained by rotating the catenary about the 𝑧-axis.

Moreover we can compute

• Length of curves on a surface
• Angle between curves on a surface

4.11.1 Length on surfaces

Let 𝒮 be a surface and consider two points p,q ∈ 𝒮 . The euclidean distance between p and q is

‖p − q‖ .
However this measures the length of the straight segment which connects p to q. We are interested in
measuring the distance on 𝒮 . A way to measure such distance is the following: Suppose

𝛾𝛾𝛾 ∶ (𝑡0, 𝑡1) → 𝒮
is a smooth curve such that

𝛾𝛾𝛾 (𝑡0) = p , 𝛾𝛾𝛾 (𝑡1) = q .
The distance between p and q on 𝒮 is the length of 𝛾𝛾𝛾 , i.e.,

∫
𝑡1

𝑡0
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 .
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Question 4.99

How do we compute the above integral?

Since 𝛾𝛾𝛾 (𝑡) ∈ 𝒮 , by definition we have
̇𝛾𝛾𝛾 (𝑡) ∈ 𝑇x𝑆 , x ∶= 𝛾𝛾𝛾 (𝑡) .

Therefore, computing ‖ ̇𝛾𝛾𝛾 (𝑡)‖ is equivalent to computing the length of tangent vectors. This motivates the
definition of first fundamental form.

Definition 4.100: First fundamental form

Let 𝒮 be a regular surface and p ∈ 𝒮 . The first fundamental form of 𝒮 at p is the bilinear symmetric
map

𝐼p∶ 𝑇p𝒮 × 𝑇p𝒮 → ℝ , 𝐼p(v,w) ∶= v ⋅w .

Three observations:

• The first fundamental form of 𝒮 at p is the map obtained by restricting the scalar product of ℝ3 to 𝑇p𝒮 .

• Note that
𝐼p(v, v) = ‖v‖2 ,

so that 𝐼p can be used to compute the length of tangent vectors.

• The definition of 𝐼p does not depend on a chosen chart.

To use the first fundamental form in practice, we need to express 𝐼p in terms of local charts. To this end, we
first define the coordinates functions 𝑑𝑢 and 𝑑𝑣 on 𝑇p𝑆.

Definition 4.101: Coordinate functions on tangent plane

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart of 𝒮 . For each p ∈ 𝜎𝜎𝜎(𝑈 ) we have

𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } ,
where 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are evaluated at the point (𝑢0, 𝑣0) ∈ 𝑈 such that

𝜎𝜎𝜎(𝑢0, 𝑣0) = p .
Therefore, for each v ∈ 𝑇p𝒮 , there exist 𝜆, 𝜇 ∈ ℝ such that

v = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 .
The coordinate functions on 𝑇p𝒮 are the linear maps

𝑑𝑢, 𝑑𝑣 ∶ 𝑇p𝒮 → ℝ , 𝑑𝑢(v) ∶= 𝜆 , 𝑑𝑣(v) ∶= 𝜇 .
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Definition 4.102: First fundamental form of a chart

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart of 𝒮 . Define the functions

𝐸, 𝐹 , 𝐺 ∶ 𝑈 → ℝ
by setting

𝐸 ∶= 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 , 𝐹 ∶= 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 , 𝐺 ∶= 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 .
Let p ∈ 𝜎𝜎𝜎(𝑈 ) and denote by (𝑢0, 𝑣0) ∈ 𝑈 the point such that

𝜎𝜎𝜎(𝑢0, 𝑣0) = p .
The first fundamental form of 𝜎𝜎𝜎 at p is the quadratic form

ℱ1∶ 𝑇p𝒮 → ℝ
defined by

ℱ1(v) ∶= 𝐸 𝑑𝑢2(v) + 2𝐹 𝑑𝑢(v) 𝑑𝑣(v) + 𝐺 𝑑𝑣2(v) , (4.3)

for all v ∈ 𝑇p𝒮 , where 𝐸, 𝐹 , 𝐺 are evaluated at (𝑢0, 𝑣0).

We usually omit the dependence on v in (4.3), and write

ℱ1 = 𝐸 𝑑𝑢2 + 2𝐹 𝑑𝑢 𝑑𝑣 + 𝐺 𝑑𝑣2 .
The quadratic form ℱ1 is related to 𝐼p in the following way.

Proposition 4.103

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart of 𝒮 , and p ∈ 𝜎𝜎𝜎(𝑈 ). Then

𝐼p(v,w) = (𝑑𝑢(v), 𝑑𝑣(v)) ( 𝐸 𝐹
𝐹 𝐺 ) (𝑑𝑢(w), 𝑑𝑣(w))𝑇 ,

for all v,w ∈ 𝑇p𝒮 . In particular, ℱ1 is the quadratic form associated to the symmetric bilinear form 𝐼p,
that is,

ℱ1(v) = 𝐼p(v, v) , ∀ v ∈ 𝑇p𝒮 .

Proof

By Theorem 4.75 we have
𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } .
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Therefore, for v,w ∈ 𝑇p𝒮 , there exist 𝜆1, 𝜆2, 𝜇1, 𝜇2 ∈ ℝ such that

v = 𝜆1𝜎𝜎𝜎𝑢 + 𝜇1𝜎𝜎𝜎 𝑣 , w = 𝜆2𝜎𝜎𝜎𝑢 + 𝜇2𝜎𝜎𝜎 𝑣 .
We have

𝐼p(v,w) = v ⋅w
= 𝜆1𝜆2 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 + (𝜆1𝜇2 + 𝜆2𝜇1)𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 + 𝜇1𝜇2 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣
= 𝐸 𝑑𝑢(v)𝑑𝑢(w) + 𝐹 (𝑑𝑢(v) 𝑑𝑣(w) + 𝑑𝑢(w)𝑑𝑣(v))

+ 𝐺 𝑑𝑣(v)𝑑𝑣(w)
= (𝑑𝑢(v), 𝑑𝑣(v)) ( 𝐸 𝐹

𝐹 𝐺 ) (𝑑𝑢(w), 𝑑𝑣(w))𝑇 .

The fact that
𝐼p(v, v) = ℱ1(v)

follows from the first part of the statement and definition of ℱ1.

Remark 4.104: Linear algebra interpretation

Using linear algebra, Proposition 4.103 has a clear interpretation, as follows. 𝐼p is a symmetric bilinear
form on the vector space 𝑇p𝒮 . Fixing the basis {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } for 𝑇p𝒮 , we can represent 𝐼p via the matrix

𝑀 ∶= ( 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎𝑢) 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 )
𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎𝑢) 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎 𝑣 ) )

= ( 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣
𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎𝑢 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 )

= ( 𝐸 𝐹
𝐹 𝐺 ) ,

where we used that 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎𝑢 .

Notation

With a little abuse of notation, we also denote by ℱ1 the 2 × 2 matrix

ℱ1 ∶= ( 𝐸 𝐹
𝐹 𝐺 ) .
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Remark 4.105: First fundamental form and reparametrizations

The first fundamental form 𝐼p depends only on the surface 𝒮 and the point p. Instead the representation
of 𝐼p

ℱ1 = 𝐸 𝑑𝑢2 + 2𝐹 𝑑𝑢𝑑𝑣 + 𝐺 𝑑𝑣2
depends on the choice of chart 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3. Indeed suppose that 𝜎̃𝜎𝜎 ∶ 𝑈 → ℝ3 is a reparametrization of 𝜎𝜎𝜎 ,
that is,

𝜎̃𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ ,
where Φ∶ 𝑈 → 𝑈 is a diffeomorphism. Recall that we denote the components Φ1 and Φ2 of Φ by

(𝑢̃, ̃𝑣 ) ↦ 𝑢(𝑢̃, ̃𝑣 ) , (𝑢̃, ̃𝑣 ) ↦ 𝑣(𝑢̃, ̃𝑣 ) ,
respectively. The Jacobian of Φ is then

𝐽Φ = (
𝜕𝑢
𝜕𝑢̃

𝜕𝑢
𝜕 ̃𝑣𝜕𝑣

𝜕𝑢̃
𝜕𝑣
𝜕 ̃𝑣

) .

Denote the first fundamental form of 𝜎̃𝜎𝜎 by

ℱ̃1 = 𝐸 𝑑𝑢̃2 + 2𝐹 𝑑𝑢̃𝑑 ̃𝑣 + 𝐺 𝑑 ̃𝑣2 .
The linear maps 𝑑𝑢, 𝑑𝑣 and 𝑑𝑢̃, 𝑑 ̃𝑣 are related by

𝑑𝑢 = 𝜕𝑢
𝜕𝑢̃ 𝑑𝑢̃ + 𝜕𝑢

𝜕 ̃𝑣 𝑑 ̃𝑣 , 𝑑𝑣 = 𝜕𝑣
𝜕𝑢̃ 𝑑𝑢̃ + 𝜕𝑣

𝜕 ̃𝑣 𝑑 ̃𝑣 (4.4)

Moreover the matrices of ℱ1 and ℱ̃1 are related by

( 𝐸 𝐹
𝐹 𝐺 ) = (𝐽Φ)𝑇 ( 𝐸 𝐹

𝐹 𝐺 ) 𝐽Φ . (4.5)

The proof of the above statements follows by basic linear algebra: The pairs {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎𝑢} and
{𝜎̃𝜎𝜎 𝑢̃ , 𝜎̃𝜎𝜎 ̃𝑣 } are bases for the vector space 𝑇p𝒮 . The change of basis matrix is given exactly by
𝐽Φ. Therefore formulas (4.4) and (4.5) are consequence of change of basis results for linear
maps and bilinear forms, respectively.

Let us compute the first fundamental form of a plane and of a cylinder.

Example 4.106: Plane

Let a,p,q ∈ ℝ3. Suppose that p and q are orthonormal vectors, that is,

‖p‖ = ‖q‖ = 1 , p ⋅ q = 0 .
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Consider the plane with chart

𝜎𝜎𝜎(𝑢, 𝑣) = a + 𝑢p + 𝑣q , (𝑢, 𝑣) ∈ ℝ2 .
Prove that the first fundamental form of 𝜎𝜎𝜎 is

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 .

We have
𝜎𝜎𝜎𝑢 = p , 𝜎𝜎𝜎 𝑣 = q

and therefore

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = ‖p‖2 = 1
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = p ⋅ q = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = ‖q‖2 = 1

Then the first fundamental form is

ℱ1 = 𝐸 𝑑𝑢2 + 2𝐹 𝑑𝑢 𝑑𝑣 + 𝐺 𝑑𝑣2 = 𝑑𝑢2 + 𝑑𝑣2 .

Two remarks concerning Example 4.106 :

• The above example should not be surprising, since distances on a plane are the same as Euclidean
distances, given that straight segments are contained in the plane.

• If we drop the assumption of p and q being orthonormal, then

ℱ1 = ‖p‖2 𝑑𝑢2 + p ⋅ q 𝑑𝑢 𝑑𝑣 + ‖q‖2 𝑑𝑣2 .
Again, this is not surprising, due to Remark 4.105.

Example 4.107: Unit cylinder

Consider the unit cylinder with chart

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) , (𝑢, 𝑣) ∈ (0, 2𝜋) × ℝ .
Prove that the first fundamental form of 𝜎𝜎𝜎 is

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 .

We have
𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑢), 0) , 𝜎𝜎𝜎 𝑣 = (0, 0, 1) ,
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and therefore

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 1
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 1

Then the first fundamental form is

ℱ1 = 𝐸 𝑑𝑢2 + 2𝐹 𝑑𝑢 𝑑𝑣 + 𝐺 𝑑𝑣2 = 𝑑𝑢2 + 𝑑𝑣2 .

Remark 4.108

We have seen that a plane and the unit cylinder have the same first fundamental form

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 .
Therefore lengths are the same on the two surfaces.

4.11.2 Length of curves

Let us show how the first fundamental form allows to compute the length of curves with values on surfaces.

Proposition 4.109

Let 𝒮 be a regular surface with chart 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3. Suppose
𝛾𝛾𝛾 ∶ (𝑡0, 𝑡1) → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮

is a smooth curve. Then
𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) ,

for some smooth functions 𝑢, 𝑣 ∶ (𝑡0, 𝑡1) → ℝ and

∫
𝑡1

𝑡0
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 = ∫

𝑡1

𝑡0
√𝐸 ̇𝑢2 + 2𝐹 ̇𝑢 ̇𝑣 + 𝐺 ̇𝑣2 𝑑𝑡 ,

where ̇𝑢, ̇𝑣 are computed at 𝑡 , and 𝐸, 𝐹 , 𝐺 are computed at (𝑢(𝑡), 𝑣(𝑡)).
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Proof

Since 𝛾𝛾𝛾 takes values into 𝜎𝜎𝜎(𝑈 ), by Lemma 4.74 there exist smooth functions 𝑢, 𝑣 such that

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) , ∀ 𝑡 ∈ (𝑡0, 𝑡1) .
By chain rule we have

̇𝛾𝛾𝛾 (𝑡) = ̇𝑢(𝑡)𝜎𝜎𝜎𝑢(𝑢(𝑡), 𝑣(𝑡)) + ̇𝑣(𝑡)𝜎𝜎𝜎 𝑣 (𝑢(𝑡), 𝑣(𝑡)) .
The above means that the coefficients of ̇𝛾𝛾𝛾 with respect to the basis {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } are ̇𝑢, ̇𝑣 , i.e.,

𝑑𝑢(𝑑𝑔) = ̇𝑢 , 𝑑𝑣( ̇𝛾𝛾𝛾 ) = ̇𝑣 .
By Proposition 4.103 we get

‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = ̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾
= 𝐼p( ̇𝛾𝛾𝛾 , ̇𝛾𝛾𝛾 )
= 𝐸 𝑑𝑢( ̇𝛾𝛾𝛾 )2 + 2𝐹 𝑑𝑢( ̇𝛾𝛾𝛾 )𝑑𝑣(𝛾𝛾𝛾 ) + 𝐺 𝑑𝑣( ̇𝛾𝛾𝛾 )2
= 𝐸 ̇𝑢2 + 2𝐹 ̇𝑢 ̇𝑣 + 𝐺 ̇𝑣2 ,

concluding the proof.

Example 4.110: Cone

Consider the cone with chart
𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢 cos(𝑣), 𝑢 sin(𝑣), 𝑢) ,

where 𝑢 > 0 and 𝑣 ∈ [0, 2𝜋].

1. Prove that the first fundamental form of 𝜎𝜎𝜎 is

ℱ1 = 2 𝑑𝑢2 + 𝑢2 𝑑𝑣2 .

2. Let 𝛾𝛾𝛾 (𝑡) ∶= 𝜎𝜎𝜎(𝑡, 𝑡). Show that

∫
𝜋

𝜋/2
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 = ∫

𝜋

𝜋/2
√2 + 𝑡2 𝑑𝑡 .

We have
𝜎𝜎𝜎𝑢 = (cos(𝑣), sin(𝑣), 1) , 𝜎𝜎𝜎 𝑣 = (−𝑢 sin(𝑣), 𝑢 cos(𝑣), 0) .

Therefore

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = cos2(𝑣) + sin2(𝑣) + 1 = 2
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = −𝑢 cos(𝑣) sin(𝑣) + 𝑢 cos(𝑣) sin(𝑣) = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 𝑢2 sin2(𝑣) + 𝑢2 cos2(𝑣) = 𝑢2
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The first fundamental form of 𝜎𝜎𝜎 is

ℱ1 = 2 𝑑𝑢2 + 𝑢2 𝑑𝑣2 .
Concering the curve 𝛾𝛾𝛾 , we have

𝛾𝛾𝛾 (𝑡) ∶= 𝜎𝜎𝜎(𝑡, 𝑡) ,
so that

𝑢(𝑡) = 𝑡 , 𝑣(𝑡) = 𝑡 .
In particular

̇𝑢 = 1 , ̇𝑣 = 1
and

𝐸(𝑢(𝑡), 𝑣(𝑡)) = 𝐸(𝑡, 𝑡) = 2
𝐹(𝑢(𝑡), 𝑣(𝑡)) = 𝐹(𝑡, 𝑡) = 0
𝐺(𝑢(𝑡), 𝑣(𝑡)) = 𝐺(𝑡, 𝑡) = 𝑡2 .

By Proposition 4.109 we have

∫
𝜋

𝜋/2
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 = ∫

𝜋

𝜋/2
√𝐸 ̇𝑢2 + 2𝐹 ̇𝑢 ̇𝑣 + 𝐺 ̇𝑣2 𝑑𝑡

= ∫
𝜋

𝜋/2
√2 + 𝑡2 𝑑𝑡 .

4.11.3 Local isometries

We have seen that a plane 𝜋𝜋𝜋 and a cylinder 𝒞 have the same first fundamental form. This means that scalar
product on the two surfaces is the same, as is the length of curves. In this case we say that 𝜋𝜋𝜋 and 𝒞 are locally
isometric. Let us give a general definition of such concept.

Definition 4.111: Local isometry

Let 𝒮 and 𝒮 be regular surfaces. A local diffeomorphism 𝑓 ∶ 𝒮 → 𝒮 is a local isometry if for all p ∈ 𝒮
the differential 𝑑p𝑓 ∶ 𝑇p𝒮 → 𝑇𝑓 (p)𝒮 satisfies

v ⋅w = 𝑑p𝑓 (v) ⋅ 𝑑p𝑓 (w) , ∀ v,w ∈ 𝑇p𝒮 .

We say that 𝒮 and 𝒮 are locally isometric if there exists a local isometry 𝑓 ∶ 𝒮 → 𝒮 .

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 241

Figure 4.20: Sketch of local isometry 𝑓 between 𝒮 and 𝒮 . The scalar product between tangent vectors v and
w is preserved by 𝑑p𝑓 .

Notation

For brevity we denote
⟨v,w⟩ ∶= v ⋅w , ⟨v,w⟩𝑓 ∶= 𝑑p𝑓 (v) ⋅ 𝑑p𝑓 (w) ,

and also
‖v‖ ∶= √⟨𝑣, 𝑣⟩ , ‖v‖𝑓 ∶= √⟨𝑣, 𝑣⟩𝑓 .

Remark 4.112

A local diffeomorphism 𝑓 ∶ 𝒮 → 𝒮 is a local isometry if and only if

⟨v, v⟩ = ⟨v, v⟩𝑓 , ∀ v ∈ 𝑇p𝒮 .

The proof follows from the elementary identity

v ⋅w = 1
2 ((v +w) ⋅ (v +w) − v ⋅ v −w ⋅w) ,

which holds for all v,w ∈ 𝑇p𝒮 (and more in general in arbitrary vector spaces with inner
product).

Local isometries preserve the length of curves, as shown in the following proposition.
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Proposition 4.113

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 be a local diffeomorphism. They are equivalent:

1. 𝑓 is a local isometry
2. Let 𝛾𝛾𝛾 be a curve in 𝒮 and consider the curve ̃𝛾𝛾𝛾 = 𝑓 ∘ 𝛾𝛾𝛾 on 𝒮 . Then 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 have the same length.

Proof

Part 1. Suppose 𝛾𝛾𝛾 ∶ (𝑡0, 𝑡1) → 𝒮 is a smooth curve. Consider the smooth curve ̃𝛾𝛾𝛾 ∶= 𝑓 ∘ 𝛾𝛾𝛾 ∶ (𝑡0, 𝑡1) → 𝒮 .
Setting p ∶= 𝛾𝛾𝛾 (𝑡), by definition of differential of a function between surfaces we have

̇̃𝛾𝛾𝛾 (𝑡) = 𝑑𝑓p( ̇𝛾𝛾𝛾 (𝑡)) .
Hence

‖ ̇̃𝛾𝛾𝛾 (𝑡)‖2 = ̇̃𝛾𝛾𝛾 (𝑡) ⋅ ̇̃𝛾𝛾𝛾 (𝑡)
= 𝑑𝑓p( ̇𝛾𝛾𝛾 (𝑡)) ⋅ 𝑑𝑓p( ̇𝛾𝛾𝛾 (𝑡))
= ̇𝛾𝛾𝛾 (𝑡) ⋅ ̇𝛾𝛾𝛾 (𝑡)
= ‖ ̇𝛾𝛾𝛾 (𝑡)‖2

where in the second last inequality we used that 𝑓 is a local isometry. Therefore 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 have the same
length:

∫
𝑡1

𝑡0
‖ ̇̃𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 = ∫

𝑡1

𝑡0
‖ ̇𝛾𝛾𝛾 (𝑡)‖ 𝑑𝑡 .

Part 2. Let v ∈ 𝑇p𝒮 . Then there exists a curve 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮 such that

𝛾𝛾𝛾 (0) = p , ̇𝛾𝛾𝛾 (0) = v .
Define the curve ̃𝛾𝛾𝛾 ∶= 𝑓 ∘ 𝛾𝛾𝛾 ∶ (−𝜀, 𝜀) → 𝒮 . By assumption 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 have the same length, that is,

∫
𝜀

−𝜀 √
̇̃𝛾𝛾𝛾 (𝑡) ⋅ ̇̃𝛾𝛾𝛾 (𝑡) 𝑑𝑡 = ∫

𝜀

−𝜀 √
̇𝛾𝛾𝛾 (𝑡) ⋅ ̇𝛾𝛾𝛾 (𝑡) 𝑑𝑡 .

Since the above is true for each 𝜀 > 0, we infer

̇̃𝛾𝛾𝛾 (0) ⋅ ̇̃𝛾𝛾𝛾 (0) = ̇𝛾𝛾𝛾 (0) ⋅ ̇𝛾𝛾𝛾 (0) .
Recall that by definition of differential we have

𝑑𝑓p(v) = ̇̃𝛾𝛾𝛾 (0) .
Therefore

𝑑𝑓p(v) ⋅ 𝑑𝑓p(v) = ̇̃𝛾𝛾𝛾 (0) ⋅ ̇̃𝛾𝛾𝛾 (0)
= ̇𝛾𝛾𝛾 (0) ⋅ ̇𝛾𝛾𝛾 (0)
= v ⋅ v .
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As v was arbitrary, we showed that

𝑑𝑓p(v) ⋅ 𝑑𝑓p(v) = v ⋅ v , ∀ v ∈ 𝑇p(𝒮 ) .
Thanks to Remark 4.112 we conclude that 𝑓 is a local isometry.

We have seen that local isometries preserve the length of curves. It also happen that they preserve the first
fundamental form.

Theorem 4.114

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 be a local diffeomorphism. They are equivalent:

1. 𝑓 is a local isometry.
2. Let 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 be a regular chart of 𝒮 and consider the chart of 𝒮 given by

𝜎̃𝜎𝜎 = 𝑓 ∘ 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 .
Then 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 have the same first fundamental form, that is,

𝐸 = 𝐸 , 𝐹 = 𝐹 , 𝐺 = 𝐺 ,
where

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 , 𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 , 𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 ,
𝐸 = 𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎𝑢 , 𝐹 = 𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎 𝑣 , 𝐺 = 𝜎̃𝜎𝜎 𝑣 ⋅ 𝜎̃𝜎𝜎 𝑣 .

Proof

Part 1. Suppose that 𝑓 is a local isometry, that is,

v ⋅w = 𝑑p𝑓 (v) ⋅ 𝑑p𝑓 (w) , ∀ v,w ∈ 𝑇p𝒮 .

Let 𝜎𝜎𝜎 be a chart for 𝒮 at p. Define 𝜎̃𝜎𝜎 = 𝑓 ∘𝜎𝜎𝜎 . By Proposition 4.69, 𝜎̃𝜎𝜎 is a regualar chart of 𝒮 at 𝑓 (p). Now,
recall the statement of Proposition 4.83: if

𝜎̃𝜎𝜎(𝛼(𝑢, 𝑣), 𝛽(𝑢, 𝑣)) = 𝑓 (𝜎𝜎𝜎(𝑢, 𝑣)) ,
for some smooth maps

𝛼, 𝛽 ∶ 𝑈 → 𝑈 ,
then the matrix of 𝑑p𝑓 with respect to the basis

{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } of 𝑇p𝒮 , {𝜎̃𝜎𝜎𝑢 , 𝜎̃𝜎𝜎 𝑣 } of 𝑇𝑓 (p)𝒮 ,
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is given by

𝑑p𝑓 = ( 𝛼𝑢 𝛼𝑣
𝛽𝑢 𝛽𝑣 ) .

In our case, we have 𝑈 = 𝑈 and
𝜎̃𝜎𝜎(𝑢, 𝑣) = 𝑓 (𝜎𝜎𝜎(𝑢, 𝑣)) ,

so that
𝛼(𝑢, 𝑣) = 𝑢 , 𝛽(𝑢, 𝑣) = 𝑣 .

Therefore

𝑑p𝑓 = ( 𝛼𝑢 𝛼𝑣
𝛽𝑢 𝛽𝑣 ) = ( 1 0

0 1 ) ,
which means that

𝑑p𝑓 (𝜎𝜎𝜎𝑢) = 1 ⋅ 𝜎̃𝜎𝜎𝑢 + 0 ⋅ 𝜎̃𝜎𝜎 𝑣 = 𝜎̃𝜎𝜎𝑢
𝑑p𝑓 (𝜎𝜎𝜎 𝑣 ) = 0 ⋅ 𝜎̃𝜎𝜎𝑢 + 1 ⋅ 𝜎̃𝜎𝜎 𝑣 = 𝜎̃𝜎𝜎 𝑣

Usingg that 𝑓 is a local isometry we get To this end, note that

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 𝑑p𝑓 (𝜎𝜎𝜎𝑢) ⋅ 𝑑p𝑓 (𝜎𝜎𝜎𝑢)
= 𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎𝑢 = 𝐸 .

Simlarly, we obtain also

𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 𝑑p𝑓 (𝜎𝜎𝜎𝑢) ⋅ 𝑑p𝑓 (𝜎𝜎𝜎 𝑣 )
= 𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎 𝑣 = 𝐹 ,

and

𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 𝑑p𝑓 (𝜎𝜎𝜎 𝑣 ) ⋅ 𝑑p𝑓 (𝜎𝜎𝜎 𝑣 )
= 𝜎̃𝜎𝜎 𝑣 ⋅ 𝜎̃𝜎𝜎 𝑣 = 𝐺 ,

showing that 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 have the same first fundamental form.
Part 2. Define 𝜎̃𝜎𝜎 = 𝑓 ∘ 𝜎𝜎𝜎 and suppose that 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 have the same first fundamental form. In particular
they hold

𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎𝑢
𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎 𝑣
𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 𝜎̃𝜎𝜎 𝑣 ⋅ 𝜎̃𝜎𝜎 𝑣

As discussed above, since 𝜎̃𝜎𝜎 = 𝑓 ∘ 𝜎𝜎𝜎 , by Proposition 4.83 we get

𝑑p𝑓 (𝜎𝜎𝜎𝑢) = 𝜎̃𝜎𝜎𝑢 , 𝑑p𝑓 (𝜎𝜎𝜎 𝑣 ) = 𝜎̃𝜎𝜎 𝑣 .
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Let v ∈ 𝑇p𝒮 . Since {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } is a basis for 𝑇p𝒮 we get

v = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣
for some 𝜆, 𝜇 ∈ ℝ. Therefore

𝑑p𝑓 (v) = 𝑑p𝑓 (𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 )
= 𝜆 𝑑p𝑓 (𝜎𝜎𝜎𝑢) + 𝜇 𝑑p𝑓 (𝜎𝜎𝜎 𝑣 )
= 𝜆𝜎̃𝜎𝜎𝑢 + 𝜇𝜎̃𝜎𝜎 𝑣 .

Hence

v ⋅ v = (𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 ) ⋅ (𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 )
= 𝜆2(𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 ) + 2𝜆𝜇(𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 ) + 𝜇2(𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 )
= 𝜆2(𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎𝑢) + 2𝜆𝜇(𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎 𝑣 ) + 𝜇2(𝜎̃𝜎𝜎 𝑣 ⋅ 𝜎̃𝜎𝜎 𝑣 )
= (𝜆𝜎̃𝜎𝜎𝑢 + 𝜇𝜎̃𝜎𝜎 𝑣 ) ⋅ (𝜆𝜎̃𝜎𝜎𝑢 + 𝜇𝜎̃𝜎𝜎 𝑣 )
= 𝑑p𝑓 (v) ⋅ 𝑑p𝑓 (v) ,

showing that
v ⋅ v = 𝑑p𝑓 (v) ⋅ 𝑑p𝑓 (v) , ∀ v ∈ 𝑇p𝒮 .

By Remark 4.112 we conclude that 𝑓 is a local isometry.

4.11.4 Angles on surfaces

We want to define the notion of angle between tangent vectors.

Definition 4.115: Angle between tangent vectors

Let 𝒮 be a regular surface and p ∈ 𝒮 . The angle between two vectors v,w ∈ 𝑇p𝒮 is defined as the
number 𝜃 such that

cos(𝜃) = v ⋅w
‖v‖ ‖w‖ .

The angle between tangent vectors can be computed in terms of local charts.
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Figure 4.21: Sketch of angle 𝜃 between two vectors v,w in 𝑇p𝒮 .

Proposition 4.116

Let 𝒮 be a regular surface and 𝜎𝜎𝜎 a regular chart at p. Let v,w ∈ 𝑇p𝒮 . Then

cos(𝜃) = 𝐸𝜆𝜆̃ + 𝐹(𝜆𝜇̃ + 𝜆̃𝜇) + 𝐺𝜇𝜇̃
(𝐸𝜆2 + 2𝐹𝜆𝜇 + 𝐺𝜇2)1/2(𝐸𝜆̃2 + 2𝐹 𝜆̃𝜇̃ + 𝐺𝜇̃2)1/2

,

where 𝜆, 𝜇, 𝜆̃, 𝜇̃ ∈ ℝ are such that

v = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 , w = 𝜆̃𝜎𝜎𝜎𝑢 + 𝜇̃𝜎𝜎𝜎 𝑣 .

Proof

By definition the angle between v and w is

cos(𝜃) = v ⋅w
‖v‖ ‖w‖ . (4.6)

The vectors {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } form a basis of 𝑇p𝒮 . Therefore

v = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 , w = 𝜆̃𝜎𝜎𝜎𝑢 + 𝜇̃𝜎𝜎𝜎 𝑣 .
for some 𝜆, 𝜇, 𝜆̃, 𝜇̃ ∈ ℝ. Hence, the coordinates of v and w with respect to the basis {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } are

v = (𝜆, 𝜇) , w = (𝜆̃, 𝜇̃) .
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By Proposition 4.103 we get

v ⋅w = 𝐼p(v,w)
= (𝜆, 𝜇) ( 𝐸 𝐹

𝐹 𝐺 ) (𝜆̃, 𝜇̃)𝑇

= 𝐸𝜆𝜆̃ + 𝐹(𝜆𝜇̃ + 𝜆̃𝜇) + 𝐺𝜇𝜇̃ .
Similarly, we obtain

‖v‖2 = v ⋅ v = 𝐸𝜆2 + 2𝐹𝜆𝜇 + 𝐺𝜇2
‖w‖2 = w ⋅w = 𝐸𝜆̃2 + 2𝐹 𝜆̃𝜇̃ + 𝐺𝜇̃2 .

Substituting in (4.6) we conclude.

4.11.5 Angle between curves

Since tangent vectors are derivatives of curves with values in 𝒮 , it also makes sense to define the angle
between two intersecting curves.

Definition 4.117: Angle between curves

Let 𝒮 be a regular surface and suppose to have two curves

𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 , ̃𝛾𝛾𝛾 ∶ (𝑎̃, 𝑏̃) → 𝒮
such that

𝛾𝛾𝛾 (𝑡0) = p , ̃𝛾𝛾𝛾 ( ̃𝑡0) = p .
Then

̇𝛾𝛾𝛾 (𝑡0) , ̇̃𝛾𝛾𝛾 ( ̃𝑡0) ∈ 𝑇p𝒮 .
The angle 𝜃 between 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 is the angle between ̇𝛾𝛾𝛾 (𝑡0) and ̇̃𝛾𝛾𝛾 ( ̃𝑡0), that is,

cos(𝜃) = ̇𝛾𝛾𝛾 ⋅ ̇̃𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 ‖ ‖ ̇̃𝛾𝛾𝛾 ‖ ,

where ̃𝛾𝛾𝛾 is evaluated at 𝑡0 and ̇̃𝛾𝛾𝛾 at ̃𝑡0.
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Figure 4.22: Sketch of angle 𝜃 between two curves 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 on 𝒮 .

Proposition 4.118

Let 𝒮 be a regular surface and 𝜎𝜎𝜎 a regular chart at p. Suppose given two curves

𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 , ̃𝛾𝛾𝛾 ∶ (𝑎̃, 𝑏̃) → 𝒮
such that

𝛾𝛾𝛾 (𝑡0) = p , ̃𝛾𝛾𝛾 ( ̃𝑡0) = p .
The angle between 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 is

cos(𝜃) = 𝐸 ̇𝑢 ̇𝑢̃ + 𝐹( ̇𝑢 ̇̃𝑣 + ̇𝑢̃ ̇𝑣 ) + 𝐺 ̇𝑣 ̇̃𝑣
(𝐸 ̇𝑢2 + 2𝐹 ̇𝑢 ̇𝑣 + 𝐺 ̇𝑣2)1/2(𝐸 ̇𝑢̃2 + 2𝐹 ̇𝑢̃ ̇̃𝑣 + 𝐺 ̇̃𝑣2)1/2

,

where 𝑢, 𝑣 , 𝑢̃, ̃𝑣 are smooth functions such that

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) , ̃𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢̃(𝑡), ̃𝑣 (𝑡)) .
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Proof

By definition the angle between 𝛾𝛾𝛾 and ̃𝛾𝛾𝛾 is

cos(𝜃) = ̇𝛾𝛾𝛾 ⋅ ̇̃𝛾𝛾𝛾
‖ ̇𝛾𝛾𝛾 ‖ ‖ ̇̃𝛾𝛾𝛾 ‖ . (4.7)

As 𝛾𝛾𝛾 , ̃𝛾𝛾𝛾 are smooth curves with values in 𝒮 , by Lemma 4.74 there exist smooth functions 𝑢, 𝑣 , 𝑢̃, ̃𝑣 such
that

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) , ̃𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢̃(𝑡), ̃𝑣 (𝑡)) .
Differentiating the above expressions we obtain

̇𝛾𝛾𝛾 = ̇𝑢𝜎𝜎𝜎𝑢 + ̇𝑣𝜎𝜎𝜎 𝑣 , ̇̃𝛾𝛾𝛾 = ̇𝑢̃𝜎𝜎𝜎𝑢 + ̇̃𝑣𝜎𝜎𝜎 𝑣 .
Therefore the coordinates of ̇𝛾𝛾𝛾 and ̇̃𝛾𝛾𝛾 with respect to the basis {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } of 𝑇p𝒮 are

̇𝛾𝛾𝛾 = ( ̇𝑢, ̇𝑣 ) , ̇̃𝛾𝛾𝛾 = ( ̇𝑢̃, ̇̃𝑣 ) .
By Proposition 4.103 we get

̇𝛾𝛾𝛾 ⋅ ̇̃𝛾𝛾𝛾 = 𝐼p( ̇𝛾𝛾𝛾 , ̇̃𝛾𝛾𝛾 )
= ( ̇𝑢, ̇𝑣 ) ( 𝐸 𝐹

𝐹 𝐺 ) ( ̇𝑢̃, ̇̃𝑣 )𝑇

= 𝐸 ̇𝑢 ̇𝑢̃ + 𝐹( ̇𝑢 ̇̃𝑣 + ̇𝑢̃ ̇𝑣 ) + 𝐺 ̇𝑣 ̇̃𝑣 .
Similarly, we obtain

‖ ̇𝛾𝛾𝛾 ‖2 = ̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 = 𝐸 ̇𝑢2 + 2𝐹 ̇𝑢 ̇𝑣 + 𝐺 ̇𝑣2
‖ ̇̃𝛾𝛾𝛾 ‖2 = ̇̃𝛾𝛾𝛾 ⋅ ̇̃𝛾𝛾𝛾 = 𝐸 ̇𝑢̃2 + 2𝐹 ̇𝑢̃ ̇̃𝑣 + 𝐺 ̇̃𝑣2 .

Substituting in (4.7) we conclude.

4.11.6 Conformal maps

Local isometries are maps which preserve the scalar product of tangent vectors. We want to consider maps
which preserve the angle of tangent vectors. These will be called conformal maps.

Definition 4.119: Conformal map

Let 𝒮 and 𝒮 be regular surfaces. A local diffeomorphism 𝑓 ∶ 𝒮 → 𝒮 is a conformal mapping if for all
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p ∈ 𝒮 and v,w ∈ 𝑇p𝒮 is holds
𝜃 = ̃𝜃 ,

with 𝜃 , ̃𝜃 the angles between v,w and 𝑑p𝑓 (v), 𝑑p𝑓 (w), respectively.

Figure 4.23: Sketch of conformal map 𝑓 between 𝒮 and 𝒮 . The angles between tangent vectors are preserved
by 𝑑p𝑓 .

Remark 4.120

We have that 𝑓 is a conformal map if and only if

⟨v,w⟩
‖v‖ ‖w‖ =

⟨v,w⟩𝑓
‖v‖𝑓 ‖w‖𝑓

, ∀ v,w ∈ 𝑇p𝒮 .

This follows immediately by the definition of angle between tangent vectors.

Proposition 4.121

Let 𝑓 be a local isometry. Then 𝑓 is a conformal map.
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Proof

By definition of local isometry we have

⟨v,w⟩ = ⟨v,w⟩𝑓 , ∀ v,w ∈ 𝑇p𝒮 .
In particular we have

‖v‖2 = ⟨v, v⟩ = ⟨v, v⟩𝑓 = ‖v‖2𝑓 ,
for all v ∈ 𝑇p𝒮 . Therefore

⟨v,w⟩
‖v‖ ‖w‖ =

⟨v,w⟩𝑓
‖v‖𝑓 ‖w‖𝑓

,

showing that 𝑓 is a conformal map.

Therefore every local isometry is a conformal map. The converse is false, as we will show in Example 4.124
below. Before giving the example, let us provide a characterization of conformal maps in terms of the first
fundamental form.

Theorem 4.122

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 a local diffeomorphism. They are equivalent:

1. 𝑓 is a conformal map.
2. There exists a function 𝜆∶ 𝒮 → ℝ such that

⟨v,w⟩𝑓 = 𝜆(p) ⟨v,w⟩ , ∀ v,w ∈ 𝑇p𝒮 .

Proof

Step 1. Suppose 𝑓 is a conformal map, so that

⟨v,w⟩
‖v‖ ‖w‖ =

⟨v,w⟩𝑓
‖v‖𝑓 ‖w‖𝑓

, ∀ v,w ∈ 𝑇p𝒮 . (4.8)

Let {𝛼𝛼𝛼1, 𝛼𝛼𝛼2} be an orthonormal basis for 𝑇p𝒮 , that is,

⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼2⟩ = 0 , ‖𝛼𝛼𝛼1‖ = ‖𝛼𝛼𝛼2‖ = 1 .
Define

𝜆(p) ∶= ⟨𝛼1𝛼1𝛼1, 𝛼1𝛼1𝛼1⟩𝑓 = ‖𝛼1𝛼1𝛼1‖2𝑓 ,
𝜇(p) ∶= ⟨𝛼1𝛼1𝛼1, 𝛼2𝛼2𝛼2⟩𝑓 ,
𝜈(p) ∶= ⟨𝛼2𝛼2𝛼2, 𝛼2𝛼2𝛼2⟩𝑓 = ‖𝛼2𝛼2𝛼2‖2𝑓 .
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By (4.8) we have
⟨𝛼1𝛼1𝛼1, 𝛼2𝛼2𝛼2⟩
‖𝛼1𝛼1𝛼1‖‖𝛼2𝛼2𝛼2‖

=
⟨𝛼1𝛼1𝛼1, 𝛼2𝛼2𝛼2⟩𝑓
‖𝛼1𝛼1𝛼1‖𝑓 ‖𝛼2𝛼2𝛼2‖𝑓

.

Since 𝛼𝛼𝛼1 ⋅ 𝛼𝛼𝛼2 = 0, from the above we get

𝜇(p) = ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼2⟩𝑓 = 0 .
Moreover, since 𝛼𝛼𝛼1 and 𝛼𝛼𝛼2 are orthonormal, the angle between 𝛼𝛼𝛼1 and 𝛼𝛼𝛼1 + 𝛼𝛼𝛼2 is 𝜃 = 𝜋/4. By definition
of angle between vectors, we infer

√2
2 = cos(𝜃) = ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼1 + 𝛼𝛼𝛼2⟩

‖𝛼𝛼𝛼1‖‖𝛼𝛼𝛼1 + 𝛼𝛼𝛼1‖
.

On the other hand, using (4.8) we get

⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼1 + 𝛼𝛼𝛼2⟩
‖𝛼𝛼𝛼1‖‖𝛼𝛼𝛼1 + 𝛼𝛼𝛼1‖

=
⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼1 + 𝛼𝛼𝛼2⟩𝑓
‖𝛼𝛼𝛼1‖𝑓 ‖𝛼𝛼𝛼1 + 𝛼𝛼𝛼2‖𝑓

.

The numerator of the right hand side satisfies

⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼1 + 𝛼𝛼𝛼2⟩𝑓 = ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼1⟩𝑓 + ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼2⟩𝑓
= 𝜆(p) + 𝜇(p)
= 𝜆(p) ,

since 𝜇(p) = 0. Concerning the denominator, we have

‖𝛼𝛼𝛼1 + 𝛼𝛼𝛼2‖2𝑓 = ‖𝛼𝛼𝛼1‖2𝑓 + ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼2⟩𝑓 + ‖𝛼𝛼𝛼2‖2𝑓
= 𝜆(p) + 𝜇(p) + 𝜈(p)
= 𝜆(p) + 𝜈(p) ,

since 𝜇(p) = 0. Putting together the last 4 groups of equations, we obtain

√2
2 = 𝜆

𝜆1/2(𝜆 + 𝜈)1/2 .

Rearraging the above equation yields
𝜆(p) = 𝜈(p) .

Now let v ∈ 𝑇p𝒮 . Since {𝛼𝛼𝛼1, 𝛼𝛼𝛼2} is a basis for 𝑇p𝒮 , there exist 𝑣1, 𝑣2 ∈ ℝ such that

v = 𝑣1𝛼𝛼𝛼1 + 𝑣2𝛼𝛼𝛼2 .
Therefore

⟨v, v⟩ = 𝑣21 ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼1⟩ + 2𝑣1𝑣2 ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼2⟩ + 𝑣22 ⟨𝛼𝛼𝛼2, 𝛼𝛼𝛼2⟩
= 𝑣21 + 𝑣22 ,
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where we used that 𝛼𝛼𝛼1 and 𝛼𝛼𝛼2 are orthonormal. On the other hand,

⟨v, v⟩𝑓 = 𝑣21 ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼1⟩𝑓 + 2𝑣1𝑣2 ⟨𝛼𝛼𝛼1, 𝛼𝛼𝛼2⟩𝑓 + 𝑣22 ⟨𝛼𝛼𝛼2, 𝛼𝛼𝛼2⟩𝑓
= 𝑣21 𝜆(p) + 2𝑣1𝑣2 𝜇(p) + 𝑣22 𝜈(p)
= 𝜆(p) (𝑣21 + 𝑣22 ) ,

where we used that 𝜆(p) = 𝜈(p) and 𝜇(p) = 0. Thus
⟨v, v⟩𝑓 = 𝜆(p) (𝑣21 + 𝑣22 ) = 𝜆(p) ⟨v, v⟩ ,

for all v ∈ 𝑇p𝒮 . Since ⟨⋅, ⋅⟩ and ⟨⋅, ⋅⟩𝑓 , by arguing as in Remark 4.112 we conclude that

⟨v,w⟩𝑓 = 𝜆(p) ⟨v,w⟩
for all v,w ∈ 𝑇p𝒮 .
Step 2. Suppose that there exists a function 𝜆∶ 𝒮 → ℝ such that

⟨v,w⟩𝑓 = 𝜆(p) ⟨v,w⟩ , ∀ v,w ∈ 𝑇p𝒮 .
In particular, we have

‖v‖𝑓 = √𝜆(p)‖v‖ , ∀ v ∈ 𝑇p𝒮 .
Then ⟨v,w⟩𝑓

‖v‖𝑓 ‖w‖𝑓
= 𝜆(p) ⟨v,w⟩

√𝜆(p)‖v‖√𝜆(p)‖w‖
= ⟨v,w⟩

‖v‖‖w‖ ,

showing that 𝑓 is a conformal map.

Corollary 4.123

Let 𝒮 and 𝒮 be regular surfaces and 𝑓 ∶ 𝒮 → 𝒮 be a local diffeomorphism. They are equivalent:

1. 𝑓 is a conformal map.
2. Let 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 be a regular chart of 𝒮 and consider the chart of 𝒮 given by

𝜎̃𝜎𝜎 = 𝑓 ∘ 𝜎𝜎𝜎 ∶ 𝑈 → 𝒮 .
There exists 𝜆∶ 𝑈 → ℝ such that

ℱ̃1 = 𝜆(𝑢, 𝑣)ℱ1 , ∀ (𝑢, 𝑣) ∈ 𝑈 ,
where ℱ1 and ℱ̃1 are the first fundamental forms of 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 , respectively.

The follows by using Theorem 4.122, and by adapting the argument in the proof of Theorem 4.114.
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Example 4.124: Conformal maps are not local isometries

Consider the plane 𝒮 with chart
𝜎𝜎𝜎(𝑢, 𝑣) ∶= (𝑢, 𝑣 , 0) .

Let 𝒮 be the sphere with parametrization

𝜎̃𝜎𝜎(𝑢, 𝑣) ∶= (sech(𝑢) cos(𝑣), sech(𝑢) sin(𝑣), tanh(𝑢)) .
We have

𝜎𝜎𝜎𝑢 = (1, 0, 0) , 𝜎𝜎𝜎 𝑣 = (0, 1, 0) ,
so that

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 1
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 1

Therefore the first fundamental form of 𝒮 is

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 .
Using the identitities

𝑑
𝑑𝑢 (sech(𝑢)) = − sech(𝑢) tanh(𝑢) ,
𝑑
𝑑𝑢 (tanh(𝑢)) = sech2(𝑢) ,

we obtain

𝜎̃𝜎𝜎𝑢 = (− sech(𝑢) tanh(𝑢) cos(𝑣), − sech(𝑢) tanh(𝑢) sin(𝑣), sech2(𝑢))
𝜎̃𝜎𝜎 𝑣 = (− sech(𝑢) sin(𝑣), sech(𝑢) cos(𝑣), 0)

By recalling that
sech2(𝑢) + tanh2(𝑢) = 1 ,

we compute

𝐸 = 𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎𝑢 = sech2(𝑢)(tanh2(𝑢) + sech2(𝑢)) = sech2(𝑢)
𝐹 = 𝜎̃𝜎𝜎𝑢 ⋅ 𝜎̃𝜎𝜎 𝑣 = 0
𝐺 = 𝜎̃𝜎𝜎 𝑣 ⋅ 𝜎̃𝜎𝜎 𝑣 = sech2(𝑢)(cos2(𝑣) + sin2(𝑣)) = sech2(𝑢)

Hence the first fundamental form of 𝒮 is

ℱ̃1 = sech2(𝑢) (𝑑𝑢2 + 𝑑𝑣2) .
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Now, consider the map 𝑓 ∶ 𝒮 → 𝒮 defined by

𝑓 (𝑢, 𝑣 , 0) = 𝜎̃𝜎𝜎(𝑢, 𝑣) .
In particular 𝑓 satisfies

𝑓 (𝜎𝜎𝜎(𝑢, 𝑣)) = 𝜎̃𝜎𝜎(𝑢, 𝑣) .
We have:

• 𝑓 is not a local isometry.

If 𝑓 was a local isometry, by Theorem 4.114 we would conclude that 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 = 𝑓 ∘𝜎𝜎𝜎 have the
same first fundamental form. However

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 ≠ sech2(𝑢) (𝑑𝑢2 + 𝑑𝑣2) = ℱ̃1 .

• 𝑓 is a conformal map.

The first fundamental forms of 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 = 𝑓 ∘ 𝜎𝜎𝜎 satisfy

ℱ̃1 = 𝜆(𝑢, 𝑣)ℱ1 , 𝜆(𝑢, 𝑣) ∶= sech(𝑢) .
Therefore 𝑓 is a conformal map by Corollary 4.123.

4.11.7 Conformal parametrizations

We conclude this section with the definition of conformally flat surface and conformal parametriza-
tion.

Definition 4.125: Conformally flat surface and conformal parametrization

Let 𝒮 be a regular surface and
𝜎𝜎𝜎 ∶ 𝑈 → 𝒮

be a regular chart of 𝒮 . We say that 𝒮 is conformally flat and 𝜎𝜎𝜎 is a conformal parametrization if
the first fundamental form of 𝜎𝜎𝜎 satisfies

ℱ1 = 𝜆(𝑢, 𝑣)(𝑑𝑢2 + 𝑑𝑣2)
for some smooth function 𝜆∶ 𝑈 → ℝ.

Definition 4.125 is motivated by the following Theorem: It states that angles on conformally flat surfaces look
like angles on a plane.
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Theorem 4.126

Let 𝒮 be a regular surface and
𝜎𝜎𝜎 ∶ 𝑈 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮

be a regular chart of 𝒮 . Define the plane 𝜋𝜋𝜋 charted by

𝜎̃𝜎𝜎(𝑢, 𝑣) = (𝑢, 𝑣 , 0) , ∀ (𝑢, 𝑣) ∈ 𝑈 .

1. They are equivalent:

• 𝜎𝜎𝜎 is a conformal parametrization.

• There exists a conformal map 𝑓 ∶ 𝜋 → 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 .

2. A conformal parametrization 𝜎𝜎𝜎 preserves angles between vectors, in the following sense: Suppose
𝛾𝛾𝛾 1, 𝛾𝛾𝛾 2 are curves in ℝ2 such that

𝛾𝛾𝛾 1(𝑡0) = 𝛾𝛾𝛾 2(𝑡0) .
Consider the corresponding curves on 𝒮 given by

̃𝛾𝛾𝛾 1 ∶= 𝜎𝜎𝜎 ∘ 𝛾𝛾𝛾 1 , ̃𝛾𝛾𝛾 2 = 𝜎𝜎𝜎 ∘ 𝛾𝛾𝛾 2 .
If

̇𝛾𝛾𝛾 1(𝑡0) , ̇𝛾𝛾𝛾 2(𝑡0) form an angle 𝜃 ,
then

̇̃𝛾𝛾𝛾 1(𝑡0) , ̇̃𝛾𝛾𝛾 2(𝑡0) form an angle 𝜃 .

Proof

Proof of Point 1. Define the diffeomorphism 𝑓 ∶ 𝜋𝜋𝜋 → 𝒮 by

𝑓 (𝑢, 𝑣 , 0) = 𝜎𝜎𝜎(𝑢, 𝑣) .
In particular

𝑓 (𝜎̃𝜎𝜎(𝑢, 𝑣)) = 𝜎𝜎𝜎(𝑢, 𝑣) .
By Corollary 4.123 we have that 𝑓 is a conformal map if and only if there exists 𝜆∶ 𝜋𝜋𝜋 → ℝ such that

ℱ1 = 𝜆(𝑢, 𝑣)ℱ̃1 ,
where ℱ1 and ℱ̃1 are the first fundamental forms of 𝒮 and 𝜋𝜋𝜋 , respectively. Since 𝜋𝜋𝜋 is a plane, the first
fundamental form is given by

ℱ̃1 = 𝑑𝑢2 + 𝑑𝑣2 .
Therefore

ℱ1 = 𝜆(𝑢, 𝑣) (𝑑𝑢2 + 𝑑𝑣2) ,
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showing that 𝜎𝜎𝜎 is a conformal parametrization.
Proof of Point 2. Suppose 𝜎𝜎𝜎 is a conformal parametrization. By the proof of Point 1 we have that

𝑓 ∶ 𝜋 → 𝒮 , 𝑓 (𝑢, 𝑣 , 0) = 𝜎𝜎𝜎(𝑢, 𝑣) ,
is a conformal map. Since 𝑇p𝜋 = ℝ2 and 𝑓 = 𝜎𝜎𝜎 , it follows by the definition of differential and 𝑓 being
conformal that the angle between 𝛾𝛾𝛾 1 and 𝛾𝛾𝛾 2 is the same as the angle between ̃𝛾𝛾𝛾 1 and ̃𝛾𝛾𝛾 2.

Example 4.127: Unit cylinder

The cylinder 𝒮 charted by
𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣)

is conformally flat, since the first fundamental form of 𝜎𝜎𝜎 is

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 .
Therefore 𝜎𝜎𝜎 is a conformal parametrization of 𝒮 .

Example 4.128: Shpere

Consider the parametrization of the sphere

𝜎𝜎𝜎(𝑢, 𝑣) = (sech(𝑢) cos(𝑣), sech(𝑢) sin(𝑣), tanh(𝑢)) .
In Example 4.124 we have seen that the first fundamental form of 𝜎𝜎𝜎 is

ℱ1 = sech(𝑢) (𝑑𝑢2 + 𝑑𝑣2) .
Therefore 𝜎𝜎𝜎 is a conformal parametrization of the sphere.

4.12 Second fudamental form

The first fundamental form allows to measure distances on a surface. However it does not give any infor-
mation on how curved a surface is: For example, we saw that a plane and a cylinder have the same first
fundamental form

ℱ1 = 𝑑𝑢2 + 𝑑𝑣2 .
However the plane is flat, while the cylinder curves. We would like to find a measure of curvature which
allows us to tell these two surfaces apart.
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4.12.1 Unit normal and orientability

Before talking about curvatures, we need to clarify what we mean by normal vector to a surface and ori-
entability. Let 𝒮 be a regular surface and p ∈ 𝒮 . The tangent plane 𝑇p𝒮 passes through the origin. Therefore
𝑇p𝒮 is completely determined by giving a unit vector N perpendicular to it:

𝑇p𝒮 = {x ∈ ℝ3 ∶ x ⋅ N = 0} .
In this case we write

N ⟂ 𝑇p𝒮 ,
to denote that N is perpendicular to 𝑇p𝒮 . Clearly, also −N is a unit vector, and

(−N) ⟂ 𝑇p𝒮 .

Question 4.129

Which unit normal should we choose between N and −N?

There is no right answer to the above question. One way to proceed is the following.

Remark 4.130

Suppose that 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 is a regular chart for 𝒮 . Let p ∈ 𝜎𝜎𝜎(𝑈 ). Then
𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } .

Therefore we can choose the unit normal to 𝑇p𝒮 as

N𝜎𝜎𝜎 ∶= 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

.

Clearly N𝜎𝜎𝜎 has unit norm. Moreover

N𝜎𝜎𝜎 ⋅ 𝜎𝜎𝜎𝑢 = 0 , N𝜎𝜎𝜎 ⋅ 𝜎𝜎𝜎 𝑣 = 0
by the properties of cross product, showing that N𝜎𝜎𝜎 is perpendicular to 𝑇p𝒮 .
There is however an issue: N𝜎𝜎𝜎 is not independent on the choice of chart 𝜎𝜎𝜎 . Indeed, suppose that 𝜎̃𝜎𝜎 ∶ 𝑈 →
ℝ3 is a reparametrization of 𝜎𝜎𝜎 , that is,

𝜎̃𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ , Φ∶ 𝑈 → 𝑈 ,
with Φ diffeomorphism. As shown in the proof of Proposition 4.61, we have

𝜎̃𝜎𝜎 𝑢̃ × 𝜎̃𝜎𝜎 ̃𝑣 = det(𝐽Φ)𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 .
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Hence

N𝜎̃𝜎𝜎 = 𝜎̃𝜎𝜎 𝑢̃ × 𝜎̃𝜎𝜎 ̃𝑣
‖𝜎̃𝜎𝜎 𝑢̃ × 𝜎̃𝜎𝜎 ̃𝑣 ‖

= det 𝐽Φ
| det 𝐽Φ|

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

= ±N𝜎𝜎𝜎 .

Therefore the sign on the right hand side depends on the sign of the Jacobian determinant of the transition
map Φ.

The above remark motivates the following definitions.

Definition 4.131: Standard unit normal of a chart

Let 𝒮 be a regular surface and 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 a regular chart. The standard unit normal of 𝜎𝜎𝜎 is the smooth
function

N𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 , N𝜎𝜎𝜎 ∶= 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

.

Definition 4.132: Charts with same orientation

Let 𝒮 be a regular surface and 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3, 𝜎̃𝜎𝜎 ∶ 𝑈 → ℝ3 regular charts such that

𝜎𝜎𝜎(𝑈 ) ∩ 𝜎̃𝜎𝜎(𝑈 ) ≠ ∅ .
Denote by Φ the transition map between 𝜎̃𝜎𝜎 and 𝜎𝜎𝜎 . We say that:

1. 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 determine the same orientation if

det 𝐽Φ > 0 ,
where Φ is defined.

2. 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 determine opposite orientations if

det 𝐽Φ < 0 ,
where Φ is defined.

Example 4.133

Let a,p,q ∈ ℝ3 and suppose that p and q are linearly independent. The plane spanned by p,q and passing
through a can be parametrized by

𝜎𝜎𝜎(𝑢, 𝑣) ∶= a + p𝑢 + q𝑣 , ∀ (𝑢, 𝑣) ∈ ℝ2 .

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 260

An alternative parametrization is given by

𝜎̃𝜎𝜎(𝑢, 𝑣) ∶= a + q𝑢 + p𝑣 , ∀ (𝑢, 𝑣) ∈ ℝ2 .
We have

𝜎𝜎𝜎𝑢 = p , 𝜎𝜎𝜎 𝑣 = q ,
and therefore

N𝜎𝜎𝜎 = p × q
‖p × q‖ .

Similarly, we have

N𝜎̃𝜎𝜎 = q × p
‖q × p‖ =

−p × q
‖p × q‖ ,

showing that
N𝜎𝜎𝜎 = −N𝜎̃𝜎𝜎 .

Hence 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 determine opposite orientations.

If a surface can be covered by charts with the same orientation, it is called orientable.

Definition 4.134: Orientable surface

Let 𝒮 be a regular surface. Then:

1. An atlas 𝒜 = {𝜎𝜎𝜎 𝑖}𝑖∈𝐼 is oriented if the following property holds:

𝜎𝜎𝜎 𝑖(𝑈𝑖) ∩ 𝜎𝜎𝜎 𝑗(𝑈𝑗) ≠ ∅ ⟹ det 𝐽Φ > 0 ,
where Φ is the transition map between 𝜎𝜎𝜎 𝑖 and 𝜎𝜎𝜎 𝑗 .

2. 𝒮 is orientable if there exists an oriented atlas 𝒜 .

3. If an oriented atlas 𝒜 is assigned, we say that 𝒮 is oriented by 𝒜 .

Example 4.135

All the surfaces we encountered in these Lecture Notes are orientable, except for the Möbius band in
Example 4.95. Details about the non-orientability of the Möbius band can be found in Example 4.5.3 in
[6].
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Example 4.136

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart. Then
𝒮𝜎𝜎𝜎 ∶= 𝜎𝜎𝜎(𝑈 )

is a regular surface with atlas 𝒜 = {𝜎𝜎𝜎}. Therefore 𝒮𝜎𝜎𝜎 is orientable.

This is because we have only one chart. Therefore any transition map Φ will be the identity,
so that det 𝐽Φ = 1 > 0.

Warning: Orientability is a global property

The above example is saying that orientability is a global property: To determine wether a surface 𝒮 is
orientable, we need to examine the transition maps for the entire atlas 𝒜 . This is because a single local
parametrization 𝜎𝜎𝜎(𝑈 ) ⊆ 𝒮 is always orientable.

Remark 4.137

Let 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 be regular charts with transition map Φ. We have seen in Remark 4.130 that

N𝜎̃𝜎𝜎 = det 𝐽Φ
| det 𝐽Φ| N𝜎𝜎𝜎 .

If 𝜎𝜎𝜎 and 𝜎̃𝜎𝜎 determine the same orientation, then

det 𝐽Φ > 0 ,
which implies

N𝜎̃𝜎𝜎 = N𝜎𝜎𝜎 .
Hence, if 𝒮 is an orientable surface, one can define a unit normal vector at each point of 𝒮 , without
ambiguity.

Definition 4.138: Unit normal of a surface

Let 𝒮 be a regular surface. A unit normal of 𝒮 is a smooth function N∶ 𝒮 → ℝ3 such that

N(p) ⟂ 𝑇p𝒮 , ‖N(p)‖ = 1 , ∀p ∈ 𝒮 .
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Warning

We require the function p ↦ N(p) to be globally defined on 𝒮 and smooth.

Proposition 4.139

Let 𝒮 be a regular surface. They are equivalent:

1. 𝒮 is orientable.

2. There exists a unit normal N∶ 𝒮 → ℝ3.
The proof follows from the above arguments. For details, we refer the reader to Proposition 4.3.7 in [1].

In view of the above propostion, for an oriented surface there is a natural choice of unit normal, which we
call standard unit normal of 𝒮 .

Definition 4.140: Standard unit normal of a surface

Let 𝒮 be a regular surface oriented by the atlas𝒜 . The standard unit normal to 𝒮 is the mapN∶ 𝒮 →
ℝ3 such that

N ∘ 𝜎𝜎𝜎 = N𝜎𝜎𝜎 ,
for each chart 𝜎𝜎𝜎 ∈ 𝒜 , where

N𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 , N𝜎𝜎𝜎 = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

is the standard unit normal of 𝜎𝜎𝜎 .

Notation

In the following we will denote by N both the standard unit normal of 𝒮 and of a chart.

4.12.2 Definition of Second fundamental form

We can now start our discussion about curvature of surfaces. We can make a similar argument to the one we
made for curves: If 𝛾𝛾𝛾 is a unit speed curve, the curvature of 𝛾𝛾𝛾 is defined as

𝜅(𝑡) = ‖ ̈𝛾𝛾𝛾 (𝑡)‖ .
The quantity 𝜅(𝑡) gave us a measure of how much 𝛾𝛾𝛾 is deviating from a straight line. Similarly, we would like
to quantify how much a surface 𝒮 is deviating from the tangent plane 𝑇p𝒮 . Recall that

𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } ,
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where 𝜎𝜎𝜎 is a regular chart of 𝒮 at p. The standard unit normal of 𝜎𝜎𝜎 is

N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

,

which is orthogonal to 𝑇p𝒮 . Let (𝑢0, 𝑣0) ∈ ℝ2 be the point such that

𝜎𝜎𝜎(𝑢0, 𝑣0) = p .
As the scalar quantities Δ𝑢 and Δ𝑣 vary, the point

𝜎𝜎𝜎(𝑢0 + Δ𝑢, 𝑣0 + Δ𝑣) ∈ 𝒮
deviates from the tangent plane 𝑇p𝒮 . Since N is orthogonal to 𝑇p𝒮 , the deviation is given by

𝛿 ∶= [𝜎𝜎𝜎(𝑢0 + Δ𝑢, 𝑣0 + Δ𝑣) − 𝜎𝜎𝜎(𝑢0, 𝑣0)] ⋅ N ,
as shown in Figure 4.24.

Figure 4.24: The point 𝜎𝜎𝜎(𝑢0 + Δ𝑢, 𝑣0 + Δ𝑣) on 𝒮 deviates from 𝑇p𝒮 by a quantity 𝛿 .

Using Taylor’s formula we get

𝜎𝜎𝜎(𝑢0 + Δ𝑢, 𝑣0 + Δ𝑣) = 𝜎𝜎𝜎(𝑢0, 𝑣0) + 𝜎𝜎𝜎𝑢(𝑢0, 𝑣0) Δ𝑢 + 𝜎𝜎𝜎 𝑣 (𝑢0, 𝑣0) Δ𝑣
+ 1
2 (𝜎𝜎𝜎𝑢𝑢(𝑢0, 𝑣0)(Δ𝑢)

2 + 2𝜎𝜎𝜎𝑢𝑣 (𝑢0, 𝑣0)Δ𝑢Δ𝑣 + 𝜎𝜎𝜎 𝑣𝑣 (𝑢0, 𝑣0)(Δ𝑣)2)
+ 𝑅(Δ𝑢, Δ𝑣) ,
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where 𝑅(Δ𝑢, Δ𝑣) is a remainder such that

limΔ→0
𝑅(Δ𝑢, Δ𝑣)

Δ = 0 , Δ ∶= (Δ𝑢)2 + (Δ𝑣)2 .

SinceN is orthogonal to 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 , if we multiply the above Taylor expansion byN, and ignore the remainder,
we obtain

𝛿 = 1
2 (𝐿(Δ𝑢)

2 + 2𝑀Δ𝑢Δ𝑣 + 𝑁(Δ𝑣)2) ,
where we set

𝐿 ∶= 𝜎𝜎𝜎𝑢𝑢 ⋅ N , 𝑀 ∶= 𝜎𝜎𝜎𝑢𝑣 ⋅ N , 𝑁 ∶= 𝜎𝜎𝜎 𝑣𝑣 ⋅ N .
The expression

ℱ2 ∶= 𝐿 𝑑𝑢2 + 2𝑀 𝑑𝑢𝑑𝑣 + 𝑁 𝑑𝑣2
is called the second fundamental form of 𝒮 . Therefore ℱ2 measures how much the surface 𝒮 deviates
from being a plane. Let us make this definition precise.

Definition 4.141: Second fundamental form of a chart

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart of 𝒮 . Denote the standard unit normal of 𝜎𝜎𝜎 by

N∶ 𝑈 → ℝ3 , N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

.

Define the functions
𝐿,𝑀, 𝑁 ∶ 𝑈 → ℝ

by setting
𝐿 ∶= 𝜎𝜎𝜎𝑢𝑢 ⋅ N , 𝑀 ∶= 𝜎𝜎𝜎𝑢𝑣 ⋅ N , 𝑁 ∶= 𝜎𝜎𝜎 𝑣𝑣 ⋅ N .

Let p ∈ 𝜎𝜎𝜎(𝑈 ) and denote by (𝑢0, 𝑣0) ∈ 𝑈 the point such that

𝜎𝜎𝜎(𝑢0, 𝑣0) = p .
The second fundamental form of 𝜎𝜎𝜎 at p is the quadratic form

ℱ2∶ 𝑇p𝒮 → ℝ
defined by

ℱ2(v) ∶= 𝐿 𝑑𝑢2(v) + 2𝑀 𝑑𝑢(v) 𝑑𝑣(v) + 𝑁 𝑑𝑣2(v) , (4.9)

for all v ∈ 𝑇p𝒮 . Here 𝐿,𝑀, 𝑁 are evaluated at (𝑢0, 𝑣0), and 𝑑𝑢, 𝑑𝑣 are the coordinate functions as in
Definition 4.101.
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Notation

With a little abuse of notation, we also denote by ℱ2 the 2 × 2 matrix

ℱ2 = ( 𝐿 𝑀
𝑀 𝑁 ) .

Remark 4.142: Second fundamental form and reparametrizations

The second fundamental form
ℱ2 = 𝐿 𝑑𝑢2 + 2𝑀 𝑑𝑢𝑑𝑣 + 𝑁 𝑑𝑣2

depends on the choice of chart 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3. Indeed, let us adopt the same notations as Remark 4.105.
Suppose that 𝜎̃𝜎𝜎 ∶ 𝑈 → ℝ3 is a reparametrization of 𝜎𝜎𝜎 with

𝜎̃𝜎𝜎 = 𝜎𝜎𝜎 ∘ Φ ,
where Φ∶ 𝑈 → 𝑈 is a diffeomorphism. Denote the second fundamental form of 𝜎̃𝜎𝜎 by

ℱ̃2 = 𝐿̃ 𝑑𝑢̃2 + 2𝑀 𝑑𝑢̃𝑑 ̃𝑣 + 𝑁 𝑑 ̃𝑣2 .
The matrices of ℱ2 and ℱ̃2 are related by

( 𝐿̃ 𝑀
𝑀 𝑁 ) = ±(𝐽Φ)𝑇 ( 𝐿 𝑀

𝑀 𝑁 ) 𝐽Φ , (4.10)

where (4.10) holds with + if det 𝐽Φ > 0 and − if det 𝐽Φ < 0.

Formula (4.10) holds by a change of variable argument. The sign depends on the sign of
det 𝐽Φ because

Ñ = 𝜎̃𝜎𝜎 𝑢̃ × 𝜎̃𝜎𝜎 ̃𝑣
‖𝜎̃𝜎𝜎 𝑢̃ × 𝜎̃𝜎𝜎 ̃𝑣 ‖

= det 𝐽Φ
| det 𝐽Φ|

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

= ±N ,

as shown in Remark 4.130.

Let us show that a plane and a cylinder have different second fundamental forms.

Example 4.143: Plane

Let a,p,q ∈ ℝ3. Suppose that p and q are orthonormal vectors, that is,

‖p‖ = ‖q‖ = 1 , p ⋅ q = 0 .
Consider the plane with chart

𝜎𝜎𝜎(𝑢, 𝑣) = a + 𝑢p + 𝑣q , (𝑢, 𝑣) ∈ ℝ2 .
Prove that the second fundamental form of 𝜎𝜎𝜎 is

ℱ2 = 0 .
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This reflects the intuition that a plane is flat, and therefore there is no curvature.

We have
𝜎𝜎𝜎𝑢 = p , 𝜎𝜎𝜎 𝑣 = q .

The principal unit normal is

N = p × q
‖p × q‖ ,

while the second derivatives are

𝜎𝜎𝜎u = 𝜎𝜎𝜎u = 𝜎𝜎𝜎u = 000 .
Therefore

𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = 0
𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = 0
𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 0

and the second fundamental form is

ℱ2 = 𝐿 𝑑𝑢2 + 2𝑀 𝑑𝑢 𝑑𝑣 + 𝑁 𝑑𝑣2 = 0 .

Example 4.144: Unit cylinder

Consider the unit cylinder with chart

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) , (𝑢, 𝑣) ∈ (0, 2𝜋) × ℝ .
Prove that the second fundamental form of 𝜎𝜎𝜎 is

ℱ2 = −𝑑𝑢2 .
This reflects the intuition that the cylinder curves only when moving in the 𝑣-direction. In such direction
we are moving on a circle of radius 1, therefore we expect the curvature to be −1.

We have
𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑢), 0) , 𝜎𝜎𝜎 𝑣 = (0, 0, 1) ,

and also
𝜎𝜎𝜎𝑢𝑢 = (− cos(𝑢), − sin(𝑢), 0) , 𝜎𝜎𝜎𝑢𝑣 = 𝜎𝜎𝜎 𝑣𝑣 = 000 .

We have also

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = |
i j k

− sin(𝑢) cos(𝑢) 0
0 0 1

| = (cos(𝑢), sin(𝑢), 0)
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so that
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = √cos2(𝑢) + sin2(𝑢) = 1 .

The principal unit normal is

N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

= (cos(𝑢), sin(𝑢), 0) .

We finally compute

𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N
= (− cos(𝑢), − sin(𝑢), 0) ⋅ (cos(𝑢), sin(𝑢), 0)
= − cos2(𝑢) − sin2(𝑢) = −1

𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = 0
𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 0

The second fundamental form is

ℱ2 = 𝐿 𝑑𝑢2 + 2𝑀 𝑑𝑢 𝑑𝑣 + 𝑁 𝑑𝑣2 = −𝑑𝑢2 .

Remark 4.145

We have seen that a plane and the unit cylinder have the same first fundamental form

ℱ1 = ℱ̃1 = 𝑑𝑢2 + 𝑑𝑣2 ,
while their second fundamental forms differ: we have

ℱ2 = 0 , ℱ̃2 = −𝑑𝑢2 ,
respectively.

4.12.3 Gauss and Weingarten maps

Another way to quantify how much a surface 𝒮 is curving is by examining the behavior of standard unit
normal N. If 𝒮 is a plane spanned by vectors p and q, then its standard unit normal is

N = p × q
‖p × q‖ ,
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which is constant across 𝒮 . If 𝒮 is a general surface, measuring the variation of N will tell us how much 𝒮 is
deviating from being a plane. This is the idea behind the definition of the Gauss and Weingarten maps.

Remark 4.146

Let 𝒮 be oriented and N∶ 𝒮 → ℝ3 be the standard unit normal. In particular N is a smooth map and

N(p) ⟂ 𝑇p𝒮 , ‖N(p)‖ = 1 , ∀p ∈ 𝒮 .
Since 𝑇p𝒮 passes through the origin and N has norm 1, it follows that

N(p) ∈ 𝕊2 ∶= {x ∈ ℝ3 ∶ ‖x‖ = 1} ,
where 𝕊2 is the unit sphere in ℝ3. Thus N∶ 𝒮 → 𝕊2.

Definition 4.147: Gauss map

Let 𝒮 be an oriented surface and N the standard unit normal to 𝒮 . The Gauss map of 𝒮 is the map

𝒢𝒮 ∶ 𝒮 → 𝕊2 , 𝒢𝒮 (p) ∶= N(p) .

Figure 4.25: The Gauss map 𝒢𝒮 of 𝒮 is defined as 𝒢𝒮 (p) ∶= N(p). Note that 𝒢𝒮 (p) ∈ 𝕊2.
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Remark 4.148

The Gauss map of 𝒮 is just the standard unit normal of 𝒮 . By definition of standard unit normal to 𝒮
we obtain that

𝒢𝒮 ∘ 𝜎𝜎𝜎 = N

for all charts 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3, where N = N𝜎𝜎𝜎 is the standard unit normal to 𝜎𝜎𝜎 , that is,

N∶ 𝑈 → ℝ3 , N ∶= 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

.

Example 4.149

1. Suppose 𝒮 is the unit sphere 𝕊2. Then 𝒢𝒮 ∶ 𝒮 → 𝕊2 is the identity, see Figure 4.26.

2. Let a, v,w ∈ ℝ3 with v and w linearly independent. Let 𝒮 be the plane

𝜎𝜎𝜎(𝑢, 𝑣) ∶= a + v𝑢 +w𝑣 , ∀ (𝑢, 𝑣) ∈ ℝ2 .
The Gauss map of 𝒮 is constant:

𝒢𝒮 (p) = v ×w
‖v ×w‖ ,

for all p ∈ 𝒮 , see Figure 4.27.

3. Let 𝒮 be the unit cylinder

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) , (𝑢, 𝑣) ∈ (0, 2𝜋) × ℝ .
Then

𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑢), 0) , 𝜎𝜎𝜎 𝑣 = (0, 0, 1) ,
and

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = |
i j k

− sin(𝑢) cos(𝑢) 0
0 0 1

| = (cos(𝑢), sin(𝑢), 0) .

Therefore
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = 1 ,

and
N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣

‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖
= (cos(𝑢), sin(𝑢), 0) .

The Gauss map of 𝒮 is
𝒢𝒮 (p) = (cos(𝑢0), sin(𝑢0), 0) ,

where (𝑢0, 𝑣0) is such that 𝜎𝜎𝜎(𝑢0, 𝑣0) = p. Note that𝒢𝒮 maps𝒮 into the equator of 𝕊2, see Figure 4.28.
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Figure 4.26: The Gauss map 𝒢𝒮 of a sphere is the identity.

Figure 4.27: The Gauss map 𝒢𝒮 of a plane is constant.
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Figure 4.28: If 𝒮 is the unit cylinder, the Gauss map 𝒢𝒮 maps 𝒮 into the equator of 𝕊2.

Remark 4.150

By definition, the Gauss map is a smooth function between surfaces. Therefore the differential of 𝒢𝒮 is
well defined, and

𝑑p𝒢𝒮 ∶ 𝑇p𝒮 → 𝑇𝒢𝒮 (p)𝕊2 ,
for all p ∈ 𝒮 . We have that

𝑇𝒢𝒮 (p)𝕊2 = 𝑇p𝒮 , (4.11)

see Figure 4.29. Therefore
𝑑p𝒢𝒮 ∶ 𝑇p𝒮 → 𝑇p𝒮 .

Proof. The tangent plane 𝑇𝒢𝒮 (p)𝕊2 passes through the origin and

𝒢(p) ⟂ 𝑇𝒢𝒮 (p)𝕊2 .
By definition 𝒢(p) = N(p), and thus

N(p) ⟂ 𝑇𝒢𝒮 (p)𝕊2 .
Since by definition

N(p) ⟂ 𝑇p𝒮 ,
we infer (4.11).
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Figure 4.29: We ca identify 𝑇𝒢𝒮 (p)𝕊2 with 𝑇p𝒮 . This is because 𝒢(p) ⟂ 𝑇𝒢𝒮 (p)𝕊2 and 𝒢(p) = N(p).

Definition 4.151: Weingarten map

Let 𝒮 be an orientable surface and 𝒢 ∶ 𝒮 → 𝕊2 its Gauss map. The Weingarten map𝒲p,𝒮 of 𝒮 at p is
the negative differential of the Gauss map at p, that is,

𝒲p,𝒮 ∶ 𝑇p𝒮 → 𝑇p𝒮 , 𝒲p,𝒮 (v) ∶= −𝑑p𝒢(v) ,
for all v ∈ 𝑇p𝒮 .

Important

The Gauss map encodes information on the standard unit normal N to 𝒮 . Hence its derivative, the
Weingarten map, detects the rate of change of N.

Remark 4.152

The minus sign in the definition of𝒲p,𝒮 is a convention, just like we defined the torsion to be the scalar
𝜏 such that

ḃ = −𝜏n .
The Weingarten map allows us to define a bilnear form on 𝑇p𝒮 . We call such bilinear form the second
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fundamental form of 𝒮 .

Definition 4.153: Second fundamental form of a surface

Let 𝒮 be an orientable surface and denote by

𝒲p,𝒮 ∶ 𝑇p𝒮 → 𝑇p𝒮
its Weingarten map at p. The second fundamental form of 𝒮 at p is the map

𝐼 𝐼p∶ 𝑇p𝒮 × 𝑇p𝒮 → ℝ
defined by

𝐼 𝐼p(v,w) ∶= 𝒲p,𝒮 (v) ⋅w , ∀ v,w ∈ 𝑇p𝒮 .

Remark 4.154

The second fudamental form 𝐼 𝐼p of 𝒮 is bilinear.

Indeed, 𝒲p,𝒮 is linear, being the differential of a smooth map. Hence 𝐼 𝐼p is bilinear, given
that the scalar product is bilinear.

Remark 4.155: Matrix of the second fundamental form

Let 𝜎𝜎𝜎 be a chart at p ∈ 𝒮 . Since 𝐼 𝐼p is a bilinear form on 𝑇p𝒮 , it can be represented by the 2 × 2 matrix

𝐴 = ( 𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎𝑢) 𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 )
𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎𝑢) 𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎 𝑣 ) ) ,

given that {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } is a basis for 𝑇p𝒮 . In a not so shocking turn of events, it happens that

𝐴 = ℱ2 = ( 𝐿 𝑀
𝑀 𝑁 )

where
𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N , 𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N , 𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N .

Therefore, the second fundamental form 𝐼 𝐼p coincides with the second fundamental formℱ2 of the chart
𝜎𝜎𝜎 . We prove this statement in the next theorem.
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Theorem 4.156

Let 𝒮 be an orientable surface and 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart. Let p ∈ 𝜎𝜎𝜎(𝑈 ).

1. The second funamental form 𝐼 𝐼p is a symmetric bilinear map.

2. It holds

𝐼 𝐼p(v,w) = (𝑑𝑢(v), 𝑑𝑣(v)) ( 𝐿 𝑀
𝑀 𝑁 ) (𝑑𝑢(w), 𝑑𝑣(w))𝑇 ,

for all v,w ∈ 𝑇p𝒮 , where

𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N , 𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N , 𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N .

3. ℱ2 is the quadratic form associated to 𝐼 𝐼p, that is,
ℱ2(v) = 𝐼 𝐼p(v, v) , ∀ v ∈ 𝑇p𝒮 .

To prove Theorem 4.156 we use the following two Lemmas.

Lemma 4.157

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a regular chart with standard unit normal N∶ 𝑈 → ℝ3. Then
N𝑢 ⋅ 𝜎𝜎𝜎𝑢 = −𝐿 ,
N𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = N𝑣 ⋅ 𝜎𝜎𝜎𝑢 = −𝑀 ,
N𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = −𝑁 .

Proof

The vectors 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 form a basis for 𝑇p𝒮 . Since N is orthogonal to 𝑇p𝒮 by definition, it follows that

N ⋅ 𝜎𝜎𝜎𝑢 = 0 , N ⋅ 𝜎𝜎𝜎 𝑣 = 0 .
Differentiating the above with respect to 𝑢 and 𝑣 yields the thesis. For example, we have

𝜕
𝜕𝑢 (N ⋅ 𝜎𝜎𝜎𝑢) = 0 .

On the other hand, by chain rule,
𝜕
𝜕𝑢 (N ⋅ 𝜎𝜎𝜎𝑢) = N𝑢 ⋅ 𝜎𝜎𝜎𝑢 + N ⋅ 𝜎𝜎𝜎𝑢𝑢 = N𝑢 ⋅ 𝜎𝜎𝜎𝑢 + 𝐿 ,

from which we infer
N𝑢 ⋅ 𝜎𝜎𝜎𝑢 = −𝐿 .

The rest of the proof follows similarly.
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Lemma 4.158

Let 𝒮 be an orientable surface and 𝒲p,𝒮 ∶ 𝑇p𝒮 → 𝑇p𝒮 be its Weingarten map at p. Let 𝜎𝜎𝜎 be a regular
chart at p, with 𝜎𝜎𝜎(𝑢0, 𝑣0) = p. Then

𝒲p,𝒮 (𝜎𝜎𝜎𝑢) = −N𝑢 , 𝒲p,𝒮 (𝜎𝜎𝜎 𝑣 ) = −N𝑣 ,
where 𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 ,N𝑢 ,N𝑣 are evaluated at (𝑢0, 𝑣0).

Proof

Since 𝒲p,𝒮 is defined as −𝑑p𝒢𝒮 , we can compute 𝒲p,𝒮 (𝜎𝜎𝜎𝑢) and 𝒲p,𝒮 (𝜎𝜎𝜎 𝑣 ) by using the definition of
differential of a smooth function. To this end, consider the curve

𝛾𝛾𝛾 (𝑡) ∶= 𝜎𝜎𝜎(𝑢0 + 𝑡, 𝑣0) .
We have that 𝛾𝛾𝛾 is a smooth curve in 𝒮 and

̇𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎𝑢(𝑢0 + 𝑡, 𝑣0) .
Therefore

𝛾𝛾𝛾 (0) = 𝜎𝜎𝜎(𝑢0, 𝑣0) = p , ̇𝛾𝛾𝛾 (0) = 𝜎𝜎𝜎𝑢(𝑢0, 𝑣0) .
Define

̃𝛾𝛾𝛾 (𝑡) ∶= (𝒢𝒮 ∘ 𝛾𝛾𝛾 )(𝑡) .
By Remark 4.148

̃𝛾𝛾𝛾 (𝑡) = 𝒢𝒮 (𝛾𝛾𝛾 (𝑡)) = 𝒢𝒮 (𝜎𝜎𝜎(𝑢0 + 𝑡, 𝑣0)) = N(𝑢0 + 𝑡, 𝑣0) .
Thus

̇̃𝛾𝛾𝛾 (𝑡) = N𝑢(𝑢0 + 𝑡, 𝑣0) , ̇̃𝛾𝛾𝛾 (0) = N𝑢(𝑢0, 𝑣0) .
By definition of differential, we have

𝒲p,𝒮 (𝜎𝜎𝜎𝑢) = −𝑑p𝒢𝒮 (𝜎𝜎𝜎𝑢) = − ̇̃𝛾𝛾𝛾 (0) = −N𝑢(𝑢0, 𝑣0) ,
as we wanted to prove. To show that

𝒲p,𝒮 (𝜎𝜎𝜎 𝑣 ) = −N𝑣 (𝑢0, 𝑣0) ,
it is sufficient to consider the curve

𝛾𝛾𝛾 (𝑡) ∶= 𝜎𝜎𝜎(𝑢0, 𝑣0 + 𝑡) ,
and argue similarly. This is left as an exercise.

We can now prove Theorem 4.156
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Proof: Proof of Theorem 4.156

By Theorem 4.75 we have
𝑇p𝒮 = span{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } .

Therefore, for v,w ∈ 𝑇p𝒮 , there exist 𝜆1, 𝜆2, 𝜇1, 𝜇2 ∈ ℝ such that

v = 𝜆1𝜎𝜎𝜎𝑢 + 𝜇1𝜎𝜎𝜎 𝑣 , w = 𝜆2𝜎𝜎𝜎𝑢 + 𝜇2𝜎𝜎𝜎 𝑣 .
By bilinearity of 𝐼 𝐼p we infer

𝐼 𝐼p(v,w) = 𝜆1𝜆2 𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎𝑢) + 𝜆1𝜇2 𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 )
+ 𝜆2𝜇1 𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎𝑢) + 𝜇1𝜇2 𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎 𝑣 )

= 𝑑𝑢(v)𝑑𝑢(w) 𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎𝑢) + 𝑑𝑢(v)𝑑𝑣(w) 𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 )
+ 𝑑𝑣(v)𝑑𝑢(v) 𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎𝑢) + 𝑑𝑣(v)𝑑𝑣(w) 𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎 𝑣 )

= (𝑑𝑢(v), 𝑑𝑣(v)) ( 𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎𝑢) 𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 )
𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎𝑢) 𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎 𝑣 ) ) (𝑑𝑢(w), 𝑑𝑣(w))𝑇 .

By Lemma 4.158 and Lemma 4.157 we have

𝒲p,𝒮 (𝜎𝜎𝜎𝑢) = −N𝑢 , 𝐿 = −N𝑢 ⋅ 𝜎𝜎𝜎𝑢 .
Therefore, using the above and the definition of 𝐼 𝐼p, we get

𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎𝑢) = 𝒲p,𝒮 (𝜎𝜎𝜎𝑢) ⋅ 𝜎𝜎𝜎𝑢 = −N𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 𝐿 .
With similar calculations we obtain

𝐼 𝐼p(𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 ) = 𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎𝑢) = 𝑀 , 𝐼 𝐼p(𝜎𝜎𝜎 𝑣 , 𝜎𝜎𝜎 𝑣 ) = 𝑁 ,
concluding the proof of point 2. In particular this also proves that 𝐼 𝐼p is symmetric, which is Point 1 of
the statement. The fact that

𝐼 𝐼p(v, v) = ℱ2(v)
follows from Point 2 and definition of ℱ2.

4.12.4 Matrix of Weingarten map

The Weingarten map is a linear map
𝒲p,𝒮 ∶ 𝑇p𝒮 → 𝑇p𝒮 .

We would like to find a formula to compute 𝒲p,𝒮 . This is easily done: Given a chart 𝜎𝜎𝜎 at p, we have that
{𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } is a basis for the vector space 𝑇p𝒮 . Therefore there exists a 2 × 2 matrix 𝐴 which represents 𝒲p,𝒮 ,
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that is,
𝒲p,𝒮 (v) = 𝐴v , ∀ v ∈ 𝑇p𝒮 .

It turns out that
𝐴 = ℱ −11 ℱ2 ,

where we recall that

ℱ1 = ( 𝐸 𝐹
𝐹 𝐺 ) , ℱ2 = ( 𝐿 𝑀

𝑀 𝑁 ) ,
where

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 , 𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 , 𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 ,
𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N , 𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N , 𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N ,

and
N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣

‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖
.

Let us prove this claim.

Theorem 4.159: Matrix of Weingarten map

Let 𝒮 be an orientable surface and 𝒲p,𝒮 ∶ 𝑇p𝒮 → 𝑇p𝒮 be its Weingarten map at p. Let 𝜎𝜎𝜎 be a regular
chart at p, with 𝜎𝜎𝜎(𝑢0, 𝑣0) = p. Then

𝒲p,𝒮 (v) = ℱ −11 ℱ2 ( 𝜆
𝜇 ) , ∀ 𝑣 ∈ 𝑇p𝒮 ,

where
v = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 ,

with 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 evaluated at (𝑢0, 𝑣0).

Proof

By Theorem 4.75 we know that {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } is a basis of 𝑇p𝒮 . Since𝒲p,𝒮 ∶ 𝑇p𝒮 → 𝑇p𝒮 is linear, by standard
linear algebra results there exist coefficients 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ such that

𝒲p,𝒮 (v) = ( 𝑎 𝑏
𝑐 𝑑 ) ( 𝜆

𝜇 ) ∀ v ∈ 𝑇p𝒮 ,

where
v = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣 .

The coefficients 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ can be compute by solving the linear system

𝒲p,𝒮 (𝜎𝜎𝜎𝑢) = 𝑎𝜎𝜎𝜎𝑢 + 𝑏𝜎𝜎𝜎 𝑣
𝒲p,𝒮 (𝜎𝜎𝜎 𝑣 ) = 𝑐𝜎𝜎𝜎𝑢 + 𝑑𝜎𝜎𝜎 𝑣 .
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By Lemma 4.158 we have
𝒲p,𝒮 (𝜎𝜎𝜎𝑢) = −N𝑢 , 𝒲p,𝒮 (𝜎𝜎𝜎 𝑣 ) = −N𝑣 ,

so that we obtain

−N𝑢 = 𝑎𝜎𝜎𝜎𝑢 + 𝑏𝜎𝜎𝜎 𝑣
−N𝑣 = 𝑐𝜎𝜎𝜎𝑢 + 𝑑𝜎𝜎𝜎 𝑣 .

Taking the scalar product of the above equations with 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 we get

−N𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 𝑎(𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢) + 𝑏(𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎𝑢)
−N𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 𝑎(𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 ) + 𝑏(𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 )
−N𝑣 ⋅ 𝜎𝜎𝜎𝑢 = 𝑐(𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢) + 𝑑(𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎𝑢)
−N𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 𝑐(𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 ) + 𝑑(𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 )

By Lemma 4.157 we have

N𝑢 ⋅ 𝜎𝜎𝜎𝑢 = −𝐿 , N𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = −𝑀 ,
N𝑣 ⋅ 𝜎𝜎𝜎𝑢 = −𝑀 , N𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = −𝑁 .

If in addition we recall the definition of 𝐸, 𝐹 , 𝐺, we obtain

𝐿 = 𝑎𝐸 + 𝑏𝐹
𝑀 = 𝑎𝐹 + 𝑏𝐺
𝑀 = 𝑐𝐸 + 𝑑𝐹
𝑁 = 𝑐𝐹 + 𝑑𝐺

The above equations are equivalent to the matrix multiplication

( 𝐿 𝑀
𝑀 𝑁 ) = ( 𝑎 𝑏

𝑐 𝑑 ) ( 𝐸 𝐹
𝐹 𝐺 ) ,

which reads
ℱ1𝐴 = ℱ2 .

Now, notice that
detℱ1 > 0 .

Indeed, recall Cauchy-Schwarz inequality:

v ⋅ v ≤ ‖v‖‖w‖ , ∀ v,w ∈ ℝ3 ,
where the inequality is strict if and only if v and w are linearly independent. Since 𝒮 is
regular, we have that 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent. Therefore by Cauchy-Schwarz we
have

𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 < ‖𝜎𝜎𝜎𝑢‖ ‖𝜎𝜎𝜎 𝑣 ‖ ,

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 279

and so, squaring both sides,
(𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 )2 < ‖𝜎𝜎𝜎𝑢‖2 ‖𝜎𝜎𝜎 𝑣 ‖2 .

Hence

det(ℱ1) = 𝐸𝐺 − 𝐹 2
= (𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢) (𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 ) − (𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 )2

= ‖𝜎𝜎𝜎𝑢‖2 ‖𝜎𝜎𝜎 𝑣 ‖2 − (𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 )2 > 0 .

In particular the matrix ℱ1 is invertible and thus

𝐴 = ℱ −11 ℱ2 ,
concluding the proof.

Important

A matrix 𝐴 ∈ ℝ𝑛×𝑛 is invertible if and only if det(𝐴) ≠ 0. In such case the inverse 𝐴−1 is computed via
the formula

𝐴−1 = 1
det(𝐴) cof(𝐴)𝑇 ,

where cof(𝐴) is the cofactor matrix of 𝐴. For 𝑛 = 2 the above formula reads:

( 𝑎 𝑏
𝑐 𝑑 )

−1
= 1

𝑎𝑑 − 𝑏𝑐 ( 𝑑 −𝑏
−𝑐 𝑎 ) .

If the matrix is diagonal, then

( 𝜆 0
0 𝜇 ) = ( 1/𝜆 0

0 1/𝜇 ) .

Notation

In the following we denote the matrix of 𝒲p,𝒮 by the symbol 𝒲 .

Example 4.160: Helicoid

The Helicoid is charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢 cos(𝑣), 𝑢 sin(𝑣), 𝜆𝑣) , 𝑢 ∈ [0, 1] , 𝑣 ∈ [0, 4𝜋) ,
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where 𝜆 > 0 is a constant, see Figure 4.30. Prove that the matrix of the Weingarten map is

𝒲 =
⎛
⎜⎜
⎝

0 − 𝜆
(𝑢2 + 𝜆2)1/2𝜆

(𝑢2 + 𝜆2)3/2 0
⎞
⎟⎟
⎠
.

Solution. We compute

𝜎𝜎𝜎𝑢 = (cos(𝑣), sin(𝑣), 0)
𝜎𝜎𝜎 𝑣 = (−𝑢 sin(𝑣), 𝑢 cos(𝑣), 𝜆)
𝜎𝜎𝜎𝑢𝑢 = (0, 0, 0)
𝜎𝜎𝜎𝑢𝑣 = (− sin(𝑣), cos(𝑣), 0)
𝜎𝜎𝜎 𝑣𝑣 = (−𝑢 cos(𝑣), −𝑢 sin(𝑣), 0)

from which

𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 1
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 𝑢2 + 𝜆2 ,

so that the first fundamental form is

ℱ1 = ( 𝐸 𝐹
𝐹 𝐺 ) = ( 1 0

0 𝑢2 + 𝜆2 ) .

Since ℱ1 is diagonal, the inverse is immediately computed

ℱ −11 = (
1 0
0 1

𝑢2 + 𝜆2
) .

Moreover

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = |
i j k

cos(𝑣) sin(𝑣) 0
−𝑢 sin(𝑣) 𝑢 cos(𝑣) 𝜆

|

= (𝜆 sin(𝑣), −𝜆 cos(𝑣), 𝑢)
and so

‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = √𝑢2 + 𝜆2 .
The standard unit normal to 𝜎𝜎𝜎 is

N = 𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖

= 1
√𝑢2 + 𝜆2

(𝜆 sin(𝑣), −𝜆 cos(𝑣), 𝑢) .
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Hence

𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = 0
𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = − 𝜆

√𝑢2 + 𝜆2
𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 0

and the second funamental form ℱ2 is

ℱ2 = ( 𝐿 𝑀
𝑀 𝑁 ) =

⎛
⎜
⎜
⎝

0 − 𝜆
√𝑢2 + 𝜆2

− 𝜆
√𝑢2 + 𝜆2

0

⎞
⎟
⎟
⎠
.

Finally

𝒲 = ℱ −11 ℱ2

= (
1 0
0 1

𝑢2 + 𝜆2
)
⎛
⎜
⎜
⎝

0 − 𝜆
√𝑢2 + 𝜆2

− 𝜆
√𝑢2 + 𝜆2

0

⎞
⎟
⎟
⎠

=
⎛
⎜⎜
⎝

0 − 𝜆
(𝑢2 + 𝜆2)1/2𝜆

(𝑢2 + 𝜆2)3/2 0
⎞
⎟⎟
⎠
.

Example 4.161

Find the Weingarten matrix of the following surface chart

𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢 − 𝑣, 𝑢 + 𝑣, 𝑢2 + 𝑣2) .

Solution. Start by computing the first fundamental form:

𝜎𝜎𝜎𝑢 = (1, 1, 2𝑢)
𝜎𝜎𝜎 𝑣 = (−1, 1, 2𝑣)
𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = 2(1 + 2𝑢2)
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 4𝑢𝑣
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 2(1 + 2𝑣2)
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Figure 4.30: Plot of Helicoid.

so that

ℱ1 = ( 𝐸 𝐹
𝐹 𝐺 ) = ( 2(1 + 2𝑢2) 4𝑢𝑣

4𝑢𝑣 2(1 + 2𝑣2) )

The determinant of ℱ1 is
det(ℱ1) = 4(1 + 2𝑢2 + 2𝑣2)

and therefore

ℱ −11 = 1
det(ℱ1)

( 𝐺 −𝐹
−𝐹 𝐸 )

= 1
2(1 + 2𝑢2 + 2𝑣2) ( 1 + 2𝑣2 −2𝑢𝑣

−2𝑢𝑣 1 + 2𝑢2 ) .
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We now need to compute the second fundamental form

𝜎𝜎𝜎𝑢𝑢 = (0, 0, 2)
𝜎𝜎𝜎𝑢𝑣 = (0, 0, 0)
𝜎𝜎𝜎 𝑣𝑣 = (0, 0, 2)

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = |
i j k
1 1 2𝑢
−1 1 2𝑣

|

= 2(𝑣 − 𝑢, −𝑢 − 𝑣, 1)
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = 2 (1 + 2𝑢2 + 2𝑣2)

1
2

N = (𝑣 − 𝑢, −𝑢 − 𝑣, 1)
(1 + 2𝑢2 + 2𝑣2)

1
2

𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = 2
(1 + 2𝑢2 + 2𝑣2)

1
2

𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = 0
𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 2

(1 + 2𝑢2 + 2𝑣2)
1
2

so that

ℱ2 = ( 𝐿 𝑀
𝑀 𝑁 )

= 2
(1 + 2𝑢2 + 2𝑣2)

1
2
( 1 0
0 1 ) .

The matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2

= 1
(1 + 2𝑢2 + 2𝑣2) 32

( 1 + 2𝑣2 −2𝑢𝑣
−2𝑢𝑣 1 + 2𝑢2 ) .

4.13 Curvatures

Curvatures of a surface 𝒮 are scalars associated to the Weingarten map 𝒲p,𝒮 . We will define:

• Gaussian curvature
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• Mean curvature
• Principal curvatures
• Normal curvature
• Geodesic curvature

4.13.1 Gaussian and mean curvature

The Weingarten map of 𝒮 encodes the rate of change of the standard unit normal N. We use this map
to produce scalar values, which we call curvatures. The first two curvatures that we consider are called
Gaussian and mean curvatures.

Definition 4.162: Gaussian and mean curvature

Let 𝒮 be an orientable surface and let 𝒲 denote the matrix of the Weingarten map 𝒲p,𝒮 of 𝒮 at p. We
define:

• The Gaussian curvature of 𝒮 at p as

𝐾 ∶= det(𝒲 ) ,

• The mean curvature of 𝒮 at p as

𝐻 ∶= 1
2 trace(𝒲 ) ,

Notation: Trace of a 2 × 2 matrix

We recall that the trace of a 2 × 2 matrix 𝐴 is defined as the sum of the diagonal entries, that is,

trace𝐴 = 𝑎 + 𝑑 , 𝐴 = ( 𝑎 𝑏
𝑐 𝑑 ) .

Remark 4.163

The Gaussian curvature and mean curvature do not depend on the choice of basis of 𝑇p𝒮 . Indeed, if 𝒲
is the matrix of the Weingarten map with respect to the basis {𝜎̃𝜎𝜎𝑢 , 𝜎̃𝜎𝜎 𝑣 } of 𝑇p𝒮 , then

det(𝒲 ) = det(𝒲 ) , trace(𝒲 ) = trace(𝒲 ) .

The above is true by a general linear algebra result: The determinant and trace of a matrix
are invariant under change of basis.
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Since we have shown that the matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2 ,
we can express 𝐾 and 𝐻 in terms of the first and second fundamental forms.

Proposition 4.164

Let 𝒮 be an orientable surface and 𝜎𝜎𝜎 a regular chart at p. Then

𝐾 = 𝐿𝑁 − 𝑀2
𝐸𝐺 − 𝐹 2 , 𝐻 = 𝐿𝐺 − 2𝑀𝐹 − 𝑁𝐸

2(𝐸𝐺 − 𝐹 2) .

Proof

By Theorem 4.159 the matrix of the Weingarten map 𝒲p,𝒮 of 𝒮 at p is given by

𝒲 = ℱ −11 ℱ2 .
We have

det(ℱ1) = | 𝐸 𝐹
𝐹 𝐺 | = 𝐸𝐹 − 𝐺2 ,

det(ℱ2) = | 𝐿 𝑀
𝑀 𝑁 | = 𝐿𝑁 − 𝑀2 .

By the properties of determinant we get

det(ℱ −11 ) = 1
det(ℱ1)

= 1
𝐸𝐹 − 𝐺2 ,

and therefore

𝐾 = det(𝒲 ) = det (ℱ −11 ℱ2)
= det(ℱ −11 ) det(ℱ2) = 𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹 2 .

To compute 𝐻 we need to find the diagonal entries of 𝒲 . Since

ℱ −11 = 1
𝐸𝐺 − 𝐹 2 (

𝐺 −𝐹
−𝐹 𝐸 )

we have

𝒲 = 1
𝐸𝐺 − 𝐹 2 (

𝐺 −𝐹
−𝐹 𝐸 ) ( 𝐿 𝑀

𝑀 𝑁 ) .
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From the above we compute

𝑤11 = 1
𝐸𝐺 − 𝐹 2 (𝐿𝐺 − 𝑀𝐹)

𝑤22 = 1
𝐸𝐺 − 𝐹 2 (−𝑀𝐹 + 𝐸𝑁)

Therefore

𝐻 = 1
2 trace𝒲

= 1
2 (𝑤11 + 𝑤22)

= 𝐿𝐺 − 2𝑀𝐹 + 𝐸𝑁
2(𝐸𝐺 − 𝐹 2) .

Example 4.165: Plane

Consider the plane charted by

𝜎𝜎𝜎(𝑢, 𝑣) = a + p𝑢 + q𝑣 , 𝑢 ∈ (0, 2𝜋) , 𝑢, 𝑣 ∈ ℝ .
We have already computed in Example 4.106 and Example 4.143 that the first and second fundamental
forms of 𝜎𝜎𝜎 are

ℱ1 = ( 1 0
0 1 ) , ℱ2 = ( 0 0

0 0 ) .

Therefore the matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2 = ( 0 0
0 0 ) .

Hence the Gaussian curvature is
𝐾 = det(𝒲 ) = 0 ,

while the mean curvature is
𝐻 = 1

2 trace𝒲 = 0 .
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Example 4.166: Unit cylinder

Consider the unit cylinder charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) , 𝑢 ∈ (0, 2𝜋) , 𝑣 ∈ ℝ .
We have already computed in Example 4.107 and Example 4.144 that the first and second fundamental
forms of 𝜎𝜎𝜎 are

ℱ1 = ( 1 0
0 1 ) , ℱ2 = ( −1 0

0 0 ) .

Therefore the matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2

= ( 1 0
0 1 ) ( −1 0

0 0 )

= ( −1 0
0 0 ) .

Therefore the Gaussian curvature is
𝐾 = det(𝒲 ) = 0 ,

while the mean curvature is
𝐻 = 1

2 trace𝒲 = −12 .

4.13.2 Principal curvatures

Let 𝑉 be a two-dimensional vector space. For a linear map 𝐿∶ 𝑉 → 𝑉 we say that 𝜆 ∈ ℝ is an eigenvalue of
𝐿 with eigenvector v ∈ 𝑉 if

𝐿(v) = 𝜆v , v ≠ 0 .
Suppose 𝐴 ∈ ℝ2×2 is the matrix of 𝐿 with respect to a basis {v1, v2} of 𝑉 . Denote by

x = (𝜆, 𝜇) , v = 𝜆w1 + 𝜇w2 .
the vector of coordinates of v. Then

𝐴v = 𝜆v ,
meaning that 𝜆 is an eigenvalue of 𝐴 with eigenvector x. The eigenvalues of 𝐴 can be computed by solving
the characteristic equation

𝑃(𝜆) = 0 , 𝑃(𝜆) ∶= det (𝐴 − 𝜆𝐼 ) ,
where 𝑃 is the characteristic polynomial of 𝐴. Finally, we recall that 𝐴 ∈ ℝ2×2 is diagonalizable if there
exists a diagonal matrix 𝐷 and an invertible matrix 𝑃 such that

𝐴 = 𝑃−1𝐷𝑃 .
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Theorem 4.167

Let 𝒮 be an orientable surface and let 𝒲p,𝒮 be the Weingarten map at p. There exist scalars 𝜅1, 𝜅2 ∈ ℝ
and an orthonormal basis {t1, t2} of 𝑇p𝒮 such that

𝒲p,𝒮 (t1) = 𝜅1t1 , 𝒲p,𝒮 (t2) = 𝜅2t2 .

Proof

Let 𝜎𝜎𝜎 be a chart for 𝒮 at p. Then {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } is a basis of 𝑇p𝒮 . Let 𝒲 be the matrix of 𝒲p,𝒮 with respect to
such basis. By Theorem 4.159 we have

𝒲 = ℱ −11 ℱ2 .
Recall that

ℱ −11 = 1
𝐸𝐺 − 𝐹 2 (

𝐺 −𝐹
−𝐹 𝐸 ) .

Thusℱ −11 is symmetric. Sinceℱ2 is symmetric, and the product of symmetric matrices is symmetric, we
conclude that 𝒲 is symmetric. Therefore 𝒲p,𝒮 is self-adjoint, see Remark 4.15. The thesis now follows
from the Spectral Theorem, see Theorem 4.13.

The matrix version of Theorem 4.167 is given in the following Corollary.

Corollary 4.168

Let 𝒮 be orientable, and let𝒲 the matrix of the Weingarten map𝒲p,𝒮 with respect to the basis {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 }
of 𝑇p𝒮 , where 𝜎𝜎𝜎 is a regular chart at p. Let 𝜅1, 𝜅2, t1, t2 be as in Theorem 4.167. Let 𝜆1, 𝜆2, 𝜇1, 𝜇2 ∈ ℝ be
such that

t1 = 𝜆1𝜎𝜎𝜎𝑢 + 𝜇1𝜎𝜎𝜎 𝑣 , t2 = 𝜆2𝜎𝜎𝜎𝑢 + 𝜇2𝜎𝜎𝜎 𝑣 .
and denote

x1 = (𝜆1, 𝜇1) , x2 = (𝜆2, 𝜇2) .
They hold:

• The scalars 𝜅1, 𝜅2 are eingenvalues of 𝒲 of eigenvectors x1 and x2, that is,

𝒲 x1 = 𝜅1x1 , 𝒲 x2 = 𝜅2x2 .

• The matrix 𝒲 is diagonalizable, with

𝒲 = 𝑃−1𝐷𝑃 , 𝐷 = ( 𝜅1 0
0 𝜅2 ) , 𝑃 = ( 𝜆1 𝜆2

𝜇1 𝜇2 ) .
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Proof

Recall that 𝒲 is the matrix of 𝒲p,𝒮 with respect to the basis {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } of 𝑇p𝒮 . Therefore, by definition of
x1, x2 we get

𝒲p,𝒮 (t1) = 𝒲 x1 , 𝒲p,𝒮 (t2) = 𝒲 x2 .
The thesis follows by Theorem 4.167 and the Spectral Theorem for matrices, see Theorem 4.19.

The eigenvalues and eigenvectors of the weingarten map have a name.

Definition 4.169: Principal curvatures and vectors

Let 𝒮 be an orientable surface and 𝒲p,𝒮 be the Weingarten map of 𝒮 at p. We define:

• The principal curvatures of 𝒮 at p are the eigenvalues 𝜅1, 𝜅2 of 𝒲p,𝒮 .

• The principal vectors corresponding to 𝜅1 and 𝜅2 are the eigenvectors t1, t2.

Remark 4.170: Computing principal curvatures and vectors

Corollary 4.168 gives an explicit way to compute the principal curvatures and vectors:

1. Compute the eigenvalues of 𝒲 . This is done by solving for 𝜅 the equation

det(𝒲 − 𝜅𝐼 ) = 0 .
This gives one of the principal curvatures

𝜅𝑖 = 𝜅

2. Compute the eigenvector(s) related to the eigenvalue 𝜅. This is done by finding scalars 𝜆, 𝜇 which
solve the linear system

(𝒲 − 𝜅𝑖𝐼 ) ( 𝜆
𝜇 ) = 0

This gives the eigenvector of 𝒲
x𝑖 = (𝜆, 𝜇)

3. The principal vector associated to 𝜅𝑖 is

t𝑖 = 𝜆𝜎𝜎𝜎𝑢 + 𝜇𝜎𝜎𝜎 𝑣
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Remark 4.171: Computing principal curvatures and vectors

If the matrix of the Weingarten map has the form

𝒲 = ( 𝜅1 0
0 𝜅2 )

then 𝒲 is already diagonal. The eigenvalues of 𝒲 are 𝜅1 and 𝜅2, with eigenvectors

x1 = (1, 0) , x2 = (0, 1) .
Therefore 𝜅1, 𝜅2 are the principal curvatures, with principal vectors given by

t1 = 𝜎𝜎𝜎𝑢 , t2 = 𝜎𝜎𝜎 𝑣 .

The principal curvatures are related to the Gaussian and mean curvatures.

Proposition 4.172

Let 𝒮 be an orientable surface. Then

𝐾 = 𝜅1𝜅2 , 𝐻 = 𝜅1 + 𝜅2
2 .

Proof

By Corollary 4.168 we have

𝒲 = 𝑃−1𝐷𝑃 , 𝐷 = ( 𝜅1 0
0 𝜅2 ) .

By the properties of determinant

det (𝐴𝐵) = det(𝐴) det(𝐵) , ∀ 𝐴, 𝐵 ∈ ℝ2×2 .
By definition of Gaussian curvature and the above formula we infer

𝐾 = det(𝒲 )
= det (𝑃−1𝐷𝑃)
= det(𝑃−1) det(𝐷) det(𝑃)
= det(𝐷)
= 𝜅1𝜅2 ,

where we also used that
det(𝑃−1) = 1

det(𝑃) .
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The trace satisfies
trace (𝐴𝐵) = trace (𝐵𝐴) , ∀𝐴, 𝐵 ∈ ℝ2×2 .

By definition of mean curvature and the above formula we get

𝐻 = 1
2 trace(𝒲 )

= 1
2 trace (𝑃−1𝐷𝑃)

= 1
2 trace (𝑃𝑃−1𝐷)

= 1
2 trace (𝐷)

= 1
2 (𝜅1 + 𝜅2) ,

concluding the proof.

Important

In general 𝜅1 and 𝜅2 are hard to compute, as they require solving a second order equation. Instead 𝐾 and
𝐻 are easier to compute, as they are directly expressed in terms of the first and second fundamental form
coefficients.

Example 4.173: Unit Cylinder

Consider the unit cylinder charted by

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢), sin(𝑢), 𝑣) , 𝑢 ∈ (0, 2𝜋) , 𝑣 ∈ ℝ .
We have already computed in Example 4.166 that the matrix of the Weingarten map is

𝒲 = ( −1 0
0 0 ) .

Since 𝒲 is diagonal, the eigenvalues are the diagonal entries of 𝒲 and eigenvectors are

x1 = (1, 0), x2 = (0, 1) .
Therefore the principal curvatures are

𝜅1 = −1 , 𝜅2 = 0
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and the principal vectors are

t1 = 𝜎𝜎𝜎𝑢 = (− sin(𝑢), cos(𝑣), 0) ,
t2 = 𝜎𝜎𝜎 𝑣 = (0, 0, 1) ,

as shown in Figure 4.31.

Figure 4.31: Principal vectors of the unit cylinder.

Example 4.174: Sphere

Consider the chart for the sphere

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢) sin(𝑣), sin(𝑢) sin(𝑣), cos(𝑣))
Prove that

ℱ1 = ℱ2 = ( sin2(𝑣) 0
0 1 ) , 𝒲 = ( 1 0

0 1 ) ,

and
𝐾 = 𝐻 = 𝜅1 = 𝜅2 = 1 , t1 = 𝜎𝜎𝜎𝑢 , t2 = 𝜎𝜎𝜎 𝑣 .
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Solution. We compute

𝜎𝜎𝜎𝑢 = (− sin(𝑢) sin(𝑣), cos(𝑢) sin(𝑣), 0)
𝜎𝜎𝜎 𝑣 = (cos(𝑢) cos(𝑣), sin(𝑢) cos(𝑣), − sin(𝑣))
𝐸 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎𝑢 = sin2(𝑣)
𝐹 = 𝜎𝜎𝜎𝑢 ⋅ 𝜎𝜎𝜎 𝑣 = 0
𝐺 = 𝜎𝜎𝜎 𝑣 ⋅ 𝜎𝜎𝜎 𝑣 = 1

and therefore the first fundamental form is

ℱ1 = ( sin2(𝑣) 0
0 1 ) .

Moreover

𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 = |
i j k

− sin(𝑢) sin(𝑣) cos(𝑢) sin(𝑣) 0
cos(𝑢) cos(𝑣) sin(𝑢) cos(𝑣) − sin(𝑣)

|

= (− cos(𝑢) sin2(𝑣), − sin(𝑢) sin2(𝑣), − cos(𝑣) sin(𝑣))
‖𝜎𝜎𝜎𝑢 × 𝜎𝜎𝜎 𝑣 ‖ = | sin(𝑣)|

N = (− cos(𝑢) sin(𝑣), − sin(𝑢) sin(𝑣), − cos(𝑣))
𝜎𝜎𝜎𝑢𝑢 = (− cos(𝑢) sin(𝑣), − sin(𝑢) sin(𝑣), 0)
𝜎𝜎𝜎𝑢𝑣 = (− sin(𝑢) cos(𝑣), cos(𝑢) cos(𝑣), 0)
𝜎𝜎𝜎 𝑣𝑣 = (− cos(𝑢) sin(𝑣), − sin(𝑢) sin(𝑣), − cos(𝑣))
𝐿 = 𝜎𝜎𝜎𝑢𝑢 ⋅ N = sin2(𝑣)
𝑀 = 𝜎𝜎𝜎𝑢𝑣 ⋅ N = 0
𝑁 = 𝜎𝜎𝜎 𝑣𝑣 ⋅ N = 1

so that the second fundamental form is

ℱ2 = ( sin2(𝑣) 0
0 1 ) .

In particular the matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2 = ( 1 0
0 1 )

Since 𝒲 is diagonal, the principal curvatures are

𝜅1 = 𝜅2 = 1
and the principal vectors

t1 = 𝜎𝜎𝜎𝑢 , t2 = 𝜎𝜎𝜎 𝑣 .
Finally, we have that

𝐻 = 𝜅1 + 𝜅2
2 = 1 , 𝐾 = 𝜅1𝜅2 = 1 .
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Example 4.175: Torus

Consider a circle 𝒞 contained in the 𝑥𝑧-plane, with center at distance 𝑏 > 0 from the 𝑧-axis and radius 𝑎,
with 0 < 𝑎 < 𝑏. The torus is obtained by rotating 𝒞 around the 𝑧-axis. This surface is charted by

𝜎𝜎𝜎(𝜃, 𝜙) = ((𝑎 + 𝑏 cos(𝜃)) cos(𝜙), (𝑎 + 𝑏 cos(𝜃)) sin(𝜙), 𝑏 sin(𝜃)) ,
where 𝜃 ∈ (−𝜋/2, 𝜋/2) and 𝜙 ∈ (0, 2𝜋). One can compute that the first and second fundamental forms
are

ℱ1 = ( 𝑏2 0
0 (𝑎 + 𝑏 cos(𝜃))2 )

ℱ2 = ( 𝑏 0
0 (𝑎 + 𝑏 cos(𝜃)) cos(𝜃) ) .

Therefore the matrix of the Weingarten map is

𝒲 = ℱ −11 ℱ2 = (
1
𝑏 0
0 cos(𝜃)

𝑎 + 𝑏 cos(𝜃)
) .

Since 𝒲 is diagonal, the principal curvatures are

𝜅1 = 1
𝑏 , 𝜅2 = cos(𝜃)

𝑎 + 𝑏 cos(𝜃) ,

and the principal vectors
t1 = 𝜎𝜎𝜎𝑢 , t2 = 𝜎𝜎𝜎 𝑣 .

The Gaussian and mean curvature are

𝐾 = 𝜅1𝜅2 = cos(𝜃)
𝑏 (𝑎 + 𝑏 cos(𝜃))

𝐻 = 𝜅1 + 𝜅2
2 = 𝑎 + 2𝑏 cos(𝜃)

2𝑏 (𝑎 + 𝑏 cos(𝜃))

4.13.3 Normal and geodesic curvatures

Let 𝒮 be a regular surface and consider all the curves 𝛾𝛾𝛾 on 𝒮 passing through the point p ∈ 𝒮 .
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Question 4.176

Which curves through p have greatest or lowest curvature?

We start our analysis with the following proposition.

Proposition 4.177

Let 𝒮 be a regular surface and 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 be a unit speed curve. Then

{ ̇𝛾𝛾𝛾 ,N,N × ̇𝛾𝛾𝛾 }
is an orthornormal basis of ℝ3 for all 𝑡 ∈ (𝑎, 𝑏), where N is the standard unit normal to 𝒮 evaluated at
p = 𝛾𝛾𝛾(𝑡).

Proof

By definition
̇𝛾𝛾𝛾 (𝑡) ∈ 𝑇p𝒮 , p ∶= 𝛾𝛾𝛾 (𝑡) ,

for all 𝑡 ∈ (𝑎, 𝑏). This means ̇𝛾𝛾𝛾 is tangent to 𝒮 . Thus

̇𝛾𝛾𝛾 ⋅ N = 0 .
We have ‖ ̇𝛾𝛾𝛾 ‖ = 1 since 𝛾𝛾𝛾 is unit speed. Moreover ‖N‖ = 1 by definition. Since ̇𝛾𝛾𝛾 and N are orthogonal, we
also obtain

‖N × ̇𝛾𝛾𝛾 ‖ = ‖N‖ ‖ ̇𝛾𝛾𝛾 ‖ = 1 ,
by the properties of vector product. Finally

(N × ̇𝛾𝛾𝛾 ) ⋅ N = 0 , (N × ̇𝛾𝛾𝛾 ) ⋅ ̇𝛾𝛾𝛾 = 0 ,
by the properties of vector product.

Important

Notice that the basis
{ ̇𝛾𝛾𝛾 ,N,N × ̇𝛾𝛾𝛾 }

does not coincide with the Frenet frame of 𝛾𝛾𝛾 in general.
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Proposition 4.178

Let 𝒮 be a regular surface and 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 be a unit speed curve. Then

̈𝛾𝛾𝛾 = 𝜅𝑛N + 𝜅𝑔 (N × ̇𝛾𝛾𝛾 ) , (4.12)

where N is evaluated at p ∶= 𝛾𝛾𝛾 (𝑡) and 𝜅𝑛, 𝜅𝑔 are scalars depedent on p. Moreover

𝜅𝑛 = ̈𝛾𝛾𝛾 ⋅ N , 𝜅𝑔 = ̈𝛾𝛾𝛾 ⋅ (N × ̇𝛾𝛾𝛾 ) , (4.13)

𝜅2 = 𝜅2𝑛 + 𝜅2𝑔 , (4.14)

𝜅𝑛 = 𝜅 cos(𝜙) , 𝜅𝑔 = ±𝜅 sin(𝜙) , (4.15)

where 𝜅 is the curvature of 𝛾𝛾𝛾 and 𝜙 is the angle between N and n, the principal unit normal of 𝛾𝛾𝛾 .

Proof

Part 1. By Proposition 4.177 we know that

{ ̇𝛾𝛾𝛾 ,N,N × ̇𝛾𝛾𝛾 }
is an orthornormal basis of ℝ3. Hence

̈𝛾𝛾𝛾 = 𝑎 ̇𝛾𝛾𝛾 + 𝑏N + 𝑐 (N × ̇𝛾𝛾𝛾 ) ,
for some coefficients 𝑎, 𝑏, 𝑐 ∈ ℝ. Since 𝛾𝛾𝛾 is unit speed, we have that

̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 0 .
On the other hand,

̇𝛾𝛾𝛾 ⋅ ̈𝛾𝛾𝛾 = 𝑎( ̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 ) + 𝑏( ̇𝛾𝛾𝛾 ⋅ N) + 𝑐 ̇𝛾𝛾𝛾 ⋅ (N × ̇𝛾𝛾𝛾 ) = 𝑎 ,
since ̇𝛾𝛾𝛾 is orthogonal to N and N × ̇𝛾𝛾𝛾 , and

̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 = ‖ ̇𝛾𝛾𝛾 ‖2 = 1 .
Therefore 𝑎 = 0 and

̈𝛾𝛾𝛾 = 𝑏N + 𝑐 (N × ̇𝛾𝛾𝛾 ) .
Setting 𝜅𝑛 ∶= 𝑏 and 𝜅𝑔 ∶= 𝑐 we conclude (4.12).
Part 2. Taking the scalar product of (4.12) with N yields

̈𝛾𝛾𝛾 ⋅ N = 𝜅𝑛 ‖N‖2 + 𝜅𝑔 (N × ̇𝛾𝛾𝛾 ) ⋅ N = 𝜅𝑛 ,
where we used that N and N × ̇𝛾𝛾𝛾 are orthonormal vectors. Similarly, taking the scalar product of (4.12)
with N × ̇𝛾𝛾𝛾 yields the second equation in (4.13).
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Part 3. By (4.12) we infer

‖ ̈𝛾𝛾𝛾 ‖2 = 𝜅2𝑛 ‖N‖2 + 2𝜅𝑛𝜅𝑔N ⋅ (N × ̇𝛾𝛾𝛾 ) + 𝜅2𝑔 ‖N × ̇𝛾𝛾𝛾 ‖2
= 𝜅2𝑛 + 𝜅2𝑔 ,

where we used that N and N × ̇𝛾𝛾𝛾 are orthonormal. Since 𝜅(𝑡) = ‖ ̈𝛾𝛾𝛾 (𝑡)‖, we get (4.14).
Part 4. Recalling that

̈𝛾𝛾𝛾 = 𝜅n ,
from the first equation in (4.13) we obtain

𝜅𝑛 = ̈𝛾𝛾𝛾 ⋅ N
= 𝜅n ⋅ N
= 𝜅‖n‖2‖N‖2 cos(𝜙)
= 𝜅 cos(𝜙) ,

where we used that n and N have unit norm. Hence the first equation in (4.15) is established. By (4.14)
we get

𝜅2𝑔 = 𝜅2 − 𝜅2𝑛
= 𝜅2 cos2(𝜙) − 𝜅2𝑛
= 𝜅2(cos2(𝜙) − 1)
= 𝜅2 sin2(𝜙) ,

from which we obtain the second equation in (4.15).

The quantities 𝜅𝑛 and 𝜅𝑔 are the normal and geodesic curvatures of 𝛾𝛾𝛾 .
Definition 4.179: Normal and geodesic curvature

Let 𝒮 be regular and 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a unit speed curve. By (4.12) we have

̈𝛾𝛾𝛾 = 𝜅𝑛N + 𝜅𝑔(N × ̇𝛾𝛾𝛾 )
for N the standard unit normal to 𝒮 and scalars 𝜅𝑛, 𝜅𝑔 ∈ ℝ. We call

• 𝜅𝑛 the normal curvature of 𝛾𝛾𝛾 ,
• 𝜅𝑔 the geodesic curvature of 𝛾𝛾𝛾 .

The normal curvature 𝜅𝑛 can be computed via the second fundamental form, as shown in the theorem below.
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Theorem 4.180

Let 𝒮 be a regular surface and 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → 𝒮 a unit speed curve. Denote p ∶= 𝛾𝛾𝛾 (𝑡). We have:

1. The normal curvature 𝜅𝑛 satisfies
𝜅𝑛 = 𝐼 𝐼p( ̇𝛾𝛾𝛾 , ̇𝛾𝛾𝛾 ) .

2. Let 𝜎𝜎𝜎 be a chart for 𝒮 at p. Then
𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡))

for some smooth functions 𝑢, 𝑣 ∶ (𝑎, 𝑏) → ℝ, and
𝜅𝑛 = 𝐿 ̇𝑢2 + 2𝑀 ̇𝑢 ̇𝑣 + 𝑁 ̇𝑣2 .

Proof

Part 1. By definition we have
̇𝛾𝛾𝛾 (𝑡) ∈ 𝑇p𝒮

when p = 𝛾𝛾𝛾 (𝑡). Set
̃𝛾𝛾𝛾 (𝑡) ∶= N(𝛾𝛾𝛾 (𝑡)) . (4.16)

By definition of differential we have
𝑑pN( ̇𝛾𝛾𝛾 (𝑡)) = ̇̃𝛾𝛾𝛾 (𝑡) . (4.17)

Note that
̃𝛾𝛾𝛾 (𝑡) ⋅ ̇𝛾𝛾𝛾 (𝑡) = 0 ,

since N is normal to 𝒮 at p and ̇𝛾𝛾𝛾 (𝑡) ∈ 𝑇p(𝒮 ). Differentiating the above expression we get

0 = 𝑑
𝑑𝑡 ( ̃𝛾𝛾𝛾 (𝑡) ⋅ ̇𝛾𝛾𝛾 (𝑡))

= ̃𝛾𝛾𝛾 (𝑡) ⋅ ̈𝛾𝛾𝛾 (𝑡) + ̇̃𝛾𝛾𝛾 (𝑡) ⋅ ̇𝛾𝛾𝛾 (𝑡)
= N(𝛾𝛾𝛾 (𝑡)) ⋅ ̈𝛾𝛾𝛾 (𝑡) + 𝑑pN( ̇𝛾𝛾𝛾 (𝑡)) ⋅ ̇𝛾𝛾𝛾 (𝑡)

where in the last equation we used (4.16) and (4.17). Hence

−𝑑pN( ̇𝛾𝛾𝛾 (𝑡)) ⋅ ̇𝛾𝛾𝛾 (𝑡) = N(𝛾𝛾𝛾 (𝑡)) ⋅ ̈𝛾𝛾𝛾 (𝑡) . (4.18)

By definition of Weingarten and Gauss map we get

𝒲p,𝒮 ( ̇𝛾𝛾𝛾 (𝑡)) = −𝑑p𝒢( ̇𝛾𝛾𝛾 (𝑡)) = −𝑑pN( ̇𝛾𝛾𝛾 (𝑡)) . (4.19)

Therefore, using (4.18) and (4.19), we infer

𝐼 𝐼p( ̇𝛾𝛾𝛾 (𝑡), ̇𝛾𝛾𝛾 (𝑡)) = 𝒲p,𝒮 ( ̇𝛾𝛾𝛾 (𝑡)) ⋅ ̇𝛾𝛾𝛾 (𝑡)
= −𝑑pN( ̇𝛾𝛾𝛾 (𝑡)) ⋅ ̇𝛾𝛾𝛾 (𝑡)
= N(𝛾𝛾𝛾 (𝑡)) ⋅ ̈𝛾𝛾𝛾 (𝑡)
= 𝜅𝑛 ,
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where in the last equality we used (4.13).
Part 2. Let 𝜎𝜎𝜎 be a chart at p and

𝛾𝛾𝛾 (𝑡) = 𝜎𝜎𝜎(𝑢(𝑡), 𝑣(𝑡)) .
Differentiating the above expression we get

̇𝛾𝛾𝛾 (𝑡) = ̇𝑢𝜎𝜎𝜎𝑢 + ̇𝑣𝜎𝜎𝜎 𝑣 .
By definition of 𝑑𝑢 and 𝑑𝑣 , see Definition 4.101, we have

𝑑𝑢( ̇𝛾𝛾𝛾 (𝑡)) = ̇𝑢(𝑡) , 𝑑𝑣( ̇𝛾𝛾𝛾 (𝑡)) = ̇𝑣(𝑡) .
Therefore, using Part 1 and Theorem 4.156, we obtain

𝜅𝑛 = 𝐼 𝐼p( ̇𝛾𝛾𝛾 (𝑡), ̇𝛾𝛾𝛾 (𝑡))
= 𝐿𝑑𝑢( ̇𝛾𝛾𝛾 (𝑡))2 + 2𝑀𝑑𝑢( ̇𝛾𝛾𝛾 (𝑡))𝑑𝑣( ̇𝛾𝛾𝛾 (𝑡)) + 𝑁𝑑𝑣( ̇𝛾𝛾𝛾 (𝑡))2
= 𝐿 ̇𝑢2 + 2𝑀 ̇𝑢 ̇𝑣 + 𝑁 ̇𝑣2 .

Example 4.181: Curves on the sphere

Consider the chart for the sphere

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢) sin(𝑣), sin(𝑢) sin(𝑣), cos(𝑣))
Show that

𝜅𝑛(𝑡) = 1
for all unit speed curves on the sphere.

Solution. We have computed in Example 4.174 that the second fundamental form of 𝜎𝜎𝜎 is

ℱ2 = sin2(𝑣)𝑑𝑢2 + 𝑑𝑣2

Let 𝛾𝛾𝛾 be a unit speed curve on the sphere, that is,

𝛾𝛾𝛾 (𝑡) = 𝜎(𝑢(𝑡), 𝑣(𝑡)) . (4.20)

By Theorem 4.180 the normal curvature of 𝛾𝛾𝛾 is

𝜅𝑛 = sin2(𝑣) ̇𝑢2 + ̇𝑣2 .
Differentiating (4.20) we get

̇𝛾𝛾𝛾 (𝑡) = 𝑑
𝑑𝑡 (cos(𝑢(𝑡)) sin(𝑣(𝑡)), sin(𝑢(𝑡)) sin(𝑣(𝑡)), cos(𝑣(𝑡)))

= (− ̇𝑢 sin(𝑢) sin(𝑣) + ̇𝑣 cos(𝑢) cos(𝑣), ̇𝑢 cos(𝑢) sin(𝑣)+
̇𝑣 sin(𝑢) cos(𝑣), − ̇𝑣 sin(𝑣))

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 300

so that
‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = sin2(𝑣) ̇𝑢2 + ̇𝑣2 .

Since 𝛾𝛾𝛾 is unit speed, we also get
‖ ̇𝛾𝛾𝛾 ‖2 = 1 ,

showing that
𝜅𝑛 = sin2(𝑣) ̇𝑢2 + ̇𝑣2 = 1 ,

as required.

The normal curvature 𝜅𝑛 is related to the principal curvatures 𝜅1 and 𝜅2.

Theorem 4.182: Euler’s Theorem

Let 𝒮 be a regular surface and denote by 𝜅1, 𝜅2 the principal curvatures with principal vectors t1, t2. Let
𝛾𝛾𝛾 be a unit speed curve on 𝒮 . The normal curvature of 𝛾𝛾𝛾 is given by

𝜅𝑛 = 𝜅1 cos2(𝜃) + 𝜅2 sin2(𝜃) ,
where 𝜃 is the angle between ̇𝛾𝛾𝛾 and t1.

Proof

Let 𝛾𝛾𝛾 be a unit speed curve on 𝒮 and set
p ∶= 𝛾𝛾𝛾 (𝑡) .

By Theorem 4.167 the principal vectors {t1, t2} form an orthonormal basis of 𝑇p𝒮 . Since by definition

̇𝛾𝛾𝛾 (𝑡) ∈ 𝑇p𝒮 ,
there exist scalars 𝜆, 𝜇 ∈ ℝ such that

̇𝛾𝛾𝛾 (𝑡) = 𝜆t1 + 𝜇t2 .
As 𝛾𝛾𝛾 is unit speed and t1, t2 orthonormal, we infer

1 = ‖ ̇𝛾𝛾𝛾 (𝑡)‖2 = ̇𝛾𝛾𝛾 ⋅ ̇𝛾𝛾𝛾 = 𝜆2 + 𝜇2 .
Therefore there exists 𝜃 ∈ [0, 2𝜋] such that

𝜆 = cos(𝜃), 𝜇 = sin(𝜃) .
Hence

̇𝛾𝛾𝛾 (𝑡) = cos(𝜃)t1 + sin(𝜃)t2 . (4.21)
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In particular, we can take the scalar product of (4.21) with t1 to get

cos(𝜃) = 𝜆 = ̇𝛾𝛾𝛾 (𝑡) ⋅ t1 .
Since ̇𝛾𝛾𝛾 and t1 are unit vectors, from the above equation we conclude that 𝜃 is the angle between ̇𝛾𝛾𝛾 and
t1. In addition, recall that

𝒲p,𝒮 (t1) = 𝜅1t1 , 𝒲p,𝒮 (t2) = 𝜅2t2 ,
and t1, t2 are orthonormal. Thus

𝐼 𝐼p(t1, t1) = 𝒲p,𝒮 (t1) ⋅ t1 = 𝜅1 ‖t1‖2 = 𝜅1
𝐼 𝐼p(t1, t2) = 𝒲p,𝒮 (t1) ⋅ t2 = 𝜅1t1 ⋅ t2 = 0
𝐼 𝐼p(t2, t1) = 𝒲p,𝒮 (t2) ⋅ t1 = 𝜅2t2 ⋅ t1 = 0
𝐼 𝐼p(t2, t2) = 𝒲p,𝒮 (t2) ⋅ t2 = 𝜅2 ‖t2‖2 = 𝜅2

By Theorem 4.180, equation (4.21), and bilinearity of 𝐼 𝐼p, we get

𝜅𝑛 = 𝐼 𝐼p( ̇𝛾𝛾𝛾 , ̇𝛾𝛾𝛾 )
= cos2(𝜃) 𝐼 𝐼p(t1, t1) + cos(𝜃) sin(𝜃) 𝐼 𝐼p(t1, t2)
+ sin(𝜃) cos(𝜃) 𝐼 𝐼p(t2, t1) + sin2(𝜃) 𝐼 𝐼p(t2, t2)

= cos2(𝜃)𝜅1 + sin2(𝜃)𝜅2
ending the proof.

As an immediate corollary of the Euler’s Theorem we get the next statement.

Corollary 4.183

Let 𝒮 be a regular surface and 𝜅1, 𝜅2 its principal curvatures at p with principal vectors t1, t2. Then:

• 𝜅1 and 𝜅2 are the minimum and maximum values of 𝜅𝑛, for all unit speed curves on 𝒮 passing
through p.

• The directions of lowest and highest curvature on 𝒮 are given by t1 and t2.

In Example 4.181 we have shown with a direct argument that

𝜅𝑛 = 1
for all unit speed curves on the sphere. Thanks to Euler’s Theorem we can obtain an immediate proof of this
fact.
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Example 4.184: Curves on the sphere

Let us consider again the chart for the sphere

𝜎𝜎𝜎(𝑢, 𝑣) = (cos(𝑢) sin(𝑣), sin(𝑢) sin(𝑣), cos(𝑣))
as seen in Example 4.181. By Example 4.174, the principal curvatures of 𝜎𝜎𝜎 are

𝜅1 = 𝜅2 = 1 .
By Euler’s Theorem, for any curve 𝛾𝛾𝛾 on the sphere we have

𝜅𝑛 = 𝜅1 cos2(𝜃) + 𝜅2 sin2(𝜃) = 1 .

4.13.4 Local shape of a surface

The principal curvatures 𝜅1 and 𝜅2 determine the maximum and minimum curvature of a surface 𝒮 , see
Corollary 4.183. Hence we can study the local shape of 𝒮 in function of 𝜅1 and 𝜅2.

Theorem 4.185: Local structure of surfaces

Let 𝒮 be a regular surface and p ∈ 𝒮 . In the vicinity of p the surface 𝒮 is approximated by the quadric
surface of equation

𝑧 = 1
2 (𝑥

2𝜅1(p) + 𝑦2𝜅2(p)) , (4.22)

where 𝜅1(p), 𝜅2(p) are the principal curvatures of 𝒮 at p.

Proof

By Theorem 4.167 the principal vectors {t1, t2} are an orthonormal basis of 𝑇p𝒮 . Therefore the standard
unit normal N at p is orthogonal to both t1 and t2. Up to rotations and translations, we can assume
WLOG that p = 000 and

t1 = (1, 0, 0) , t2 = (0, 1, 0) , N = (0, 0, 1) . (4.23)

Let 𝜎𝜎𝜎 be a chart for 𝒮 at p. Up to reparametrizing, we can assume that

𝜎𝜎𝜎(0, 0) = p = 000 .
As N = (0, 0, 1), it follows that 𝑇p𝒮 is the 𝑥𝑦-plane

𝑇p𝒮 = ℝ2 = {(𝑥, 𝑦 , 0) ∶ 𝑥, 𝑦 ∈ ℝ} .
Since {𝜎𝜎𝜎𝑢 , 𝜎𝜎𝜎 𝑣 } is a basis for 𝑇p𝒮 , we have that for each (𝑥, 𝑦) ∈ ℝ2 there exist (𝑠, 𝑡) ∈ ℝ2 such that

(𝑥, 𝑦 , 0) = 𝑠𝜎𝜎𝜎𝑢 + 𝑡𝜎𝜎𝜎 𝑣 , (4.24)
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where 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are evaluated at (0, 0). The Taylor approximation of 𝜎𝜎𝜎 at (0, 0) is
𝜎𝜎𝜎(𝑠, 𝑡) = 𝜎𝜎𝜎(0, 0) + 𝑠𝜎𝜎𝜎𝑢 + 𝑡𝜎𝜎𝜎 𝑣

+ 1
2 (𝑠

2𝜎𝜎𝜎𝑢𝑢 + 2𝑠𝑡𝜎𝜎𝜎𝑢𝑣 + 𝑡2𝜎𝜎𝜎 𝑣𝑣) + 𝑅 ,
= (𝑥, 𝑦 , 0) + 1

2 (𝑠
2𝜎𝜎𝜎𝑢𝑢 + 2𝑠𝑡𝜎𝜎𝜎𝑢𝑣 + 𝑡2𝜎𝜎𝜎 𝑣𝑣) + 𝑅

where 𝑅 is a remainder and the derivatives of 𝜎𝜎𝜎 are evaluated at (0, 0). Hence, if 𝑥, 𝑦 are small (and thus
𝑠, 𝑡 are small), we have that

𝜎𝜎𝜎(𝑠, 𝑡) ≈ (𝑥, 𝑦 , 𝑧)
where

𝑧 ∶= 1
2 (𝑠

2𝜎𝜎𝜎𝑢𝑢 + 2𝑠𝑡𝜎𝜎𝜎𝑢𝑣 + 𝑡2𝜎𝜎𝜎 𝑣𝑣) ⋅ N
= 1

2 (𝐿𝑠
2 + 2𝑀𝑠𝑡 + 𝑁 𝑡2) ,

with 𝐿,𝑀, 𝑁 coefficients of the second fundamental form of 𝜎𝜎𝜎 at (0, 0). Set
v ∶= 𝑠𝜎𝜎𝜎𝑢 + 𝑡𝜎𝜎𝜎 𝑣 .

By Theorem 4.156 we have

𝐿𝑠2 + 2𝑀𝑠𝑡 + 𝑁 𝑡2 = 𝐼 𝐼p(v, v) = 𝒲p,𝒮 (v) ⋅ v .
On the other hand, using (4.23) and (4.24) we get

v = 𝑠𝜎𝜎𝜎𝑢 + 𝑡𝜎𝜎𝜎 𝑣 = (𝑥, 𝑦 , 0) = 𝑥t1 + 𝑦t2 .
Since the Weingarten map is linear we get

𝒲p,𝒮 (v) = 𝑥𝒲p,𝒮 (t1) + 𝑦𝒲p,𝒮 (t2)
= 𝑥𝜅1t1 + 𝑦𝜅2t2 ,

where we used that t1 and t2 are eigenvectors of 𝒲p,𝒮 with eigenvalues 𝜅1 and 𝜅2. Hence

𝒲p,𝒮 (v) ⋅ v = 𝑥𝜅1t1 + 𝑦𝜅2t2 ⋅ (𝑥t1 + 𝑦t2)
= 𝑥2𝜅1 + 𝑦2𝜅2

Therefore

𝑧 = 1
2 (𝐿𝑠

2 + 2𝑀𝑠𝑡 + 𝑁 𝑡2)
= 1

2𝒲p,𝒮 (v) ⋅ v
= 1

2 (𝑥
2𝜅1 + 𝑦2𝜅2) ,

showing that

𝜎𝜎𝜎(𝑡, 𝑠) ≈ (𝑥, 𝑦 , 12 (𝑥
2𝜅1 + 𝑦2𝜅2)) .
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Thanks to Theorem 4.185 we can distinguish between 4 approximating shapes.

Definition 4.186: Local shape types

Let 𝒮 be a regular surface and denote by 𝜅1(p) and 𝜅2(p) its principal curvatures at p. The point p is

• Elliptic if
𝜅1(p) > 0 , 𝜅2(p) > 0 or 𝜅1(p) < 0 , 𝜅2(p) < 0

Then (4.22) is the equation of an elliptic paraboloid.

• Hyperbolic if
𝜅1(p) < 0 < 𝜅2(p) or 𝜅2(p) < 0 < 𝜅1(p)

Then (4.22) is the equation of a hyperbolic paraboloid.

• Parabolic if
𝜅1(p) = 0 , 𝜅2(p) ≠ 0 or 𝜅2(p) ≠ 0, 𝜅1(p) = 0

Then (4.22) is the equation of a parabolic cylinder.

• Planar if
𝜅1(p) = 𝜅2(p) = 0

Then (4.22) is the equation of a plane.

Example 4.187

Consider the surface chart
𝜎𝜎𝜎(𝑢, 𝑣) = (𝑢 − 𝑣, 𝑢 + 𝑣, 𝑢2 + 𝑣2) .

Show that p = 𝜎𝜎𝜎(1, 0) is an elliptic point. Therefore 𝜎𝜎𝜎 is approximated by an elliptic paraboiloid in the
vicinity of p.

Solution. In Example 4.161 we have shown that the Weingarten matrix of 𝜎𝜎𝜎 is

𝒲 = 1
(1 + 2𝑢2 + 2𝑣2) 32

( 1 + 2𝑣2 −2𝑢𝑣
−2𝑢𝑣 1 + 2𝑢2 ) .

For 𝑢 = 1 and 𝑣 = 1 we obtain

𝒲 = 1
3 3
2
( 1 0
0 3 ) = ( 3− 3

2 0
0 3− 1

2
) .

Therefore the principal curvatures at p are

𝜅1(p) = 3− 3
2 , 𝜅2(p) = 3− 1

2 .
Since 𝜅1(p) > 0 and 𝜅2(p) > 0 we have that p is an elliptic point.
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Figure 4.32: A surface 𝒮 is locally approximated by one of the above quadrics, depending on the values of
principal curvatures at p.
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4.13.5 Umbilical points

Definition 4.188: Umbilical point

Let 𝒮 be a regular surface and denote by 𝜅1(p) and 𝜅2(p) its principal curvatures at p. We say that p is
an umbilic if

𝜅1(p) = 𝜅2(p) .

Remark 4.189

Umbilical points might be planar or elliptic.

Suppose that p is an umbilic, that is,
𝜅1 = 𝜅2

at p. Let 𝜅𝑛 be the normal curvature of a unit speed curve 𝛾𝛾𝛾 passing through p. By Theorem 4.182 we have

𝜅𝑛 = 𝜅1 cos2(𝜃) + 𝜅2 sin2(𝜃) = 𝜅1 .
Therefore 𝜅𝑛 does not depend on 𝛾𝛾𝛾 . Intuitively, this can only happen if in the vicinity of p the surface looks
like a sphere or a plane. Indeed, the following theorem holds.

Theorem 4.190

Let 𝒮 be a regular surface such that every point p ∈ 𝒮 is umbilic. Then 𝒮 is an open subset of plane or
a sphere.

Proof

By assumption we have
𝜅1(p) = 𝜅2(p) = 𝜅(p) , ∀p ∈ 𝒮 . (4.25)

Step 1. 𝜅 is constant.
By Theorem 4.167 the principal vectors {t1, t2} are an orthonormal basis of 𝑇p𝒮 . Hence, for each v ∈ 𝑇p𝒮
there exist 𝜆, 𝜇 ∈ ℝ such that

v = 𝜆t1 + 𝜇t2 .
Using the linearity of 𝒲p,𝒮 and (4.25) we obtain

𝒲p,𝒮 (v) = 𝜆𝒲p,𝒮 (t1) + 𝜇𝒲p,𝒮 (t2)
= 𝜆𝜅t1 + 𝜇𝜅t2
= 𝜅v ,
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showing that
𝒲p,𝒮 (v) = 𝜅v , ∀ v ∈ 𝑇p𝒮 . (4.26)

Let 𝜎𝜎𝜎 ∶ 𝑈 → ℝ3 be a chart of 𝒮 . Up to restricting 𝜎𝜎𝜎 , we can assume that 𝑈 is connected. By Lemma 4.158
we have

𝒲p,𝒮 (𝜎𝜎𝜎𝑢) = −N𝑢 , 𝒲p,𝒮 (𝜎𝜎𝜎 𝑣 ) = −N𝑣 .
On the other hand, by (4.26) we infer

𝒲p,𝒮 (𝜎𝜎𝜎𝑢) = 𝜅𝜎𝜎𝜎𝑢 , 𝒲p,𝒮 (𝜎𝜎𝜎 𝑣 ) = 𝜅𝜎𝜎𝜎 𝑣 ,
from which

N𝑢 = −𝜅𝜎𝜎𝜎𝑢 , N𝑣 = −𝜅𝜎𝜎𝜎 𝑣 . (4.27)

Thus
(𝜅𝜎𝜎𝜎𝑢)𝑣 = − (N𝑢)𝑣 = − (N𝑣 )𝑢 = (𝜅𝜎𝜎𝜎 𝑣 )𝑢 .

Moreover

(𝜅𝜎𝜎𝜎𝑢)𝑣 = 𝜅𝑣𝜎𝜎𝜎𝑢 + 𝜅𝜎𝜎𝜎𝑢𝑣
(𝜅𝜎𝜎𝜎 𝑣 )𝑢 = 𝜅𝑢𝜎𝜎𝜎 𝑣 + 𝜅𝜎𝜎𝜎𝑢𝑣 ,

so that
𝜅𝑣𝜎𝜎𝜎𝑢 = 𝜅𝑢𝜎𝜎𝜎 𝑣 . (4.28)

Recall that 𝜎𝜎𝜎𝑢 and 𝜎𝜎𝜎 𝑣 are linearly independent, being 𝒮 regular. Hence the linear combination at (4.28)
must be trivial, implying

𝜅𝑢 = 𝜅𝑣 = 0 .
Since 𝑈 is connected, the above implies that 𝜅 is constant.
Step 2. We have the two cases 𝜅 = 0 and 𝜅 ≠ 0.

• Assume 𝜅 = 0. By (4.27) we get that
N𝑢 = N𝑣 = 000 ,

which implies N is constant. Therefore

(N ⋅ 𝜎𝜎𝜎)𝑢 = N𝑢 ⋅ 𝜎𝜎𝜎 + N ⋅ 𝜎𝜎𝜎𝑢 = 0
since N𝑢 = 000 and N ⋅ 𝜎𝜎𝜎𝑢 = 0 because N is orthogonal to 𝑇p𝒮 . Similarly we get

(N ⋅ 𝜎𝜎𝜎)𝑣 = 0 ,
showing that N ⋅ 𝜎𝜎𝜎 is constant. Hence there exists 𝑐 ∈ ℝ such that

N ⋅ 𝜎𝜎𝜎(𝑢, 𝑣) = 𝑐 , ∀ (𝑢, 𝑣) ∈ 𝑈 .
This shows 𝜎𝜎𝜎(𝑈 ) is contained in the plane

𝜋 = {x ∈ ℝ3 ∶ N ⋅ x = 𝑐} .
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• Assume 𝜅 ≠ 0. Condition (4.27) implies

N = −𝜅𝜎𝜎𝜎 + a

for some a ∈ ℝ3 constant vector. Thus

‖𝜎𝜎𝜎 − 1
𝜅a‖

2
= ‖−1

𝜅N‖
2
= 1

𝜅2 ,

given that ‖N‖ = 1. Therefore 𝜎𝜎𝜎(𝑈 ) is contained in the sphere of center a/𝜅 and radius 1/𝜅.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



5 Plots with Python

5.1 Curves in Python

5.1.1 Curves in 2D

Suppose we want to plot the parabola 𝑦 = 𝑡2 for 𝑡 in the interval [−3, 3]. In our language, this is the two-
dimensional curve

𝛾𝛾𝛾 (𝑡) = (𝑡, 𝑡2) , 𝑡 ∈ [−3, 3] .
The two Python libraries we use to plot 𝛾𝛾𝛾 are numpy and matplotlib. In short, numpy handles multi-
dimensional arrays and matrices, and can perform high-level mathematical functions on them. For any ques-
tion you may have about numpy, answers can be found in the searchable documentation available here. In-
stead matplotlib is a plotting library, with documentation here. Python libraries need to be imported every
time you want to use them. In our case we will import:

import numpy as np
import matplotlib.pyplot as plt

The above imports numpy and the module pyplot from matplotlib, and renames them to np and plt,
respectively. These shorthands are standard in the literature, and they make code much more readable.
The function for plotting 2D graphs is called plot(x,y) and is contained in plt. As the syntax suggests, plot
takes as arguments two arrays

𝑥 = [𝑥1, … , 𝑥𝑛] , 𝑦 = [𝑦1, … , 𝑦𝑛] .
As output it produces a graph which is the linear interpolation of the points (𝑥𝑖, 𝑦𝑖) in ℝ2, that is, consecutive
points (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) are connected by a segment. Using plot, we can graph the curve 𝛾𝛾𝛾 (𝑡) = (𝑡, 𝑡2)
like so:

# Code for plotting gamma

import numpy as np
import matplotlib.pyplot as plt

# Generating array t
t = np.array([-3,-2,-1,0,1,2,3])

# Computing array f
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f = t**2

# Plotting the curve
plt.plot(t,f)

# Plotting dots
plt.plot(t,f,"ko")

# Showing the plot
plt.show()

3 2 1 0 1 2 3
0

2

4

6

8

Let us comment the above code. The variable t is a numpy array containing the ordered values

𝑡 = [−3, −2, −1, 0, 1, 2, 3] . (5.1)

This array is then squared entry-by-entry via the operation 𝑡 ∗∗2 and saved in the new numpy array f, that
is,

𝑓 = [9, 4, 1, 0, 1, 4, 9] .
The arrays t and f are then passed to plot(t,f), which produces the above linear interpolation, with t on
the x-axis and f on the y-axis. The command plot(t,f,'ko') instead plots a black dot at each point (𝑡𝑖, 𝑓𝑖).
The latter is clearly not needed to obtain a plot, and it was only included to highlight the fact that plot is
actually producing a linear interpolation between points. Finally plt.show() displays the figure in the user
window1.
Of course one can refine the plot so that it resembles the continuous curve 𝛾𝛾𝛾 (𝑡) = (𝑡, 𝑡2) that we all have
in mind. This is achieved by generating a numpy array t with a finer stepsize, invoking the function

1The command plt.show() can be omitted if working in Jupyter Notebook, as it is called by default.
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np.linspace(a,b,n). Such call will return a numpy array which contains n evenly spaced points, starts at
a, and ends in b. For example np.linspace(-3,3,7) returns our original array t at 5.1, as shown below

# Displaying output of np.linspace

import numpy as np

# Generates array t by dividing interval
# (-3,3) in 7 parts
t = np.linspace(-3,3, 7)

# Prints array t
print("t =", t)

t = [-3. -2. -1. 0. 1. 2. 3.]

In order to have a more refined plot of 𝛾𝛾𝛾 , we just need to increase 𝑛.

# Plotting gamma with finer step-size

import numpy as np
import matplotlib.pyplot as plt

# Generates array t by dividing interval
# (-3,3) in 100 parts
t = np.linspace(-3,3, 100)

# Computes f
f = t**2

# Plotting
plt.plot(t,f)
plt.show()
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We now want to plot a parametric curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ2 with

𝛾𝛾𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) .
Clearly we need to modify the above code. The variable t will still be a numpy array produced by linspace.
We then need to introduce the arrays x and ywhich ecode the first and second components of 𝛾𝛾𝛾 , respectively.

import numpy as np
import matplotlib.pyplot as plt

# Divides time interval (a,b) in n parts
# and saves output to numpy array t
t = np.linspace(a, b, n)

# Computes gamma from given functions x(y) and y(t)
x = x(t)
y = y(t)

# Plots the curve
plt.plot(x,y)

# Shows the plot
plt.show()

We use the above code to plot the 2D curve known as the Fermat’s spiral

𝛾𝛾𝛾 (𝑡) = (√𝑡 cos(𝑡), √𝑡 sin(𝑡)) for 𝑡 ∈ [0, 50] . (5.2)
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# Plotting Fermat's spiral

import numpy as np
import matplotlib.pyplot as plt

# Divides time interval (0,50) in 500 parts
t = np.linspace(0, 50, 500)

# Computes Fermat's Spiral
x = np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)

# Plots the Spiral
plt.plot(x,y)
plt.show()

Before displaying the output of the above code, a few comments are in order. The array t has size 500, due
to the behavior of linspace. You can also fact check this information by printing np.size(t), which is the
numpy function that returns the size of an array. We then use the numpy function np.sqrt to compute the
square root of the array t. The outcome is still an array with the same size of t, that is,

𝑡 = [𝑡1, … , 𝑡𝑛] ⟹ √𝑡 = [√𝑡1, … , √𝑡𝑛] .
Similary, the call np.cos(t) returns the array

cos(𝑡) = [cos(𝑡1), … , cos(𝑡𝑛)] .
The two arrays np.sqrt(t) and np.cos(t) are then multiplied, term-by-term, and saved in the array x. The
array y is computed similarly. The command plt.plot(x,y) then yields the graph of the Fermat’s spiral:

The above plots can be styled a bit. For example we can give a title to the plot, label the axes, plot the spiral
by means of green dots, and add a plot legend, as coded below:

# Adding some style

import numpy as np
import matplotlib.pyplot as plt

# Computing Spiral
t = np.linspace(0, 50, 500)
x = np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)

# Generating figure
plt.figure(1, figsize = (4,4))
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Figure 5.1: Fermat’s spiral

# Plotting the Spiral with some options
plt.plot(x, y, '--', color = 'deeppink', linewidth = 1.5, label = 'Spiral')

# Adding grid
plt.grid(True, color = 'lightgray')

# Adding title
plt.title("Fermat's spiral for t between 0 and 50")

# Adding axes labels
plt.xlabel("x-axis", fontsize = 15)
plt.ylabel("y-axis", fontsize = 15)

# Showing plot legend
plt.legend()

# Show the plot
plt.show()
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Figure 5.2: Adding a bit of style

Let us go over the novel part of the above code:

• plt.figure(): This command generates a figure object. If you are planning on plotting just one figure
at a time, then this command is optional: a figure object is generated implicitly when calling plt.plot.
Otherwise, if working with n figures, you need to generate a figure object with plt.figure(i) for each
i between 1 and n. The number i uniquely identifies the i-th figure: whenever you call plt.figure(i),
Python knows that the next commands will refer to the i-th figure. In our case we only have one figure,
so we have used the identifier 1. The second argument figsize = (a,b) in plt.figure() specifies
the size of figure 1 in inches. In this case we generated a figure 4 x 4 inches.

• plt.plot: This is plotting the arrays x and y, as usual. However we are adding a few aestethic touches:
the curve is plotted in dashed style with --, in deep pink color and with a line width of 1.5. Finally this
plot is labelled Spiral.

• plt.grid: This enables a grid in light gray color.
• plt.title: This gives a title to the figure, displayed on top.
• plt.xlabel and plt.ylabel: These assign labels to the axes, with font size 15 points.
• plt.legend(): This plots the legend, with all the labels assigned in the plt.plot call. In this case the
only label is Spiral.
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Matplotlib styles

There are countless plot types and options you can specify in matplotlib, see for example the Mat-
plotlib Gallery. Of course there is no need to remember every single command: a quick Google search
can do wonders.

Generating arrays

There are several ways of generating evenly spaced arrays in Python. For example the function
np.arange(a,b,s) returns an array with values within the half-open interval [𝑎, 𝑏), with spacing
between values given by s. For example

import numpy as np

t = np.arange(0,1, 0.2)
print("t =",t)

t = [0. 0.2 0.4 0.6 0.8]

5.1.2 Implicit curves 2D

A curve 𝛾𝛾𝛾 in ℝ2 can also be defined as the set of points (𝑥, 𝑦) ∈ ℝ2 satisfying

𝑓 (𝑥, 𝑦) = 0
for some given 𝑓 ∶ ℝ2 → ℝ. For example let us plot the curve 𝛾𝛾𝛾 implicitly defined by

𝑓 (𝑥, 𝑦) = (3𝑥2 − 𝑦2)2 𝑦2 − (𝑥2 + 𝑦2)4

for −1 ≤ 𝑥, 𝑦 ≤ 1. First, we need a way to generate a grid in ℝ2 so that we can evaluate 𝑓 on such grid. To
illustrate how to do this, let us generate a grid of spacing 1 in the 2D square [0, 4]2. The goal is to obtain the
5 x 5 matrix of coordinates

𝐴 =
⎛
⎜
⎜
⎜
⎝

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)
(0, 2) (1, 2) (2, 2) (2, 3) (2, 4)
(0, 3) (1, 3) (2, 3) (3, 3) (3, 4)
(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)

⎞
⎟
⎟
⎟
⎠

which corresponds to the grid of points

To achieve this, first generate x and y coordinates using

x = np.linspace(0, 4, 5)
y = np.linspace(0, 4, 5)
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Figure 5.3: The 5 x 5 grid corresponding to the matrix A

This generates coordinates
𝑥 = [0, 1, 2, 3, 4] , 𝑦 = [0, 1, 2, 3, 4] .

We then need to obtain two matrices 𝑋 and 𝑌 : one for the 𝑥 coordinates in 𝐴, and one for the 𝑦 coordinates
in 𝐴. This can be achieved with the code

X[0,0] = 0
X[0,1] = 1
X[0,2] = 2
X[0,3] = 3
X[0,4] = 4
X[1,0] = 0
X[1,1] = 1
...
x[4,3] = 3
x[4,4] = 4

and similarly for 𝑌 . The output would be the two matrices 𝑋 and 𝑌

𝑋 =
⎛
⎜
⎜
⎝

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

⎞
⎟
⎟
⎠
, 𝑌 =

⎛
⎜
⎜
⎜
⎝

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

⎞
⎟
⎟
⎟
⎠
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If now we plot 𝑋 against 𝑌 via the command

plt.plot(X, Y, 'k.')

we obtain Figure 5.3. In the above command the style 'k.' represents black dots. This procedure would
be impossible with large vectors. Thankfully there is a function in numpy doing exactly what we need:
np.meshgrid.

# Demonstrating np.meshgrid

import numpy as np

# Generating x and y coordinates
xlist = np.linspace(0, 4, 5)
ylist = np.linspace(0, 4, 5)

# Generating grid X, Y
X, Y = np.meshgrid(xlist, ylist)

# Printing the matrices X and Y
# np.array2string is only needed to align outputs
print('X =', np.array2string(X, prefix='X= '))
print('\n')
print('Y =', np.array2string(Y, prefix='Y= '))

X = [[0. 1. 2. 3. 4.]
[0. 1. 2. 3. 4.]
[0. 1. 2. 3. 4.]
[0. 1. 2. 3. 4.]
[0. 1. 2. 3. 4.]]

Y = [[0. 0. 0. 0. 0.]
[1. 1. 1. 1. 1.]
[2. 2. 2. 2. 2.]
[3. 3. 3. 3. 3.]
[4. 4. 4. 4. 4.]]

Now that we have our grid, we can evaluate the function 𝑓 on it. This is simply done with the command

Z =((3*(X**2) - Y**2)**2)*(Y**2) - (X**2 + Y**2)**4
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This will return the matrix 𝑍 containing the values 𝑓 (𝑥𝑖, 𝑦𝑖) for all (𝑥𝑖, 𝑦𝑖) in the grid [𝑋 , 𝑌 ]. We are now
interested in plotting the points in the grid [𝑋 , 𝑌 ] for which 𝑍 is zero. This is achieved with the command

plt.contour(X, Y, Z, [0])

Putting the above observations together, we have the code for plotting the curve 𝑓 = 0 for −1 ≤ 𝑥, 𝑦 ≤ 1.

# Plotting f=0

import numpy as np
import matplotlib.pyplot as plt

# Generates coordinates and grid
xlist = np.linspace(-1, 1, 5000)
ylist = np.linspace(-1, 1, 5000)
X, Y = np.meshgrid(xlist, ylist)

# Computes f
Z =((3*(X**2) - Y**2)**2)*(Y**2) - (X**2 + Y**2)**4

# Creates figure object
plt.figure(figsize = (4,4))

# Plots level set Z = 0
plt.contour(X, Y, Z, [0])

# Set axes labels
plt.xlabel("x-axis", fontsize = 15)
plt.ylabel("y-axis", fontsize = 15)

# Shows plot
plt.show()
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Figure 5.4: Plot of the curve defined by f=0

5.1.3 Curves in 3D

Plotting in 3D with matplotlib requires the mplot3d toolkit, see here for documentation. Therefore our first
lines will always be

# Packages for 3D plots

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

We can now generate empty 3D axes

# Generates and plots empty 3D axes

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Creates figure object
fig = plt.figure(figsize = (4,4))

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk

https://matplotlib.org/3.5.3/tutorials/toolkits/mplot3d.html


Differential Geometry Page 321

# Creates 3D axes object
ax = plt.axes(projection = '3d')

# Shows the plot
plt.show()
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In the above code fig is a figure object, while ax is an axes object. In practice, the figure object contains the
axes objects, and the actual plot information will be contained in axes. If you want multiple plots in the figure
container, you should use the command

ax = fig.add_subplot(nrows = m, ncols = n, pos = k)

This generates an axes object ax in position k with respect to a m x n grid of plots in the container figure.
For example we can create a 3 x 2 grid of empty 3D axes as follows

# Generates 3 x 2 empty 3D axes

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Creates container figure object
fig = plt.figure(figsize = (6,8))
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# Creates 6 empty 3D axes objects
ax1 = fig.add_subplot(3, 2, 1, projection = '3d')
ax2 = fig.add_subplot(3, 2, 2, projection = '3d')
ax3 = fig.add_subplot(3, 2, 3, projection = '3d')
ax4 = fig.add_subplot(3, 2, 4, projection = '3d')
ax5 = fig.add_subplot(3, 2, 5, projection = '3d')
ax6 = fig.add_subplot(3, 2, 6, projection = '3d')

# Shows the plot
plt.show()
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We are now ready to plot a 3D parametric curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 of the form

𝛾𝛾𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))
with the code

# Code to plot 3D curve

import numpy as np
import matplotlib.pyplot as plt
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from mpl_toolkits import mplot3d

# Generates figure and 3D axes
fig = plt.figure(figsize = (size1,size2))
ax = plt.axes(projection = '3d')

# Plots grid
ax.grid(True)

# Divides time interval (a,b)
# into n parts and saves them in array t
t = np.linspace(a, b, n)

# Computes the curve gamma on array t
# for given functions x(t), y(t), z(t)
x = x(t)
y = y(t)
z = z(t)

# Plots gamma
ax.plot3D(x, y, z)

# Setting title for plot
ax.set_title('3D Plot of gamma')

# Setting axes labels
ax.set_xlabel('x', labelpad = 'p')
ax.set_ylabel('y', labelpad = 'p')
ax.set_zlabel('z', labelpad = 'p')

# Shows the plot
plt.show()

For example we can use the above code to plot the Helix

𝑥(𝑡) = cos(𝑡) , 𝑦(𝑡) = sin(𝑡) , 𝑧(𝑡) = 𝑡 (5.3)

for 𝑡 ∈ [0, 6𝜋].

# Plotting 3D Helix

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
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# Generates figure and 3D axes
fig = plt.figure(figsize = (4,4))
ax = plt.axes(projection = '3d')

# Plots grid
ax.grid(True)

# Divides time interval (0,6pi) in 100 parts
t = np.linspace(0, 6*np.pi, 100)

# Computes Helix
x = np.cos(t)
y = np.sin(t)
z = t

# Plots Helix - We added some styling
ax.plot3D(x, y, z, color = "deeppink", linewidth = 2)

# Setting title for plot
ax.set_title('3D Plot of Helix')

# Setting axes labels
ax.set_xlabel('x', labelpad = 20)
ax.set_ylabel('y', labelpad = 20)
ax.set_zlabel('z', labelpad = 20)

# Shows the plot
plt.show()
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We can also change the viewing angle for a 3D plot store in ax. This is done via

ax.view_init(elev = e, azim = a)

which displays the 3D axes with an elevation angle elev of e degrees and an azimuthal angle azim of a
degrees. In other words, the 3D plot will be rotated by e degrees above the xy-plane and by a degrees around
the z-axis. For example, let us plot the helix with 2 viewing angles. Note that we generate 2 sets of axes with
the add_subplot command discussed above.

# Plotting 3D Helix

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure object
fig = plt.figure(figsize = (4,4))

# Generates 2 sets of 3D axes
ax1 = fig.add_subplot(1, 2, 1, projection = '3d')
ax2 = fig.add_subplot(1, 2, 2, projection = '3d')

# We will not show a grid this time
ax1.grid(False)
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ax2.grid(False)

# Divides time interval (0,6pi) in 100 parts
t = np.linspace(0, 6*np.pi, 100)

# Computes Helix
x = np.cos(t)
y = np.sin(t)
z = t

# Plots Helix on both axes
ax1.plot3D(x, y, z, color = "deeppink", linewidth = 1.5)
ax2.plot3D(x, y, z, color = "deeppink", linewidth = 1.5)

# Setting title for plots
ax1.set_title('Helix from above')
ax2.set_title('Helix from side')

# Changing viewing angle of ax1
# View from above has elev = 90 and azim = 0
ax1.view_init(elev = 90, azim = 0)

# Changing viewing angle of ax2
# View from side has elev = 0 and azim = 0
ax2.view_init(elev = 0, azim = 0)

# Shows the plot
plt.show()
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5.1.4 Interactive plots

Matplotlib produces beautiful static plots; however it lacks built in interactivity. For this reason I would
also like to show you how to plot curves with Plotly, a very popular Python graphic library which has built
in interactivity. Documentation for Plotly and lots of examples can be found here.

5.1.4.1 2D Plots

Say we want to plot the 2D curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ2 parametrized by

𝛾𝛾𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) .
The Plotly module needed is called graph_objects, usually imported as go. The function for line plots is
called Scatter. For documentation and examples see link. The code for plotting 𝛾𝛾𝛾 is as follows.

# Plotting gamma 2D

# Import libraries
import numpy as np
import plotly.graph_objects as go

# Compute times grid by dividing (a,b) in
# n equal parts
t = np.linspace(a, b, n)

# Compute the parametric curve gamma
# for given functions x(t) and y(t)
x = x(t)
y = y(t)

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter(x = x, y = y, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Display the figure
fig.show()

Some comments about the functions called above:
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• go.Figure: generates an empty Plotly figure
• go.Scatter: generates the actual plot. By default a scatter plot is produced. To obtain linear interpo-
lation of the points, set mode = 'lines'. You can also label the plot with name = "string"

• add_trace: adds a plot to a figure
• show: displays a figure

As an example, let us plot the Fermat’s Spiral defined at 5.2. Compared to the above code, we also add a bit
of styling.

# Plotting Fermat's Spiral

# Import libraries
import numpy as np
import plotly.graph_objects as go

# Compute times grid by dividing (0,50) in
# 500 equal parts
t = np.linspace(0, 50, 500)

# Computes Fermat's Spiral
x = np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter(x = x, y = y, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Here we start with the styling options
# First we set a figure title
fig.update_layout(title_text = "Plotting Fermat's Spiral with Plotly")

# Adjust figure size
fig.update_layout(autosize = False, width = 600, height = 600)

# Change background canvas color
fig.update_layout(paper_bgcolor = "snow")

# Axes styling: adding title and ticks positions
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fig.update_layout(
xaxis=dict(

title_text="X-axis Title",
titlefont=dict(size=20),
tickvals=[-6,-4,-2,0,2,4,6],
),

yaxis=dict(
title_text="Y-axis Title",
titlefont=dict(size=20),
tickvals=[-6,-4,-2,0,2,4,6],
)

)

# Display the figure
fig.show()

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, please click here for the
digital version of these notes. Note that the style customizations could be listed in a single call of the function
update_layout. There are also pretty buit-in themes available, see here. The layout can be specified with
the command

fig.update_layout(template = template_name)

where template_name can be "plotly", "plotly_white", "plotly_dark", "ggplot2", "seaborn",
"simple_white“.

5.1.4.2 3D Plots

We now want to plot a 3D curve 𝛾𝛾𝛾 ∶ (𝑎, 𝑏) → ℝ3 parametrized by

𝛾𝛾𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) .
Again we use the Plotly module graph_objects, imported as go. The function for 3D line plots is called
Scatter3d, and documentation and examples can be found at link. The code for plotting 𝛾𝛾𝛾 is as follows.

# Plotting gamma 3D
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# Import libraries
import numpy as np
import plotly.graph_objects as go

# Compute times grid by dividing (a,b) in
# n equal parts
t = np.linspace(a, b, n)

# Compute the parametric curve gamma
# for given functions x(t), y(t), z(t)
x = x(t)
y = y(t)
z = z(t)

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
data = go.Scatter3d(x = x, y = y, z = z, mode = 'lines', name = 'gamma')

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Display the figure
fig.show()

The functions go.Figure, add_trace and show appearing above are described in the previous Section. The
new addition is go.Scatter3d, which generates a 3D scatter plot of the points stored in the array [x,y,z].
Setting mode = 'lines' results in a linear interpolation of such points. As before, the curve can be labeled
by setting name = "string".

As an example, we plot the 3D Helix defined at 5.3. We also add some styling. We can also use the same pre-
defined templates descirbed for go.Scatter in the previous section, see here for official documentation.

# Plotting 3D Helix

# Import libraries
import numpy as np
import plotly.graph_objects as go

# Divides time interval (0,6pi) in 100 parts
t = np.linspace(0, 6*np.pi, 100)
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# Computes Helix
x = np.cos(t)
y = np.sin(t)
z = t

# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()

# Create the line plot object
# We add options for the line width and color
data = go.Scatter3d(

x = x, y = y, z = z,
mode = 'lines', name = 'gamma',
line = dict(width = 10, color = "darkblue")
)

# Add "data" plot to the figure "fig"
fig.add_trace(data)

# Here we start with the styling options
# First we set a figure title
fig.update_layout(title_text = "Plotting 3D Helix with Plotly")

# Adjust figure size
fig.update_layout(

autosize = False,
width = 600,
height = 600
)

# Set pre-defined template
fig.update_layout(template = "seaborn")

# Options for curve line style

# Display the figure
fig.show()

Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, please click here for
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the digital version of these notes. Once again, the style customizations could be listed in a single call of the
function update_layout.

5.2 Surfaces in Python

5.2.1 Plots with Matplotlib

I will take for granted all the commands explained in Section 5.1. Suppose we want to plot a surface 𝑆 which
is defined by the parametric equations

𝑥 = 𝑥(𝑢, 𝑣) , 𝑦 = 𝑦(𝑢, 𝑣) , 𝑧 = 𝑧(𝑢, 𝑣)
for 𝑢 ∈ (𝑎, 𝑏) and 𝑣 ∈ (𝑐, 𝑑). This can be done via the function called plot_surface contained in the mplot3d
Toolkit. This function works as follows: first we generate a mesh-grid [𝑈 , 𝑉 ] from the coordinates (𝑢, 𝑣) via
the command

[U, V] = np.meshgrid(u, v)

Then we compute the parametric surface on the mesh

x = x (U, V)
y = y (U, V)
z = z (U, V)

Finally we can plot the surface with the command

plt.plot_surface(x, y, z)

The complete code looks as follows.

# Plotting surface S

# Importing numpy, matplotlib and mplot3d
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure object of size m x n
fig = plt.figure(figsize = (m,n))

# Generates 3D axes
ax = plt.axes(projection = '3d')
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# Shows axes grid
ax.grid(True)

# Generates coordinates u and v
# by dividing the interval (a,b) in n parts
# and the interval (c,d) in m parts
u = np.linspace(a, b, m)
v = np.linspace(c, d, n)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Computes S given the functions x, y, z
# on the grid [U,V]
x = x(U,V)
y = y(U,V)
z = z(U,V)

# Plots the surface S
ax.plot_surface(x, y, z)

# Setting plot title
ax.set_title('The surface S')

# Setting axes labels
ax.set_xlabel('x', labelpad=10)
ax.set_ylabel('y', labelpad=10)
ax.set_zlabel('z', labelpad=10)

# Setting viewing angle
ax.view_init(elev = e, azim = a)

# Showing the plot
plt.show()

For example let us plot a cone described parametrically by:

𝑥 = 𝑢 cos(𝑣) , 𝑦 = 𝑢 sin(𝑣) , 𝑧 = 𝑢
for 𝑢 ∈ (0, 1) and 𝑣 ∈ (0, 2𝜋). We adapt the above code:

# Plotting a cone
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# Importing numpy, matplotlib and mplot3d
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure object of size 4 x 4
fig = plt.figure(figsize = (4,4))

# Generates 3D axes
ax = plt.axes(projection = '3d')

# Shows axes grid
ax.grid(True)

# Generates coordinates u and v by dividing
# the intervals (0,1) and (0,2pi) in 100 parts
u = np.linspace(0, 1, 100)
v = np.linspace(0, 2*np.pi, 100)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Computes the surface on grid [U,V]
x = U * np.cos(V)
y = U * np.sin(V)
z = U

# Plots the cone
ax.plot_surface(x, y, z)

# Setting plot title
ax.set_title('Plot of a cone')

# Setting axes labels
ax.set_xlabel('x', labelpad=10)
ax.set_ylabel('y', labelpad=10)
ax.set_zlabel('z', labelpad=10)

# Setting viewing angle
ax.view_init(elev = 25, azim = 45)

# Showing the plot
plt.show()
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Plot of a cone

As discussed in Section 5.1, we can have multiple plots in the same figure. For example let us plot the torus
viewed from 2 angles. The parametric equations are:

𝑥 = (𝑅 + 𝑟 cos(𝑢)) cos(𝑣)
𝑦 = (𝑅 + 𝑟 cos(𝑢)) sin(𝑣)
𝑧 = 𝑟 sin(𝑢)

for 𝑢, 𝑣 ∈ (0, 2𝜋) and with

• 𝑅 distance from the center of the tube to the center of the torus
• 𝑟 radius of the tube

# Plotting torus seen from 2 angles

# Importing numpy, matplotlib and mplot3d
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure object of size 9 x 5
fig = plt.figure(figsize = (9,5))

# Generates 2 sets of 3D axes
ax1 = fig.add_subplot(1, 2, 1, projection = '3d')
ax2 = fig.add_subplot(1, 2, 2, projection = '3d')
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# Shows axes grid
ax1.grid(True)
ax2.grid(True)

# Generates coordinates u and v by dividing
# the interval (0,2pi) in 100 parts
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(0, 2*np.pi, 100)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Computes the torus on grid [U,V]
# with radii r = 1 and R = 2
R = 2
r = 1

x = (R + r * np.cos(U)) * np.cos(V)
y = (R + r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)

# Plots the torus on both axes
ax1.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors =

'snow')↪

ax2.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors =
'snow')↪

# Setting plot titles
ax1.set_title('Torus')
ax2.set_title('Torus from above')

# Setting range for z axis in ax1
ax1.set_zlim(-3,3)

# Setting viewing angles
ax1.view_init(elev = 35, azim = 45)
ax2.view_init(elev = 90, azim = 0)

# Showing the plot
plt.show()
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Notice that we have added some customization to the plot_surface command. Namely, we have set the
color of the figure with color = 'dimgray' and of the edges with edgecolors = 'snow'. Moreover the
commands rstride and cstride set the number of wires you see in the plot. More precisely, they set by how
much the data in the mesh [𝑈 , 𝑉 ] is downsampled in each direction, where rstride sets the row direction, and
cstride sets the column direction. On the torus this is a bit difficult to visualize, due to the fact that [𝑈 , 𝑉 ]
represents angular coordinates. To appreciate the effect, we can plot for example the paraboiloid

𝑥 = 𝑢
𝑦 = 𝑣
𝑧 = −𝑢2 − 𝑣2

for 𝑢, 𝑣 ∈ [−1, 1].

# Showing the effect of rstride and cstride

# Importing numpy, matplotlib and mplot3d
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

# Generates figure object of size 6 x 6
fig = plt.figure(figsize = (6,6))

# Generates 2 sets of 3D axes

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 339

ax1 = fig.add_subplot(2, 2, 1, projection = '3d')
ax2 = fig.add_subplot(2, 2, 2, projection = '3d')
ax3 = fig.add_subplot(2, 2, 3, projection = '3d')
ax4 = fig.add_subplot(2, 2, 4, projection = '3d')

# Generates coordinates u and v by dividing
# the interval (-1,1) in 100 parts
u = np.linspace(-1, 1, 100)
v = np.linspace(-1, 1, 100)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Computes the paraboloid on grid [U,V]
x = U
y = V
z = - U**2 - V**2

# Plots the paraboloid on the 4 axes
# but with different stride settings
ax1.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors =

'snow')↪

ax2.plot_surface(x, y, z, rstride = 5, cstride = 20, color = 'dimgray', edgecolors =
'snow')↪

ax3.plot_surface(x, y, z, rstride = 20, cstride = 5, color = 'dimgray', edgecolors =
'snow')↪

ax4.plot_surface(x, y, z, rstride = 10, cstride = 10, color = 'dimgray', edgecolors
= 'snow')↪

# Setting plot titles
ax1.set_title('rstride = 5, cstride = 5')
ax2.set_title('rstride = 5, cstride = 20')
ax3.set_title('rstride = 20, cstride = 5')
ax4.set_title('rstride = 10, cstride = 10')

# We do not plot axes, to get cleaner pictures
ax1.axis('off')
ax2.axis('off')
ax3.axis('off')
ax4.axis('off')

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 340

# Showing the plot
plt.show()

rstride = 5, cstride = 5 rstride = 5, cstride = 20

rstride = 20, cstride = 5 rstride = 10, cstride = 10

In this case our mesh is 100 x 100, since u and v both have 100 components. Therefore setting rstride and
cstride to 5 implies that each row and column of the mesh is sampled one time every 5 elements, for a total
of

100/5 = 20
samples in each direction. This is why in the first picture you see a 20 x 20 grid. If instead one sets rstride
and cstride to 10, then each row and column of the mesh is sampled one time every 10 elements, for a total
of

100/10 = 10
samples in each direction. This is why in the fourth figure you see a 10x10 grid.
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5.2.2 Plots with Plotly

As done in Section 5.1.4, we now see how to use Plotly to generate an interactive 3D plot of a surface. This
can be done by means of functions contained in the Plotly module graph_objects, usually imported as go.
Specifically, we will use the function go.Surface. The code will look similar to the one used to plot surfaces
with matplotlib:

• generate meshgrid on which to compute the parametric surface,
• store such surface in the numpy array [x,y,z],
• pass the array [x,y,z] to go.Surface to produce the plot.

The full code is below.

# Plotting a Torus with Plotly

# Import "numpy" and the "graph_objects" module from Plotly
import numpy as np
import plotly.graph_objects as go

# Generates coordinates u and v by dividing
# the interval (0,2pi) in 100 parts
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(0, 2*np.pi, 100)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Computes the torus on grid [U,V]
# with radii r = 1 and R = 2
R = 2
r = 1

x = (R + r * np.cos(U)) * np.cos(V)
y = (R + r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)

# Generate and empty figure object with Plotly
# and saves it to the variable called "fig"
fig = go.Figure()

# Plot the torus with go.Surface and store it
# in the variable "data". We also do now show the
# plot scale, and set the color map to "teal"
data = go.Surface(
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x = x , y = y, z = z,
showscale = False,
colorscale='teal'
)

# Add the plot stored in "data" to the figure "fig"
# This is done with the command add_trace
fig.add_trace(data)

# Set the title of the figure in "fig"
fig.update_layout(title_text="Plotting a Torus with Plotly")

# Show the figure
fig.show()

Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, see the link to the digital
version of these notes. To further customize your plots, you can check out the documentation of go.Surface
at this link. For example, note that we have set the colormap to teal: for all the pretty colorscales available
in Plotly, see this page.

One could go even fancier and use the tri-surf plots in Plotly. This is donewith the function create_trisurf
contained in the module figure_factory of Plotly, usually imported as ff. The documentation can be
found here. We also need to import the Python library scipy, which we use to generate a Delaunay triangu-
lation for our plot. Let us for example plot the torus.

# Plotting Torus with tri-surf

# Importing libraries
import numpy as np
import plotly.figure_factory as ff
from scipy.spatial import Delaunay

# Generates coordinates u and v by dividing
# the interval (0,2pi) in 100 parts
u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(0, 2*np.pi, 20)

# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)

# Collapse meshes to 1D array
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# This is needed for create_trisurf
U = U.flatten()
V = V.flatten()

# Computes the torus on grid [U,V]
# with radii r = 1 and R = 2
R = 2
r = 1

x = (R + r * np.cos(U)) * np.cos(V)
y = (R + r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)

# Generate Delaunay triangulation
points2D = np.vstack([U,V]).T
tri = Delaunay(points2D)
simplices = tri.simplices

# Plot the Torus
fig = ff.create_trisurf(

x=x, y=y, z=z,
colormap = "Portland",
simplices=simplices,
title="Torus with tri-surf",
aspectratio=dict(x=1, y=1, z=0.3),
show_colorbar = False
)

# Adjust figure size
fig.update_layout(autosize = False, width = 700, height = 700)

# Show the figure
fig.show()

Unable to display output for mime type(s): text/html

Again, the above code generates an image that cannot be rendered in pdf. To see the output, see the link to
the digital version of these notes.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk

https://www.silviofanzon.com/2023-Differential-Geometry-Notes/sections/appendix_2.html#plots-with-plotly


License

Reuse

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional License

Citation

For attribution, please cite this work as:

Fanzon, Silvio. (2023). Lecture Notes on Differential Geometry.
https://www.silviofanzon.com/2023-Differential-Geometry-Notes/

BibTex citation:

@electronic{Fanzon-Diff-Geom-2023,
author = {Fanzon, Silvio},
title = {Lecture Notes on Differential Geometry},
url = {https://www.silviofanzon.com/2023-Differential-Geometry-Notes/},
year = {2023}}

344

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.silviofanzon.com/2023-Differential-Geometry-Notes/


References

[1] Abate, Marco and Tovena, Francesca. Curves and Surfaces. Springer, 2011.

[2] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Second Edition. Dover Books on Mathe-
matics, 2017.

[3] R. Johansson. Numerical Python. Scientific Computing and Data Science Applications with Numpy, SciPy
and Matplotlib. Second Edition. Apress, 2019.

[4] Kong, Qingkai, Siauw, Timmy, and Bayen, Alexandre. Python Programming and Numerical Methods. Aca-
demic Press, 2020.

[5] M. Manetti. Topology. Second Edition. Springer, 2023.

[6] A. Pressley. Elementary Differential Geometry. Second Edition. Springer, 2010.

[7] V. A. Zorich. Mathematical Analysis I. Second Edition. Springer, 2015.

[8] V. A. Zorich. Mathematical Analysis II. Second Edition. Springer, 2016.

345


	Welcome
	Digital Notes
	Readings
	Visualization

	Curves
	Parametrized curves
	Parametrizing Cartesian curves
	Smooth curves
	Tangent vectors
	Length of curves
	Arc-length
	Scalar product in \mathbb{R}^n
	Speed of a curve
	Reparametrization
	Closed curves

	Curvature and Torsion
	Curvature
	Vector product in \mathbb{R}^3
	Curvature formula in \mathbb{R}^3
	Signed curvature of plane curves
	Space curves
	Frenet frame
	Consequences of Frenet-Serret

	Topology
	Closed sets
	Comparing topologies
	Convergence
	Metric spaces
	Interior, closure and boundary
	Density
	Hausdorff spaces
	Continuity
	Subspace topology
	Topological basis
	Product topology
	Connectedness
	Intermediate Value Theorem
	Path connectedness

	Surfaces
	Preliminaries
	Linear algebra
	Topology of \mathbb{R}^n
	Smooth functions

	Definition of Surface
	Regular Surfaces
	Level surfaces
	Reparametrizations
	Transition maps
	Functions between surfaces
	Tangent space
	Differential of smooth functions
	Examples of Surfaces
	Level surfaces
	Quadrics
	Ruled surfaces
	Surfaces of Revolution

	First fundamental form
	Length on surfaces
	Length of curves
	Local isometries
	Angles on surfaces
	Angle between curves
	Conformal maps
	Conformal parametrizations

	Second fudamental form
	Unit normal and orientability
	Definition of Second fundamental form
	Gauss and Weingarten maps
	Matrix of Weingarten map

	Curvatures
	Gaussian and mean curvature
	Principal curvatures
	Normal and geodesic curvatures
	Local shape of a surface
	Umbilical points


	Plots with Python
	Curves in Python
	Curves in 2D
	Implicit curves 2D
	Curves in 3D
	Interactive plots

	Surfaces in Python
	Plots with Matplotlib
	Plots with Plotly


	License
	Reuse
	Citation

	References

