Differential Geometry

Lecture Notes

Dr. Silvio Fanzon

5 Jan 2024

Academic Year 2023/24

Department of Mathematics

Table of contents

Welcome 5
Digital Notes 5
Readings 5
Visualization 6
1 Curves 7
1.1 Parametrized curves 10
1.2 Parametrizing Cartesian curves 11
1.3 Smooth curves 16
1.4 Tangent vectors 19
1.5 Length of curves 23
1.6 Arc-length 33
1.7 Scalar product in \mathbb{R}^{n} 36
1.8 Speed of a curve 41
1.9 Reparametrization 43
1.10 Closed curves 56
2 Curvature and Torsion 65
2.1 Curvature 65
2.2 Vector product in \mathbb{R}^{3} 76
2.3 Curvature formula in \mathbb{R}^{3} 81
2.4 Signed curvature of plane curves 84
2.5 Space curves 85
2.6 Frenet frame 96
2.7 Consequences of Frenet-Serret 101
3 Topology 114
3.1 Closed sets 118
3.2 Comparing topologies 121
3.3 Convergence 123
3.4 Metric spaces 127
3.5 Interior, closure and boundary 131
3.6 Density 137
3.7 Hausdorff spaces 139
3.8 Continuity 143
3.9 Subspace topology 152
3.10 Topological basis 154
3.11 Product topology 157
3.12 Connectedness 158
3.13 Intermediate Value Theorem 163
3.14 Path connectedness 165
4 Surfaces 170
4.1 Preliminaries 172
4.1.1 Linear algebra 172
4.1.2 Topology of \mathbb{R}^{n} 179
4.1.3 Smooth functions 180
4.2 Definition of Surface 184
4.3 Regular Surfaces 190
4.4 Level surfaces 198
4.5 Reparametrizations 201
4.6 Transition maps 204
4.7 Functions between surfaces 207
4.8 Tangent space 211
4.9 Differential of smooth functions 220
4.10 Examples of Surfaces 223
4.10.1 Level surfaces 223
4.10.2 Quadrics 225
4.10.3 Ruled surfaces 227
4.10.4 Surfaces of Revolution 229
4.11 First fundamental form 231
4.11.1 Length on surfaces 232
4.11.2 Length of curves 238
4.11.3 Local isometries 240
4.11.4 Angles on surfaces 245
4.11.5 Angle between curves 247
4.11.6 Conformal maps 249
4.11.7 Conformal parametrizations 255
4.12 Second fudamental form 257
4.12.1 Unit normal and orientability 258
4.12.2 Definition of Second fundamental form 262
4.12.3 Gauss and Weingarten maps 267
4.12.4 Matrix of Weingarten map 276
4.13 Curvatures 283
4.13.1 Gaussian and mean curvature 284
4.13.2 Principal curvatures 287
4.13.3 Normal and geodesic curvatures 294
4.13.4 Local shape of a surface 302
4.13.5 Umbilical points 306
5 Plots with Python 309
5.1 Curves in Python 309
5.1.1 Curves in 2D 309
5.1.2 Implicit curves 2D 316
5.1.3 Curves in 3D 320
5.1.4 Interactive plots 328
5.2 Surfaces in Python 333
5.2.1 Plots with Matplotlib 333
5.2.2 Plots with Plotly 341
License 344
Reuse 344
Citation 344
References 345

Welcome

These are the Lecture Notes of Differential Geometry 661955 for $\mathrm{T}_{12023 / 24}$ at the University of Hull. We will study curves and surfaces in \mathbb{R}^{3}. I will follow these lecture notes during the course. If you have any question or find any typo, please email me at

> S.Fanzon@hull.ac.uk

Up to date information about the course, Tutorials and Homework will be published on the University of Hull Canvas Website

> canvas.hull.ac.uk/courses/67594
and on the Course Webpage hosted on my website

> silviofanzon.com/blog/2023/Differential-Geometry

Digital Notes

Digital version of these notes available at

> silviofanzon.com/2023-Differential-Geometry-Notes

Readings

Main textbooks:

- Pressley [6] for differential geometry,
- Manetti [5] for general topology.

Other interesting readings are the books by do Carmo [2] and Abate, Tovena [1]. I will assume some knowledge from Analysis and Linear Algebra. A good place to revise these topics are the books by Zorich [7, 8].

Visualization

It is important to visualize the geometrical objects and concepts we are going to talk about in this course. I will show basic Python code to plot curves and surfaces. This part of the course is not required for the final examination. If you want to have fun plotting with Pyhton, I recommend installation through Anaconda or Miniconda. The actual coding can then be done through Jupyter Notebook. Good references for scientific Python programming are [3, 4].
If you do not want to mess around with Python, you can still visualize pretty much everything we will do in this course using the excellent online 3D grapher tool CalcPlot3D. To understand how it works, please refer to the help manual or to the short video introduction. Another nice tool is Desmos.
! You are not expected to purchase any of the above books. These lecture notes will cover 100% of the topics you are expected to known in order to excel in the final exam.

1 Curves

Curves are, intuitively speaking, 1 D objects in the 2 D or 3 D space. For example in two dimensions one could think of a straight line, a hyperbole or a circle. These can be all described by an equation in the x and y coordinates: respectively

$$
y=2 x+1, \quad y=e^{x}, \quad x^{2}+y^{2}=1 .
$$

Figure 1.1: Plotting straight line $y=2 x+1$

Goal

The aim of this course is to study curves by differentiating them.

Question

In what sense do we differentiate the above curves?

Figure 1.2: Plot of hyperbole $y=e^{x}$

Figure 1.3: Plot of unit circle of equation $x^{2}+y^{2}=1$

It is clear that we need a way to mathematically describe the curves. One way of doing it is by means of Cartesian equations. This means that the curve is described as the set of points $(x, y) \in \mathbb{R}^{2}$ where the equation

$$
f(x, y)=c
$$

is satisfied, where

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

is some given function, and

$$
c \in \mathbb{R}
$$

some given value. In other words, the curve is identified with the subset of \mathbb{R}^{2} given by

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=c\right\} .
$$

For example, in the case of the straight line, we would have

$$
f(x, y)=y-2 x, \quad c=1 .
$$

while for the circle

$$
f(x, y)=x^{2}+y^{2}, c=1 .
$$

But what about for example a helix in 3 dimensions? It would be more difficult to find an equation of the form

$$
f(x, y, z)=0
$$

to describe such object.

Figure 1.4: Plot of a 3D Helix

Problem

We need a unified way to describe curves.

1.1 Parametrized curves

Rather than Cartesian equations, a more useful way of thinking about curves is viewing them as the path traced out by a moving point. If $\boldsymbol{\gamma}(t)$ represents the position a point in \mathbb{R}^{n} at time t, the whole curve can be identified by the function

$$
\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{n}, \boldsymbol{\gamma}=\boldsymbol{\gamma}(t)
$$

This motivates the following definition of parametrized curve, which will be our main definition of curve.

Definition 1.1: Parametrized curve

A parametrized curve in \mathbb{R}^{n} is a function

$$
\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}
$$

where

$$
-\infty \leq a<b \leq \infty .
$$

A few remarks:

- The symbol (a, b) denotes an open interval

$$
(a, b)=\{t \in \mathbb{R}: a<t<b\} .
$$

- The requirement that

$$
-\infty \leq a<b \leq \infty
$$

means that the interval (a, b) is possibly unbounded.

- For each $t \in(a, b)$ the quantity $\boldsymbol{\gamma}(t)$ is a vector in \mathbb{R}^{n}.
- The components of $\boldsymbol{\gamma}(t)$ are denoted by

$$
\boldsymbol{\gamma}(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right),
$$

where the components are functions

$$
\gamma_{i}:(a, b) \rightarrow \mathbb{R},
$$

for all $i=1, \ldots, n$.

1.2 Parametrizing Cartesian curves

At the start we said that examples of curves in \mathbb{R}^{2} were the straight line, the hyperbole and the circle, with equations

$$
y=2 x+1, \quad y=e^{x}, \quad x^{2}+y^{2}=1
$$

We saw that these can be represented by Cartesian equations

$$
f(x, y)=c
$$

for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and value $c \in \mathbb{R}$. Curves that can be represented in this way are called level curves. Let us give a precise definition.

Definition 1.2: Level curve
A level curve in \mathbb{R}^{n} is a set $C \subset \mathbb{R}^{n}$ which can be described as

$$
C=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: f\left(x_{1}, \ldots, x_{n}\right)=c\right\}
$$

for some given function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

and value

$$
c \in \mathbb{R} .
$$

We now want to represent level curves by means of parametrizations.

Definition 1.3

Suppose given a level curve $C \subset \mathbb{R}^{n}$. We say that a curve

$$
\gamma:(a, b) \rightarrow \mathbb{R}^{n}
$$

parametrizes C if

$$
C=\left\{\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right): t \in(a, b)\right\} .
$$

Question

Can we represent the level curves we saw above by means of a parametrization $\boldsymbol{\gamma}$?
The answer is YES, as shown in the following examples.

Example 1.4: Parametrizing the straight line

The straight line

$$
y=2 x+1
$$

is a level curve with

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=c\right\}
$$

where

$$
f(x, y):=y-2 x, \quad c:=1
$$

How do we represent C as a parametrized curve $\boldsymbol{\gamma}$? We know that the curve is 2 D , therefore we need to find a function

$$
\gamma:(a, b) \rightarrow \mathbb{R}^{2}
$$

with componenets

$$
\boldsymbol{\gamma}(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right) .
$$

The curve $\boldsymbol{\gamma}$ needs to be chosen so that it parametrizes the set C, in the sense that

$$
\begin{equation*}
C=\left\{\left(\gamma_{1}(t), \gamma_{2}(t)\right): t \in(a, b)\right\} \tag{1.1}
\end{equation*}
$$

Thus we need to have

$$
\begin{equation*}
(x, y)=\left(\gamma_{1}, \gamma_{2}\right) . \tag{1.2}
\end{equation*}
$$

How do we define such γ ? Note that the points (x, y) in C satisfy

$$
(x, y) \in C \Longleftrightarrow y=2 x+1
$$

Therefore, using (1.2), we have that

$$
\gamma_{1}=x, \quad \gamma_{2}=y=2 x+1
$$

from which we deduce that γ must satisfy

$$
\begin{equation*}
\gamma_{2}(t)=2 \gamma_{1}(t)+1 \tag{1.3}
\end{equation*}
$$

for all $t \in(a, b)$. We can then choose

$$
\gamma_{1}(t):=t
$$

and from (1.3) we deduce that

$$
\gamma_{2}(t)=2 t+1
$$

This choice of $\boldsymbol{\gamma}$ works:

$$
\begin{align*}
C & =\{(x, 2 x+1): \quad x \in \mathbb{R}\} \tag{1.4}\\
& =\{(t, 2 t+1): \quad-\infty<t<\infty\} \tag{1.5}\\
& =\left\{\left(\gamma_{1}(t), \gamma_{2}(t)\right): \quad-\infty<t<\infty\right\}, \tag{1.6}
\end{align*}
$$

where in the second line we just swapped the symbol x with the symbol t. In this case we have to choose the time interval as

$$
(a, b)=(-\infty, \infty) .
$$

In this way γ satisfies (1.1) and we have successfully parametrized the straight line C.

Remark 1.5: Parametrization is not unique

Let us consider again the straight line

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: 2 x+1=y\right\} .
$$

We saw that $\boldsymbol{\gamma}:(-\infty, \infty) \rightarrow \mathbb{R}^{2}$ defined by

$$
\boldsymbol{\gamma}(t):=(t, 2 t+1)
$$

is a parametrization of C. But of course any $\boldsymbol{\gamma}$ satisfying

$$
\gamma_{2}(t)=2 \gamma_{1}(t)+1
$$

would yield a parametrization of C. For example one could choose

$$
\gamma_{1}(t)=2 t, \quad \gamma_{2}(t)=2 \gamma_{1}(t)+1=4 t+1 .
$$

In general, any time rescaling would work: the curve $\boldsymbol{\gamma}$ defined by

$$
\gamma_{1}(t)=n t, \quad \gamma_{2}(t)=2 \gamma_{1}(t)+1=2 n t+1
$$

parametrizes C for all $n \in \mathbb{N}$. Hence there are infinitely many parametrizations of C.

Example 1.6: Parametrizing the circle

The circle C is described by all the points $(x, y) \in \mathbb{R}^{2}$ such that

$$
x^{2}+y^{2}=1
$$

Therefore if we want to find a curve

$$
\boldsymbol{\gamma}=\left(\gamma_{1}, \gamma_{2}\right)
$$

which parametrizes C, this has to satisfy

$$
\begin{equation*}
\gamma_{1}(t)^{2}+\gamma_{2}(t)^{2}=1 \tag{1.7}
\end{equation*}
$$

for all $t \in(a, b)$.
How to find such curve? We could proceed as in the previous example, and set

$$
\gamma_{1}(t):=t .
$$

Then (1.7) implies

$$
\gamma_{2}(t)=\sqrt{1-t^{2}}
$$

from which we also deduce that

$$
-1 \leq t \leq 1
$$

are the only admissible values of t. However this curve does not represent the full circle C, but only the upper half, as seen in the plot below.
Simlarly, another solution to (1.7) would be $\boldsymbol{\gamma}$ with

$$
\gamma_{1}(t)=t, \quad \gamma_{2}(t)=-\sqrt{1-t^{2}}
$$

for $t \in[-1,1]$. However this choice does not parametrize the full circle C either, but only the bottom half, as seen in the plot below.
How to represent the whole circle? Recall the trigonometric identity

$$
\cos (t)^{2}+\sin (t)^{2}=1
$$

for all $t \in \mathbb{R}$. This suggests to choose $\boldsymbol{\gamma}$ as

$$
\gamma_{1}(t):=\cos (t), \quad \gamma_{2}(t):=\sin (t)
$$

for $t \in[0,2 \pi)$. This way $\boldsymbol{\gamma}$ satisfies (1.7), and actually parametrizes C, as shown below. Note the following:

- If we had chosen $t \in[0,4 \pi]$ then γ would have covered C twice.
- If we had chosen $t \in[0, \pi]$, then $\boldsymbol{\gamma}$ would have covered the upper semi-circle
- If we had chosen $t \in[\pi, 2 \pi]$, then $\boldsymbol{\gamma}$ would have covered the lower semi-circle
- Similarly, we can choose $t \in[\pi / 6, \pi / 2]$ to cover just a portion of C, as shown below.

Figure 1.5: Upper semi-circle
Finally we are also able to give a mathematical description of the 3D Helix.

Figure 1.6: Lower semi-circle

Figure 1.7: Lower semi-circle

Figure 1.8: Plotting a portion of C

Example 1.7: Parametrizing the helix
The Helix plotted above can be parametrized by

$$
\boldsymbol{\gamma}:(-\infty, \infty) \rightarrow \mathbb{R}^{3}
$$

defined by

$$
\gamma_{1}(t)=\cos (t), \gamma_{2}(t)=\sin (t), \quad \gamma_{3}(t)=t .
$$

The above equations are in line with our intuition: the helix can be drawn by tracing a circle while at the same time lifting the pencil.

1.3 Smooth curves

Let us recall the definition of parametrized curve.

Definition 1.8: Parametrized curve
A parametrized curve in \mathbb{R}^{n} is a function

$$
\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}
$$

where

$$
(a, b)=\{t \in \mathbb{R}: a<t<b\}
$$

with

$$
-\infty \leq a<b \leq \infty .
$$

The components of $\boldsymbol{\gamma}(t) \in \mathbb{R}^{n}$ are denoted by

$$
\boldsymbol{\gamma}(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right),
$$

where the components are functions

$$
\gamma_{i}:(a, b) \rightarrow \mathbb{R},
$$

for all $i=1, \ldots, n$.
As we already mentioned, the aim of the course is to study curves by differentiating them. Let us see what that means for curves.

Definition 1.9: Smooth functions

A scalar function $f:(a, b) \rightarrow \mathbb{R}$ is called smooth if the derivative

$$
\frac{d^{n} f}{d t^{n}}
$$

exists for all $n \geq 1$ and $t \in(a, b)$.
We will denote the first and second derivatives of f as follows:

$$
\dot{f}:=\frac{d f}{d t}, \quad \ddot{f}:=\frac{d^{2} f}{d t^{2}} .
$$

Example 1.10

The function $f(x)=x^{4}$ is smooth, with

$$
\begin{aligned}
& \frac{d f}{d t}=4 x^{3}, \frac{d^{2} f}{d t^{2}}=12 x^{2} \\
& \frac{d^{3} f}{d t^{3}}=24 x, \frac{d^{4} f}{d t^{4}}=24 \\
& \frac{d^{n} f}{d t^{n}}=0 \text { for all } n \geq 5
\end{aligned}
$$

Other examples smooth functions are polynomials, as well as

$$
f(t)=\cos (t), f(t)=\sin (t), f(t)=e^{t} .
$$

Definition 1.11

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ with

$$
\boldsymbol{\gamma}(t)=\left(\gamma_{1}(t), \ldots, \boldsymbol{\gamma}_{n}(t)\right)
$$

be a parametrized curve. We say that γ is smooth if the components

$$
\gamma_{i}:(a, b) \rightarrow \mathbb{R}
$$

are smooth for all $i=1, \ldots, n$. The derivatives of $\boldsymbol{\gamma}$ are

$$
\frac{d^{k} \boldsymbol{\gamma}}{d t^{k}}:=\left(\frac{d^{k} \gamma_{1}}{d t^{k}}, \ldots, \frac{d^{k} \gamma_{n}}{d t^{k}}\right)
$$

for all $k \in \mathbb{N}$. As a shorthand, we will denote the first derivative of $\boldsymbol{\gamma}$ as

$$
\dot{\boldsymbol{\gamma}}:=\frac{d \boldsymbol{\gamma}}{d t}=\left(\frac{d \gamma_{1}}{d t}, \ldots, \frac{d \gamma_{n}}{d t}\right)
$$

and the second by

$$
\ddot{\boldsymbol{\gamma}}:=\frac{d^{2} \boldsymbol{\gamma}}{d t^{2}}=\left(\frac{d^{2} \gamma_{1}}{d t^{2}}, \ldots, \frac{d^{2} \gamma_{n}}{d t^{2}}\right) .
$$

In Figure 1.9 we skectch a smooth and a non-smooth curve. Notice that the curve on the right is smooth, except for the point x.
We will work under the following assumption.

Assumption

All the parametrized curves in this lecture notes are assumed to be smooth.

Example 1.12

The circle

$$
\boldsymbol{\gamma}(t)=(\cos (t), \sin (t))
$$

is a smooth parametrized curve, since both $\cos (t)$ and $\sin (t)$ are smooth functions. We have

$$
\dot{\boldsymbol{\gamma}}=(-\sin (t), \cos (t))
$$

For example the derivative of $\boldsymbol{\gamma}$ at the point $(0,1)$ is given by

$$
\dot{\gamma}(\pi / 2)=(-\sin (\pi / 2), \cos (\pi / 2))=(-1,0) .
$$

SMOOTH γ

$$
\begin{aligned}
& \text { NON-SHOOTH } \gamma \text {. } \\
& \text { ONLY SHOOTH OUTSIDE } \\
& \text { THE POINT } x
\end{aligned}
$$

Figure 1.9: Example of smooth and non-smooth curves

The plot of the circle and the derivative vector at $(-1,0)$ can be seen in Figure 1.10.

1.4 Tangent vectors

Looking at Figure 1.10, it seems like the vector

$$
\dot{\boldsymbol{\gamma}}(\pi / 2)=(-1,0)
$$

is tangent to the circle at the point

$$
\boldsymbol{\gamma}(\pi / 2)=(0,1) .
$$

Is this a coincidence? Not that all. Let us look at the definition of derivative at a point:

$$
\dot{\boldsymbol{\gamma}}(t):=\lim _{\delta \rightarrow 0} \frac{\boldsymbol{\gamma}(t+\delta)-\boldsymbol{\gamma}(t)}{\delta} .
$$

If we just look at the quantity

$$
\frac{\boldsymbol{\gamma}(t+\delta)-\boldsymbol{\gamma}(t)}{\delta}
$$

for non-negative δ, we see that this vector is parallel to the chord joining $\boldsymbol{\gamma}(t)$ to $\boldsymbol{\gamma}(t+\delta)$, as shown in Figure 1.11 below. As $\delta \rightarrow 0$, the length of the chord tends to zero. However the direction of the chord becomes parallel

Figure 1.10: Plot of Circle and Tangent Vector at $(0,1)$
to that of the tangent vector of the curve $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$. Since

$$
\frac{\boldsymbol{\gamma}(t+\delta)-\boldsymbol{\gamma}(t)}{\delta} \rightarrow \dot{\boldsymbol{\gamma}}(t)
$$

as $\delta \rightarrow 0$, we see that $\dot{\boldsymbol{\gamma}}(t)$ is parallel to the tangent of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$, as showin in Figure 1.11.

Figure 1.11: Approximating the tangent vector
The above remark motivates the following definition.

Definition 1.13: Tangent vector

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a parametrized curve. The tangent vector to $\boldsymbol{\gamma}$ at the point $\boldsymbol{\gamma}(t)$ is defined as

$$
\tau:=\dot{\boldsymbol{\gamma}}(t) .
$$

Example 1.14: Tangent vector to helix
The helix is described by the parametric curve

$$
\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{3}
$$

with

$$
\boldsymbol{\gamma}_{1}(t)=\cos (t), \boldsymbol{\gamma}_{2}(t)=\sin (t), \boldsymbol{\gamma}_{3}(t)=t .
$$

This is plotted in Figure 1.12 below. The tangent vector at point $\gamma(t)$ is given by

$$
\dot{\boldsymbol{\gamma}}(t)=(-\sin (t), \cos (t), 1) .
$$

For example in Figure 1.12 we plot the tangent vector at time $t=\pi / 2$, that is,

$$
\dot{\boldsymbol{\gamma}}(\pi / 2)=(-1,0, \pi / 2) .
$$

The above looks very similar to the tangent vector to the circle. Except that there is a z component, and that component is constant and equal to 1 . Intuitively this means that the helix is lifting from the plane $x y$ with constant speed with respect to the z-axis. We will soon give a name to this concept.

Figure 1.12: Plot of Helix with tangent vector

Remark 1.15: Avoiding potential ambiguities

Sometimes it will happen that a curve self intersects, meaning that there are two time instants t_{1} and t_{2} and a point $p \in \mathbb{R}^{n}$ such that

$$
p=\boldsymbol{\gamma}\left(t_{1}\right)=\boldsymbol{\gamma}\left(t_{2}\right) .
$$

In this case there is ambiguity in talking about the tangent vector at the point p : in principle there are two tangent vectors $\dot{\boldsymbol{\gamma}}\left(t_{1}\right)$ and $\dot{\boldsymbol{\gamma}}\left(t_{2}\right)$, and it could happen that

$$
\dot{\boldsymbol{\gamma}}\left(t_{1}\right) \neq \dot{\boldsymbol{\gamma}}\left(t_{1}\right) .
$$

Thus the concept of tangent at p is not well-defined. We need then to be more precise and talk about tangent at a certain time-step t, rather than at some point p. We however do not amend Definition 1.13, but you should keep this potential ambiguity in mind.

Example 1.16: The Lemniscate, a self intersecting curve
For example consider $\boldsymbol{\gamma}:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ defined as

$$
\boldsymbol{\gamma}_{1}(t)=\sin (t), \boldsymbol{\gamma}_{2}(t)=\sin (t) \cos (t) .
$$

Such curve is called Lemniscate, see Wikipedia page, and is plotted in Figure 1.13 below. The orgin $(0,0)$ is a point of self-intersection, meaning that

$$
\boldsymbol{\gamma}(0)=\boldsymbol{\gamma}(\pi)=(0,0) .
$$

The tangent vector at point $\boldsymbol{\gamma}(t)$ is given by

$$
\dot{\boldsymbol{\gamma}}(t)=\left(\cos (t), \cos ^{2}(t)-\sin ^{2}(t)\right)
$$

and therefore we have two tangents at $(0,0)$, that is,

$$
\tau_{1}=\dot{\boldsymbol{\gamma}}(0)=(1,1), \tau_{2}=\dot{\boldsymbol{\gamma}}(\pi)=(-1,1) .
$$

1.5 Length of curves

For a vector $v \in \mathbb{R}^{n}$ with components

$$
v=\left(v_{1}, \ldots, v_{n}\right)
$$

its length is defined by

$$
\|v\|:=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}
$$

The above is just an extension of the Pythagoras theorem to \mathbb{R}^{n}, and the length of v is computed from the origin.

If we have a second vector $u \in \mathbb{R}^{n}$, then the quantity

$$
\|u-v\|:=\sqrt{\sum_{i=1}^{n}\left(u_{i}-v_{i}\right)^{2}}
$$

measures the length of the difference between u and v.

Figure 1.13: The Lemniscate curve

Figure 1.14: Interpretation of $\|v\|$ in \mathbb{R}^{2}

Figure 1.15: Interpretation of $\|u-v\|$ in \mathbb{R}^{2}

We would like to define the concept of length of a curve. Intuitively, one could proceed by approximation as in the figure below.

Figure 1.16: Approximating the length of γ
In formulae, this means choosing some time instants

$$
t_{0}, \ldots, t_{m} \in(a, b)
$$

The length of the segment connecting $\boldsymbol{\gamma}\left(t_{i-1}\right)$ to $\boldsymbol{\gamma}\left(t_{i}\right)$ is given by

$$
\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| .
$$

Thus

$$
\begin{equation*}
L(\boldsymbol{\gamma}) \approx \sum_{i=1}^{m}\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| . \tag{1.8}
\end{equation*}
$$

Intuitively, if we increase the number of points t_{i}, the quantity on the RHS of (1.8) should approximate $L(\boldsymbol{\gamma})$ better and better. Let us make this precise.

Definition 1.17: Partition

Let (a, b) be an interval. A partition \mathscr{P} of $[a, b]$ is a vector of time instants

$$
\mathscr{P}=\left(t_{0}, \ldots, t_{k}\right) \in[a, b]^{m+1}
$$

with

$$
t_{0}=a<t_{1}<\ldots<t_{m-1}<t_{m}=b .
$$

If \mathscr{P} is a partition of $[a, b]$, we define its maximum length as

$$
\|\mathscr{P}\|:=\max _{1 \leq i \leq m}\left|t_{i}-t_{i-1}\right| .
$$

Note that $\|\mathscr{P}\|$ measures how fine the partition \mathscr{P} is.

Definition 1.18: Length of approximating polygonal curve
Suppose $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ is a parametrized curve and \mathscr{P} a partition of $[a, b]$. We define the length of the polygonal curve connecting the points

$$
\boldsymbol{\gamma}\left(t_{0}\right), \boldsymbol{\gamma}\left(t_{1}\right), \ldots, \boldsymbol{\gamma}\left(t_{m}\right)
$$

as

$$
L(\boldsymbol{\gamma}, \mathscr{P}):=\sum_{i=1}^{m}\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| .
$$

If $\|\mathscr{P}\|$ becomes smaller and smaller, that is, the partition \mathscr{P} is finer and finer, it is reasonable to say that

$$
L(\boldsymbol{\gamma}, \mathscr{P})
$$

is approximating the length of $\boldsymbol{\gamma}$. We take this as definition of length.

Definition 1.19: Rectifiable curve and length

Suppose $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ is a parametrized curve. We say that $\boldsymbol{\gamma}$ is rectifiable if the limit

$$
L(\boldsymbol{\gamma})=\lim _{\|P\| \rightarrow 0} L(\boldsymbol{\gamma}, \mathscr{P})
$$

exists finite. In such case we call $L(\boldsymbol{\gamma})$ the length of γ.
This definition definitely corresponds to our geometrical intuition of length of a curve.

Question 1.20

How do we use such definition in practice to compute the length of a given curve $\boldsymbol{\gamma}$?

Thankfully, when $\boldsymbol{\gamma}$ is smooth, the length $L(\boldsymbol{\gamma})$ can be characterized in terms of $\dot{\boldsymbol{\gamma}}$. Indeed, when δ is small, then the quantity

$$
\|\boldsymbol{\gamma}(t+\delta)-\boldsymbol{\gamma}(t)\|
$$

is approximating the length of $\boldsymbol{\gamma}$ between $\boldsymbol{\gamma}(t)$ and $\boldsymbol{\gamma}(t+\delta)$. Multiplying and dividing by δ we obtain

$$
\frac{\|\boldsymbol{\gamma}(t+\delta)-\boldsymbol{\gamma}(t)\|}{\delta} \delta
$$

which for small δ is close to

$$
\|\dot{\boldsymbol{\gamma}}(t)\| \delta
$$

We can now divide the time interval (a, b) in steps t_{0}, \ldots, t_{m} with $\left|t_{i}-t_{i-1}\right|<\delta$ and obtain

$$
\begin{aligned}
\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| & =\frac{\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\|}{\left|t_{i}-t_{i-1}\right|}\left|t_{i}-t_{i-1}\right| \\
& \approx\left\|\dot{\boldsymbol{\gamma}}\left(t_{i}\right)\right\| \delta
\end{aligned}
$$

since δ is small. Therefore

$$
L(\boldsymbol{\gamma}) \approx \sum_{i=1}^{m}\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| \approx \sum_{i=1}^{m}\left\|\dot{\boldsymbol{\gamma}}\left(t_{i}\right)\right\| \delta .
$$

The RHS is a Riemann sum, therefore

$$
L(\gamma) \approx \int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(t)\| d t
$$

The above argument can be made rigorous, as we see in the next theorem.

Theorem 1.21: Characterizing the length of γ

Assume $\boldsymbol{\gamma}:[a, b] \rightarrow \mathbb{R}^{n}$ is a parametrized curve, with $[a, b]$ bounded. Then $\boldsymbol{\gamma}$ is rectifiable and

$$
\begin{equation*}
L(\gamma)=\int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(t)\| d t \tag{1.9}
\end{equation*}
$$

Proof

Step 1. The integral in (1.9) is bounded.
Since $\boldsymbol{\gamma}$ is smooth, in particular $\dot{\boldsymbol{\gamma}}$ is continuous. Since $[a, b]$ is bounded, then $\dot{\boldsymbol{\gamma}}$ is bounded, that is

$$
\sup _{t \in[a, b]}\|\dot{\boldsymbol{\gamma}}(t)\| \leq C
$$

for some constant $C \geq 0$. Therefore

$$
\int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(t)\| d t \leq C(b-a)<\infty
$$

Figure 1.17: Approximating $L(\boldsymbol{\gamma})$ via $\dot{\boldsymbol{\gamma}}$

Step 2. Writing (1.9) as limit.
Recalling that

$$
L(\boldsymbol{\gamma})=\lim _{\|\mathscr{P}\| \rightarrow 0} L(\boldsymbol{\gamma}, \mathscr{P})
$$

whenever the limit is finite, in order to show (1.9) we then need to prove

$$
L(\boldsymbol{\gamma}, \mathscr{P}) \rightarrow \int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(t)\| d t
$$

as $\|\mathscr{P}\| \rightarrow 0$. Showing the above means proving that: for every $\varepsilon>0$ there exists a $\delta>0$ such that, if \mathscr{P} is a partition of $[a, b]$ such that $\|\mathscr{P}\|<\delta$, then

$$
\begin{equation*}
\left|\int_{a}^{b}\|\dot{\gamma}(t)\| d t-L(\gamma, \mathscr{P})\right|<\varepsilon \tag{1.10}
\end{equation*}
$$

Step 3. First estimate in (1.10).
This first estimate is easy, and only relies on the Fundamental Theorem of Calculus. To be more precise, we will show that each polygonal has shorter length than $\int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(t)\| d t$. To this end, take an arbitrary partition $\mathscr{P}=\left(t_{0}, \ldots, t_{m}\right)$ of $[a, b]$. Then for each $i=1, \ldots, m$ we have

$$
\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\|=\left\|\int_{t_{i-1}}^{t_{i}} \dot{\boldsymbol{\gamma}}(t) d t\right\| \leq \int_{t_{i-1}}^{t_{i}}\|\dot{\boldsymbol{\gamma}}(t)\| d t
$$

where we used the Fundamental Theorem of calculus, and usual integral properties. Therefore by definition

$$
\begin{aligned}
L(\boldsymbol{\gamma}, \mathscr{P}) & =\sum_{i=1}^{m}\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| \\
& \leq \sum_{i=1}^{m} \int_{t_{i-1}}^{t_{i}}\|\dot{\boldsymbol{\gamma}}(t)\| d t \\
& =\int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(t)\| d t
\end{aligned}
$$

We have then shown

$$
\begin{equation*}
L(\boldsymbol{\gamma}, \mathscr{P}) \leq \int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(t)\| d t \tag{1.11}
\end{equation*}
$$

for all partitions \mathscr{P}.
Step 4. Second estimate in (1.10).
The second estimate is more delicate. We need to carefully construct a polygonal so that its length is close to $\int_{a}^{b}\|\dot{\boldsymbol{\gamma}}\| d t$. This will be possible by uniform continuity of $\dot{\boldsymbol{\gamma}}$. Indeed, note that $\dot{\boldsymbol{\gamma}}$ is continuous on the compact set $[a, b]$. Therefore it is uniformly continuous by the Heine-Borel Theorem. Fix $\varepsilon>0$. By uniform continuity of $\dot{\gamma}$ there exists $\delta>0$ such that

$$
\begin{equation*}
|t-s|<\delta \Longrightarrow\|\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)\|<\frac{\varepsilon}{b-a} \tag{1.12}
\end{equation*}
$$

for all $t, s \in[a, b]$. Let $\mathscr{P}=\left(t_{0}, \ldots, t_{m}\right)$ be a partition of $[a, b]$ with $\|\mathscr{P}\|<\delta$. Recall that

$$
\|\mathscr{P}\|=\max _{i=1, \ldots, m}\left|t_{i}-t_{i-1}\right| .
$$

Therefore the condition $\|\mathscr{P}\|<\delta$ implies

$$
\begin{equation*}
\left|t_{i}-t_{i-1}\right|<\delta \tag{1.13}
\end{equation*}
$$

for each $i=1, \ldots, m$. For all $i=1, \ldots, m$ and $s \in\left[t_{i-1}, t_{i}\right]$ we have

$$
\begin{aligned}
\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right) & =\int_{t_{i-1}}^{t_{i}} \dot{\boldsymbol{\gamma}}(t) d t \\
& =\int_{t_{i-1}}^{t_{i}} \dot{\boldsymbol{\gamma}}(s)+(\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)) d t \\
& =\left(t_{i}-t_{i-1}\right) \dot{\boldsymbol{\gamma}}(s)+\int_{t_{i-1}}^{t_{i}}(\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)) d t
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\|=\left\|\left(t_{i}-t_{i-1}\right) \dot{\boldsymbol{\gamma}}(s)+\int_{t_{i-1}}^{t_{i}}(\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)) d t\right\| \tag{1.14}
\end{equation*}
$$

We can now use the reverse triangle inequality

$$
\|x\|-\|y\| \mid \leq\|x-y\|,
$$

for all $x, y \in \mathbb{R}^{n}$, which implies

$$
\|x+y\|=\|x-(-y)\| \geq\|x\|-\|y\|
$$

for all $x, y \in \mathbb{R}^{n}$. Applying the above to (1.14) we get

$$
\begin{equation*}
\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| \geq\left(t_{i}-t_{i-1}\right)\|\dot{\boldsymbol{\gamma}}(s)\|-\left\|\int_{t_{i-1}}^{t_{i}}(\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)) d t\right\| \tag{1.15}
\end{equation*}
$$

By standard properties of integral we also have

$$
\left\|\int_{t_{i-1}}^{t_{i}}(\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)) d t\right\| \leq \int_{t_{i-1}}^{t_{i}}\|\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)\| d t
$$

so that (1.15) implies

$$
\begin{equation*}
\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| \geq\left(t_{i}-t_{i-1}\right)\|\dot{\boldsymbol{\gamma}}(s)\|-\int_{t_{i-1}}^{t_{i}}\|\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)\| d t \tag{1.16}
\end{equation*}
$$

Since $t, s \in\left[t_{i-1}, t_{i}\right]$, then

$$
|t-s| \leq\left|t_{i}-t_{i-1}\right|<\delta
$$

where the last inequality follows by (1.13). Thus by uniform continuity (1.12) we get

$$
\|\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)\|<\frac{\varepsilon}{b-a}
$$

We can therefore further estimate (1.16) and obtain

$$
\begin{aligned}
\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| & \geq\left(t_{i}-t_{i-1}\right)\|\dot{\boldsymbol{\gamma}}(s)\|-\int_{t_{i-1}}^{t_{i}}\|\dot{\boldsymbol{\gamma}}(t)-\dot{\boldsymbol{\gamma}}(s)\| d t \\
& \geq\left(t_{i}-t_{i-1}\right)\|\dot{\boldsymbol{\gamma}}(s)\|-\left(t_{i}-t_{i-1}\right) \frac{\varepsilon}{b-a} d t
\end{aligned}
$$

Dividing the above by $t_{i}-t_{i-1}$ we get

$$
\frac{\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\|}{t_{i}-t_{i-1}} \geq\|\dot{\boldsymbol{\gamma}}(s)\|-\frac{\varepsilon}{b-a}
$$

Integrating the above over s in the interval $\left[t_{i-1}, t_{i}\right]$ we get

$$
\left\|\boldsymbol{\gamma}\left(t_{i}\right)-\boldsymbol{\gamma}\left(t_{i-1}\right)\right\| \geq \int_{t_{i-1}}^{t_{i}}\|\dot{\boldsymbol{\gamma}}(s)\| d s-\frac{\varepsilon}{b-a}\left(t_{i}-t_{i-1}\right)
$$

Summing over $i=1, \ldots, m$ we get

$$
\begin{equation*}
L(\mathscr{P}, \boldsymbol{\gamma}) \geq \int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(s)\| d s-\varepsilon \tag{1.17}
\end{equation*}
$$

since

$$
\sum_{i=1}^{m}\left(t_{i}-t_{i-1}\right)=t_{m}-t_{0}=b-a
$$

Conclusion.
Putting together (1.11) and (1.17) we get

$$
\int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(s)\| d s-\varepsilon \leq L(\mathscr{P}, \boldsymbol{\gamma}) \leq \int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(s)\| d s
$$

which implies (1.10), concluding the proof.
Thanks to the above theorem we have now a way to compute $L(\boldsymbol{\gamma})$. Let us check that we have given a meaningful definition of length by computing $L(\boldsymbol{\gamma})$ on known examples.

Example 1.22: Length of Circle

The circle of radius R is parametrized by $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ defined by

$$
\boldsymbol{\gamma}(t)=(R \cos (t), R \sin (t)) .
$$

Then

$$
\dot{\boldsymbol{\gamma}}(t)=(-R \sin (t), R \cos (t))
$$

and

$$
\begin{aligned}
\|\dot{\boldsymbol{\gamma}}(t)\| & =\sqrt{\dot{\gamma}_{1}^{2}(t)+\dot{\gamma}_{2}^{2}(t)} \\
& =R \sqrt{\sin ^{2}(t)+\cos ^{2}(t)}=R .
\end{aligned}
$$

Therefore

$$
L(\boldsymbol{\gamma})=\int_{0}^{2 \pi}\|\dot{\boldsymbol{\gamma}}(t)\| d t=\int_{0}^{2 \pi} R d t=2 \pi R
$$

as expected.

Example 1.23: Length of helix

Let us consider one full turn of the Helix of radius R and rise H. This is parametrized by

$$
\boldsymbol{\gamma}(t)=(R \cos (t), R \sin (t), H t)
$$

for $t \in[0,2 \pi]$. Then

$$
\dot{\boldsymbol{\gamma}}(t)=(-R \sin (t), R \cos (t), H),
$$

and

$$
\begin{aligned}
\|\dot{\boldsymbol{\gamma}}(t)\| & =\sqrt{\dot{\gamma}_{1}^{2}+\dot{\gamma}_{2}^{2}+\dot{\gamma}_{3}^{2}} \\
& =\sqrt{R^{2} \sin ^{2}(t)+R^{2} \cos ^{2}(t)+H^{2}}=\sqrt{R^{2}+H^{2}} .
\end{aligned}
$$

Therefore

$$
L(\boldsymbol{\gamma})=\int_{0}^{2 \pi}\|\dot{\boldsymbol{\gamma}}(t)\| d t=2 \pi \sqrt{R^{2}+H^{2}}
$$

1.6 Arc-length

We have just shown in Theorem 1.21 that the length of a regular curve $\boldsymbol{\gamma}:[a, b] \rightarrow \mathbb{R}^{n}$ with $[a, b]$ bounded is given by

$$
L(\boldsymbol{\gamma})=\int_{a}^{b}\|\dot{\boldsymbol{\gamma}}(t)\| d t
$$

Using this formula, we introduce the notion of length of a portion of $\boldsymbol{\gamma}$.

Definition 1.24: Arc-length

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a curve, with (a, b) possibly unbounded. We define the arc-length of $\boldsymbol{\gamma}$ starting at the point $\boldsymbol{\gamma}\left(t_{0}\right)$ as the function $s: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
s(t):=\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau
$$

Remark 1.25

A few remarks:

- Arc-length is well-defined

Figure 1.18: Arc-length of $\boldsymbol{\gamma}$ starting at $\boldsymbol{\gamma}\left(t_{0}\right)$

Indeed, $\boldsymbol{\gamma}$ is smooth, and so $\dot{\boldsymbol{\gamma}}$ is continuous. WLOG assume $t \geq t_{0}$. Then

$$
s(t)=\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau \leq\left(t-t_{0}\right) \max _{\tau \in\left[t_{0}, t\right]}\|\dot{\boldsymbol{\gamma}}(\tau)\|<\infty .
$$

- We always have

$$
s\left(t_{0}\right)=0 .
$$

- We have

$$
t>t_{0} \Longrightarrow s(t) \geq 0
$$

and

$$
t<t_{0} \Longrightarrow s(t) \leq 0
$$

- Choosing a different starting point changes the arc-length by a constant:

For example define \tilde{s} as the arc-length starting from \tilde{t}_{0}

$$
\tilde{s}(t):=\int_{\tilde{t}_{0}}^{t}\|\dot{\gamma}(\tau)\| d \tau
$$

Then by the properties of integral

$$
\begin{aligned}
s(t) & =\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau \\
& =\int_{t_{0}}^{\tilde{t}_{0}}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau+\int_{\tilde{t}_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau \\
& =\int_{t_{0}}^{\tilde{t}_{0}}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau+\tilde{s}(t) .
\end{aligned}
$$

Hence

$$
s=c+\tilde{s}
$$

with

$$
c:=\int_{t_{0}}^{\tilde{t}_{0}}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau \text {. }
$$

Note that c is the arc-length of $\boldsymbol{\gamma}$ between the starting points $\boldsymbol{\gamma}\left(t_{0}\right)$ and $\boldsymbol{\gamma}\left(\tilde{t}_{0}\right)$.

- The arc-length is a differentiable function, with

$$
\dot{s}(t)=\frac{d}{d t} \int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau=\|\dot{\boldsymbol{\gamma}}(t)\| .
$$

Since $\dot{\boldsymbol{\gamma}}$ is continuous, the above follows by the Fundamental Theorem of Calculus.

Example 1.26: Circle
The circle of radius R is parametrized by $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ defined by

$$
\boldsymbol{\gamma}(t)=(R \cos (t), R \sin (t)) .
$$

Then

$$
\dot{\boldsymbol{\gamma}}(t)=(-R \sin (t), R \cos (t)), \quad\|\dot{\boldsymbol{\gamma}}(t)\|=R .
$$

Therefore, for any fixed $t_{0} \in[0,2 \pi]$ we have

$$
s(t)=\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau=\int_{t_{0}}^{t} R d \tau=\left(t-t_{0}\right) R
$$

In particular we see that $\dot{s}=R$ is constant.

Example 1.27: Logarithmic spiral

The Logarithmic spiral is defined by $\boldsymbol{\gamma}:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ with

$$
\boldsymbol{\gamma}(t)=\left(e^{k t} \cos (t), e^{k t} \sin (t)\right),
$$

where $k \in \mathbb{R}, k \neq 0$, is called the growth factor. Then

$$
\begin{aligned}
& \dot{\gamma}_{1}(t)=e^{k t}(k \cos (t)-\sin (t)) \\
& \dot{\gamma}_{2}(t)=e^{k t}(k \sin (t)+\cos (t))
\end{aligned}
$$

and so, after some calculations,

$$
\|\dot{\boldsymbol{\gamma}}(t)\|^{2}=\dot{\gamma}_{1}^{2}+\dot{\gamma}_{2}^{2}=\left(k^{2}+1\right) e^{2 k t}
$$

The arc-length starting from t_{0} is

$$
\begin{aligned}
s(t) & =\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau \\
& =\sqrt{k^{2}+1} \int_{t_{0}}^{t} e^{k \tau} d \tau \\
& =\frac{\sqrt{k^{2}+1}}{k}\left(e^{k t}-e^{k t_{0}}\right) .
\end{aligned}
$$

1.7 Scalar product in \mathbb{R}^{n}

Let us start by defining the scalar product in \mathbb{R}^{2}.

Definition 1.28: Scalar product in \mathbb{R}^{2}
Let $u, v \in \mathbb{R}^{2}$ and denote by $\theta \in[0, \pi]$ the angle formed by u and v. The scalar product between u and v is defined by

$$
u \cdot v:=|u||v| \cos (\theta) .
$$

Remark 1.29

The scalar product is maximized for $\theta=0$, for which we have

$$
u \cdot v=|u||v| \cos (\theta)=|u||v| .
$$

Figure 1.19: Plot of Logarithmic Spiral with $k=0.1$

Figure 1.20: Vectors u and v in \mathbb{R}^{2} forming angle θ

It is instead minimized for $\theta=\pi$, for which

$$
u \cdot v=|u \| v| \cos (\theta)=-|u||v| .
$$

Definition 1.30: Orthogonal vectors
Let $u, v \in \mathbb{R}^{2}$. If

$$
u \cdot v=0
$$

we say that u and v are orthogonal.

Proposition 1.31: Bilinearity and symmetry of scalar product
Let $u, v, w \in \mathbb{R}^{2}$ and $\lambda \in \mathbb{R}$. Then

- Symmetry: $u \cdot v=v \cdot u$
- Bilinearity: It holds

$$
\begin{gathered}
\lambda(u \cdot v)=(\lambda u) \cdot v=u \cdot(\lambda v), \\
u \cdot(v+w)=u \cdot v+u \cdot w .
\end{gathered}
$$

We leave the proof to the reader. The above proposition is saying that the scalar product is bilinear and symmetric.

Proposition 1.32: Scalar products written wrt euclidean coordinates
Denote by

$$
e_{1}=(1,0), \quad e_{2}=(0,1)
$$

the euclidean basis of \mathbb{R}^{2}. Let $u, v \in \mathbb{R}^{2}$ and denote by

$$
\begin{aligned}
& u=\left(u_{1}, u_{2}\right)=u_{1} e_{1}+u_{2} e_{2} \\
& v=\left(v_{1}, v_{2}\right)=v_{1} e_{1}+v_{2} e_{2}
\end{aligned}
$$

their coordinates with respect to e_{1}, e_{2}. Then

$$
u \cdot v=u_{1} v_{2}+u_{2} v_{2} .
$$

Proof

Note that

$$
e_{1} \cdot e_{1}=1, \quad e_{2} \cdot e_{2}=1, \quad e_{1} \cdot e_{2}=e_{2} \cdot e_{1}=0
$$

Using the bilinearity of scalar product we have

$$
\begin{aligned}
u \cdot v & =\left(u_{1} e_{1}+u_{2} e_{2}\right) \cdot\left(v_{1} e_{1}+v_{2} e_{2}\right) \\
& =u_{1} v_{1} e_{1} \cdot e_{1}+u_{1} v_{2} e_{1} \cdot e_{2}+u_{2} v_{1} e_{2} \cdot e_{1}+u_{2} v_{2} e_{2} \cdot e_{2} \\
& =u_{1} v_{1}+u_{2} v_{2} .
\end{aligned}
$$

The above proposition provides a way to generalize of the scalar product to \mathbb{R}^{n}..

Definition 1.33: Scalar product in \mathbb{R}^{n}

Let $u, v \in \mathbb{R}^{n}$ and denote their coordinates by

$$
u=\left(u_{1}, \ldots, u_{n}\right), \quad u=\left(v_{1}, \ldots, v_{n}\right) .
$$

We define the scalar product between u and v by

$$
u \cdot v:=\sum_{i=1}^{n} u_{i} v_{i}
$$

With the above definition we still have that the scalar product is bilinear and symmetric, as detailed in the following proposition:

Proposition 1.34: Bilinearity and symmetry of scalar product in \mathbb{R}^{n}

Let $u, v, w \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$. Then

- Symmetry: $u \cdot v=v \cdot u$
- Bilinearity: It holds

$$
\begin{gathered}
\lambda(u \cdot v)=(\lambda u) \cdot v=u \cdot(\lambda v), \\
u \cdot(v+w)=u \cdot v+u \cdot w .
\end{gathered}
$$

The proof of the above proposition is an easy check, and is left to the reader for exercise.

Definition 1.35

Let $u, v \in \mathbb{R}^{n}$. We say that u and v are orthogonal if

$$
u \cdot v=0 .
$$

Proposition 1.36: Differentiating scalar product
Let $\boldsymbol{\gamma}, \boldsymbol{\eta}:(a, b) \rightarrow \mathbb{R}^{n}$ be parametrized curves. Then the scalar map

$$
\boldsymbol{\gamma} \cdot \boldsymbol{\eta}:(a, b) \rightarrow \mathbb{R}
$$

is smooth, and

$$
\frac{d}{d t}(\boldsymbol{\gamma} \cdot \boldsymbol{\eta})=\dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\eta}+\boldsymbol{\gamma} \cdot \dot{\boldsymbol{\eta}}
$$

for all $t \in(a, b)$.

Proof

Denote by

$$
\boldsymbol{\gamma}=\left(\boldsymbol{\gamma}_{1}, \ldots, \boldsymbol{\gamma}_{n}\right), \quad \eta=\left(\eta_{1}, \ldots, \eta_{n}\right)
$$

the coordinates of $\boldsymbol{\gamma}$ and $\boldsymbol{\eta}$. Clearly the map

$$
t \mapsto \boldsymbol{\gamma} \cdot \boldsymbol{\eta}=\sum_{i=1}^{n} \boldsymbol{\gamma}_{i} \eta_{i}
$$

is smooth, being sum and product of smooth functions.
Concerning the formula, by definition of scalar product and linearity of the derivative we have

$$
\begin{aligned}
\frac{d}{d t}(\boldsymbol{\gamma} \cdot \boldsymbol{\eta}) & =\frac{d}{d t}\left(\sum_{i=1}^{n} \boldsymbol{\gamma}_{i} \eta_{i}\right) \\
& =\sum_{i=1}^{n} \frac{d}{d t}\left(\boldsymbol{\gamma}_{i} \eta_{i}\right) \\
& =\sum_{i=1}^{n} \dot{\gamma}_{i} \eta_{i}+\dot{\gamma}_{i} \dot{\eta}_{i} \\
& =\dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\eta}+\boldsymbol{\gamma} \cdot \dot{\boldsymbol{\eta}},
\end{aligned}
$$

where in the second to last equality we used the product rule of differentiation.

1.8 Speed of a curve

Given a curve $\boldsymbol{\gamma}$ we defined the tangent vector at $\boldsymbol{\gamma}(t)$ to be

$$
\dot{\boldsymbol{\gamma}}(t) .
$$

The tangent vector measures the change of direction of the curve. Therefore the magnitude of $\dot{\boldsymbol{\gamma}}$ can be interpreted as the speed of the curve.

Definition 1.37

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a curve. We define the speed of $\boldsymbol{\gamma}$ at the point $\boldsymbol{\gamma}(t)$ by

$$
\|\dot{\boldsymbol{\gamma}}(t)\| .
$$

We say that $\boldsymbol{\gamma}$ is a unit-speed curve if

$$
\|\dot{\boldsymbol{\gamma}}(t)\|=1, \quad \forall t \in(a, b)
$$

Remark 1.38

The derivative of the arc-length s gives the speed of $\boldsymbol{\gamma}$:

$$
s(t):=\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau \quad \Longrightarrow \quad \dot{s}(t)=\|\dot{\boldsymbol{\gamma}}(t)\| .
$$

The reason why we introduce unit speed curves is because they make calculations easy. This is essentially because of the next proposition.

Proposition 1.39

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a unit speed curve. Then

$$
\dot{\boldsymbol{\gamma}} \cdot \ddot{\boldsymbol{\gamma}}=0
$$

for all $t \in(a, b)$.

Proof

Let us consider the identity

$$
\begin{equation*}
\dot{\boldsymbol{\gamma}}(t) \cdot \dot{\boldsymbol{\gamma}}(t)=\sum_{i=1}^{n} \dot{\boldsymbol{\gamma}}_{i}^{2}(t)=\|\dot{\boldsymbol{\gamma}}(t)\|^{2} . \tag{1.18}
\end{equation*}
$$

Since $\boldsymbol{\gamma}$ is unit speed we have

$$
\|\dot{\boldsymbol{\gamma}}(t)\|^{2}=1 \quad \forall t \in(a, b)
$$

and therefore

$$
\begin{equation*}
\frac{d}{d t}\left(\|\dot{\boldsymbol{\gamma}}(t)\|^{2}\right)=0 \quad \forall t \in(a, b) . \tag{1.19}
\end{equation*}
$$

We can differentiate the LHS of (1.18) to get

$$
\begin{equation*}
\frac{d}{d t}(\dot{\boldsymbol{\gamma}} \cdot \dot{\gamma})=\ddot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}}+\dot{\boldsymbol{\gamma}} \cdot \ddot{\boldsymbol{\gamma}}=2 \dot{\boldsymbol{\gamma}} \cdot \ddot{\boldsymbol{\gamma}} \tag{1.20}
\end{equation*}
$$

where we used Proposition 1.36 and symmetry of the scalar product. Differentiating (1.18) and using (1.19)-(1.20) we conclude

$$
2 \dot{\gamma} \cdot \ddot{\gamma}=0 \quad \forall t \in(a, b) .
$$

Remark 1.40

Proposition 1.39 is saying that if $\boldsymbol{\gamma}$ is unit speed, then its tangent vector $\dot{\boldsymbol{\gamma}}$ is always orthogonal to the second derivative $\ddot{\boldsymbol{\gamma}}$. This will be very useful in the future.

Figure 1.21: If $\boldsymbol{\gamma}$ is unit speed then $\dot{\gamma}$ and $\ddot{\gamma}$ are orthogonal

1.9 Reparametrization

As we have observed in the Examples of Chapter 1, there is in general no unique way to parametrize a curve. However we would like to understand when two parametrizations are related. In other words, we want to clarify the concept of equivalence of two parametrizations.

Definition 1.41: Diffeomorphism

Let $\phi:(a, b) \rightarrow(\tilde{a}, \tilde{b})$. We say that ϕ is a diffeomorphism if the following conditions are satisfied:

1. ϕ is invertible, with inverse $\phi^{-1}:(\tilde{a}, \tilde{b}) \rightarrow(a, b)$. Thus

$$
\phi^{-1} \circ \phi=\phi \circ \phi^{-1}=\mathrm{Id},
$$

where $\mathrm{Id}: \mathbb{R} \rightarrow \mathbb{R}$ is the identity map on \mathbb{R}, that is,

$$
\operatorname{Id}(t)=t, \quad \forall t \in \mathbb{R}
$$

2. ϕ is smooth,
3. ϕ^{-1} is smooth.

Definition 1.42: Reparametrization

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a parametrized curve. A reparametrization of γ is another parametrized curve $\tilde{\boldsymbol{\gamma}}:(\tilde{a}, \tilde{b}) \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\tilde{\boldsymbol{\gamma}}(t)=\boldsymbol{\gamma}(\phi(t)) \quad \forall t \in(\tilde{a}, \tilde{b}), \tag{1.21}
\end{equation*}
$$

where

$$
\phi:(\tilde{a}, \tilde{b}) \rightarrow(a, b)
$$

is a diffeomerphism. We call both ϕ and ϕ^{-1} reparametrization maps.

Remark 1.43

A comment about the above definition. Given a parametrized curve $\boldsymbol{\gamma}$, this identifies a 1 D shape $\Gamma \subset \mathbb{R}^{n}$. A reparametrization $\tilde{\gamma}$ is just an equivalent way to describe Γ. For $\boldsymbol{\gamma}$ and $\tilde{\gamma}$ to be reparametrizations of each other, there must exist a smooth rule ϕ to switch from one to another, according to formula (1.21)

Example 1.44: Change of orientation
The map $\phi:(\tilde{a}, \tilde{b}) \rightarrow(a, b)$ defined by

$$
\phi(t):=-t
$$

is a diffeomoprhism. The inverse of ϕ is given by $\phi^{-1}:(a, b) \rightarrow(\tilde{a}, \tilde{b})$ defined by

$$
\phi^{-1}(t)=-t .
$$

Note that ϕ can be used to reverse the orientation of a curve.

Figure 1.22: Sketch of 1D shaper \boxtimes parametrized by γ and $\tilde{\gamma}$

Example 1.45: Reversing orientation of circle

Consider the unit circle parametrized as usual by $\boldsymbol{\gamma}:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ defined as

$$
\boldsymbol{\gamma}(t):=(\cos (t), \sin (t)) .
$$

To reverse the orientation we can reparametrize $\boldsymbol{\gamma}$ by using the diffeomorphism

$$
\phi(t):=-t .
$$

This way we obtain $\tilde{\boldsymbol{\gamma}}:=\boldsymbol{\gamma} \circ \phi:[0,2 \pi] \rightarrow[0,2 \pi]$,

$$
\begin{aligned}
\tilde{\boldsymbol{\gamma}}(t) & =\boldsymbol{\gamma}(\phi(t)) \\
& =(\cos (-t), \sin (-t)) \\
& =(\cos (t),-\sin (t)),
\end{aligned}
$$

where in the last identity we used the properties of \cos and \sin. Notice that in this way, for example,

$$
\boldsymbol{\gamma}(\pi / 2)=(0,1), \quad \boldsymbol{\gamma}(\pi / 2)=(0,-1) .
$$

Figure 1.23: Unit circle with usual parametrization $\boldsymbol{\gamma}$, and with reversed orientation $\tilde{\gamma}$

Example 1.46: Change of speed

Let $k>0$. The map $\phi:(\tilde{a}, \tilde{b}) \rightarrow(a, b)$ defined by

$$
\phi(t):=k t
$$

is a diffeomoprhism. The inverse of ϕ is given by $\phi^{-1}:(a, b) \rightarrow(\tilde{a}, \tilde{b})$ defined by

$$
\phi^{-1}(t)=\frac{t}{k} .
$$

Note that ϕ can be used to change the speed of a curve:

- If $k>1$ the speed increases,
- If $0<k<1$ the speed decreases.

Example 1.47: Doubling the speed of Lemniscate
Recall the Lemniscate

$$
\boldsymbol{\gamma}(t):=(\sin (t), \sin (t) \cos (t)), \quad t \in[0,2 \pi] .
$$

We can double the speed of the Lemniscate by using the Using the diffeomorphism

$$
\phi(t):=2 t
$$

This way we obtain $\tilde{\boldsymbol{\gamma}}:=\boldsymbol{\gamma} \circ \phi:[0, \pi] \rightarrow[0,2 \pi]$ with

$$
\tilde{\boldsymbol{\gamma}}(t)=\boldsymbol{\gamma}(\phi(t))=(\sin (2 t), \sin (2 t) \cos (2 t)) .
$$

In this case we have that

$$
\dot{\tilde{\boldsymbol{\gamma}}}(t)=2 \dot{\boldsymbol{\gamma}}(\phi(t))
$$

The above follows by chain rule. Indeed, $\dot{\phi}=2$, so that

$$
\dot{\tilde{\boldsymbol{\gamma}}}=\frac{d}{d t}(\boldsymbol{\gamma}(\phi(t)))=\dot{\phi}(t) \dot{\boldsymbol{\gamma}}(\phi(t))=2 \dot{\boldsymbol{\gamma}}(\phi(t)) .
$$

Figure 1.24: Lemniscate curve

Important

The main reason we are interested in reparametrizations is because we want to parametrize curves by arc-lenght: This means that, for a curve $\boldsymbol{\gamma}$, we want to find a reparametrization $\tilde{\boldsymbol{\gamma}}$ such that $\tilde{\boldsymbol{\gamma}}$ is unit speed:

$$
\|\dot{\tilde{\gamma}}\|=1, \quad \forall t \in(a, b) .
$$

We will see that this is not always possible.

Definition 1.48: Regular points

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a parametrized curve. We say that:

- $\boldsymbol{\gamma}\left(t_{0}\right)$ is a regular point if

$$
\dot{\boldsymbol{\gamma}}\left(t_{0}\right) \neq 0 .
$$

- A point $\boldsymbol{\gamma}\left(t_{0}\right)$ is singular if it is not regular.
- The curve $\boldsymbol{\gamma}$ is regular if every point of $\boldsymbol{\gamma}$ is regular, that is,

$$
\dot{\boldsymbol{\gamma}}(t) \neq 0, \quad \forall t \in(a, b) .
$$

Note that when $\dot{\gamma}\left(t_{0}\right)=0$, this means the curve is stopping at time t_{0}. Before making an example, let us prove a useful lemma about diffeomorphisms.

Lemma 1.49

Let $\phi:(a, b) \rightarrow(\tilde{a}, \tilde{b})$ be a diffeomorphism. Then

$$
\dot{\phi}(t) \neq 0 \quad \forall t \in(a, b) .
$$

Proof

We know that ϕ is smooth with smooth inverse

$$
\psi:=\phi^{-1}:(\tilde{a}, \tilde{b}) \rightarrow(a, b) .
$$

In particular it holds

$$
\psi(\phi(t))=t, \quad \forall t \in(a, b) .
$$

We can differentiate both sides of the above expression to get

$$
\begin{equation*}
\frac{d}{d t}(\psi(\phi(t)))=1 \tag{1.22}
\end{equation*}
$$

We can differentiate the LHS by chain rule

$$
\frac{d}{d t}(\psi(\phi(t)))=\dot{\psi}(\phi(t)) \dot{\phi}(t)
$$

From (1.22) we then get

$$
\dot{\psi}(\phi(t)) \dot{\phi}(t)=1, \quad \forall t \in(a, b) .
$$

Since on the LHS we have a product, this means that none of the LHS terms vanishes, so that

$$
\dot{\phi}(t) \neq 0, \quad \forall t \in(a, b) .
$$

Example 1.50: A curve with one singular point
Consider the parabola

$$
\Gamma:=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2},-1 \leq x \leq 1\right\} .
$$

This can be parametrized in two ways by $\boldsymbol{\gamma}, \boldsymbol{\eta}:[-1,1] \rightarrow \mathbb{R}^{2}$ defined as

$$
\boldsymbol{\gamma}(t)=\left(t, t^{2}\right), \quad \boldsymbol{\eta}(t)=\left(t^{3}, t^{6}\right) .
$$

We will see that the above parametrizations are not equivalent. This is intuitively clear, since the change of variables map should be

$$
\phi(t)=t^{3} .
$$

This is smooth and invertible, with inverse

$$
\phi^{-1}(t)=\sqrt[3]{x}
$$

However ϕ^{-1} is not smooth at $t=0$, and thus ϕ is not a diffeomorphism. Alternatively we could have just noticed that

$$
\dot{\phi}(t)=3 t^{2} \quad \Longrightarrow \quad \dot{\phi}(0)=0,
$$

and therefore ϕ cannot be a diffeomorphism due to Lemma 1.49.
Let us look at the derivatives:

$$
\dot{\boldsymbol{\gamma}}(t)=(1,2 t), \quad \dot{\boldsymbol{\eta}}(t)=\left(3 t^{2}, 6 t^{5}\right) .
$$

We notice a difference:

- $\boldsymbol{\gamma}$ is a regular parametrization,
- $\boldsymbol{\eta}(t)$ is regular only for $t \neq 0$.

Indeed if we animate the plots of the above parametrizations, we see that:

- The point $\boldsymbol{\gamma}(t)$ moves with constant horizontal speed
- The point $\boldsymbol{\eta}(t)$ is decelerating for $t<0$, it stops at $t=0$, and then accelerates again for $t>0$.

Figure 1.25: Parabola Γ

Proposition 1.51: Regularity is invariant for reparametrization

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a parametrized curve and suppose that $\boldsymbol{\gamma}$ is regular, that is,

$$
\dot{\boldsymbol{\gamma}}(t) \neq 0, \quad \forall t \in(a, b) .
$$

Then every reparametrization of $\boldsymbol{\gamma}$ is also regular.

Proof

Let $\tilde{\boldsymbol{\gamma}}:(\tilde{a}, \tilde{b}) \rightarrow \mathbb{R}^{n}$ be a reparametrization of $\boldsymbol{\gamma}$. Then there exist $\phi:(\tilde{a}, \tilde{b}) \rightarrow(a, b)$ diffeomorphism such that

$$
\tilde{\boldsymbol{\gamma}}(t)=\boldsymbol{\gamma}(\phi(t)), \quad \forall t \in(\tilde{a}, \tilde{b}) .
$$

By the chain rule we have

$$
\dot{\tilde{\boldsymbol{\gamma}}}(t)=\frac{d}{d t}(\boldsymbol{\gamma}(\phi(t)))=\dot{\boldsymbol{\gamma}}(\phi(t)) \dot{\phi}(t) .
$$

Therefore

$$
\begin{equation*}
\dot{\tilde{\gamma}}(t) \neq 0 \quad \Longleftrightarrow \quad \dot{\gamma}(\phi(t)) \dot{\phi}(t) \neq 0 \tag{1.23}
\end{equation*}
$$

But we are assuming that $\boldsymbol{\gamma}$ is regular, so that

$$
\dot{\boldsymbol{\gamma}}(\phi(t)) \neq 0, \quad \forall t \in(\tilde{a}, \tilde{b}) .
$$

Thus (1.23) is equivalent to

$$
\begin{equation*}
\dot{\tilde{\gamma}}(t) \neq 0 \quad \Longleftrightarrow \quad \dot{\phi}(t) \neq 0 \tag{1.24}
\end{equation*}
$$

Since ϕ is a diffeomorphism, by Lemma 1.49 we have that

$$
\dot{\phi}(t) \neq 0, \quad \forall t \in(\tilde{a}, \tilde{b}) .
$$

By (1.24) we conclude that

$$
\dot{\tilde{\boldsymbol{\gamma}}}(t) \neq 0, \quad \forall t \in(\tilde{a}, \tilde{b}),
$$

proving that $\tilde{\boldsymbol{\gamma}}$ is regular.

Example 1.5^{2}

Let us go back to the parabola

$$
\Gamma:=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2},-1 \leq x \leq 1\right\},
$$

with the two parametrizations $\boldsymbol{\gamma}, \boldsymbol{\eta}:[-1,1] \rightarrow \mathbb{R}^{2}$ with

$$
\boldsymbol{\gamma}(t)=\left(t, t^{2}\right), \quad \boldsymbol{\eta}(t)=\left(t^{3}, t^{6}\right) .
$$

We have that

$$
\dot{\boldsymbol{\gamma}}(t)=(1,2 t), \quad \dot{\boldsymbol{\eta}}(t)=\left(3 t^{2}, 6 t^{5}\right) .
$$

Therefore

- $\boldsymbol{\gamma}$ is a regular parametrization,
- $\boldsymbol{\eta}(t)$ is regular only for $t \neq 0$.

Proposition 1.51 implies that $\boldsymbol{\eta}$ is NOT a reparametrization of $\boldsymbol{\gamma}$.

Definition 1.53: Unit speed reparametrization

Let $\boldsymbol{\gamma}$ be a parametrized curve. A unit speed reparametrization of $\boldsymbol{\gamma}$ is a reparametrization $\tilde{\gamma}$ such that $\tilde{\gamma}$ is unit speed.

The next theorem states that a curve is regular if and only if it has a unit speed reparametrization. For the proof, it is crucial to recall the definition of arc-length of a curve $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$, which is given by

$$
s(t):=\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau
$$

for some arbitrary $t_{0} \in(a, b)$ fixed. Indeed, we will see that for ϕ regular the unit speed parametrization map can be taken as

$$
\phi=s^{-1} .
$$

Theorem 1.54: Existence of unit speed reparametrization
Let $\boldsymbol{\gamma}$ be a parametrized curve. They are equivalent:

- $\boldsymbol{\gamma}$ is regular,
- $\boldsymbol{\gamma}$ has a unit speed reparametrization.

Proof

Step 1. Direct implication.
Assume $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ is regular, that is,

$$
\dot{\boldsymbol{\gamma}}(t) \neq 0, \quad \forall t \in(a, b) .
$$

Let $s:(a, b) \rightarrow \mathbb{R}$ be the arc-length of $\boldsymbol{\gamma}$ starting at any point $t_{0} \in(a, b)$. By the Fundamental Theorem of Calculus we have

$$
\begin{equation*}
\dot{s}(t)=\|\dot{\boldsymbol{\gamma}}(t)\| \tag{1.25}
\end{equation*}
$$

so that

$$
\dot{s}(t)>0, \quad \forall t \in(a, b)
$$

Since s is a scalar function, the above condition and the Inverse Function Theorem guarantee the existsence of a smooth inverse

$$
s^{-1}:(\tilde{a}, \tilde{b}) \rightarrow(a, b)
$$

for some $\tilde{\alpha}<\tilde{\beta}$. Define the reparametrization map ϕ as

$$
\phi:=s^{-1}
$$

and the corresponding reparametrization of $\boldsymbol{\gamma}$ given by the curve

$$
\tilde{\boldsymbol{\gamma}}:(\tilde{a}, \tilde{b}) \rightarrow \mathbb{R}^{n}, \quad \tilde{\boldsymbol{\gamma}}:=\boldsymbol{\gamma} \circ \phi .
$$

We claim that $\tilde{\boldsymbol{\gamma}}$ is unit speed. Indeed, by definition

$$
\tilde{\boldsymbol{\gamma}}:=\boldsymbol{\gamma} \circ \phi \quad \Longrightarrow \quad \boldsymbol{\gamma}=\tilde{\boldsymbol{\gamma}} \circ \phi^{-1}=\tilde{\boldsymbol{\gamma}} \circ s,
$$

or in other words

$$
\boldsymbol{\gamma}(t)=\tilde{\boldsymbol{\gamma}}(s(t)), \quad \forall t \in(a, b)
$$

Differentiating the above expression and using the chain rule we get

$$
\dot{\boldsymbol{\gamma}}(t)=\dot{\tilde{\boldsymbol{\gamma}}}(s(t)) \dot{\boldsymbol{s}}(t)=\dot{\tilde{\boldsymbol{\gamma}}}(s(t))\|\dot{\boldsymbol{\gamma}}(t)\|
$$

where in the last equality we used (1.25). Taking the absolute value of the above yileds

$$
\begin{equation*}
\|\dot{\boldsymbol{\gamma}}(t)\|=\|\dot{\tilde{\boldsymbol{\gamma}}}(s(t))\|\|\dot{\boldsymbol{\gamma}}(t)\| . \tag{1.26}
\end{equation*}
$$

Since $\boldsymbol{\gamma}$ is regular, we have

$$
\|\dot{\boldsymbol{\gamma}}(t)\| \neq 0, \quad \forall t \in(a, b) .
$$

Therefore we can divide (1.26) by $\|\dot{\boldsymbol{\gamma}}(t)\|$ and obtain

$$
\|\dot{\tilde{\boldsymbol{\gamma}}}(s(t))\|=1, \quad \forall t \in(a, b) .
$$

By invertibility of s, the above holds if and only if

$$
\|\dot{\tilde{\boldsymbol{\gamma}}}(t)\|=1, \quad \forall t \in(\tilde{a}, \tilde{b})
$$

showing that $\tilde{\gamma}$ is a unit speed reparametrization of $\boldsymbol{\gamma}$.
Step 2. Reverse implication.
Suppose there exists a unit speed reparametrization of $\boldsymbol{\gamma}$ denoted by

$$
\tilde{\boldsymbol{\gamma}}:(\tilde{a}, \tilde{b}) \rightarrow \mathbb{R}^{n}, \quad \tilde{\boldsymbol{\gamma}}=\boldsymbol{\gamma} \circ \phi
$$

for some reparametrization map $\phi:(\tilde{a}, \tilde{b}) \rightarrow(a, b)$. Differentiating $\tilde{\boldsymbol{\gamma}}=\boldsymbol{\gamma} \circ \phi$ and using the chain rule we get

$$
\dot{\tilde{\boldsymbol{\gamma}}}(t)=\dot{\boldsymbol{\gamma}}(\phi(t)) \dot{\phi}(t) .
$$

Taking the norm

$$
\|\dot{\tilde{\gamma}}(t)\|=\|\dot{\boldsymbol{\gamma}}(\phi(t))\||\dot{\phi}(t)| .
$$

Since $\tilde{\boldsymbol{\gamma}}$ is unit speed we obtain

$$
\begin{equation*}
\|\dot{\boldsymbol{\gamma}}(\phi(t))\||\dot{\phi}(t)|=1, \quad \forall t \in(\tilde{a}, \tilde{b}) \tag{1.27}
\end{equation*}
$$

Since ϕ is a diffeomorphism from (\tilde{a}, \tilde{b}) into (a, b), Lemma 1.49 guarantees that

$$
\dot{\phi}(t) \neq 0, \quad \forall t \in(a, b) .
$$

In particular (1.27) implies

$$
\dot{\boldsymbol{\gamma}}(\phi(t)) \neq 0, \quad \forall t \in(\tilde{a}, \tilde{b})
$$

As ϕ is invertible, we also have

$$
\dot{\boldsymbol{\gamma}}(t) \neq 0, \quad \forall t \in(a, b),
$$

proving that $\boldsymbol{\gamma}$ is regular.

The proof of Theorem 1.54 told us that, if $\boldsymbol{\gamma}$ is regular, then

$$
\tilde{\gamma}=\boldsymbol{\gamma} \circ s^{-1}
$$

is a unit speed reparametrization of $\boldsymbol{\gamma}$. In the next proposition we show that the arc-length s is essentially the only unit-speed reparametrization of a regular curve.

Proposition 1.55: Arc-length and unit speed reparametrization

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a regular curve. Let $\tilde{\boldsymbol{\gamma}}:(\tilde{a}, \tilde{b}) \rightarrow \mathbb{R}^{n}$ be reparametrization of $\boldsymbol{\gamma}$, so that

$$
\boldsymbol{\gamma}(t)=\tilde{\boldsymbol{\gamma}}(\phi(t)), \quad \forall t \in(a, b) .
$$

for some diffeomorphism $\phi:(a, b) \rightarrow(\tilde{a}, \tilde{b})$. Denote by

$$
s(t):=\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau, \quad t \in(a, b)
$$

the arc-length of $\boldsymbol{\gamma}$ starting at any point $t_{0} \in(a, b)$. We have:

1. If $\tilde{\gamma}$ is unit speed, then there exists $c \in \mathbb{R}$ such that

$$
\begin{equation*}
\phi(t)= \pm s(t)+c, \quad \forall t \in(a, b) . \tag{1.28}
\end{equation*}
$$

2. If ϕ is given by (1.28) for some $c \in \mathbb{R}$, then $\tilde{\gamma}$ is unit speed.

Proof

Step 1. First Point.
First note that a unit speed reparametrization $\tilde{\gamma}$ of $\boldsymbol{\gamma}$ exists by Theorem 1.54, since $\boldsymbol{\gamma}$ is assumed to be regular. Thus assume $\tilde{\gamma}$ is unit speed reparametrization of $\boldsymbol{\gamma}$. By differentiating both sides of

$$
\boldsymbol{\gamma}(t)=\tilde{\gamma}(\phi(t)), \quad \forall t \in(a, b),
$$

we obtain

$$
\dot{\boldsymbol{\gamma}}(t)=\frac{d}{d t} \tilde{\boldsymbol{\gamma}}(\phi(t))=\dot{\tilde{\boldsymbol{\gamma}}}(\phi(t)) \dot{\phi}(t) .
$$

Taking the norms we then have

$$
\begin{aligned}
\|\dot{\boldsymbol{\gamma}}(t)\| & =\|\dot{\tilde{\boldsymbol{\gamma}}}(\phi(t)) \dot{\phi}(t)\| \\
& =\|\dot{\tilde{\boldsymbol{\gamma}}}(\phi(t))\||\dot{\phi}(t)| \\
& =|\dot{\phi}(t)|,
\end{aligned}
$$

where in the last equality we used that $\tilde{\boldsymbol{\gamma}}$ is unit speed, and so

$$
\|\dot{\boldsymbol{\gamma}}\| \equiv 1 .
$$

To summarize, so far we have proven that

$$
\|\dot{\boldsymbol{\gamma}}(t)\|=|\dot{\phi}(t)|, \quad \forall t \in(a, b) .
$$

Therefore

$$
s(t)=\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau=\int_{t_{0}}^{t}|\dot{\phi}(\tau)| d \tau
$$

By the Fundamental Theorem of Calculus we get

$$
\dot{s}(t)=|\dot{\phi}(t)|
$$

and therefore

$$
\phi= \pm s+c
$$

for some $c \in \mathbb{R}$, concluding the proof.
Step 2. Second Point.
Suppose that

$$
\phi:= \pm s+c
$$

for some $c \in \mathbb{R}$, so that $\phi:(a, b) \rightarrow(\tilde{a}, \tilde{b})$. We have

$$
\begin{equation*}
\dot{\phi}(t)= \pm \dot{s}(t)= \pm\|\dot{\boldsymbol{\gamma}}(t)\| \neq 0 \tag{1.29}
\end{equation*}
$$

where the last term is non-zero since $\boldsymbol{\gamma}$ is regular. Therefore, due to the Inverse Function Theorem, ϕ is invertible with smooth inverse. This proves that $\tilde{\gamma}$ defined by

$$
\tilde{\boldsymbol{\gamma}}:=\boldsymbol{\gamma} \circ \psi, \quad \psi:=\phi^{-1}
$$

is a reparametrization of $\boldsymbol{\gamma}$. In particular

$$
\boldsymbol{\gamma}=\tilde{\boldsymbol{\gamma}} \circ \phi
$$

Differentiating the above, and recalling (1.29), we get

$$
\dot{\boldsymbol{\gamma}}(t)=\dot{\tilde{\boldsymbol{\gamma}}}(\phi(t)) \dot{\phi}(t)=\dot{\tilde{\boldsymbol{\gamma}}}(\phi(t))(\pm\|\dot{\boldsymbol{\gamma}}(t)\|) .
$$

Taking the absolute value of the above yields

$$
\|\dot{\boldsymbol{\gamma}}(t)\|=\|\dot{\tilde{\boldsymbol{\gamma}}}(\phi(t))\|\|\dot{\boldsymbol{\gamma}}(t)\| .
$$

Since $\boldsymbol{\gamma}$ is regular we can divide by $\|\dot{\boldsymbol{\gamma}}(t)\|$ to get

$$
\|\dot{\tilde{\boldsymbol{\gamma}}}(\phi(t))\|=1 \quad \forall t \in(a, b) .
$$

Since ϕ is invertible, the above is equivalent to

$$
\|\dot{\tilde{\gamma}}(t)\|=1 \quad \forall t \in(\tilde{a}, \tilde{b}),
$$

proving that $\tilde{\gamma}$ is a unit speed reparametrization.

Remark 1.56

Let $\boldsymbol{\gamma}$ be regular. The above proposition tells us that they are equivalent:

1. Computing a unit speed reparametrization of γ,
2. Computing s the arc-length of γ.

In some cases however, unit speed reparametrization and arc-length are impossible to characterize in terms of elementary functions, even for very simple curves.

Example 1.57: Twisted cubic

Define the twisted cubic $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ by

$$
\boldsymbol{\gamma}(t)=\left(t, t^{2}, t^{3}\right) .
$$

Therefore

$$
\dot{\boldsymbol{\gamma}}(t)=\left(1,2 t, 3 t^{2}\right),
$$

so that

$$
\dot{\boldsymbol{\gamma}}(t) \neq 0, \quad \forall t \in \mathbb{R},
$$

meaning that $\boldsymbol{\gamma}$ is regular. In particular we have

$$
\|\dot{\boldsymbol{\gamma}}(t)\|=\sqrt{1+4 t^{2}+9 t^{4}}
$$

so that the arc-length of $\boldsymbol{\gamma}$ is

$$
s(t)=\int_{t_{0}}^{t} \sqrt{1+4 \tau^{2}+9 \tau^{4}} d \tau
$$

Since $\boldsymbol{\gamma}$ is regular, by Proposition 1.55 we know that $\boldsymbol{\gamma}$ admits a unit speed reparametrization $\tilde{\boldsymbol{\gamma}}$ such that

$$
\boldsymbol{\gamma}=\tilde{\boldsymbol{\gamma}} \circ \phi
$$

with the diffeomorphism ϕ given by

$$
\phi(t)= \pm s(t)+c= \pm \int_{t_{0}}^{t} \sqrt{1+4 \tau^{2}+9 \tau^{4}} d \tau+c
$$

for some $c \in \mathbb{R}$. It can be shown that the above integral does not have a closed form in terms of elementary functions. Therefore the unit speed parametrization $\tilde{\gamma}$ cannot be computed explicitly.

Figure 1.26: Plot of Twisted Cubic for t between - 2 and 2

1.10 Closed curves

So far we have seen examples of:

- Curves which are infinite, or unbounded. This is for example the parabola

$$
\boldsymbol{\gamma}(t):=\left(t, t^{2}\right), \quad \forall t \in \mathbb{R},
$$

- Curves which are finite and have end-points, such as the semi-circle

$$
\boldsymbol{\gamma}(t):=(\cos (t), \sin (t)), \quad \forall t \in[0, \pi],
$$

- Curves which form loops, such as the circle

$$
\boldsymbol{\gamma}(t):=(\cos (t), \sin (t)), \quad \forall t \in[0,2 \pi] .
$$

However there are examples of curves which are in between the above types.

Example 1.58

For example consider the curve $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{2}$

$$
\boldsymbol{\gamma}(t):=\left(t^{2}-1, t^{3}-t\right) \quad \forall t \in \mathbb{R} .
$$

This curve has two main properties:

- $\boldsymbol{\gamma}$ is unbounded: If define $\tilde{\boldsymbol{\gamma}}$ as the restriction of $\boldsymbol{\gamma}$ to the time interval $[1, \infty)$, then $\tilde{\boldsymbol{\gamma}}$ is unbounded. A point which starts at $\boldsymbol{\gamma}(1)=(0,0)$ goes towards infinity.
- $\boldsymbol{\gamma}$ contains a loop: If we define $\tilde{\gamma}$ as the restriction of γ to the time interval $[-1,1]$, then $\tilde{\gamma}$ is a closed loop starting at $\boldsymbol{\gamma}(-1)=(0,0)$ and returnning at $\boldsymbol{\gamma}(1)=(0,0)$.

Figure 1.27: Plot of curve $\boldsymbol{\gamma}(t)=\left(t^{2}-1, t^{3}-1\right)$ for $t \in[-2,2]$
The aim of this section is to make precise the concept of looping curve. To do that, we need to define periodic curves.

Definition 1.59: Periodic curve

Let $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a parametrized curve, and let $T \in \mathbb{R}$. We say that $\boldsymbol{\gamma}$ is T-periodic if

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\gamma}(t+T), \quad \forall t \in \mathbb{R} .
$$

Note that every curve is 0 -periodic. Therefore to define a closed curve we need to rule out this case.

Definition 1.6o: Closed curve

Let $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a parametrized curve. We say that $\boldsymbol{\gamma}$ is closed if:

- $\boldsymbol{\gamma}$ is not constant,
- $\boldsymbol{\gamma}$ is T-periodic for some $T \neq 0$.

Remark 1.61

We have the following basic facts:

1. If $\boldsymbol{\gamma}$ is T-periodic, then a point moving around $\boldsymbol{\gamma}$ returns to its starting point after time T.

This is exactly the definition of T-periodicity. Indeed let $p=\boldsymbol{\gamma}(a)$ be the point in question, then

$$
\boldsymbol{\gamma}(a+T)=\boldsymbol{\gamma}(a)=p
$$

by periodicity. Thus $\boldsymbol{\gamma}$ returns to p after time T.
2. If $\boldsymbol{\gamma}$ is T-periodic, then $\boldsymbol{\gamma}$ is determined by its restriction to any interval of length $|T|$.
3. Conversely, suppose that $\boldsymbol{\gamma}:[a, b] \rightarrow \mathbb{R}^{n}$ satisfies

$$
\boldsymbol{\gamma}(a)=\boldsymbol{\gamma}(b), \quad \frac{d^{k} \boldsymbol{\gamma}}{d t^{k}}(a)=\frac{d^{k} \boldsymbol{\gamma}}{d t^{k}}(b)
$$

for all $k \in \mathbb{N}$. Set

$$
T:=b-a .
$$

Then $\boldsymbol{\gamma}$ can be extended to a T-periodic curve $\tilde{\boldsymbol{\gamma}}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ defined by

$$
\tilde{\boldsymbol{\gamma}}(t):=\boldsymbol{\gamma}(\tilde{t}), \quad \tilde{t}:=t-\left\lfloor\frac{t-a}{b-a}\right\rfloor(b-a), \quad \forall t \in \mathbb{R} .
$$

The above means that $\tilde{\boldsymbol{\gamma}}(t)$ is defined by $\boldsymbol{\gamma}(\tilde{t})$ where \tilde{t} is the unique point in $[a, b]$ such that

$$
t=\tilde{t}+k(b-a)
$$

with $k \in \mathbb{Z}$ defined by

$$
k:=\left\lfloor\frac{t-a}{b-a}\right\rfloor,
$$

see figure below. In this way $\tilde{\gamma}$ is T-periodic.
4. If $\boldsymbol{\gamma}$ is T-periodic, then it is also ($-T$)-periodic.

Because if $\boldsymbol{\gamma}$ is T-periodic then

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\gamma}((t-T)+T)=\boldsymbol{\gamma}(t-T)
$$

where in the first equality we used the trivial identity $t=(t-T)+T$, while in the second equality we used T-periodicity of $\boldsymbol{\gamma}$.
5. If $\boldsymbol{\gamma}$ is T-periodic for some $T \neq 0$, then it is T-periodic for some $T>0$.

This is an immediate consequence of Point 4 .
6. If $\boldsymbol{\gamma}$ is T-periodic the $\boldsymbol{\gamma}$ is $(k T)$-periodic, for all $k \in \mathbb{Z}$.

By point 4 we can assume WLOG that $k \geq 0$. We proceed by induction:

- The statement is true for $k=1$, since γ is T-periodic.
- Assume now that γ is $k T$-periodic. Then

$$
\begin{array}{rlr}
\boldsymbol{\gamma}(t+(k+1) T) & =\boldsymbol{\gamma}((t+T)+k T) & \\
& =\gamma(t+T) & \text { (by } k T \text {-periodicity) } \\
& =\gamma(t) & \text { (by } T \text {-periodicity) }
\end{array}
$$

showing that γ is $(k+1) T$-periodic.
By induction we conclude that $\boldsymbol{\gamma}$ is $(k T)$-periodic for all $k \in \mathbb{N}$.
7. If $\boldsymbol{\gamma}$ is T_{1}-periodic and T_{2}-periodic then $\boldsymbol{\gamma}$ is $\left(k_{1} T_{1}+k_{2} T_{2}\right)$-periodic, for all $k_{1}, k_{2} \in \mathbb{Z}$.

By Point 6 we know that $\boldsymbol{\gamma}$ is $k_{1} T_{1}$-periodic and $k_{2} T_{2}$-periodic. Set $T:=k_{1} T_{1}+k_{2} T_{2}$. We have

$$
\begin{aligned}
\boldsymbol{\gamma}(t+T) & =\boldsymbol{\gamma}\left(\left(t+k_{1} T_{1}\right)+k_{2} T_{2}\right) & & \\
& =\boldsymbol{\gamma}\left(t+k_{1} T_{1}\right) & & \text { (by } k_{2} T_{2} \text {-periodicity) } \\
& =\boldsymbol{\gamma}(t) & & \text { (by } k_{1} T_{1} \text {-periodicity) }
\end{aligned}
$$

showing that $\boldsymbol{\gamma}$ is $\left(k_{1} T_{1}+k_{2} T_{2}\right)$-periodic.

Figure 1.28: The points $t \in \mathbb{R}$ and $\tilde{t} \in[a, b]$ from Point 3 in Remark 1.61. In this skecth $t=\tilde{t}+3 T$, with $T=b-a$.

Definition 1.62

Let $\boldsymbol{\gamma}$ be a closed curve. The period of $\boldsymbol{\gamma}$ is the smallest $T>0$ such that $\boldsymbol{\gamma}$ is T-periodic, that is

$$
\text { Period of } \boldsymbol{\gamma}:=\min \{T: T>0, \boldsymbol{\gamma} \text { is T-periodic }\} .
$$

We need to show that the above definition is well-posed, i.e., that there exists such smallest $T>0$.

Proposition 1.63

Let $\boldsymbol{\gamma}$ be a closed curve. Then there exists a smallest $T>0$ such that $\boldsymbol{\gamma}$ is T-periodic. In other words, the set

$$
S:=\{T: T>0, \gamma \text { is T-periodic }\} .
$$

admits positive minumum

$$
P=\min S, \quad P>0 .
$$

Proof

We make 2 observations about the set S :

- Since $\boldsymbol{\gamma}$ is closed, we have that $\boldsymbol{\gamma}$ is T-periodic for some $T \neq 0$. By Remark 1.61 Point 5 , we know that T can be chosen such that $T>0$. Therefore

$$
S \neq \varnothing .
$$

- S is bounded below by 0 . This is by definition of S.

Thus, by the Axiom of Completeness of the Real Numbers, the set S admits an infimum

$$
P=\inf S .
$$

The proof is concluded if we show that:
Claim. We have

$$
P=\min S .
$$

This is equivalent to saying that

$$
P \in S
$$

Proof of claim.

To see that $P \in S$ we need to show that

1. γ is P-periodic,
2. $P>0$.

Since P is the infimum of S, there exists an infimizing sequence $\left\{T_{n}\right\}_{n \in \mathbb{N}} \subset S$ such that

$$
T_{n} \rightarrow P .
$$

WLOG we can choose T_{n} decreasing, that is, such that

$$
T_{1}>T_{2}>\ldots>T_{n}>\ldots>0
$$

Proof of Point 1. As $T_{n} \in S$, we have that γ is T_{n}-periodic. Then

$$
\boldsymbol{\gamma}\left(t+T_{n}\right)=\boldsymbol{\gamma}(t), \quad \forall t \in \mathbb{R}, n \in \mathbb{N}
$$

Since $T_{n} \rightarrow P$, we can take the limit as $n \rightarrow \infty$ and use the continuity of $\boldsymbol{\gamma}$ to obtain

$$
\boldsymbol{\gamma}(t)=\lim _{n \rightarrow \infty} \boldsymbol{\gamma}\left(t+T_{n}\right)=\boldsymbol{\gamma}(t+P), \quad \forall t \in \mathbb{R},
$$

showing that $\boldsymbol{\gamma}$ is P-periodic.
Proof of Point 2. Suppose by contradiction that

$$
P=0 .
$$

Fix $t \in \mathbb{R}$. Since $T_{n}>0$, we can find unique

$$
t_{n} \in\left[0, T_{n}\right], \quad k_{n} \in \mathbb{Z}
$$

such that

$$
t=t_{n}+k_{n} T_{n},
$$

as shown in the figure below. Indeed, it is sufficient to define

$$
k_{n}:=\left\lfloor\frac{t}{T_{n}}\right\rfloor \in \mathbb{Z}, \quad t_{n}:=t-k_{n} T_{n}
$$

Since $T_{n} \in S$, we know that $\boldsymbol{\gamma}$ is T_{n}-periodic. Remark 1.61 Point 6 implies that $\boldsymbol{\gamma}$ is also $k_{n} T_{n}$-periodic, since $k_{n} \in \mathbb{Z}$. Thus

$$
\begin{array}{rlr}
\boldsymbol{\gamma}(t) & =\boldsymbol{\gamma}\left(t_{n}+k_{n} T_{n}\right) & \text { (definition of } \left.t_{n}\right) \\
& =\gamma\left(t_{n}\right) & \text { (by } k_{n} T_{n} \text {-periodicity). }
\end{array}
$$

Therefore

$$
\begin{equation*}
\boldsymbol{\gamma}(t)=\boldsymbol{\gamma}\left(t_{n}\right), \quad \forall n \in \mathbb{N} \tag{1.30}
\end{equation*}
$$

Also notice that

$$
0 \leq t_{n} \leq T_{n}, \quad \forall n \in \mathbb{N}
$$

by construction. Since $T_{n} \rightarrow 0$, by the Squeeze Theorem we conclude that

$$
t_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Using the continuity of $\boldsymbol{\gamma}$, we can pass to the limit in (1.30) and obtain

$$
\boldsymbol{\gamma}(t)=\lim _{n \rightarrow \infty} \boldsymbol{\gamma}\left(t_{n}\right)=\boldsymbol{\gamma}(0) .
$$

Since $t \in \mathbb{R}$ was arbitrary, we have shown that

$$
\gamma(t)=\boldsymbol{\gamma}(0), \quad \forall t \in \mathbb{R} .
$$

Therefore $\boldsymbol{\gamma}$ is constant. This is a contradiction, as we were assuming that $\boldsymbol{\gamma}$ is closed, and, in particular, not constant.

Figure 1.29: For each $t \in \mathbb{R}$ there exist unique $k_{n} \in \mathbb{Z}$ and $\tilde{t}_{n} \in\left[0, T_{n}\right]$ such that $t=\tilde{t}+k_{n} T_{n}$. In this skecth $k_{n}=3$.

Example 1.64

Some examples of closed curves:

- The circumference

$$
\boldsymbol{\gamma}(t)=(\cos (t), \sin (t)), \quad t \in \mathbb{R}
$$

is not costant and is 2π-periodic. Thus $\boldsymbol{\gamma}$ is closed. The period of $\boldsymbol{\gamma}$ is 2π.

- The Lemniscate

$$
\boldsymbol{\gamma}(t)=(\sin (t), \sin (t) \cos (t)), \quad t \in \mathbb{R}
$$

is not costant and is 2π-periodic. Thus $\boldsymbol{\gamma}$ is closed. The period of $\boldsymbol{\gamma}$ is 2π.

- Consider again the curve from Example 1.58

$$
\boldsymbol{\gamma}(t):=\left(t^{2}-1, t^{3}-t\right), \quad t \in \mathbb{R} .
$$

According to our definition, $\boldsymbol{\gamma}$ is not periodic. Therefore $\boldsymbol{\gamma}$ is not closed. However there is a point of self-intersection on $\boldsymbol{\gamma}$, namely

$$
p:=(0,0),
$$

for which we have

$$
p=\boldsymbol{\gamma}(-1)=\boldsymbol{\gamma}(1) .
$$

The last curve in the above example motivates the definition of self-intersecting curve.

Definition 1.65: Self-intersecting curve

Let $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a parametrized curve. We say that $\boldsymbol{\gamma}$ is self-intersecting at a point p on the curve if

1. There exist two times $a \neq b$ such that

$$
p=\gamma(a)=\boldsymbol{\gamma}(b),
$$

2. If $\boldsymbol{\gamma}$ is closed with period T, then $b-a$ is not an integer multiple of T.

Remark 1.66

The second condition in the above definition is important: if we did not require it, then any closed curve would be self-intersecting. Indeed consider a closed curve $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and let T be its period. Then by Point 6 in Remark 1.61 we have

$$
\boldsymbol{\gamma}(a)=\boldsymbol{\gamma}(a+k T), \quad \forall a \in \mathbb{R}, k \in \mathbb{Z} .
$$

Therefore every point $\boldsymbol{\gamma}(a)$ would be of self-intersection. Point 2 in the above definition rules this example out. Indeed set $b:=a+k T$, then

$$
b-a=k T
$$

meaning that $b-a$ is an integer multiple of T.

Example 1.67

Let us go back to the curve of Example 1.58, that is,

$$
\boldsymbol{\gamma}(t):=\left(t^{2}-1, t^{3}-t\right), \quad t \in \mathbb{R} .
$$

We have that $\boldsymbol{\gamma}$ is not periodic, and therefore not closed. However $p=(0,0)$ is a point of selfintersection on γ, since we have

$$
p=\boldsymbol{\gamma}(-1)=\boldsymbol{\gamma}(1) .
$$

Example 1.68: The Limaçon

Define the parametrized curve $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
\boldsymbol{\gamma}(t)=((1+2 \cos (t)) \cos (t),(1+2 \cos (t)) \sin (t)), \quad \forall t \in \mathbb{R} .
$$

Such curve, plotted bolow, is called limaçon (French for snail). This curve is non constant and 2π-periodic. Therefore it is closed. The period of $\boldsymbol{\gamma}$ is 2π. Moreover we have

$$
\boldsymbol{\gamma}(a)=\boldsymbol{\gamma}(b)=(0,0) .
$$

with $a=2 \pi / 3$ and $b=4 \pi / 3$. Note that

$$
b-a=\frac{4 \pi}{3}-\frac{2 \pi}{3}=\frac{2 \pi}{3}
$$

which is not an integer multiple of the period 2π. Therefore $\boldsymbol{\gamma}$ is self-intersecting at $(0,0)$.

Figure 1.30: Limaçon curve

2 Curvature and Torsion

We have seen how to describe curves and reparametrized them. Now we want to look at local properties of curves:

- How much does a curve twist?
- How much does a curve bend?

We will measure two quantities:

- Curvature: measures how much a curve γ deviates from a straight line.
- Torsion: measures how much a curve $\boldsymbol{\gamma}$ fails to lie on a plane.

For example a 2 D spiral is curved, but still lies in a plane. Instead the Helix both deviates from a straight line and pulls away from any fixed plane.

2.1 Curvature

We start with an informal discussion. Suppose $\boldsymbol{\gamma}$ is a straight line

$$
\boldsymbol{\gamma}(t)=\mathbf{a}+t \mathbf{v}
$$

with $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{3}$. The tangent vector to γ is constant

$$
\dot{\boldsymbol{\gamma}}(t)=\mathbf{v} .
$$

Whatever the definition of curvature will be, it has to hold that $\boldsymbol{\gamma}$ has zero curvature in this case. If we further derive the tangent vector, we obtain

$$
\ddot{\boldsymbol{\gamma}}(t)=0 .
$$

Thus $\ddot{\boldsymbol{\gamma}}$ seems to be a good candidate for the definition of curvature of $\boldsymbol{\gamma}$ at the point $\boldsymbol{\gamma}(t)$.
Suppose now that $\boldsymbol{\gamma}$ is a curve in \mathbb{R}^{2} with unit speed. We have proven that in this case

$$
\dot{\boldsymbol{\gamma}} \cdot \ddot{\boldsymbol{\gamma}}=0,
$$

that is, the vector $\ddot{\gamma}$ is orthogonal to the tangent $\dot{\gamma}$ at all times. Now let $\mathbf{n}(t)$ be the unit vector orthogonal to $\dot{\boldsymbol{\gamma}}(t)$ at the point $\boldsymbol{\gamma}(t)$. The amount that the curve $\boldsymbol{\gamma}$ deviates from its tangent at $\boldsymbol{\gamma}(t)$ after time t_{0} is

$$
\begin{equation*}
\left(\boldsymbol{\gamma}\left(t+t_{0}\right)-\boldsymbol{\gamma}(t)\right) \cdot \mathbf{n}(t), \tag{2.1}
\end{equation*}
$$

Figure 2.1: Amount that $\boldsymbol{\gamma}$ deviates from tangent is $\left(\boldsymbol{\gamma}\left(t+t_{0}\right)-\boldsymbol{\gamma}(t)\right) \cdot \mathbf{n}(t)$
as seen in the figure below.
Equation (2.1) is what we take as measure of curvature. Since

$$
\dot{\boldsymbol{\gamma}}(t) \cdot \ddot{\boldsymbol{\gamma}}(t)=0 \quad \text { and } \quad \dot{\boldsymbol{\gamma}}(t) \cdot \mathbf{n}(t)=0,
$$

we conclude that $\ddot{\boldsymbol{\gamma}}(t)$ is parallel to $\mathbf{n}(t)$. Since $\mathbf{n}(t)$ is a unit vector, there exists a scalar $\kappa(t)$ such that

$$
\ddot{\boldsymbol{\gamma}}(t)=\kappa(t) \mathbf{n}(t) .
$$

As \mathbf{n} is unitary, we have

$$
\kappa(t)=\|\ddot{\boldsymbol{\gamma}}(t)\|
$$

Now, approximate $\boldsymbol{\gamma}$ at t with its second order Taylor polynomial:

$$
\boldsymbol{\gamma}\left(t+t_{0}\right)=\boldsymbol{\gamma}(t)+\dot{\boldsymbol{\gamma}}(t) t_{0}+\frac{\ddot{\boldsymbol{\gamma}}(t)}{2} t_{0}^{2}+o\left(t_{0}\right)
$$

where the remainder $o\left(t_{0}\right)$ is such that

$$
\lim _{t_{0} \rightarrow 0} \frac{o\left(t_{0}\right)}{t_{0}^{2}}=0
$$

Therefore, discarding the remainder,

$$
\boldsymbol{\gamma}\left(t+t_{0}\right)-\boldsymbol{\gamma}(t) \approx \dot{\boldsymbol{\gamma}}(t) t_{0}+\frac{\ddot{\boldsymbol{\gamma}}(t)}{2} t_{0}^{2} .
$$

Multiplying by $\mathbf{n}(t)$ we get

$$
\left(\boldsymbol{\gamma}\left(t+t_{0}\right)-\boldsymbol{\gamma}(t)\right) \cdot \mathbf{n}(t) \approx \dot{\boldsymbol{\gamma}}(t) \cdot \mathbf{n}(t) t_{0}+\frac{\ddot{\boldsymbol{\gamma}}(t) \cdot \mathbf{n}(t)}{2} t_{0}^{2} .
$$

Recalling that

$$
\dot{\boldsymbol{\gamma}}(t) \cdot \mathbf{n}(t)=0, \quad \ddot{\boldsymbol{\gamma}}(t) \cdot \mathbf{n}(t)=\kappa(t),
$$

we then obtain

$$
\left(\boldsymbol{\gamma}\left(t+t_{0}\right)-\boldsymbol{\gamma}(t)\right) \cdot \mathbf{n}(t) \approx \frac{1}{2} \kappa(t) t_{0}^{2}
$$

Important

The amount that $\boldsymbol{\gamma}$ deviates from a straight line is proportional to

$$
\kappa(t)=\|\ddot{\gamma}(t)\| .
$$

We take this as definition of curvature for a general unit speed curve in \mathbb{R}^{n}.

Definition 2.1

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a unit speed curve. The curvature of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is

$$
\kappa^{\boldsymbol{\gamma}}(t):=\|\ddot{\boldsymbol{\gamma}}(t)\| .
$$

Note that $\kappa(t)$ is a function of time. Therefore the curvature of γ can change from point to point.
We now define curvature for curves which are regular, but not necessarily unit speed.

Definition 2.2

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a regular. The curvature of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is

$$
\kappa^{\gamma}(t):=\|\ddot{\tilde{\gamma}}(\phi(t))\|, \quad \forall t \in(a, b),
$$

where $\tilde{\boldsymbol{\gamma}}$ is a unit speed reparametrization of $\boldsymbol{\gamma}$, with $\boldsymbol{\gamma}=\tilde{\boldsymbol{\gamma}} \circ \phi$.

Remark 2.3

The above definition is well posed:

- Since γ is regular, there exist a unit speed reparametrization $\tilde{\gamma}$ of γ.
- If $\hat{\boldsymbol{\gamma}}$ is another unit speed reaprametrization of $\boldsymbol{\gamma}$, with $\boldsymbol{\gamma}=\hat{\boldsymbol{\gamma}} \circ \hat{\phi}$, then

$$
\kappa^{\boldsymbol{\gamma}}(t)=\|\ddot{\hat{\gamma}}(\hat{\phi}(t))\|,
$$

showing that there is no ambiguity in the definition of κ^{γ}.
Indeed, since $\tilde{\boldsymbol{\gamma}}$ and $\hat{\boldsymbol{\gamma}}$ are both reparametrizations of $\boldsymbol{\gamma}$, then

$$
\boldsymbol{\gamma}(t)=\tilde{\boldsymbol{\gamma}}(\tilde{\phi}(t)), \quad \boldsymbol{\gamma}(t)=\hat{\boldsymbol{\gamma}}(\hat{\phi}(t))
$$

for some diffeomorphisms $\tilde{\phi}, \hat{\phi}$. Hence

$$
\begin{equation*}
\tilde{\boldsymbol{\gamma}}(t)=\hat{\boldsymbol{\gamma}}(\phi(t)), \quad \phi:=\hat{\phi} \circ(\tilde{\phi})^{-1} \tag{2.2}
\end{equation*}
$$

where ϕ is a diffeomorphism, since it is composition of diffeomorphisms. Differentiating (2.2) we get

$$
\begin{equation*}
\dot{\tilde{\boldsymbol{\gamma}}}(t)=\dot{\hat{\boldsymbol{\gamma}}}(\phi(t)) \dot{\phi}(t) \tag{2.3}
\end{equation*}
$$

Taking the norms of the above, and recalling that $\tilde{\boldsymbol{\gamma}}$ and $\hat{\boldsymbol{\gamma}}$ are unit speed, we get

$$
\begin{equation*}
|\dot{\phi}(t)|=1, \quad \forall t \tag{2.4}
\end{equation*}
$$

Since ϕ is a diffeomorphism, we already know that $|\dot{\phi}| \neq 0$. As $\dot{\phi}$ is continuous, this means that the sign of $\dot{\phi}$ is constant. Thus (2.4) implies

$$
\dot{\phi}(t) \equiv 1 \quad \text { or } \quad \dot{\phi}(t) \equiv-1 .
$$

In both cases, we have

$$
\ddot{\phi} \equiv 0 .
$$

Differentiating (2.3) we then obtain

$$
\begin{aligned}
\ddot{\boldsymbol{\gamma}}(t) & =\ddot{\hat{\boldsymbol{\gamma}}}(\phi(t)) \dot{\phi}^{2}(t)+\dot{\hat{\gamma}}(\phi(t)) \ddot{\phi}(t) \\
& =\ddot{\hat{\boldsymbol{\gamma}}}(\phi(t)) \dot{\phi}^{2}(t) .
\end{aligned}
$$

Taking the norms and using again that $|\dot{\phi}| \equiv 1$, we get that

$$
\|\ddot{\tilde{\boldsymbol{\gamma}}}(t)\|=\|\ddot{\hat{\boldsymbol{\gamma}}}(\phi(t))\| .
$$

Recalling that $\phi=\hat{\phi} \circ(\tilde{\phi})^{-1}$ we get

$$
\|\ddot{\tilde{\boldsymbol{\gamma}}}(\tilde{\phi}(t))\|=\|\ddot{\hat{\boldsymbol{\gamma}}}(\hat{\phi}(t))\|, \quad \forall t \in(a, b) .
$$

Therefore

$$
\kappa^{\gamma}(t)=\|\ddot{\tilde{\gamma}}(\tilde{\phi}(t))\|=\|\ddot{\hat{\gamma}}(\hat{\phi}(t))\| .
$$

Remark 2.4: Methods for computing curvature

In summary, the curvature of a regular curve

$$
\gamma:(a, b) \rightarrow \mathbb{R}^{n}
$$

is defined via unit speed reparametrizations of $\boldsymbol{\gamma}$. To compute κ we do the following:

- We find a unit speed reparametrization $\tilde{\gamma}$ of the regular curve γ
- This can be done by computing s the arc-length of $\boldsymbol{\gamma}$, and then defining

$$
\tilde{\gamma}:=\boldsymbol{\gamma} \circ \psi, \quad \psi:=s^{-1}
$$

- Then we compute

$$
\kappa^{\tilde{\gamma}}(t)=\|\ddot{\tilde{\gamma}}\|(t)
$$

- We obtain the curvature of $\boldsymbol{\gamma}$ by

$$
\kappa^{\gamma}(t)=\kappa^{\tilde{\gamma}}(t)
$$

When $\boldsymbol{\gamma}$ is regular and has values in \mathbb{R}^{3}, there is a way to compute κ without reparametrizing. To do this, we will need the notion of cross product, or vector product. We will see this in the following sections.

Figure 2.2: Procedure for computing curvature κ
We conclude with two examples in which we compute the curvature κ using unit speed reparametrizations.

Example 2.5

Consider the circle of radius $R>0$:

$$
\boldsymbol{\gamma}(t)=(R \cos (t), R \sin (t)), \quad t \in[0,2 \pi]
$$

To compute the curvature of $\boldsymbol{\gamma}$ we need to find a unit speed reparametrization. We have shown that:

$$
\boldsymbol{\gamma} \text { regular } \Longrightarrow \phi=s^{-1} \text { unit speed reparametrization }
$$

where s is the arc length of $\boldsymbol{\gamma}$:

$$
s(t):=\int_{t_{0}}^{t}\|\dot{\boldsymbol{\gamma}}(\tau)\| d \tau
$$

In our case

$$
\dot{\boldsymbol{\gamma}}(t)=(-R \sin (t), R \cos (t)) \quad \Longrightarrow \quad\|\dot{\boldsymbol{\gamma}}(t)\|=R
$$

and so $\boldsymbol{\gamma}$ is regular. However $\boldsymbol{\gamma}$ is not unit speed, therefore we need to find a unit speed reparametrization. The arc length starting at $t_{0}=0$ is

$$
s(t)=\int_{0}^{t} R d \tau=t R
$$

The inverse of s is

$$
\phi(t):=s^{-1}(t)=\frac{t}{R}
$$

Therefore a unit speed reparametrization of $\boldsymbol{\gamma}$ is

$$
\tilde{\gamma}:=\gamma \circ \phi
$$

which reads

$$
\tilde{\gamma}(t):=\left(R \cos \left(\frac{t}{R}\right), R \sin \left(\frac{t}{R}\right)\right)
$$

We have

$$
\begin{aligned}
\dot{\tilde{\boldsymbol{\gamma}}}(t) & =\left(-\sin \left(\frac{t}{R}\right), \cos \left(\frac{t}{R}\right)\right) \\
\ddot{\tilde{\boldsymbol{\gamma}}}(t) & =\left(-\frac{1}{R} \cos \left(\frac{t}{R}\right),-\frac{1}{R} \sin \left(\frac{t}{R}\right)\right)
\end{aligned}
$$

Therefore the curvature of $\boldsymbol{\gamma}$ is

$$
\kappa(t)=\|\ddot{\tilde{\gamma}}(t)\|=\frac{1}{R} .
$$

In this case $\kappa(t)$ is constant. The curvature also tells us that the smaller the circle, the higher the curvature. For a large circle, like the Earth, the curvature is barely noticeable.

Before proceeding with the next example, let us give a short overview of the Hyperbolic functions.

Remark 2.6: Hyperbolic functions

The Hyperbloic functions are the analogous of the trigonometric functions, but defined using the hyperbola rather than the circle. Their formulas can be obtained by means of the exponential function e^{t}. We have:

- Hyperbolic cosine: The even part of the function e^{t}, that is,

$$
\cosh (t)=\frac{e^{t}+e^{-t}}{2}=\frac{e^{2 t}+1}{2 e^{t}}=\frac{1+e^{-2 t}}{2 e^{-t}} .
$$

- Hyperbolic sine: The odd part of the function e^{t}, that is,

$$
\sinh (t)=\frac{e^{t}-e^{-t}}{2}=\frac{e^{2 t}-1}{2 e^{t}}=\frac{1-e^{-2 t}}{2 e^{-t}} .
$$

- Hyperbolic tangent: Defined by

$$
\tanh (t)=\frac{\sinh t}{\cosh t}=\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}=\frac{e^{2 t}-1}{e^{2 t}+1} .
$$

- Hyperbolic cotangent: The reciprocal of \tanh for $t \neq 0$,

$$
\operatorname{coth} t=\frac{\cosh t}{\sinh t}=\frac{e^{t}+e^{-t}}{e^{t}-e^{-t}}=\frac{e^{2 t}+1}{e^{2 t}-1} .
$$

- Hyperbolic secant: The reciprocal of cosh

$$
\operatorname{sech}(t)=\frac{1}{\cosh t}=\frac{2}{e^{t}+e^{-t}}=\frac{2 e^{t}}{e^{2 t}+1} .
$$

- Hyperbolic cosecant: The reciprocal of \sinh for $t \neq 0$,

$$
\operatorname{csch}(t)=\frac{1}{\sinh t}=\frac{2}{e^{t}-e^{-t}}=\frac{2 e^{t}}{e^{2 t}-1} .
$$

For a plot cosh, sinh, tanh see Figure 2.3 below. The properties of the hyperbolic functions which are of interest to us are:

1. Identities:

$$
\begin{aligned}
& \cosh (t)+\sinh (t)=e^{t} \\
& \cosh (t)-\sinh (t)=e^{-t} \\
& \cosh ^{2}(t)-\sinh ^{2}(t)=1 \\
& \operatorname{sech}^{2}(t)-\tanh ^{2}(t)=1
\end{aligned}
$$

2. Derivatives:

$$
\begin{aligned}
& \frac{d}{d t}[\sinh (t)]=\cosh (t) \\
& \frac{d}{d t}[\cosh (t)]=\sinh (t) \\
& \frac{d}{d t}[\tanh (t)]=1-\tanh ^{2}(t)=-\operatorname{csch}^{2}(t)
\end{aligned}
$$

3. Integrals:

$$
\begin{aligned}
& \int_{t_{0}}^{t} \sinh (u) d u=\cosh (t)-\cosh \left(t_{0}\right) \\
& \int_{t_{0}}^{t} \cosh (u) d u=\sinh (t)-\sinh \left(t_{0}\right) \\
& \int_{t_{0}}^{t} \tanh (u) d u=\log (\cosh (t))-\log \left(\cosh \left(t_{0}\right)\right)
\end{aligned}
$$

Figure 2.3: Plot of cosh, sinh, tanh.

Example 2.7: The Catenary

The catenary is the shape of a heavy chain suspended at its ends. The chain is only subjected to gravity, see Figure 2.4. This shape looks similar to a parabola, but it is not a parabola. This was first noted by Galilei, see this Wikipedia page. The profile of the hanging chain can be obtained via a minimization problem, and one can show it is of the form

$$
\boldsymbol{\gamma}(t)=(t, \cosh (t)), \quad t \in \mathbb{R}
$$

See Figure 2.5 for a plot of $\boldsymbol{\gamma}$. Let us check if $\boldsymbol{\gamma}$ is regular. We have

$$
\dot{\boldsymbol{\gamma}}(t)=(1, \sinh (t))
$$

so that

$$
\|\dot{\boldsymbol{\gamma}}\|^{2}=1+\sinh ^{2}(t)=\cosh ^{2}(t) \quad \Longrightarrow \quad\|\dot{\boldsymbol{\gamma}}\|=\cosh (t)
$$

Note that

$$
\cosh (t) \geq 1
$$

showing that $\boldsymbol{\gamma}$ is regular. However

$$
\|\dot{\boldsymbol{\gamma}}(1)\|=\cosh (1)=\frac{e+e^{-1}}{2} \approx 1.54,
$$

proving that $\boldsymbol{\gamma}$ is not unit speed. Let us then compute the arc length of $\boldsymbol{\gamma}$ starting at $t_{0}=0$

$$
s(t)=\int_{0}^{t}\|\dot{\gamma}(u)\| d u=\int_{0}^{t} \cosh (u) d u=\sinh (t)
$$

since $\sinh (0)=0$. We need to invert s. We have

$$
s=\sinh (t) \quad \Longleftrightarrow \quad s=\frac{e^{t}-e^{-t}}{2} \quad \Longleftrightarrow \quad e^{2 t}-2 s e^{t}-1=0
$$

where the last equation was obtained multuplying both sides by e^{t}. Now we substitute

$$
y=e^{t}
$$

and obtain

$$
e^{2 t}-2 s e^{t}-1=0 \quad \Longleftrightarrow \quad y^{2}-2 s y-1=0 \quad \Longleftrightarrow \quad y=s \pm \sqrt{1+s^{2}}
$$

Recalling that $y=e^{t}$, we only consider the positive solution, and obtain that

$$
e^{t}=s+\sqrt{1+s^{2}} \quad \Longrightarrow \quad t=\log \left(s+\sqrt{1+s^{2}}\right) .
$$

We have proven that the inverse of the arc length $s(t)$ is

$$
\psi(t):=s^{-1}(t)=\log \left(t+\sqrt{1+t^{2}}\right) .
$$

Therefore

$$
\tilde{\boldsymbol{\gamma}}(t):=\boldsymbol{\gamma}(\psi(t))
$$

is a unit speed reparametrization of $\boldsymbol{\gamma}$. Substituting ψ and using the definition of $\boldsymbol{\gamma}$ we have

$$
\tilde{\boldsymbol{\gamma}}(t)=\left(\log \left(t+\sqrt{1+t^{2}}\right), \sqrt{1+t^{2}}\right)
$$

We can now compute the curvature. We have:

$$
\begin{aligned}
& \dot{\tilde{\boldsymbol{\gamma}}}(t)=\left(\frac{1}{\sqrt{1+t^{2}}}, \frac{t}{\sqrt{1+t^{2}}}\right) \\
& \ddot{\tilde{\boldsymbol{\gamma}}}(t)=\left(-\frac{t}{\left(1+t^{2}\right)^{3 / 2}}, \frac{1}{\left(1+t^{2}\right)^{3 / 2}}\right)
\end{aligned}
$$

Moreover

$$
\|\ddot{\tilde{\gamma}}(t)\|^{2}=\frac{t^{2}}{\left(1+t^{2}\right)^{3}}+\frac{1}{\left(1+t^{2}\right)^{3}}=\frac{1}{\left(1+t^{2}\right)^{2}} .
$$

Therefore the curvature is

$$
\kappa(t)=\|\ddot{\boldsymbol{\gamma}}(t)\|=\frac{1}{1+t^{2}} .
$$

Figure 2.4: The catenary is the shape of a heavy chain suspended at its ends. Image from Wikipedia.

Figure 2.5: Plot of the catenary curve $\boldsymbol{\gamma}(t)=(t, \cosh (t))$.

2.2 Vector product in \mathbb{R}^{3}

The discussion in this section follows [2]. We start by defining orientation for a vector space.

Definition 2.8: Same orientation

Consider two ordered basis of \mathbb{R}^{3}

$$
B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right), \quad \tilde{B}=\left(\tilde{\mathbf{b}}_{1}, \tilde{\mathbf{b}}_{2}, \tilde{\mathbf{b}}_{3}\right) .
$$

We say that B and \widetilde{B} have the same orientation if the matrix of change of basis has positive determinant.
When two basis B and \widetilde{B} have the same orientation, we write

$$
\mathbf{b} \sim \tilde{\mathbf{b}} .
$$

The above is clearly an equivalence relation on the set of ordered basis. Therefore the set of ordered basis of \mathbb{R}^{3} can be decomposed into equivalence classes. Since the determinant of the matrix of change of basis can only be positive or negative, there are only two equivalence classes.

Definition 2.9: Orientation

The two equivalence classes determined by \sim on the set of ordered basis are called orientations.

Definition 2.10: Positive orientation

Consider the standard basis of \mathbb{R}^{3}

$$
E=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)
$$

where we set

$$
\mathbf{e}_{1}=(1,0,0), \quad \mathbf{e}_{2}=(0,1,0), \quad \mathbf{e}_{3}=(0,0,1) .
$$

Then:

- The orientation corresponding to E is called positive orientation of \mathbb{R}^{3}.
- The orientation corresponding to the other equivalence class is called negative orientation of \mathbb{R}^{3}.

For a basis B of \mathbb{R}^{3} we say that:

- B is a positive basis if it belongs to the class of e.
- B is a negative basis if it does not belong to the class of e.

Example 2.11

Since we are dealing with ordered basis, the order in which vectors appear is fundamental. For example, we defined the equivalence class of

$$
E=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right),
$$

to be the positive orientation of \mathbb{R}^{3}. In particular e is a positive basis.
Consider instead

$$
\widetilde{E}=\left(\mathbf{e}_{2}, \mathbf{e}_{1}, \mathbf{e}_{3}\right) .
$$

The matrix of change of variables between \widetilde{E} and E is

$$
\left(\mathbf{e}_{2}\left|\mathbf{e}_{1}\right| \mathbf{e}_{3}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and the latter has negative determinant. Thus \widetilde{E} does not belong to the class of E, and is therefore a negative basis.

We are now ready to define the vector product in \mathbb{R}^{3}.

Definition 2.12: Vector product in \mathbb{R}^{3}

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$. The vector product of \mathbf{u} and \mathbf{v} is the unique vector

$$
\mathbf{u} \times \mathbf{v} \in \mathbb{R}^{3}
$$

which satisfies the property:

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \tag{2.5}\\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|, \quad \forall \mathbf{w} \in \mathbb{R}^{3}
$$

Here $\left|a_{i j}\right|$ denotes the determinant of the matrix $\left(a_{i j}\right)$, and

$$
\mathbf{u}=\sum_{i=1}^{3} u_{i} \mathbf{e}_{i}, \quad \mathbf{v}=\sum_{i=1}^{3} v_{i} \mathbf{e}_{i}, \quad \mathbf{w}=\sum_{i=1}^{3} w_{i} \mathbf{e}_{i},
$$

with $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ standard basis of \mathbb{R}^{3}.
The following proposition gives an explicit formula for computing $\mathbf{u} \times \mathbf{v}$.

Proposition 2.13

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$. Then

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ll}
u_{2} & u_{3} \tag{2.6}\\
v_{2} & v_{3}
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{e}_{3} .
$$

Proof

Denote by $(\mathbf{u} \times \mathbf{v})_{i}$ the i-th component of $\mathbf{u} \times \mathbf{v}$ with respect to the standard basis, that is,

$$
\mathbf{u} \times \mathbf{v}=\sum_{i=1}^{3}(\mathbf{u} \times \mathbf{v})_{i} \mathbf{e}_{i} .
$$

We can use (2.5) with $\mathbf{w}=\mathbf{e}_{1}$ to obtain

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{e}_{1}=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & 0 & 0
\end{array}\right|=\left|\begin{array}{cc}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|
$$

where we used the Laplace expansion for computing the determinant of the 3×3 matrix. As the standard basis is orthonormal, by bilinearity of the scalar product we get

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{e}_{1}=\sum_{i=1}^{3}(\mathbf{u} \times \mathbf{v})_{i} \mathbf{e}_{i} \cdot \mathbf{e}_{1}=(\mathbf{u} \times \mathbf{v})_{i}
$$

Therefore we have shown

$$
(\mathbf{u} \times \mathbf{v})_{1}=\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| .
$$

Similarly we obtain

$$
(\mathbf{u} \times \mathbf{v})_{2}=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
0 & 1 & 0
\end{array}\right|=-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|
$$

and

$$
(\mathbf{u} \times \mathbf{v})_{3}=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
0 & 0 & 1
\end{array}\right|=\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|,
$$

from which we conclude.
Sometimes we will denote formula (2.6) by

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{2} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| .
$$

Let us collect some crucial properties of the vector product.

Proposition 2.14

The vector product in \mathbb{R}^{3} satisfies the following properties: For all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$

1. $\mathbf{u} \times \mathbf{v}=-\mathbf{v} \times \mathbf{u}$
2. $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are linearly dependent
3. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=0,(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$
4. For all $\mathbf{w} \in \mathbb{R}^{3}, a, b \in \mathbb{R}$

$$
(a \mathbf{u}+b \mathbf{w}) \times \mathbf{v}=a \mathbf{u} \times \mathbf{v}+b \mathbf{w} \times \mathbf{w}
$$

The proof, which is based on the properties of determinants, is omitted.
Remark 2.15: Geometric interpretation of vector product
Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ be linearly independent. We make some observations:

1. Property 3 in Proposition 2.14 says that

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=0, \quad(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0 .
$$

Therefore $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}.
2. In particular $\mathbf{u} \times \mathbf{v}$ is orthogonal to the plane generated by \mathbf{u} and \mathbf{v}.
3. Since \mathbf{u} and \mathbf{v} are linearly independent, Property 2 in Proposition 2.14 says that

$$
\mathbf{u} \times \mathbf{v} \neq \mathbf{0}
$$

4. Therefore we have

$$
(\mathbf{u} \times \mathbf{v}) \cdot(\mathbf{u} \times \mathbf{v})=\|\mathbf{u} \times \mathbf{v}\|^{2}>0
$$

5. On the other hand, using the definition of $\mathbf{u} \times \mathbf{v}$ with $\mathbf{w}=\mathbf{v} \times \mathbf{w}$ yields

$$
(\mathbf{u} \times \mathbf{v}) \cdot(\mathbf{u} \times \mathbf{v})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
(\mathbf{u} \times \mathbf{v})_{1} & (\mathbf{u} \times \mathbf{v})_{2} & (\mathbf{u} \times \mathbf{v})_{3}
\end{array}\right|
$$

6. Therefore the determinant of the matrix

$$
(\mathbf{u}|\mathbf{v}| \mathbf{u} \times \mathbf{v})
$$

is positive. This shows that

$$
(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})
$$

is a positive basis of \mathbb{R}^{3}.
7. For all $\mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ it holds

$$
(\mathbf{u} \times \mathbf{v}) \cdot(\mathbf{x} \times \mathbf{y})=\left|\begin{array}{cc}
\mathbf{u} \cdot \mathbf{x} & \mathbf{v} \cdot \mathbf{x} \tag{2.7}\\
\mathbf{u} \cdot \mathbf{y} & \mathbf{v} \cdot \mathbf{y}
\end{array}\right| .
$$

Indeed, one can check that the above formula holds for the standard vectors \mathbf{e}_{i}, and thus the general formula follows by linearity.
8. Using (2.7) we get

$$
\begin{aligned}
\|\mathbf{u} \times \mathbf{v}\|^{2} & =(\mathbf{u} \times \mathbf{v}) \cdot(\mathbf{u} \times \mathbf{v})=\left|\begin{array}{cc}
\mathbf{u} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{u} \\
\mathbf{u} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v}
\end{array}\right| \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-|\mathbf{u} \cdot \mathbf{v}|^{2} \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} \cos ^{2}(\theta) \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}\left(1-\cos ^{2}(\theta)\right) \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} \sin ^{2}(\theta) \\
& =A^{2}
\end{aligned}
$$

where A is the area of the parallelogram with sides \mathbf{u} and \mathbf{v}.

Figure 2.6: For \mathbf{u}, \mathbf{v} linearly independent, $\mathbf{u} \times \mathbf{v}$ is orthogonal to the plane generated by \mathbf{u}, \mathbf{v}. Moreover $|\mathbf{u} \times \mathbf{v}|$ is the area of the parallelogram with sides \mathbf{u}, \mathbf{v}, and $(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})$ is a positive basis of \mathbb{R}^{3}

Let us summarize the above remark.
Remark 2.16: Summary: Properties of $\mathbf{u} \times \mathbf{v}$
Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ be linearly independent. Then

- $\mathbf{u} \times \mathbf{v}$ is orthogonal to the plane spanned by \mathbf{u}, \mathbf{v}
- $\|\mathbf{u} \times \mathbf{v}\|$ is equal to the area of the parallelogram with sides \mathbf{u}, \mathbf{v}
- $\mathbf{u} \times \mathbf{v}$ is such that

$$
(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})
$$

is a positive basis of \mathbb{R}^{3}.

We conclude with noting that the cross product is not associative, and with a useful proposition for differentiating the cross product of curves in \mathbb{R}^{3}.

Proposition 2.17

The vector product is not associative. In particular, for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ it holds:

$$
\begin{equation*}
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u} . \tag{2.8}
\end{equation*}
$$

The proof is omitted. It follows by observing that both sides of (2.8) are linear in $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Therefore it is sufficient to verify (2.8) for the standard basis vectors \mathbf{e}_{i}. This is left as an exercise.

Proposition 2.18

Suppose $\boldsymbol{\gamma}, \boldsymbol{\eta}:(a, b) \rightarrow \mathbb{R}^{3}$ are parametrized curves. Then the curve

$$
\boldsymbol{\gamma} \times \boldsymbol{\eta}:(a, b) \rightarrow \mathbb{R}^{3}
$$

is smooth, and

$$
\begin{equation*}
\frac{d}{d t}(\boldsymbol{\gamma} \times \boldsymbol{\eta})=\dot{\boldsymbol{\gamma}} \times \boldsymbol{\eta}+\boldsymbol{\gamma} \times \dot{\boldsymbol{\eta}} . \tag{2.9}
\end{equation*}
$$

The proof is omitted. It follows immediately from formula (2.6).

2.3 Curvature formula in \mathbb{R}^{3}

Given a unit speed curve

$$
\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}
$$

we defined its curvature as

$$
\kappa(t)=\|\ddot{\gamma}(t)\| .
$$

If $\boldsymbol{\gamma}$ is not unit speed then the curvature is not defined. However, when $\boldsymbol{\gamma}$ is regular, then we can find a unit-speed reparametrization $\tilde{\gamma}$ of γ, and compute κ as

$$
\kappa(t)=\|\ddot{\tilde{\gamma}}(t)\| .
$$

If $\boldsymbol{\gamma}$ is a regular curve in \mathbb{R}^{3}, there is a way to compute κ without passing through $\tilde{\boldsymbol{\gamma}}$. The formula for computing κ is as follows.

Proposition 2.19: Curvature formula

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a regular curve. The curvature $\kappa(t)$ of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is given by

$$
\begin{equation*}
\kappa(t)=\frac{\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|}{\|\dot{\boldsymbol{\gamma}}\|^{3}} . \tag{2.10}
\end{equation*}
$$

We delay the proof of the above Proposition, as this will get easier when the Frenet frame is introduced. For a proof which does not make use of the Frenet frame, see the proof of Proposition 2.1.2 in [6].
For now we use (2.10) the above proposition to compute the curvature on specific curves.

Example 2.20

Consider the straight line

$$
\gamma(t)=\mathbf{a}+t \mathbf{v}
$$

for some $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{3}$ fixed, with $\mathbf{v} \neq \mathbf{0}$. Then

$$
\dot{\boldsymbol{\gamma}}(t)=\mathbf{v}, \quad \ddot{\boldsymbol{\gamma}}(t)=\mathbf{0} .
$$

Therefore

$$
\|\dot{\gamma}(t)\|=\|\mathbf{v}\| \neq 0
$$

showing that $\boldsymbol{\gamma}$ is regular. We have

$$
\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}=\mathbf{v} \times \mathbf{0}=\mathbf{0} .
$$

Therefore the curvature is

$$
\kappa=\frac{\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|}{\|\dot{\boldsymbol{\gamma}}\|^{3}}=0,
$$

as expected.

Example 2.21

Consider the Helix of radius $R>0$ and rise $H>0$

$$
\boldsymbol{\gamma}(t)=(R \cos (t), R \sin (t), H t), \quad t \in \mathbb{R}
$$

Then

$$
\begin{aligned}
& \dot{\boldsymbol{\gamma}}(t)=(-R \sin (t), R \cos (t), H) \\
& \ddot{\boldsymbol{\gamma}}(t)=(-R \cos (t),-R \sin (t), 0)
\end{aligned}
$$

From this we deduce that

$$
\|\dot{\boldsymbol{\gamma}}(t)\|=\sqrt{R^{2}+H^{2}}
$$

showing that $\boldsymbol{\gamma}$ is regular. Finally

$$
\begin{aligned}
\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}} & =\left|\begin{array}{ll}
\dot{\gamma}_{2} & \dot{\gamma}_{3} \\
\ddot{\gamma}_{2} & \ddot{\gamma}_{3}
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{ll}
\dot{\gamma}_{1} & \dot{\gamma}_{3} \\
\ddot{\gamma}_{1} & \ddot{\gamma}_{3}
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
\dot{\gamma}_{1} & \dot{\gamma}_{2} \\
\ddot{\gamma}_{1} & \ddot{\gamma}_{2}
\end{array}\right| \mathbf{e}_{3} \\
& =\left|\begin{array}{cc}
R \cos (t) & H \\
-R \sin (t) & 0
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
-R \sin (t) & H \\
-R \cos (t) & 0
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
-R \sin (t) & R \cos (t) \\
-R \cos (t) & -R \sin (t)
\end{array}\right| \mathbf{e}_{3} \\
& =\left(R H \sin (t),-R H \cos (t), R^{2} \cos ^{2}(t)+R^{2} \sin ^{2}(t)\right) \\
& =\left(R H \sin (t),-R H \cos (t), R^{2}\right)
\end{aligned}
$$

and therefore

$$
\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|=R \sqrt{R^{2}+H^{2}} .
$$

By the general formula we have

$$
\kappa=\frac{\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|}{\|\dot{\boldsymbol{\gamma}}\|^{3}}=\frac{R\left(R^{2}+H^{2}\right)^{\frac{1}{2}}}{\left(R^{2}+H^{2}\right)^{\frac{3}{2}}}=\frac{R}{R^{2}+H^{2}}
$$

We notice the following:

- If $H=0$ then the Helix is just a circle of radius R. In this case the curvature is

$$
\kappa=\frac{1}{R}
$$

which agrees with the curvature computed for the circle of radius R.

- If $R=0$ then the Helix is just parametrizing the z-axis. In this case the curvature is

$$
\kappa=0,
$$

which agrees with the curvature of a straight line.

2.4 Signed curvature of plane curves

In this section we assume to have plane curves, that is, curves with values in \mathbb{R}^{2}. In this case we can give a geometric interpretation for the sign of the curvature. This cannot be done in higher dimension.

Definition 2.22

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{2}$ be unit speed. We define the signed unit normal to $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ as the unit vector $\mathbf{n}(t)$ obtained by rotating $\dot{\boldsymbol{\gamma}}(t)$ anti-clockwise by an angle of $\pi / 2$.

Definition 2.23

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{2}$ be unit speed. The signed curvature of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is the scalar $\kappa_{s}(t)$ such that

$$
\ddot{\boldsymbol{\gamma}}(t)=k_{s}(t) \mathbf{n}(t)
$$

Remark 2.24

Notice that since \mathbf{n} is a unit vector and $\boldsymbol{\gamma}$ is unit speed, then

$$
\left|\kappa_{s}(t)\right|=\|\ddot{\boldsymbol{\gamma}}(t)\|=\kappa(t) .
$$

Thus the signed curvature is related to the curvature by

$$
\kappa_{s}(t)= \pm \kappa(t) .
$$

Remark 2.25

It can be shown that the signed curvature is the rate at which the tangent vector $\dot{\gamma}$ of the curve $\boldsymbol{\gamma}$ rotates. The signed curvature is:

- positive if $\boldsymbol{\gamma}$ is rotating anti-clockwise
- negative if $\dot{\boldsymbol{\gamma}}$ is rotating clockwise

In other words,

- $k_{s}>0$ means the curve is turning left,
- $k_{s}<0$ means the curve is turning right.

A rigorous justification of the above statement is found in Proposition 2.2.3 in [6].

For curves which are not unit speed, we define the signed curvature as the signed curvature of the unit speed reparametrization.

Definition 2.26

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{2}$ be regular and let $\tilde{\boldsymbol{\gamma}}$ be a unit speed reparametrization of $\boldsymbol{\gamma}$. The signed curvature of γ at $\gamma(t)$ is the scalar $\kappa_{s}(t)$ such that

$$
\ddot{\tilde{\boldsymbol{\gamma}}}(t)=k_{s}(t) \mathbf{n}(t),
$$

where $\mathbf{n}(t)$ is the unit vector obtained by rotating $\dot{\boldsymbol{\gamma}}(t)$ anti-clockwise by an angle $\pi / 2$.
The signed curvature completely characterizes plane curves, in the sense of the following theorem.
Theorem 2.27: Characterization of plane curves
Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth. Then:

1. There exists a unit speed curve $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that its signed curvature κ_{s} satisfies

$$
\kappa_{s}(t)=\phi(t), \quad \forall t \in \mathbb{R}
$$

2. Suppose that $\tilde{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a unit speed curve such that its signed curvature $\tilde{\kappa}_{s}$ satisfies

$$
\tilde{\kappa}_{s}(t)=\phi(t), \quad \forall t \in \mathbb{R} .
$$

Then

$$
\tilde{\gamma}=\gamma
$$

up to rotations and translations.
We do not prove the above theorem. For a proof, see Theorem 2.2.6 in [6].

2.5 Space curves

In this section we deal with space curves, that is, curves with values in \mathbb{R}^{3}. There are several issues compare to the plane case:

- A ${ }_{3} \mathrm{D}$ counterpart of the signed curvature does not exist, since there is no notion of turning left or turning right.
- We have seen in the previous section that the signed curvature completely characterizes plane curves. In ${ }_{3} D$ however curvature is not enough to characterize curves: there exist $\boldsymbol{\gamma}$ and $\boldsymbol{\eta}$ space curves such that

$$
\kappa^{\gamma}=\kappa^{\eta}, \quad \boldsymbol{\gamma} \neq \boldsymbol{\eta},
$$

that is, $\boldsymbol{\gamma}$ and $\boldsymbol{\eta}$ have same curvature but are different curves.

Example 2.28

Let $\boldsymbol{\gamma}$ be a circle of radius $R>0$

$$
\boldsymbol{\gamma}(t)=(R \cos (t), R \sin (t), 0)
$$

and $\boldsymbol{\eta}$ be a helix of radius $S>0$ and rise $H>0$

$$
\boldsymbol{\eta}(t)=(S \cos (t), S \sin (t), H t)
$$

We have computed that

$$
\kappa^{\boldsymbol{\gamma}}=\frac{1}{R}, \quad \kappa^{\eta}=\frac{S}{S^{2}+H^{2}} .
$$

If we now choose $R=2$ and we impose that $\kappa^{\gamma}=\kappa^{\eta}$ we get

$$
\frac{1}{R}=\frac{S}{S^{2}+H^{2}} \quad \Longrightarrow \quad H^{2}=2 S-S^{2}
$$

Therefore choosing $S=1$ and $H=1$ yields

$$
\kappa^{\gamma}=\kappa^{\eta}, \quad \boldsymbol{\gamma} \neq \boldsymbol{\eta} . .
$$

Therefore curvature is not enough for characterizing space curves, and we need a new quantity. As we did with curvature, we start by considering the simpler case of unit speed curves. We will also need to assume that the curvature is never zero.

Definition 2.29: Principal normal vector

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit speed curve with

$$
\kappa(t) \neq 0, \quad \forall t \in(a, b) .
$$

The principal normal vector to $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is

$$
\mathbf{n}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t) .
$$

Remark 2.30

Since for γ unit speed we defined

$$
\kappa(t):=\|\ddot{\boldsymbol{\gamma}}(t)\|,
$$

we have that

$$
\|\mathbf{n}(t)\|=1
$$

thus \mathbf{n} is a unit vector. Moreover \mathbf{n} is orthogonal to $\dot{\boldsymbol{\gamma}}$, that is,

$$
\dot{\boldsymbol{\gamma}} \cdot \mathbf{n}=0 .
$$

This is because

$$
\dot{\boldsymbol{\gamma}} \cdot \mathbf{n}=\frac{1}{\kappa} \dot{\boldsymbol{\gamma}} \cdot \ddot{\boldsymbol{\gamma}}=0,
$$

where the last equality follows from $\dot{\boldsymbol{\gamma}} \cdot \ddot{\gamma}=0$, being $\boldsymbol{\gamma}$ unit speed.

Figure 2.7: Principal normal vector $\mathbf{n}(t)$ to $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$.

Question 2.31

Why is the principal normal interesting? Because it can tell the difference beween a plane curve and a space curve. See picture below.

Definition 2.32: Binormal vector
Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit speed curve with

$$
\kappa(t) \neq 0, \quad \forall t \in(a, b) .
$$

Figure 2.8: Left: Principal normal to a circle. Note that \mathbf{n} always points towards the origin 0. Right: Principal normal to a helix. Note that \mathbf{n} points towards the z-axis, but never towards the same point.

The binormal vector to $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is

$$
\mathbf{b}(t):=\dot{\boldsymbol{\gamma}}(t) \times \mathbf{n}(t) .
$$

Definition 2.33: Orthonormal basis
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be vectors in \mathbb{R}^{3}. We say that the triple

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}
$$

is orthonormal if

$$
\left\|v_{i}\right\|=1, \quad v_{i} \cdot v_{j}=0, \text { for } i \neq j
$$

Proposition 2.34

Let $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit speed curve with

$$
\kappa(t) \neq 0, \quad \forall t \in(a, b) .
$$

Then the triple

$$
B=(\dot{\boldsymbol{\gamma}}(t), \mathbf{n}(t), \mathbf{b}(t))
$$

is a positive orthonormal basis of \mathbb{R}^{3} for all $t \in(a, b)$.

Proof

Since γ is unit speed we have

$$
\|\dot{\boldsymbol{\gamma}}(t)\| \equiv 1 .
$$

Moreover we have already observed that

$$
\|\mathbf{n}(t)\| \equiv 1, \quad \dot{\boldsymbol{\gamma}}(t) \cdot \mathbf{n}(t) \equiv 0
$$

As \mathbf{b} is defined by

$$
\mathbf{b}:=\dot{\gamma} \times \mathbf{n},
$$

by the properties of the vector product, see Proposition 2.14, it follows that

$$
\mathbf{b} \cdot \dot{\gamma}=0, \quad \mathbf{b} \cdot \mathbf{n}=0
$$

By the calculation in Remark 2.15 Point 8, we have that

$$
\|\boldsymbol{b}\|^{2}=\|\dot{\boldsymbol{\gamma}}\|^{2}\|\mathbf{n}\|^{2}-|\dot{\boldsymbol{\gamma}} \cdot \mathbf{n}|^{2}=1 .
$$

This shows that the vectors

$$
\{\dot{\gamma}, \mathbf{n}, \mathbf{b}\}
$$

are orthonormal. By the properties of the vector product, see Remark 2.15 Point 6, we also know that

$$
(\dot{\boldsymbol{\gamma}}, \mathbf{n}, \mathbf{b})
$$

is a positive basis of \mathbb{R}^{3}.

Proposition 2.35

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit speed curve with $\kappa \neq 0$. Then

$$
\begin{equation*}
\mathbf{b}=\dot{\boldsymbol{\gamma}} \times \mathbf{n}, \quad \mathbf{n}=\mathbf{b} \times \dot{\boldsymbol{\gamma}}, \quad \dot{\boldsymbol{\gamma}}=\mathbf{n} \times \mathbf{b} . \tag{2.11}
\end{equation*}
$$

Proof

The first equality in (2.11) is true by definition of \mathbf{b}. For the other 2 equalities, recall formula (2.8):

$$
\begin{equation*}
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}, \tag{2.12}
\end{equation*}
$$

for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$. Applying the above with

$$
\mathbf{u}=\dot{\boldsymbol{\gamma}}, \quad \mathbf{v}=\mathbf{n}, \quad \mathbf{w}=\dot{\boldsymbol{\gamma}},
$$

yields

$$
\begin{aligned}
(\dot{\boldsymbol{\gamma}} \times \mathbf{n}) \times \dot{\boldsymbol{\gamma}} & =(\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}}) \mathbf{n}-(\mathbf{n} \cdot \dot{\boldsymbol{\gamma}}) \dot{\boldsymbol{\gamma}} \\
& =\|\dot{\boldsymbol{\gamma}}\|^{2} \mathbf{n}-0 \\
& =\mathbf{n},
\end{aligned}
$$

where we used that $\dot{\boldsymbol{\gamma}}$ is a unit vector and $\mathbf{n} \cdot \dot{\boldsymbol{\gamma}}=0$. Therefore, by definition of \mathbf{b}, we have

$$
\mathbf{b} \times \dot{\boldsymbol{\gamma}}=(\dot{\boldsymbol{\gamma}} \times \mathbf{n}) \times \dot{\boldsymbol{\gamma}}=\mathbf{n}
$$

showing the second equality in (2.11). For showing the third equality in (2.11), we apply (2.12) with

$$
\mathbf{u}=\dot{\boldsymbol{\gamma}}, \quad \mathbf{v}=\mathbf{n}, \quad \mathbf{w}=\mathbf{n},
$$

to get

$$
\begin{aligned}
(\dot{\boldsymbol{\gamma}} \times \mathbf{n}) \times \mathbf{n} & =(\dot{\boldsymbol{\gamma}} \cdot \mathbf{n}) \mathbf{n}-(\mathbf{n} \cdot \mathbf{n}) \dot{\boldsymbol{\gamma}} \\
& =0-\|\mathbf{n}\|^{2} \dot{\boldsymbol{\gamma}} \\
& =-\dot{\boldsymbol{\gamma}}
\end{aligned}
$$

where we used that \mathbf{n} is a unit vector and $\dot{\boldsymbol{\gamma}} \cdot \mathbf{n}=0$. Therefore, by definition of \mathbf{b} and anti-commutativity of the vector product, we have

$$
\mathbf{n} \times \mathbf{b}=-\mathbf{b} \times \mathbf{n}=-(\dot{\boldsymbol{\gamma}} \times \mathbf{n}) \times \mathbf{n}=\dot{\gamma},
$$

showing the last equality in (2.11).

Proposition 2.36

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit speed curve with $\kappa \neq 0$. Then

$$
\begin{equation*}
\dot{\mathbf{b}}(t)=-\tau(t) \mathbf{n}(t), \tag{2.13}
\end{equation*}
$$

for some $\tau(t) \in \mathbb{R}$.

Proof

By definition of \mathbf{b} and the formula of derivation of the cross product (2.9) we have

$$
\begin{aligned}
\dot{\mathbf{b}} & =\frac{d}{d t}(\dot{\boldsymbol{\gamma}} \times \mathbf{n}) \\
& =\ddot{\boldsymbol{\gamma}} \times \mathbf{n}+\dot{\boldsymbol{\gamma}} \times \dot{\mathbf{n}} \\
& =\dot{\boldsymbol{\gamma}} \times \dot{\mathbf{n}},
\end{aligned}
$$

where we used that

$$
\ddot{\boldsymbol{\gamma}} \times \mathbf{n}=0,
$$

since \mathbf{n} is defined by $\mathbf{n}:=\ddot{\boldsymbol{\gamma}} / \kappa$, and therefore \mathbf{n} and $\ddot{\boldsymbol{\gamma}}$ are parallel. Hence, we have proven that

$$
\begin{equation*}
\dot{\mathbf{b}}=\dot{\boldsymbol{\gamma}} \times \dot{\mathbf{n}} . \tag{2.14}
\end{equation*}
$$

By the properties of the cross product we have that $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}. Thus (2.14) implies that

$$
\dot{\mathbf{b}} \cdot \dot{\boldsymbol{\gamma}}=0 .
$$

Further, observe that

$$
\frac{d}{d t}(\mathbf{b} \cdot \mathbf{b})=\dot{\mathbf{b}} \cdot \mathbf{b}+\mathbf{b} \cdot \dot{\mathbf{b}}=2 \dot{\mathbf{b}} \cdot \mathbf{b} .
$$

On the other hand, since \mathbf{b} is a unit vector, we have

$$
\frac{d}{d t}(\mathbf{b} \cdot \mathbf{b})=\frac{d}{d t}\left(\|\mathbf{b}\|^{2}\right)=\frac{d}{d t}(1)=0
$$

Therefore

$$
\dot{\mathbf{b}} \cdot \mathbf{b}=0 .
$$

To summarize, we have shown that $\dot{\mathbf{b}}$ is orthogonal to \mathbf{b} and $\dot{\boldsymbol{\gamma}}$. Since

$$
(\dot{\gamma}, \mathbf{n}, \mathbf{b})
$$

is an orthonormal basis of \mathbb{R}^{3} we conclude that $\dot{\mathbf{b}}$ is parallel to \mathbf{n}. Therefore there exists $\tau(t) \in \mathbb{R}$ such that

$$
\dot{\mathbf{b}}=-\tau(t) \mathbf{n}(t),
$$

concluding the proof.
The scalar τ in equation (2.13) is called the torsion of $\boldsymbol{\gamma}$.

Definition 2.37: Torsion of unit speed curve

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit speed curve, with $\kappa \neq 0$. The torsion of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is the unique scalar

$$
\tau(t) \in \mathbb{R}
$$

such that

$$
\dot{\mathbf{b}}(t)=-\tau(t) \mathbf{n}(t) .
$$

Remark 2.38

In particular the torsion satisfies:

$$
\tau(t)=-\dot{\mathbf{b}}(t) \cdot \mathbf{n}(t)
$$

The above can be immediately obtained by multiplying (2.13) by \mathbf{n}. Indeed,

$$
\dot{\mathbf{b}}=-\tau \mathbf{n} \quad \Longrightarrow \quad \dot{\mathbf{b}} \cdot \mathbf{n}=-\tau \mathbf{n} \cdot \mathbf{n}=-\tau,
$$

since \mathbf{n} is a unit vector.

Warning

We defined the torsion only for space curves $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ which are unit speed and have non-vanishing curvature, that is, such that

$$
\|\dot{\boldsymbol{\gamma}}(t)\|=1, \quad \kappa(t)=\|\ddot{\boldsymbol{\gamma}}(t)\| \neq 0,
$$

for all $t \in(a, b)$.
We can extend the definition of torsion to regular curves $\boldsymbol{\gamma}$ with non-vanishing curvature. In this case the torsion of $\boldsymbol{\gamma}$ is defined as the torsion of a unit speed reparametrization of $\boldsymbol{\gamma}$.

Definition 2.39

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a regular curve with non-vanishing curvature. Let $\tilde{\boldsymbol{\gamma}}$ be a unit speed reparametrization of $\boldsymbol{\gamma}$, with

$$
\boldsymbol{\gamma}=\tilde{\boldsymbol{\gamma}} \circ \phi, \quad \phi:(a, b) \rightarrow(\tilde{a}, \tilde{b}) .
$$

We define the torsion of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ as

$$
\tau^{\gamma}(t):=\tau^{\tilde{\gamma}}(\phi(t)),
$$

where $\tau^{\tilde{\gamma}}(s)$ denotes the torsion of $\tilde{\boldsymbol{\gamma}}$ at $\tilde{\boldsymbol{\gamma}}(s)$.
As usual, it is possible to check that the above definition of torsion does not depend on the choice of unit speed reparametrization $\tilde{\boldsymbol{\gamma}}$. As with curvature, there is a general formula to compute the torsion without having to
reparametrize.

Proposition 2.40: Torsion formula
Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a regular curve with non-vanishing curvature. The torsion $\tau(t)$ of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is given by

$$
\tau(t)=\frac{(\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}) \cdot \ddot{\boldsymbol{\gamma}}}{\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|^{2}}
$$

We delay the proof of the above proposition for a bit. In the meantime, let us look at examples.

Example 2.41: Torsion Helix

Consider the Helix of radius $R>0$ and rise $H>0$

$$
\boldsymbol{\gamma}(t)=(R \cos (t), R \sin (t), H t), \quad t \in \mathbb{R} .
$$

We have already shown that

$$
\|\dot{\boldsymbol{\gamma}}(t)\|=\sqrt{R^{2}+H^{2}}, \quad \kappa=\frac{R}{R^{2}+H^{2}} .
$$

Therefore the Helix is regular with non-vanishing curvature. The torsion can be then computed via the formula

$$
\tau(t)=\frac{(\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}) \cdot \ddot{\boldsymbol{\gamma}}}{\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|^{2}}
$$

Let us compute the quantities appearing in the formula for τ

$$
\begin{aligned}
& \dot{\boldsymbol{\gamma}}(t)=(-R \sin (t), R \cos (t), H) \\
& \ddot{\boldsymbol{\gamma}}(t)=(-R \cos (t),-R \sin (t), 0) \\
& \ddot{\boldsymbol{\gamma}}(t)=(R \sin (t),-R \cos (t), 0)
\end{aligned}
$$

Moreover we had already computed that

$$
\begin{aligned}
\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}} & =\left(R H \sin (t),-R H \cos (t), R^{2}\right) \\
\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\| & =R \sqrt{R^{2}+H^{2}} .
\end{aligned}
$$

Finally we compute

$$
(\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}) \cdot \ddot{\boldsymbol{\gamma}}=R^{2} H .
$$

We are ready to find the torsion:

$$
\tau=\frac{(\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}) \cdot \ddot{\boldsymbol{\gamma}}}{\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|^{2}}=\frac{H}{R^{2}+H^{2}} .
$$

Example 2.42: Curvature and Torsion of Circle

The Circle of radius $R>0$ is

$$
\boldsymbol{\gamma}(t):=(R \cos (t), R \sin (t), 0)
$$

The curvature and torsion of the Helix of radius R and rise $H>0$ are

$$
\kappa=\frac{R}{R^{2}+H^{2}}, \quad \tau=\frac{H}{R^{2}+H^{2}} .
$$

For $H=0$ the Helix coincides with the Circle $\boldsymbol{\gamma}$. Therefore we can set $H=0$ in the above formulas to obtain the curvature and torsion of the Circle

$$
\kappa=\frac{1}{R}, \quad \tau=0
$$

From the above example we notice that the torsion of the circle is 0 . This is true in general for space curves which are contained in a plane: we will prove this result in general. For the moment, let us give an example for which this happens, that is, an example of space curve $\boldsymbol{\gamma}$ which is contained in a plane.

Example 2.43

Define the space curve

$$
\boldsymbol{\gamma}(t):=\left(\frac{4}{5} \cos (t), 1-\sin (t),-\frac{3}{5} \cos (t)\right),
$$

for $t \in \mathbb{R}$. As seen in the plot below, $\boldsymbol{\gamma}$ is just a Circle which has been rotated an translated. Therefore $\boldsymbol{\gamma}$ is contained in a plane, and we expect curvature and torsion to be

$$
\kappa=\frac{1}{R}, \quad \tau=0
$$

for some $R>0$, radius of the Circle $\boldsymbol{\gamma}$. Let us proceed with the calculations:

$$
\dot{\boldsymbol{\gamma}}=\left(-\frac{4}{5} \sin (t),-\cos (t), \frac{3}{5} \sin (t)\right)
$$

so that

$$
\|\dot{\boldsymbol{\gamma}}\|^{2}=\frac{16}{25} \sin ^{2}(t)+\cos ^{2}(t)+\frac{9}{25} \sin ^{2}(t)=1,
$$

showing that $\boldsymbol{\gamma}$ is regular and unit speed. Further

$$
\ddot{\boldsymbol{\gamma}}=\left(-\frac{4}{5} \cos (t), \sin (t), \frac{3}{5} \cos (t)\right) .
$$

As $\boldsymbol{\gamma}$ is unit speed, we have

$$
\kappa=\|\ddot{\boldsymbol{\gamma}}\|=\frac{16}{25} \cos ^{2}(t)+\sin ^{2}(t)+\frac{9}{25} \cos ^{2}(t)=1 .
$$

As $\boldsymbol{\gamma}$ is unit speed, the normal vector is

$$
\mathbf{n}=\frac{1}{\kappa} \ddot{\boldsymbol{\gamma}}=\left(-\frac{4}{5} \cos (t), \sin (t), \frac{3}{5} \cos (t)\right) .
$$

We can then compute the binormal

$$
\begin{aligned}
\mathbf{b} & =\dot{\boldsymbol{\gamma}} \times \mathbf{n} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\frac{4}{5} \sin (t) & -\cos (t) & \frac{3}{5} \sin (t) \\
-\frac{4}{5} \cos (t) & \sin (t) & \frac{3}{5} \cos (t)
\end{array}\right| \\
& =\left(-\frac{3}{5} \cos ^{2}(t)-\frac{3}{5} \sin ^{2}(t),-\frac{12}{25} \cos (t) \sin (t)+\frac{12}{25} \cos (t) \sin (t),-\frac{4}{5} \sin ^{2}(t)-\frac{4}{5} \cos ^{2}(t)\right) \\
& =\left(-\frac{3}{5}, 0,-\frac{4}{5}\right) .
\end{aligned}
$$

Therefore

$$
\dot{\mathbf{b}}=0,
$$

and we obtain that the torsion is

$$
\tau=-\dot{\mathbf{b}} \cdot \mathbf{n}=0
$$

Figure 2.9: Plot of the curve in example above

2.6 Frenet frame

For a unit speed curve $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ with non-vanishing curvature we computed the triple

$$
\{\dot{\boldsymbol{\gamma}}, \mathbf{n}, \mathbf{b}\} .
$$

We saw that the above is a positive orthonormal basis of \mathbb{R}^{3}. We also used this triple to compute curvature κ and torsion τ of $\boldsymbol{\gamma}$:

$$
\kappa=\|\ddot{\boldsymbol{\gamma}}\|, \quad \tau=-\dot{\mathbf{b}} \cdot \mathbf{n} .
$$

This triple is so important that it has a name.

Definition 2.44: Frenet frame

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be unit speed with $\kappa \neq 0$. The positive orthonormal basis

$$
\{\dot{\gamma}, \mathbf{n}, \mathbf{b}\}
$$

is called Frenet frame of $\boldsymbol{\gamma}$.
We can also define the Frenet frame for regular curves with non-vanishing curvature.

Definition 2.45

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be regular with $\kappa \neq 0$. The Frenet frame of $\boldsymbol{\gamma}$ is defined as the Frenet frame of a unit speed reparametrization $\tilde{\gamma}$ of $\boldsymbol{\gamma}$.

Remark 2.46

We should check that the above definition is well-posed:

- Note that $\tilde{\boldsymbol{\gamma}}$ is unit speed. Moreover the curvature of $\kappa \tilde{\boldsymbol{\gamma}}$ is given by

$$
\kappa^{\tilde{\gamma}}(t)=\kappa^{\gamma}(\phi(t))
$$

for some ϕ diffeomorphism. Therefore $\kappa^{\tilde{\gamma}} \neq 0$ as we are assuming $\kappa^{\gamma} \neq 0$. Therefore the FrenetFrame of $\tilde{\gamma}$ is well defined.

- If $\hat{\boldsymbol{\gamma}}$ is another unit speed reparametrization of $\boldsymbol{\gamma}$, then the Frenet frame generated by $\hat{\boldsymbol{\gamma}}$ coincides with the one generated by $\tilde{\boldsymbol{\gamma}}$. The proof is left as an exercise.

From the Frenet frame we can define the Frenet-Serret equations.

Theorem 2.47: Frenet-Serret equations

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be unit speed with $\kappa \neq 0$. The Frenet-Serret equations are

$$
\begin{aligned}
\ddot{\boldsymbol{\gamma}} & =\kappa \mathbf{n} \\
\dot{\mathbf{n}} & =-\kappa \dot{\boldsymbol{\gamma}}+\tau \mathbf{b} \\
\dot{\mathbf{b}} & =-\tau \mathbf{n}
\end{aligned}
$$

Proof

The first Frenet-Serret equation

$$
\begin{equation*}
\ddot{\boldsymbol{\gamma}}=\kappa \mathbf{n} \tag{2.15}
\end{equation*}
$$

holds by definition of \mathbf{n} and κ. The third Frenet-Serret equation

$$
\begin{equation*}
\dot{\mathbf{b}}=-\tau \mathbf{n} \tag{2.16}
\end{equation*}
$$

holds by Proposition 2.36. Now, recall that in Proposition 2.35 we have proven

$$
\begin{equation*}
\mathbf{b}=\dot{\boldsymbol{\gamma}} \times \mathbf{n}, \quad \mathbf{n}=\mathbf{b} \times \dot{\boldsymbol{\gamma}}, \quad \dot{\boldsymbol{\gamma}}=\mathbf{n} \times \mathbf{b} . \tag{2.17}
\end{equation*}
$$

Differentiating the second equation in (2.17) and using (2.15)-(2.16) we get

$$
\begin{aligned}
\dot{\mathbf{n}} & =\dot{\mathbf{b}} \times \dot{\boldsymbol{\gamma}}+\mathbf{b} \times \ddot{\boldsymbol{\gamma}} \\
& =(-\tau \mathbf{n} \times \dot{\boldsymbol{\gamma}})+\mathbf{b} \times \kappa \mathbf{n} \\
& =\tau(\dot{\boldsymbol{\gamma}} \times \mathbf{n})-\kappa(\mathbf{n} \times \mathbf{b}) \\
& =\tau \mathbf{b}-\kappa \dot{\boldsymbol{\gamma}},
\end{aligned}
$$

where in the last equality we used the first and third equations in (2.17). The above is exactly the second Frenet-Serret equation.

Remark 2.48

We can write the Frenet-Serret ODE sysyem in vectorial form. To this end, introduce the matrix

$$
F:=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & \tau & 0
\end{array}\right) .
$$

It is immediate to check that the Frenet-Serret equations are equivalent to

$$
\left(\begin{array}{c}
\ddot{\gamma} \\
\dot{\mathbf{n}} \\
\dot{\mathbf{b}}
\end{array}\right)=F\left(\begin{array}{c}
\dot{\gamma} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right) .
$$

Important: Summary

Recall that:

1. Curvature κ is defined only for regular curves.
2. Torsion τ is defined only for regular curves with non-vanishing κ.

The two strategies for computing κ and τ are discussed in the diagram in Figure 2.10 below.
Let us conclude the section with an example. We compute the Frenet frame of the helix. As a consequence we obtain curvature and torsion.

Example 2.49: Frenet frame of helix

Consider the helix of radius 1 and rise 1 given by

$$
\boldsymbol{\gamma}(t)=(\cos (t), \sin (t), t),
$$

for $t \in \mathbb{R}$. We now proceed following the diagram at Figure 2.10. We ask the first question:

$$
\text { Is } \gamma \text { unit speed? }
$$

We have that

$$
\dot{\boldsymbol{\gamma}}(t)=(-\sin (t), \cos (t), 1),
$$

and therefore

$$
\|\dot{\boldsymbol{\gamma}}\|=\sqrt{2} .
$$

This shows that $\boldsymbol{\gamma}$ is regular but not unit speed. We ask the second question in the diagram:

$$
\text { Can we find a unit speed reparametrization of } \boldsymbol{\gamma} \text { ? }
$$

Let us try. We compute the arc length of γ starting at $t_{0}=0$

$$
s(t):=\int_{0}^{t}\|\dot{\gamma}(u)\| d u=\sqrt{2} t
$$

regular γ with $\kappa \neq 0$
Figure 2.10: Summary for computing κ and τ for regular curve $\boldsymbol{\gamma}$.

The arc length is invertible with

$$
\psi(t):=s^{-1}(t)=\frac{t}{\sqrt{2}} .
$$

Therefore a unit speed reparametrization of $\boldsymbol{\gamma}$ is given by

$$
\tilde{\boldsymbol{\gamma}}(t):=\boldsymbol{\gamma}(\psi(t))=\left(\cos \left(\frac{t}{\sqrt{2}}\right), \sin \left(\frac{t}{\sqrt{2}}\right), \frac{t}{\sqrt{2}}\right) .
$$

The next step in the diagram is
Compute Frenet frame $\{\dot{\boldsymbol{\gamma}}, \mathbf{n}, \mathbf{b}\}$ and curvature κ, torsion τ
We compute

$$
\begin{aligned}
& \dot{\tilde{\boldsymbol{\gamma}}}(t)=\frac{1}{\sqrt{2}}\left(-\sin \left(\frac{t}{\sqrt{2}}\right), \cos \left(\frac{t}{\sqrt{2}}\right), 1\right) \\
& \ddot{\tilde{\boldsymbol{\gamma}}}(t)=\frac{1}{2}\left(-\cos \left(\frac{t}{\sqrt{2}}\right),-\sin \left(\frac{t}{\sqrt{2}}\right), 0\right)
\end{aligned}
$$

Therefore the curvature is

$$
\kappa(t)=\|\ddot{\tilde{\boldsymbol{\gamma}}}(t)\|=\frac{1}{2} .
$$

From the curvature we obtain the principal normal vector

$$
\mathbf{n}(t)=\frac{1}{\kappa(t)} \ddot{\tilde{\boldsymbol{\gamma}}}(t)=\left(-\cos \left(\frac{t}{\sqrt{2}}\right),-\sin \left(\frac{t}{\sqrt{2}}\right), 0\right) .
$$

We can now compute the binormal

$$
\begin{aligned}
\mathbf{b}(t) & =\dot{\boldsymbol{\gamma}} \times \mathbf{n} \\
& =\frac{1}{\sqrt{2}}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sin \left(\frac{t}{\sqrt{2}}\right) & \cos \left(\frac{t}{\sqrt{2}}\right) & 1 \\
-\cos \left(\frac{t}{\sqrt{2}}\right) & -\sin \left(\frac{t}{\sqrt{2}}\right) & 0
\end{array}\right| \\
& =\frac{1}{\sqrt{2}}\left(\sin \left(\frac{t}{\sqrt{2}}\right),-\cos \left(\frac{t}{\sqrt{2}}\right), 1\right) .
\end{aligned}
$$

We have therefore computed the Frenet frame of $\boldsymbol{\gamma}$. This is given by

$$
\begin{aligned}
& \dot{\tilde{\boldsymbol{\gamma}}}(t)=\frac{1}{\sqrt{2}}\left(-\sin \left(\frac{t}{\sqrt{2}}\right), \cos \left(\frac{t}{\sqrt{2}}\right), 1\right) \\
& \mathbf{n}(t)=\left(-\cos \left(\frac{t}{\sqrt{2}}\right),-\sin \left(\frac{t}{\sqrt{2}}\right), 0\right) \\
& \mathbf{b}(t)=\frac{1}{\sqrt{2}}\left(\sin \left(\frac{t}{\sqrt{2}}\right),-\cos \left(\frac{t}{\sqrt{2}}\right), 1\right) .
\end{aligned}
$$

See below for a picture of the Frenet frame of the helix. Given the Frenet frame, we can compute the torsion via the formula

$$
\tau(t)=-\dot{\mathbf{b}} \cdot \mathbf{n} .
$$

Indeed, we have

$$
\dot{\mathbf{b}}=\frac{1}{2}\left(\cos \left(\frac{t}{\sqrt{2}}\right),-\sin \left(\frac{t}{\sqrt{2}}\right), 0\right)
$$

and therefore

$$
\dot{\mathbf{b}} \cdot \mathbf{n}=\frac{1}{2}\left(-\cos ^{2}\left(\frac{t}{\sqrt{2}}\right)-\sin ^{2}\left(\frac{t}{\sqrt{2}}\right)\right)=-\frac{1}{2} .
$$

The torsion is then

$$
\tau(t)=-\dot{\mathbf{b}} \cdot \mathbf{n}=\frac{1}{2} .
$$

The Frenet-Frame of the unit-speed Helix is plotted in Figure 2.11.

Figure 2.11: Frenet frame of the helix of radius 1 and rise 1.

2.7 Consequences of Frenet-Serret

The most important consequence of the Frenet-Serret equations is that they allow to fully characterize space curves in terms of curvature and torsion. Precisely, the following theorem holds.

Theorem 2.50: Characterization of space curves

Let $\kappa, \tau: \mathbb{R} \rightarrow \mathbb{R}$ be smooth functions, with $\kappa>0$. Then:

1. There exists aunit speed curve $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ such that its curvature κ^{γ} and torsion τ^{γ} satisfy

$$
\kappa^{\boldsymbol{\gamma}}(t)=\kappa(t), \quad \tau^{\gamma}(t)=\tau(t), \quad \forall t \in \mathbb{R} .
$$

2. Suppose that $\tilde{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is a unit speed curve such that its curvature $\tilde{\kappa} \tilde{\gamma}$ and torsion $\tau \tilde{\boldsymbol{\gamma}}$ satisfy

$$
\kappa^{\tilde{\gamma}}(t)=\kappa(t), \quad \tau^{\tilde{\gamma}}(t)=\tau(t), \forall t \in \mathbb{R} .
$$

Then

$$
\tilde{\gamma}=\gamma
$$

up to rotations and translations.
The proof of Theorem 2.50 is omitted, and it can be found in Theorem 2.3.6 in [6].
Theorem 2.50 is a very strong result. It is saying two things:

1. If we prescribe curvature and torsion, then there exists a unit speed curve which has such curvature and torsion.
2. If two unit speed curves have same curvature and torsion, then they must be the same curve, up to translations and rotations.

In other words, curvature and torsion fully characterize space curves. This result is the 3D counterpart of Theorem 2.27, which said that signed curvature characterizes 2D curves.

Example 2.51

In Example 2.43 we have considered the unit speed curve

$$
\boldsymbol{\gamma}(t):=\left(\frac{4}{5} \cos (t), 1-\sin (t),-\frac{3}{5} \cos (t)\right),
$$

for $t \in[0,2 \pi]$. We have computed that

$$
\kappa^{\gamma}=1, \quad \tau^{\gamma}=0 .
$$

If we plot $\boldsymbol{\gamma}$, we clearly see that $\boldsymbol{\gamma}$ is just obtained by translating and rotating a unit circle, see plot below. Theorem 2.50 enables us to rigorously prove this claim. Indeed, consider the unit speed circle

$$
\tilde{\gamma}(t):=(\cos (t), \sin (t), 0),
$$

for $t \in[0,2 \pi]$. In Example 2.42 we have proven that curvature and torsion are

$$
\kappa^{\tilde{\gamma}}=1, \quad \tau^{\tilde{\gamma}}=1 .
$$

Therefore

$$
\kappa^{\gamma}=\kappa^{\tilde{\gamma}}, \quad \tau^{\gamma}=\tau^{\tilde{\gamma}},
$$

and by Theorem 2.50 we conclude that $\boldsymbol{\gamma}$ is equal to $\tilde{\gamma}$ up to rotations and translations.

Figure 2.12: Plot of the curve in example above
Another consequence of the Frenet-Serret equations is that they allow us to finally prove the curvature and torsion formulas given in Proposition 2.19 and Proposition 2.40. For reader's convenience we recall these two results.

Proposition 2.52: Curvature and torsion formulas

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a regular curve. The curvature $\kappa(t)$ of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is given by

$$
\kappa(t)=\frac{\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|}{\|\dot{\boldsymbol{\gamma}}\|^{3}} .
$$

Suppose in addition that $\boldsymbol{\gamma}$ has non-vanishing curvature. The torsion $\tau(t)$ of $\boldsymbol{\gamma}$ at $\boldsymbol{\gamma}(t)$ is given by

$$
\tau(t)=\frac{(\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}) \cdot \dddot{\boldsymbol{\gamma}}}{\|\dot{\boldsymbol{\gamma}} \times \ddot{\boldsymbol{\gamma}}\|^{2}} .
$$

Before proceeding with the proof, we need to establish some notation.
Notation: Compact notation for arc length reparametrization
Suppose $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ is regular and denote by

$$
s:(a, b) \rightarrow(\tilde{a}, \tilde{b}), \quad t \mapsto s(t)
$$

its arc length. We already know that in this case s invertible, with inverse s^{-1} giving a unit speed reparametrization $\tilde{\boldsymbol{\gamma}}:(\tilde{a}, \tilde{b}) \rightarrow \mathbb{R}^{n}$ of $\boldsymbol{\gamma}$, defined by

$$
\tilde{\boldsymbol{\gamma}}=\boldsymbol{\gamma} \circ \psi, \quad \psi:=s^{-1}:(\tilde{a}, \tilde{b}) \rightarrow(a, b)
$$

Sometimes it is more convenient to adopt more compact notation. In the new notation the unit speed reparametrization $\tilde{\boldsymbol{\gamma}}$ is denoted by $\boldsymbol{\gamma}(s)$:

$$
t \mapsto \tilde{\boldsymbol{\gamma}}(t) \quad \rightsquigarrow \quad s \mapsto \boldsymbol{\gamma}(s) .
$$

Thus, the reparametrization is denoted with the same symbol $\boldsymbol{\gamma}$, but this time $\boldsymbol{\gamma}$ is considered as a function of the arc length parameter

$$
s \in(\tilde{a}, \tilde{b})
$$

We will denote:

- The derivative of s by

$$
\frac{d s}{d t}
$$

- The derivative of $\psi=s^{-1}$ by

$$
\frac{d t}{d s}
$$

Moreover:

- The derivative of $\gamma(t)$ is denoted by

$$
\frac{d \gamma}{d t}(t)=\dot{\boldsymbol{\gamma}}(t), \quad t \in(a, b)
$$

- The derivative of $\gamma(s)$ is denoted by

$$
\frac{d \boldsymbol{\gamma}}{d s}(s)=\dot{\boldsymbol{\gamma}}(s), \quad s \in(\tilde{a}, \tilde{b})
$$

We also have new notations for the chain rule:

- The chain rule for $\boldsymbol{\gamma}$ is the old notations is:

$$
\boldsymbol{\gamma}(t)=\tilde{\boldsymbol{\gamma}}(s(t)) \quad \Longrightarrow \quad \dot{\boldsymbol{\gamma}}(t)=\dot{\tilde{\boldsymbol{\gamma}}}(s(t)) \dot{s}(t), \quad t \in(a, b)
$$

In the new notations the above chain rule is written

$$
\frac{d \boldsymbol{\gamma}}{d t}(t)=\frac{d \boldsymbol{\gamma}}{d s}(s(t)) \frac{d s}{d t}(t), \quad t \in(a, b) .
$$

We will often omit the dependence on the point t by writing

$$
\frac{d \boldsymbol{\gamma}}{d s}=\frac{d \boldsymbol{\gamma}}{d t} \frac{d t}{d s}
$$

- The chain rule for the reparametrization $\tilde{\gamma}$ in the old notation is:

$$
\tilde{\boldsymbol{\gamma}}(t)=\boldsymbol{\gamma}(\psi(t)) \quad \Longrightarrow \quad \dot{\tilde{\boldsymbol{\gamma}}}(t)=\dot{\boldsymbol{\gamma}}(\psi(t)) \dot{\psi}(t), \quad t \in(\tilde{a}, \tilde{b}) .
$$

In the new notations the above chain rule is written

$$
\frac{d \boldsymbol{\gamma}}{d s}(s)=\frac{d \boldsymbol{\gamma}}{d t}(\psi(s)) \frac{d t}{d s}(s), \quad s \in(\tilde{a}, \tilde{b}),
$$

since $\dot{\psi}$ is written $d t / d s$ in the new notations. Without dependence on the point s, the above reads

$$
\frac{d \boldsymbol{\gamma}}{d s}=\frac{d \boldsymbol{\gamma}}{d t} \frac{d t}{d s}
$$

Example 2.53: How to use the new notations
Let $\boldsymbol{\gamma}$ and $\tilde{\boldsymbol{\gamma}}$ be as above. We know that $\tilde{\boldsymbol{\gamma}}$ is unit speed. Thus $\boldsymbol{\gamma}(s)$ is unit speed with respect to s, that is,

$$
\begin{equation*}
\|\dot{\boldsymbol{\gamma}}(s)\|=1, \quad \forall s \in(\tilde{a}, \tilde{b}) \tag{2.18}
\end{equation*}
$$

As an exercise, let us check that (2.18) holds, using the new notations. By chain rule we have

$$
\begin{aligned}
\|\dot{\boldsymbol{\gamma}}(s)\| & =\left\|\frac{d \boldsymbol{\gamma}}{d s}(s)\right\| \\
& =\left\|\frac{d \boldsymbol{\gamma}}{d t}(\psi(s))\right\|\left|\frac{d t}{d s}(s)\right| \\
& =\|\dot{\boldsymbol{\gamma}}(\psi(s))\|\left|\frac{d t}{d s}(s)\right| .
\end{aligned}
$$

Now, recall that

$$
\begin{equation*}
\frac{d s}{d t}(t)=\dot{s}(t)=\|\dot{\boldsymbol{\gamma}}(t)\|, \quad \forall t \in(a, b) \tag{2.19}
\end{equation*}
$$

According to the new notations and the inverse function theorem,

$$
\frac{d t}{d s}(s)=\frac{1}{\left(\frac{d s}{d t}(\psi(s))\right)}=\frac{1}{\|\dot{\boldsymbol{\gamma}}(\psi(s))\|}, \quad \forall s \in(\tilde{a}, \tilde{b}),
$$

where we used (2.19) evaluated at $t=\psi(s)$. Thus

$$
\begin{aligned}
\|\dot{\boldsymbol{\gamma}}(s)\| & =\|\dot{\boldsymbol{\gamma}}(\psi(s))\|\left|\frac{d t}{d s}(s)\right| \\
& =\|\dot{\boldsymbol{\gamma}}(\psi(s))\| \frac{1}{\|\dot{\boldsymbol{\gamma}}(\psi(s))\|} \\
& =1
\end{aligned}
$$

concluding (2.18).
Let us highlight the main feature of the above notation.

Important: New Notation!

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ be a regular curve:

1. We denote by

$$
t \mapsto \boldsymbol{\gamma}(t), \quad t \in(a, b)
$$

the given curve $\boldsymbol{\gamma}$.
2. We denote by

$$
s \mapsto \gamma(s), \quad s \in(\tilde{a}, \tilde{b})
$$

the arc length reparametrization of the curve γ. The parameter s is the arc length parameter. In particular $\boldsymbol{\gamma}(s)$ is unit speed with respect to s.

We will heavily rely on the new notations for proving Proposition 2.52.

Proof: Proof of Proposition 2.52
We only prove the formula for κ, as the one for τ can be obtained similarly, just with more calculations. For a proof see Proposition 2.3.1 in [6].
Since $\boldsymbol{\gamma}$ is regular, we can reparametrize $\boldsymbol{\gamma}$ by arc length $s(t)$. We denote the arc lenght reparametrization by $\gamma(s)$. We know that $\boldsymbol{\gamma}(s)$ is unit speed, that is,

$$
\left\|\frac{d \boldsymbol{\gamma}}{d s}\right\|=1 .
$$

Therefore is well define the Frenet frame

$$
\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}, \quad \mathbf{t}(s):=\dot{\boldsymbol{\gamma}}(s)=\frac{d \boldsymbol{\gamma}}{d s}(s) .
$$

The Frenet-Serret equations are

$$
\begin{aligned}
\dot{\mathbf{t}}(s) & =\kappa(s) \mathbf{n}(s) \\
\dot{\mathbf{n}}(s) & =-\kappa(s) \mathbf{t}(s)+\tau(s) \mathbf{b}(s) \\
\dot{\mathbf{b}}(s) & =-\tau(s) \mathbf{n}(s)
\end{aligned}
$$

By chain rule

$$
\frac{d \boldsymbol{\gamma}}{d t}=\frac{d \boldsymbol{\gamma}}{d s} \frac{d s}{d t}=\left(\frac{d s}{d t}\right) \mathbf{t}
$$

Differentiating the above we infer

$$
\begin{aligned}
\frac{d^{2} \boldsymbol{\gamma}}{d t^{2}} & =\frac{d}{d t}\left[\left(\frac{d s}{d t}\right) \mathbf{t}\right] \\
& =\frac{d^{2} s}{d t^{2}} \mathbf{t}+\left(\frac{d s}{d t}\right) \frac{d \mathbf{t}}{d t} .
\end{aligned}
$$

By chain rule we have

$$
\frac{d \mathbf{t}}{d t}=\frac{d \mathbf{t}}{d s} \frac{d t}{d s}
$$

and therefore

$$
\begin{aligned}
\frac{d^{2} \boldsymbol{\gamma}}{d t^{2}} & =\frac{d^{2} s}{d t^{2}} \mathbf{t}+\left(\frac{d s}{d t}\right) \frac{d \mathbf{t}}{d t} \\
& =\frac{d^{2} s}{d t^{2}} \mathbf{t}+\left(\frac{d s}{d t}\right)^{2} \frac{d \mathbf{t}}{d s}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\dot{\boldsymbol{\gamma}}(t) \times \ddot{\boldsymbol{\gamma}}(t) & =\frac{d \boldsymbol{\gamma}}{d t} \times \frac{d^{2} \boldsymbol{\gamma}}{d t^{2}} \\
& =\left(\frac{d s}{d t}\right) \mathbf{t} \times\left[\frac{d^{2} s}{d t^{2}} \mathbf{t}+\left(\frac{d s}{d t}\right)^{2} \frac{d \mathbf{t}}{d s}\right] \\
& =\left[\left(\frac{d s}{d t}\right)\left(\frac{d^{2} s}{d t^{2}}\right) \mathbf{t} \times \mathbf{t}\right]+\left[\left(\frac{d s}{d t}\right)^{3} \mathbf{t} \times \frac{d \mathbf{t}}{d s}\right] \\
& =\left(\frac{d s}{d t}\right)^{3} \mathbf{t} \times \frac{d \mathbf{t}}{d s},
\end{aligned}
$$

since $\mathbf{t} \times \mathbf{t}=0$ by the properties of the cross product. Now we recall that

$$
\frac{d \mathbf{t}}{d s}=\kappa(s) \mathbf{n}(s)
$$

by the first Frenet-Serret equation. Moreover

$$
\frac{d s}{d t}(t)=\|\dot{\boldsymbol{\gamma}}(t)\|^{2}
$$

Therefore

$$
\begin{aligned}
\dot{\boldsymbol{\gamma}}(t) \times \ddot{\boldsymbol{\gamma}}(t) & =\left(\frac{d s}{d t}\right)^{3} \mathbf{t} \times \frac{d \mathbf{t}}{d s} \\
& =\|\dot{\boldsymbol{\gamma}}(t)\|^{3} \kappa(s(t)) \mathbf{t} \times \mathbf{n} \\
& =\|\dot{\boldsymbol{\gamma}}(t)\|^{3} \kappa(s(t)) \mathbf{b},
\end{aligned}
$$

where in the last line we used the definition of \mathbf{b}

$$
\mathbf{b}(s)=\dot{\boldsymbol{\gamma}}(s) \times \mathbf{n}(s)=\mathbf{t}(s) \times \mathbf{n}(s) .
$$

We can now take the norms and obtain

$$
\begin{aligned}
\|\dot{\boldsymbol{\gamma}}(t) \times \ddot{\boldsymbol{\gamma}}(t)\| & =\|\dot{\boldsymbol{\gamma}}(t)\|^{3} \kappa(s(t))\|\mathbf{b}\| \\
& =\|\dot{\boldsymbol{\gamma}}(t)\|^{3} \kappa(s(t))
\end{aligned}
$$

using that $\|\mathbf{b}\|=1$. As $\boldsymbol{\gamma}$ is regular, we can divide by $\|\dot{\boldsymbol{\gamma}}(t)\|^{3}$ and obtain

$$
\kappa(s(t))=\frac{\|\dot{\boldsymbol{\gamma}}(t) \times \ddot{\boldsymbol{\gamma}}(t)\|}{\|\dot{\boldsymbol{\gamma}}(t)\|^{3}}
$$

Recalling that the curvature of $\boldsymbol{\gamma}$ at t is defined as the curvature of $\boldsymbol{\gamma}(s)$ at $s(t)$, we conclude that the above is the desired formula.

We now state and prove two more results which directly follow from the Frenet-Serret equations. They state, respectivley:

1. A curve has torsion $\tau=0$ if and only if it is contained in a plane.
2. A curve has constant curvature and zero torsion if and only if it is part of a circle.

Before proceeding, we recall the following.

Remark 2.54: Equation of a plane

The general equation of a plane π_{d} in \mathbb{R}^{3} is given by

$$
\boldsymbol{\pi}_{d}=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x} \cdot \mathbf{P}=d\right\}
$$

for some vector $\mathbf{P} \in \mathbb{R}^{3}$ and scalar $d \in \mathbb{R}$. Note that:

- If $d=0$, the condition

$$
\mathbf{x} \cdot \mathbf{P}=0
$$

is saying that the plane $\boldsymbol{\pi}_{0}$ contains all the points \mathbf{x} in \mathbb{R}^{3} which are orthogonal to \mathbf{P}. In particular $\boldsymbol{\pi}_{0}$ contains the origin $\mathbf{0}$.

- If $d \neq 0$, then $\boldsymbol{\pi}_{d}$ is the translation of $\boldsymbol{\pi}_{0}$ by the quantity d in direction \mathbf{P}.

In both cases, \mathbf{P} is the normal vector to the plane, as shown in Figure 2.13 below.

Figure 2.13: The plane $\boldsymbol{\pi}_{0}$ is the set of points of \mathbb{R}^{3} orthogonal to \mathbf{P}. The plane $\boldsymbol{\pi}_{d}$ is obtained by translating π_{0} by a quantity d in direction \mathbf{P}.

Proposition 2.55

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be regular and such that $\kappa \neq 0$. They are equivalent:

1. The torsion of $\boldsymbol{\gamma}$ satisfies $\tau(t)=0$ for all $t \in(a, b)$.
2. The image of $\boldsymbol{\gamma}$ is contained in a plane, that is, there exists a vector $\mathbf{P} \in \mathbb{R}^{3}$ and a scalar $d \in \mathbb{R}$ such
that

$$
\boldsymbol{\gamma}(t) \cdot \mathbf{P}=d, \quad \forall t \in(a, b)
$$

Proof

Without loss of generality we can assume that $\boldsymbol{\gamma}$ is unit speed. Indeed, if we were to consider $\tilde{\boldsymbol{\gamma}}$ a unit speed reparametrization of $\boldsymbol{\gamma}$, then

- $\tilde{\gamma}$ would still be contained in the same plane in which $\boldsymbol{\gamma}$ is contained.
- The torsion of $\tilde{\gamma}$ would not change, i.e., it would still be identically zero.

Thefore the Frenet frame of γ exists. We denote it by

$$
\{\dot{\boldsymbol{\gamma}}(t), \mathbf{n}(t), \mathbf{b}(t)\}
$$

Step 1. Suppose that $\tau=0$ for all t. By the Frenet-Serret equations we have

$$
\dot{\mathbf{b}}=-\tau(t) \mathbf{n}=\mathbf{0}
$$

so that $\mathbf{b}(t)$ is constant. As by definition

$$
\mathbf{b}=\dot{\gamma} \times \mathbf{n},
$$

we conclude that the vectors $\dot{\boldsymbol{\gamma}}(t)$ and $\mathbf{n}(t)$ always span the same plane, which has constant normal vector b. Intuition suggests that $\boldsymbol{\gamma}$ should be contained in such plane, see Figure Figure 2.14 below. Indeed, recall that the Frenet frame is orthonormal. Hence

$$
\dot{\boldsymbol{\gamma}} \cdot \mathbf{b}=0, \quad \forall t \in(a, b) .
$$

Then

$$
\frac{d}{d t}(\boldsymbol{\gamma} \cdot \mathbf{b})=\dot{\boldsymbol{\gamma}} \cdot \mathbf{b}+\boldsymbol{\gamma} \cdot \dot{\mathbf{b}}=0, \quad \forall t \in(a, b),
$$

since $\dot{\mathbf{b}}=0$. Thus $\boldsymbol{\gamma} \cdot \mathbf{b}$ is a constant scalar function, meaning that there exists costant $d \in \mathbb{R}$ such that

$$
\boldsymbol{\gamma}(t) \cdot \mathbf{b}=d, \forall t \in(a, b) .
$$

The says that $\boldsymbol{\gamma}$ is contained in a plane.
Step 2. Suppose that $\boldsymbol{\gamma}$ is contained in a plane. Hence there exists $\mathbf{P} \in \mathbb{R}^{3}$ and $d \in \mathbb{R}$ such that

$$
\boldsymbol{\gamma}(t) \cdot \mathbf{P}=d, \quad \forall t \in(a, b) .
$$

We can differentiate the above equation twice to obtain

$$
\dot{\boldsymbol{\gamma}} \cdot \mathbf{P}=0, \quad \ddot{\boldsymbol{\gamma}} \cdot \mathbf{P}=0,
$$

where we used that \mathbf{P} and d are constant. By Frenet-Serret we have

$$
\ddot{\boldsymbol{\gamma}}(t)=\kappa(t) \mathbf{n}(t) .
$$

Therefore the already proven relation $\ddot{\boldsymbol{\gamma}} \cdot \mathbf{P}=0$ implies

$$
\kappa(t) \mathbf{n}(t) \cdot \mathbf{P}=0 .
$$

As we are assuming $\kappa \neq 0$, we deduce that

$$
\mathbf{n}(t) \cdot \mathbf{P}=0, \quad \forall t \in(a, b)
$$

We have shown that $\dot{\boldsymbol{\gamma}}(t)$ and $\mathbf{n}(t)$ are both orthogonal to \mathbf{P}. Since $\mathbf{b}(t)$ is orthogonal to $\dot{\boldsymbol{\gamma}}(t)$ and $\mathbf{n}(t)$, we conclude that $\mathbf{b}(t)$ is parallel to \mathbf{P}. Hence, there exists $\lambda(t) \in \mathbb{R}$ such that

$$
\begin{equation*}
\mathbf{b}(t)=\lambda(t) \mathbf{P} \forall t \in(a, b) . \tag{2.20}
\end{equation*}
$$

Since $\|\mathbf{b}\|=1$ and \mathbf{P} is constant, from (2.20) we conclude that $\lambda(t)$ is constant. Differentiating (2.20) we obtain

$$
\dot{\mathbf{b}}(t)=0, \quad \forall t \in(a, b)
$$

By definition of torsion we thus have

$$
\tau(t)=-\dot{\mathbf{b}} \cdot \mathbf{n}(t)=0, \quad \forall t \in(a, b)
$$

Proposition 2.56

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit speed curve. They are equivalent:

1. The image of $\boldsymbol{\gamma}$ is contained in a circle of radius $1 / c$.
2. The curvature and torsion of $\boldsymbol{\gamma}$ satisfy

$$
\kappa(t)=c, \quad \tau(t)=0, \quad \forall t \in(a, b),
$$

for some constant $c \in \mathbb{R}$.
Proposition 2.56 is actually a consequence of Theorem 2.50, and of the fact that we have computed that for a circle of radius R one has

$$
\kappa=\frac{1}{R}, \quad \tau=0
$$

Therefore, by Theorem 2.50, every unit speed curve $\boldsymbol{\gamma}$ with constant curvature and torsion must be equal to a circle, up to rigid motions.

Nevertheless, we still give a proof of Proposition 2.56, to show yet another application of the Frenet-Serret equations.

Figure 2.14: If \mathbf{b} is constant, then γ lies in the plane spanned by $\dot{\gamma}$ and \mathbf{n}.

Proof

Step 1. Suppose the image of $\boldsymbol{\gamma}$ is contained in a circle of radius $1 / c$. Then, up to a translation, $\boldsymbol{\gamma}$ is parametrized by

$$
\boldsymbol{\gamma}(t)=\left(\frac{1}{c} \cos (t), \frac{1}{c} \sin (t), 0\right)
$$

for t in some interval (\tilde{a}, \tilde{b}). We have already seen that in this case

$$
\kappa=c, \quad \tau=0,
$$

concluding the proof.
Step 2. Suppose that

$$
\kappa(t)=c, \quad \tau(t)=0, \quad \forall t \in(a, b),
$$

for some constant $c \in \mathbb{R}$. Since $\boldsymbol{\gamma}$ is unit speed, its Frenet-Serret equations are:

$$
\begin{aligned}
\ddot{\gamma} & =\kappa \mathbf{n}=c \mathbf{n} \\
\dot{\mathbf{n}} & =-\kappa \dot{\gamma}+\tau \mathbf{b}=-c \dot{\gamma} \\
\dot{\mathbf{b}} & =-\tau \mathbf{n}=0
\end{aligned}
$$

In particular $\dot{\mathbf{b}}=0$ and so \mathbf{b} is a constant vector. As seen in the proof Proposition 2.55, this implies that $\boldsymbol{\gamma}$ is contained in a plane $\boldsymbol{\pi}$ orthogonal to \mathbf{b}, see Figure 2.14. As c is constant we get

$$
\frac{d}{d t}\left(\boldsymbol{\gamma}+\frac{1}{c} \mathbf{n}\right)=\dot{\boldsymbol{\gamma}}+\frac{1}{c} \dot{\mathbf{n}}=\dot{\boldsymbol{\gamma}}-\frac{1}{c} c \dot{\boldsymbol{\gamma}}=0
$$

where we used the second Frenet-Serret equation. Therefore

$$
\boldsymbol{\gamma}(t)+\frac{1}{c} \mathbf{n}(t)=\mathbf{p}, \quad t \in(a, b)
$$

for some constant point $\mathbf{p} \in \mathbb{R}^{3}$. In particular

$$
\|\gamma(t)-\mathbf{p}\|=\left\|-\frac{1}{c} \mathbf{n}(t)\right\|=\frac{1}{c},
$$

since \mathbf{n} is a unit vector. The above shows that $\boldsymbol{\gamma}$ is contained in a sphere of radius $1 / c$ and center \mathbf{p}. In formulas:

$$
\boldsymbol{\gamma}((a, b)) \subset \mathcal{S}:=\left\{\mathbf{x} \in \mathbb{R}^{3}:\|\mathbf{x}-\mathbf{p}\|=1 / c\right\} .
$$

The intersection of \mathcal{S} with the plane π is a circle \mathscr{C} with some radius R. Since

$$
\boldsymbol{\gamma}((a, b)) \subset \boldsymbol{\pi}, \quad \boldsymbol{\gamma}((a, b)) \subset \mathcal{S},
$$

this implies

$$
\begin{equation*}
\boldsymbol{\gamma}((a, b)) \subset \boldsymbol{\pi} \cap \mathcal{S}=\mathscr{C} . \tag{2.21}
\end{equation*}
$$

Thus $\boldsymbol{\gamma}$ parametrizes part of \mathscr{C}. From Step 1 it follows that the curvature and torsion of $\boldsymbol{\gamma}$ must satisfy

$$
\kappa=\frac{1}{R}, \quad \tau=0 .
$$

Since we already know that $\kappa=c$, we conclude that $R=1 / c$. Therefore the circle \mathscr{C} has radius $1 / c$ and the thesis follows by (2.21).

3 Topology

So far we have worked in \mathbb{R}^{n}, where for example we have the notions of open set, continuous function and compact set. Topology is what allows us to extend these notions to arbitrary sets.

Definition 3.1: Topological space

Let X be a set and \mathscr{T} a collection of subsets of X. We say that \mathscr{T} is a topology on X if the following 3 properties hold:

- (A1) We have $\varnothing, X \in \mathscr{T}$,
-(A2) If $\left\{A_{i}\right\}_{i \in I}$ is an arbitrary family of elements of \mathscr{T}, then

$$
\bigcup_{i \in I} A_{i} \in \mathscr{T} .
$$

- (A3) If $A, B \in \mathscr{T}$ then

$$
A \cap B \in \mathscr{T} .
$$

Further, we say:

- The pair (X, \mathscr{T}) is a topological space.
- The elements of X are called points.
- The sets in the topology \mathscr{T} are called open sets.

Remark 3.2

The intersection property of \mathscr{T}, Property $\left(\mathrm{A}_{3}\right)$ in Definition 3.1, is equivalent to the following:

- ($\mathrm{A}_{3}{ }^{\prime}$) If $A_{1}, \ldots, A_{M} \in \mathscr{T}$ for some $M \in \mathbb{N}$, then

$$
\bigcap_{n=1}^{M} A_{n} \in \mathscr{T} .
$$

The equivalence between $\left(\mathrm{A}_{3}\right)$ and $\left(\mathrm{A}_{3}{ }^{\prime}\right)$ can be immediately obtained by induction.

Warning

Notice:

- The union property (A 2) of \mathscr{T} holds for an arbitrary number of sets, even uncountable!
- The intersection property $\left(\mathrm{A}_{3}{ }^{\prime}\right)$ of \mathscr{T} holds only for a finite number of sets.

There are two main examples of topologies that one should always keep in mind. These are:

- Trivial topology: The topology with the smallest possible number of sets.
- Discrete topology: The topology with the highest possible number of sets.

Definition 3.3: Trivial topology

Let X be a set. The trivial topology on X is the topology \mathscr{T} defined by

$$
\mathscr{T}:=\{\varnothing, X\} .
$$

Let us check that \mathscr{T} is indeed a topology. We need to verify the 3 properties of a topology:

- (A1) We clearly have $\varnothing, X \in \mathscr{T}$.
- (A2) The only non-trivial union to check is the one between \varnothing and X. We have

$$
\varnothing \cup X=X \in \mathscr{T} .
$$

- (A3) The only non-trivial intersection to check is the one between \varnothing and X. We have

$$
\varnothing \cap X=\varnothing \in \mathscr{T} .
$$

Therefore \mathscr{T} is a topology on X.

Definition 3.4: Discrete topology

Let X be a set. The discrete topology on X is the topology \mathscr{T} defined by

$$
\mathscr{T}:=\{A: A \subseteq X\},
$$

that is, every subset of X is open.
Let us check that \mathscr{T} is a topology:

- (A1) We have $\varnothing, X \in \mathscr{T}$, since \varnothing and X are subsets of X.
- (A2) The arbitrary union of subsets of X is still a subset of X. Therefore

$$
\bigcup_{i \in I} A_{i} \in \mathscr{T},
$$

whenever $A_{i} \in \mathscr{T}$ for all $i \in I$.

- (A3) The intersection of two subsets of X is still a subset of X. Therefore

$$
A \cap B \in \mathscr{T}
$$

whenever $A, B \in \mathscr{T}$.
Therefore \mathscr{T} is a topology on X.

We anticipated that topology is the extension of familiar concepts of open set, continuity, etc. that we have in \mathbb{R}^{n}. Let us see how the usual definition of open set of \mathbb{R}^{n} can fit in our new abstract framework of topology.

Definition 3.5: Open set of \mathbb{R}^{n}

Let $A \subseteq \mathbb{R}^{n}$. We say that the set A is open if it holds:

$$
\begin{equation*}
\forall \mathbf{x} \in A, \exists r>0 \text { s.t. } B_{r}(\mathbf{x}) \subseteq A, \tag{3.1}
\end{equation*}
$$

where $B_{r}(\mathbf{x})$ is the ball of radius $r>0$ centered at \mathbf{x}

$$
B_{r}(\mathbf{x}):=\left\{\mathbf{y} \in \mathbb{R}^{n}:\|\mathbf{y}-\mathbf{x}\|<r\right\}
$$

and the Euclidean norm of $\mathbf{x} \in \mathbb{R}^{n}$ is defined by

$$
\|\mathbf{x}\|:=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} .
$$

See Figure 3.1 for a schematic picture of an open set.

Definition 3.6: Euclidean topology of \mathbb{R}^{n}

The Euclidean topology on \mathbb{R}^{n} is the topology \mathscr{T} defined by

$$
\mathscr{T}:=\left\{A: A \subseteq \mathbb{R}^{n}, A \text { is open }\right\} .
$$

We need to check that the above definition is well-posed, in the sense that we have to prove that \mathscr{T} is a topology on \mathbb{R}^{n}.

Figure 3.1: The set $A \subseteq \mathbb{R}^{n}$ is open if for every $\mathbf{x} \in A$ there exists $r>0$ such that $B_{r}(\mathbf{x}) \subseteq A$.

Proof: Well-posedness of Definition 3.6
Let us check that \mathscr{T} is a topology on \mathbb{R}^{n} :

- (A1) We have $\varnothing, \mathbb{R}^{n} \in \mathscr{T}$: Indeed \varnothing is open because there is no point \mathbf{x} for which (3.1) needs to be checked. Moreover \mathbb{R}^{n} is open because (3.1) holds with any radius $r>0$.
- (A2) Let $A_{i} \in \mathscr{T}$ for all $i \in I$ and define the union set

$$
A:=\bigcup_{i \in I} A_{i} .
$$

We need to check that A is open. Let $\mathbf{x} \in A$. By definition of union, there exists an index $i_{0} \in I$ such that $\mathbf{x} \in A_{i_{0}}$. Since $A_{i_{0}}$ is open, by (3.1) there exists $r>0$ such that $B_{r}(\mathbf{x}) \subseteq A_{i_{0}}$. As $A_{i_{0}} \subseteq A$, we conclude that $B_{r}(\mathbf{x}) \subseteq A$. Thus A is open and $A \in \mathscr{T}$.

- (A3) Let $A, B \in \mathscr{T}$. We need to check that $A \cap B$ is open. Let $\mathbf{x} \in A \cap B$. Therefore $\mathbf{x} \in A$ and $\mathbf{x} \in B$. Since A and B are open, by (3.1) there exist $r_{1}, r_{2}>0$ such that $B_{r_{1}}(\mathbf{x}) \subseteq A$ and $B_{r_{2}}(\mathbf{x}) \subseteq B$. Set $r:=\min \left\{r_{1}, r_{2}\right\}$. Then

$$
B_{r}(\mathbf{x}) \subseteq B_{r_{1}}(\mathbf{x}) \subseteq A, \quad B_{r}(\mathbf{x}) \subseteq B_{r_{2}}(\mathbf{x}) \subseteq B
$$

Hence $B_{r}(\mathbf{x}) \subseteq A \cap B$, showing that $A \cap B$ open, so that $A \cap B \in \mathscr{T}$.
This proves that \mathscr{T} is a topology on \mathbb{R}^{n}.
Let us make a basic bus useful observation: balls in \mathbb{R}^{n} are open for the Euclidean topology.

Proposition 3.7

Let \mathbb{R}^{n} be equipped with \mathscr{T} the Euclidean topology. Let $r>0$ and $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
B_{r}(\mathbf{x}) \in \mathscr{T} .
$$

Proof

We need to shown that $B_{r}(\mathbf{x})$ satisfies (3.1). Therefore, let $\mathbf{y} \in B_{r}(\mathbf{x})$. In particular

$$
\begin{equation*}
\|\mathbf{x}-\mathbf{y}\|<r . \tag{3.2}
\end{equation*}
$$

Define

$$
\varepsilon:=r-\|\mathbf{x}-\mathbf{y}\| .
$$

Note that $\varepsilon>0$ by (3.2). We claim that

$$
\begin{equation*}
B_{\varepsilon}(\mathbf{y}) \subseteq B_{r}(\mathbf{x}), \tag{3.3}
\end{equation*}
$$

see Figure 3.2. Indeed, let $\mathbf{z} \in B_{\varepsilon}(\mathbf{y})$. By triangle inequality we have

$$
\|\mathbf{z}-\mathbf{x}\| \leq\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\|<\|\mathbf{x}-\mathbf{y}\|+\varepsilon=r
$$

where we used that $\|\mathbf{y}-\mathbf{z}\|<\varepsilon$ and the definition of ε. Hence $\mathbf{z} \in B_{r}(\mathbf{x})$, proving (3.3). This proves that $B_{r}(\mathbf{x})$ satisfies (3.1), and is therefore open.

3.1 Closed sets

The opposite of open sets are closed sets.

Definition 3.8: Closed set

Let (X, \mathscr{T}) be a topological space. A set $C \subseteq X$ is closed if

$$
C^{c} \in \mathscr{T},
$$

where $C^{c}:=X \backslash C$ is the complement of C in X.
In words, a set is closed if its complement is open.

Figure 3.2: The ball $B_{\varepsilon}(\mathbf{y})$ is contained in $B_{r}(\mathbf{x})$ if $\varepsilon:=r-\|\mathbf{x}-\mathbf{y}\|$.

Warning

There are sets which are neither open nor closed. For example consider \mathbb{R} equipped with Euclidean topology. Then the interval

$$
A:=[0,1)
$$

is neither open nor closed.
For the moment we do not have the tools to prove this. We will have them shortly.
We could have defined a topology starting from closed sets. We would have had to replace the properties (A_{1})-$\left(\mathrm{A}_{2}\right)-\left(\mathrm{A}_{3}\right)$ with suitable properties for closed sets. Such properties are detailed in the following proposition.

Proposition 3.9

Let (X, \mathscr{T}) be a topological space. Properties $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{2}\right)-\left(\mathrm{A}_{3}\right)$ of \mathscr{T} are equivalent to $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{2}\right)-\left(\mathrm{C}_{3}\right)$, where

- (C1) \varnothing, X are closed.
- (C2) If C_{i} is closed for all $i \in I$, then

$$
\bigcap_{i \in I} C_{i}
$$

is closed.

- (C3) If C_{1}, C_{2} are closed then

$$
C_{1} \cup C_{2}
$$

is closed.

Proof

We have 3 points to check:

- The equivalence between $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{C}_{1}\right)$ is clear, since

$$
\varnothing^{c}=X, \quad X^{c}=\varnothing .
$$

- Suppose C_{i} are closed for all $i \in I$. Therefore C_{i}^{c} are open for all $i \in I$. By De Morgan's laws we have that

$$
\left(\bigcap_{i \in I} C_{i}\right)^{c}=\bigcup_{i \in I} C_{i}^{c}
$$

showing that

$$
\bigcap_{i \in I} C_{i} \text { is closed } \Longleftrightarrow \bigcup_{i \in I} C_{i}^{c} \text { is open. }
$$

Therefore (A2) and (C2) are equivalent.

- Suppose C_{1}, C_{2} are closed. Therefore C_{1}^{c}, C_{2}^{c} are open. By De Morgan's laws we have that

$$
\left(C_{1} \cup C_{2}\right)^{c}=C_{1}^{c} \cap C_{2}^{c}
$$

showing that

$$
C_{1} \cup C_{2} \text { is closed } \quad \Longleftrightarrow \quad C_{1}^{c} \cap C_{2}^{c} \text { is open. }
$$

Therefore $\left(\mathrm{A}_{3}\right)$ and $\left(\mathrm{C}_{3}\right)$ are equivalent.
As a consequence of the above proposition, we can define a topology by declaring what the closed sets are. We then need to verify that $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{2}\right)-\left(\mathrm{C}_{3}\right)$ are satisfied by such topology. Let us make an example.

Example 3.10: The Zariski topology

Let $(\mathbb{K},+, \cdot)$ be a field. Define

$$
X:=\mathbb{K}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in \mathbb{K}\right\} .
$$

Consider the set of polynomials with coefficients in the field

$$
\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]
$$

Therefore $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ has the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n},
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are given elements of \mathbb{K}. For $I \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ define

$$
V(I):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{K}^{n}: f\left(a_{1}, \ldots, a_{n}\right)=0, \forall f \in I\right\} .
$$

Define

$$
\mathscr{C}:=\left\{V(I): I \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\right\} .
$$

Then \mathscr{C} satisfies $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{3}\right)$. This is an easy check, and is left as exercise. \mathscr{C} is called the Zariski Topology on the field \mathbb{K}^{n}. This is used in algebraic geometry to study Affine Varieties, an algebraic version of surfaces, see Wikipedia page.

3.2 Comparing topologies

Consider the situation where you have two topologies \mathscr{T}_{1} and \mathscr{T}_{2} on the same set X. We would like to have some notions of comparison between \mathscr{T}_{1} and \mathscr{T}_{2}.

Definition 3.11: Finer and coarser topology

Let X be a set and let $\mathscr{T}_{1}, \mathscr{T}_{2}$ be topologies on X. Suppose that

$$
\mathscr{T}_{2} \subseteq \mathscr{T}_{1} .
$$

We say that:

- \mathscr{T}_{1} is finer than \mathscr{T}_{2}.
- \mathscr{T}_{2} is coarser than \mathscr{T}_{1}.

If it holds

$$
\mathscr{T}_{2} \subsetneq \mathscr{T}_{1},
$$

we say that:

- \mathscr{T}_{1} is strictly finer than \mathscr{T}_{2}.
- \mathscr{T}_{2} is strictly coarser than \mathscr{T}_{1}.

We say that \mathscr{T}_{1} and \mathscr{T}_{2} are the same topology if

$$
\mathscr{T}_{1}=\mathscr{T}_{2} .
$$

Example 3.12

Let X be a set and consider the trivial and discrete topologies

$$
\mathscr{T}_{\text {trivial }}=\{\varnothing, X\}, \quad \mathscr{T}_{\text {discrete }}=\{A: A \subseteq X\} .
$$

Then

$$
\mathscr{T}_{\text {trivial }} \subsetneq \mathscr{T}_{\text {discrete }}
$$

so that $\mathscr{T}_{\text {discrete }}$ is strictly finer than $\mathscr{T}_{\text {trivial }}$.
Another interesting example is given by the cofinite topology on \mathbb{R}. The sets in this topology are open if they are either empty, or coincide with \mathbb{R} with a finite number of points removed.

Example 3.13: Cofinite topology on \mathbb{R}

Consider the following family $\mathscr{T}_{\text {cofinite }}$ of subsets of \mathbb{R}

$$
\mathscr{T}_{\text {cofinite }}:=\left\{U \subseteq \mathbb{R}: U^{c} \text { is finite, or } U^{c}=\mathbb{R}\right\} .
$$

Then $\left(\mathbb{R}, \mathscr{T}_{\text {cofinite }}\right)$ is a topological space, and $\mathscr{T}_{\text {cofinite }}$ is called the cofinite topology. We have that

$$
\mathscr{T}_{\text {cofinite }} \subsetneq \mathscr{T}_{\text {euclidean }} .
$$

Exercise: Show that $\mathscr{T}_{\text {cofinite }}$ is a topology on \mathbb{R} and that $\mathscr{T}_{\text {cofinite }} \subsetneq \mathscr{T}_{\text {euclidean }}$.

3.3 Convergence

We have generalized the notion of open set to arbitrary sets. Next we generalize the notion of convergence of sequences.

Definition 3.14: Convergent sequence

Let (X, \mathscr{T}) be a topological. Consider a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq X$ and a point $x \in X$. We say that x_{n} converges to x_{0} if the following property holds:

$$
\begin{equation*}
\forall U \in \mathscr{T} \text { s.t. } x_{0} \in U, \exists N=N(U) \in \mathbb{N} \text { s.t. } x_{n} \in U, \forall n \geq N . \tag{3.4}
\end{equation*}
$$

Notation

The convergence of x_{n} to x_{0} is denoted by

$$
x_{n} \rightarrow x_{0} \quad \text { or } \quad \lim _{n \rightarrow \infty} x_{n}=x_{0} .
$$

Let us analyze the definition of convergence in the topologies we have encountered so far. We will have that:

- Trivial topology: Every sequence converges to every point.
- Discrete topology: A sequence converges if and only if it is eventually constant.
- Euclidean topology: Topological convergence coincides with classical notion of convergence.

We now precisely state and prove the above claims.

Proposition 3.15: Convergence for trivial topology
Let (X, \mathscr{T}) be topological space, with \mathscr{T} the trivial topology, that is,

$$
\mathscr{T}=\{\varnothing, X\} .
$$

Let $\left\{x_{n}\right\} \subseteq X$ be a sequence and $x_{0} \in X$ a point. Then

$$
x_{n} \rightarrow x_{0} .
$$

Proof

To show that $x_{n} \rightarrow x_{0}$ we need to check that (3.4) holds. Therefore, let $U \in \mathscr{T}$ with $x_{0} \in U$. We have two cases:

- $U=\varnothing$: This case is not possible, since x_{0} cannot be in U.
- $U=X$: Take $N=1$. Since U is the whole space, then $x_{n} \in U$ for all $n \geq 1$.

As these are all the open sets, we conclude that $x_{n} \rightarrow x_{0}$.

Warning

This example is saying that in general the topological limit of a sequence is not unique!

Proposition 3.16: Convergence for discrete topology
Let (X, \mathscr{T}) be topological space, with \mathscr{T} the discrete topology, that is,

$$
\mathscr{T}=\{A: A \subseteq X\} .
$$

Let $\left\{x_{n}\right\} \subseteq X$ be a sequence and $x_{0} \in X$ a point. They are equivalent:

1. $x_{n} \rightarrow x_{0}$.
2. $\left\{x_{n}\right\}$ is eventually constant, that is, there exists $N \in \mathbb{N}$ such that

$$
x_{n}=x_{0}, \quad \forall n \geq N
$$

Proof

Part 1. Assume that $x_{n} \rightarrow x_{0}$.
We have to prove that $\left\{x_{n}\right\}$ is eventually constant. To this end, let

$$
U=\left\{x_{0}\right\} .
$$

Then $U \in \mathscr{T}$. Since $x_{n} \rightarrow x_{0}$, by (3.4) there exists $N \in \mathbb{N}$ such that

$$
x_{n} \in U, \quad \forall n \geq N .
$$

As $U=\left\{x_{0}\right\}$, the above is saying that $x_{n}=x_{0}$ for all $n \geq N$. Hence x_{n} is eventually constant.
Part 2. Assume that x_{n} is eventually equal to x_{0}.
By assumption there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
x_{n}=x_{0}, \quad \forall n \geq N . \tag{3.5}
\end{equation*}
$$

Let $U \in \mathscr{T}$ be an open set such that $x_{0} \in U$. By (3.5) we have that

$$
x_{n} \in U, \quad \forall n \geq N .
$$

Since U was arbitrary, we conclude that $x_{n} \rightarrow x_{0}$.
Before proceeding to examining convergence in the Euclidean topology, let us recall the classical definition of convergence in \mathbb{R}^{n}.

Definition 3.17: Classical convergence in \mathbb{R}^{n}

Let $\left\{\mathbf{x}_{n}\right\} \subseteq \mathbb{R}^{n}$ and $\mathbf{x}_{0} \in \mathbb{R}^{n}$. We say that \mathbf{x}_{n} converges \mathbf{x}_{0} in the classical sense if

$$
\lim _{n \rightarrow \infty}\left\|\mathbf{x}_{n}-\mathbf{x}_{0}\right\|=0
$$

The above is equivalent to: For all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left\|\mathbf{x}_{n}-\mathbf{x}_{0}\right\|<\varepsilon, \quad \forall n \geq N .
$$

Proposition 3.18: Convergence for Euclidean topology

Let \mathbb{R}^{n} be equipped with \mathscr{T} the Euclidean topology. Let $\left\{\mathbf{x}_{n}\right\} \subseteq \mathbb{R}^{n}$ be a sequence and $\mathbf{x}_{0} \in \mathbb{R}^{n}$ a point. They are equivalent:

1. $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ with respect to \mathscr{T}.
2. $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ in the classical sense.

Proof

Part 1. Assume $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ with respect to \mathscr{T}.
Fix $\varepsilon>0$ and consider the set

$$
U:=B_{\varepsilon}\left(\mathbf{x}_{0}\right) .
$$

By Proposition 3.7 we know that $U \in \mathscr{T}$. Moreover $\mathbf{x}_{0} \in U$. By the convergence $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ with respect to \mathscr{T}, there exists $N \in \mathbb{N}$ such that

$$
\mathbf{x}_{n} \in U, \quad \forall n \geq N
$$

As $U=B_{\varepsilon}\left(\mathbf{x}_{0}\right)$, the above reads

$$
\left\|\mathbf{x}_{n}-\mathbf{x}_{0}\right\|<\varepsilon, \quad \forall n \geq N
$$

showing that $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ in the classical sense.
Part 2. Assume $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ in the classical sense.

Let $U \in \mathscr{T}$ be such that $\mathbf{x}_{0} \in U$. By definition of Euclidean topology, this means that there exists $r>0$ such that

$$
B_{r}\left(\mathbf{x}_{0}\right) \subseteq U .
$$

As $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ in the classical sense, there exists $N \in \mathbb{N}$ such that

$$
\left\|\mathbf{x}_{n}-\mathbf{x}_{0}\right\|<r, \quad \forall n \geq N
$$

The above is equivalent to

$$
\mathbf{x}_{n} \in B_{r}\left(\mathbf{x}_{0}\right), \quad \forall n \geq N
$$

Since $B_{r}\left(\mathbf{x}_{0}\right) \subseteq U$, we have proven that

$$
\mathbf{x}_{n} \in U, \quad \forall n \geq N
$$

Since U is arbitrary, we conclude that $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ with respect to \mathscr{T}.

Notation

Since classical convergence in \mathbb{R}^{n} agrees with topological convergence with respect to \mathscr{T}, we will just say that $\mathbf{x}_{n} \rightarrow \mathbf{x}_{0}$ in \mathbb{R}^{n} without ambiguity.

We conclude with a useful proposition which relates convergences when multiple topologies are present.

Proposition 3.19

Let X be a set and $\mathscr{T}_{1}, \mathscr{T}_{2}$ be topologies on X. Suppose that

$$
\mathscr{T}_{2} \subseteq \mathscr{T}_{1} .
$$

Let $\left\{x_{n}\right\} \subset X$ and $x_{0} \in X$. We have

$$
x_{n} \rightarrow x_{0} \text { in } \mathscr{T}_{1} \quad \Longrightarrow \quad x_{n} \rightarrow x_{0} \text { in } \mathscr{T}_{2}
$$

Proof

Assume $x_{n} \rightarrow x_{0}$ in \mathscr{T}_{1}. We need to prove that $x_{n} \rightarrow x_{0}$ in \mathscr{T}_{2}. Therefore, let $U \in \mathscr{T}_{2}$ be such that $x_{0} \in U$. Since $\mathscr{T}_{2} \subseteq \mathscr{T}_{1}$, we have that $U \in \mathscr{T}_{1}$. As $x_{n} \rightarrow x_{0}$ in \mathscr{T}_{1}, there exists $N \in \mathbb{N}$ such that

$$
x_{n} \in U, \quad \forall n \geq N
$$

Since $U \in \mathscr{T}_{2}$, the above proves $x_{n} \rightarrow x_{0}$ in \mathscr{T}_{2}.

3.4 Metric spaces

We will now define a class of topological spaces known as metric spaces.

Definition 3.20: Distance

Let X be a set. A distance on X is a function

$$
d: X \times X \rightarrow \mathbb{R}
$$

such that, for all $x, y, z \in X$ they hold:

- (M1) Positivity: The distance is non-negative

$$
d(x, y) \geq 0
$$

Moreover

$$
d(x, y)=0 \quad \Longleftrightarrow x=y .
$$

- (M2) Symmetry: The distance is symmetric

$$
d(x, y)=d(y, x)
$$

- (M3) Triangle Inequality: It holds

$$
d(x, z) \leq d(x, y)+d(y, z) .
$$

Definition 3.21: Metric space

Let X be a set and $d: X \times X \rightarrow \mathbb{R}$ be a distance on X. We say that the pair (X, d) is a metric space.
Example 3.22: \mathbb{R}^{n} as metric space
The Euclidean norm naturally induces a distance over \mathbb{R}^{n} by setting

$$
d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\| .
$$

Then $\left(\mathbb{R}^{n}, d\right)$ is a metric space.
It is trivial to check that the Euclidean distance satisfies (M1) and (M2). To show (M3), recalling the triangle inequality in \mathbb{R}^{n} :

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|,
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Using the above we obtain

$$
\begin{aligned}
d(\mathbf{x}, \mathbf{y}) & =\|\mathbf{x}-\mathbf{y}\| \\
& =\|(\mathbf{x}-\mathbf{z})+(\mathbf{z}-\mathbf{y})\| \\
& \leq\|\mathbf{x}-\mathbf{z}\|+\|\mathbf{z}-\mathbf{y}\| \\
& =d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y}),
\end{aligned}
$$

proving that d satisfies $\left(\mathrm{M}_{3}\right)$. This prove that $\left(\mathbb{R}^{n}, d\right)$ is a metric space.

Example 3.23: p-distance on \mathbb{R}^{n}

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $p \in[1, \infty)$ define

$$
d_{p}(\mathbf{x}, \mathbf{y}):=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Note that d_{2} coincides with the Euclidean distance. For $p=\infty$ we set

$$
d_{\infty}(\mathbf{x}, \mathbf{y}):=\max _{i=1 \ldots, n}\left|x_{i}-y_{i}\right|
$$

We have that $\left(\mathbb{R}^{n}, d_{p}\right)$ is a metric space.
Indeed properties (M1)-(M2) hold trivially. The triangle inequality is also trivially satisfied by d_{∞}. We are left with checking the triangle inequality for d_{p} with $p \geq 1$. To this end, define

$$
\|\mathbf{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Minkowski's inequality, see Wikipedia page, states that

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Therefore

$$
\begin{aligned}
d_{p}(\mathbf{x}, \mathbf{y}) & =\|\mathbf{x}-\mathbf{y}\|_{p} \\
& =\|(\mathbf{x}-\mathbf{z})+(\mathbf{z}-\mathbf{y})\|_{p} \\
& \leq\|\mathbf{x}-\mathbf{z}\|_{p}+\|\mathbf{z}-\mathbf{y}\|_{p} \\
& =d_{p}(\mathbf{x}, \mathbf{z})+d_{p}(\mathbf{z}, \mathbf{y})
\end{aligned}
$$

proving that d_{p} satisfies $\left(\mathrm{M}_{3}\right)$. Hence $\left(\mathbb{R}^{n}, d_{p}\right)$ is a metric space.

A metric d on a set X naturally induces a topology which is compatible with the metric.

Definition 3.24: Topology induced by the metric
Let (X, d) be a metric space. We define the topology \mathscr{T}_{d} induced by the metric d as the collection of sets $U \subseteq X$ that satisfy the following property:

$$
\forall x \in U, \exists r \in \mathbb{R}, r>0 \text { s.t. } \quad B_{r}(x) \subseteq U,
$$

where $B_{r}(x)$ is the ball centered at x of radius r. This is defined by

$$
B_{r}(x):=\{y \in X: d(x, y)<r\} .
$$

We need to check that the above definition is well-posed, that is, we need to show that \mathscr{T}_{d} is actually a topology on X. The proof follows, line by line, the proof that the Euclidean topology is indeed a topology, see proof immediately below Definition 3.6. This is left as an exercise.

Example 3.25: Topology induced by Euclidean distance
Consider the metric space $\left(\mathbb{R}^{n}, d\right)$ with d the Euclidean distance. Then

$$
\mathscr{T}_{d}=\mathscr{T}_{\text {euclidean }},
$$

where $\mathscr{T}_{\text {euclidean }}$ is the Euclidean topology on \mathbb{R}^{n}.
Exercise: Prove the above statement. It is an immediate consequence of definitions.

Example 3.26: Discrete distance

Let X be a set. Define the function $d: X \times X \rightarrow \mathbb{R}$ by

$$
d(x, y):= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

Then (X, d) is a metric space, and d is called the discrete distance. Moreover

$$
\mathscr{T}_{d}=\mathscr{T}_{\text {discrete }}
$$

where $\mathscr{T}_{\text {discrete }}$ is the discrete topology on X.
Exercise: Prove that (X, d) is a metric space and $\mathscr{T}_{d}=\mathscr{T}_{\text {discrete }}$.
The following proposition tells us that balls in a metric space X are open sets. Moreover balls are the building blocks of all open sets in X. The proof is left as an exercise.

Proposition 3.27

Let (X, d) be a metric space and \mathscr{T}_{d} the topology induced by d. Then:

- For all $x \in X, r>0$ we have $B_{r}(x) \subseteq \mathscr{T}_{d}$.
- $U \in \mathscr{T}_{d}$ if and only if

$$
U=\bigcup_{i \in I} B_{r_{i}}\left(x_{i}\right)
$$

with I family of indices and $x_{i} \in X, r_{i}>0$.

We now define the concept of equivalent metrics.

Definition 3.28: Equivalent metrics
Let X be a set and d_{1}, d_{2} be metrics on X. We say that d_{1} and d_{2} are equivalent if

$$
\mathscr{T}_{d_{1}}=\mathscr{T}_{d_{2}} .
$$

The following proposition gives a sufficent condition for the equivalence of two metrics.

Proposition 3.29

Let X be a set and d_{1}, d_{2} be metrics on X. Suppose that there exists a constant $\alpha>0$ such that

$$
\frac{1}{\alpha} d_{2}(x, y) \leq d_{1}(x, y) \leq \alpha d_{2}(x, y), \quad \forall x, y \in X
$$

Then d_{1} and d_{2} are equivalent metrics.
The proof of Proposition 3.29 is trivial, and is left as an exercise.

Example 3.30

Let $p>1$. The metrics d_{p} and d_{∞} on \mathbb{R}^{n} are equivalent.
This follows from Proposition 3.29 and the estimate

$$
d_{\infty}(\mathbf{x}, \mathbf{y}) \leq d_{p}(\mathbf{x}, \mathbf{y}) \leq n d_{\infty}(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

Warning

If two metrics are equivalent, that does not mean they have the same balls. For example the balls of the metrics d_{1}, d_{2} and d_{∞} on \mathbb{R}^{n} look very different, see Figure 3.3.

Figure 3.3: Balls $B_{r}(0)$ for the metrics d_{2}, d_{∞}, d_{1} in \mathbb{R}^{2}.
We can characterize the convergence of sequences in metric spaces.
Proposition 3.31: Convergence in metric space
Suppose (X, d) is a metric space and denote by \mathscr{T}_{d} the topology induce by d. Let $\left\{x_{n}\right\} \subseteq X$ and $x_{0} \in X$. They are equivalent:

1. $x_{n} \rightarrow x_{0}$ with respect to the topology \mathscr{T}_{d}.
2. $d\left(x_{n}, x_{0}\right) \rightarrow 0$ in \mathbb{R}.
3. For all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
x_{n} \in B_{r}\left(x_{0}\right), \quad \forall n \geq \mathbb{N} .
$$

The proof is similar to the one of Proposition 3.18, and it is left as an exercise.

3.5 Interior, closure and boundary

We now define interior, closure and boundary of a set A contained in a topological space.

Definition 3.32: Interior of a set
Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. The interior of A is the set

$$
\text { Int } A:=\bigcup_{\substack{U \subseteq A \\ U \in \mathscr{T}}} U \text {. }
$$

Remark 3.33

The definition of $\operatorname{Int} A$ is well-posed, since $\varnothing \subseteq A$ and $\varnothing \in \mathscr{T}$. Therefore the union is taken over a non-empty family.

Proposition 3.34

Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. Then Int A is the largest open set contained in A, that is:

1. $\operatorname{Int} A$ is open.
2. $\operatorname{Int} A \subseteq A$.
3. If $V \in \mathscr{T}$ and $V \subseteq A$, then $V \subseteq \operatorname{Int} A$.
4. A is open if and only if

$$
A=\operatorname{Int} A .
$$

Proof

We have:

1. Int A is open, since it is union of open sets, see property (A2).
2. Int $A \subseteq A$, since Int A is union of sets contained in A.
3. Suppose $V \in \mathscr{T}$ and $V \subseteq A$. Therefore

$$
V \subseteq \bigcup_{\substack{U \subseteq A \\ U \in \mathscr{T}}} U=\operatorname{Int} A
$$

4. Suppose that A is open. Then

$$
A \subseteq \bigcup_{\substack{U \subseteq A \\ U \in \mathscr{T}}} U=\operatorname{Int} A
$$

As we already know that $\operatorname{Int} A \subseteq A$, we conclude that $A=\operatorname{Int} A$.
Conversely, suppose that $A=\operatorname{Int} A$. Since $\operatorname{Int} A$ is open, then also A is open.

Definition 3.35: Closure of a set

Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. The closure of A is the set

$$
\bar{A}:=\bigcap_{\substack{A \subseteq C \\ C \text { closed }}} C,
$$

that is, \bar{A} is the intersection of all closed sets containing A.

Remark 3.36

The definition of \bar{A} is well-posed, since $A \subseteq X$, and X is closed. Therefore the intersection is taken over a non-empty family.

Proposition 3.37

Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. Then \bar{A} is the smallest closed set containing A, that is:

1. \bar{A} is closed.
2. $A \subseteq \bar{A}$.
3. If V is closed $A \subseteq V$, then $\bar{A} \subseteq V$.
4. A is closed if and only if

$$
A=\bar{A} .
$$

Proof

We have:

1. \bar{A} is closed, since it is intersection of closed sets, see property $(\mathrm{C} 2)$.
2. $A \subseteq \bar{A}$, since \bar{A} is intersection of sets which contain A.
3. Suppose V is closed and $A \subseteq V$. Therefore

$$
\bar{A}=\bigcap_{\substack{A \subseteq \subseteq C \\ C \text { closed }}} C \subseteq V .
$$

4. Suppose that A is closed. Then

$$
\bar{A}=\bigcap_{\substack{A \subseteq C \\ C \text { closed }}} C \subseteq A,
$$

showing that $\bar{A} \subseteq A$. As we already know that $A \subseteq \bar{A}$, we conclude that $A=\bar{A}$. Conversely, suppose that $A=\bar{A}$. Since \bar{A} is closed, then also A is closed.

Lemma 3.38

Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. They are equivalent:

1. $x_{0} \in \bar{A}$.
2. For every $U \in \mathscr{T}$ such that $x_{0} \in U$, it holds

$$
U \cap A \neq \varnothing .
$$

Proof

We prove the contronominal statement:

$$
x_{0} \notin \bar{A} \quad \Longleftrightarrow \quad \exists U \in \mathscr{T} \text { s.t. } x_{0} \in U, U \cap A=\varnothing \text {. }
$$

Let us check the two implications hold:

- Suppose $x_{0} \notin \bar{A}$. Then $x_{0} \in U:=(\bar{A})^{c}$. Note that U is open, since $U^{c}=\bar{A}$ is closed. We have

$$
A \cap U=A \cap(\bar{A})^{c}=\varnothing,
$$

since $A \subseteq \bar{A}$.

- Assume there exists $U \in \mathscr{T}$ such that $x_{0} \in U$ and $U \cap A=\varnothing$. Therefore $A \subseteq U^{c}$. Since U is open, U^{c} is closed. Then

$$
\bar{A}=\bigcap_{\substack{A \subseteq C \\ C \text { closed }}} C \subseteq U^{c} .
$$

Since $x_{0} \notin U^{c}$, we conclude that $x_{0} \notin \bar{A}$.

Definition 3.39: Boundary of a set
Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. The boundary of A is the set

$$
\partial A:=\bar{A} \backslash \operatorname{Int} A .
$$

Proposition 3.40

Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. Then ∂A is closed.

Proof

We can write

$$
\partial A=\bar{A} \backslash \operatorname{Int} A=\bar{A} \cap(\operatorname{Int} A)^{c} .
$$

Note that \bar{A} is closed and $(\operatorname{Int} A)^{c}$ is closed, since $\operatorname{Int} A$ is open. Then ∂A is intersection of two closed sets, and in hence closed by (C2).

We can characterize \bar{A} as the set of limit points of sequences in A.

Definition 3.41

Let (X, \mathscr{T}) be a topological space and $A \subseteq X$. The set of limit points of A is defined as

$$
L(A):=\left\{x \in X: \exists\left\{x_{n}\right\} \subseteq A \text { s.t. } x_{n} \rightarrow x\right\} .
$$

Proposition 3.42

Let $(\underline{X}, \mathscr{T})$ be a topological space and $A \subseteq X$ a set. Let $\left\{x_{n}\right\} \subseteq A$ and $x_{0} \in X$ be such that $x_{n} \rightarrow x_{0}$. Then $x_{0} \in \bar{A}$. Therefore

$$
L(A) \subseteq \bar{A}
$$

Proof

Suppose by contradiction $x_{0} \notin \bar{A}$, so that

$$
x_{0} \in(\bar{A})^{c} .
$$

Since $(\bar{A})^{c}$ is open and $x_{n} \rightarrow x_{0}$, there exists $N \in \mathbb{N}$ such that

$$
x_{n} \in(\bar{A})^{c}, \quad \forall n \geq N .
$$

This is a contradiction, since we were assuming that $\left\{x_{n}\right\} \subseteq A$. This shows $x_{0} \in \bar{A}$ and therefore $L(A) \subseteq \bar{A}$.

Warning

The converse of Proposition 3.42 is false in general, that is,

$$
\bar{A} \not \subset L(A) .
$$

We show a counterexample of the above in Example 3.43. The above relation holds in the so-called first countable topological spaces, such as metric spaces, see Proposition 3.44 below.

Example 3.43: Co-countable topology

Let $X=\mathbb{R}$ with the co-countable topology

$$
\mathscr{T}:=\left\{A \subseteq \mathbb{R}: A^{c}=\mathbb{R} \text { or } A^{c} \text { countable }\right\} .
$$

The set

$$
A=(-\infty, 0]
$$

is not closed and $\bar{A}=\mathbb{R}$. Moreover, convergent sequences in (X, \mathscr{T}) are eventually constant. Therefore $L(A)=A$, showing that $\bar{A} \not \subset L(A)$.

Exercise: Prove all the above statements.
In metric spaces we can characterize the interior of a set and the closure in the following way.

Proposition 3.44

Let (X, d) be a metric space. Denote by \mathscr{T}_{d} the topology induced by d. Let $A \subseteq X$. We have

$$
\begin{equation*}
\operatorname{Int} A=\left\{x \in A: \exists r>0 \text { s.t. } B_{r}(x) \subseteq A\right\} . \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{A}=L(A):=\left\{x \in X \text { s.t. } \exists\left\{x_{n}\right\} \subseteq A \text { s.t. } x_{n} \rightarrow x\right\} . \tag{3.7}
\end{equation*}
$$

Proof

The proof of (3.6) is left as an exercise. Let us prove (3.7). The inclusion $L(A) \subseteq \bar{A}$ holds by Proposition 3.42. We are left to show that

$$
\bar{A} \subseteq L(A)
$$

To this end, let $x_{0} \in \bar{A}$. For $n \in \mathbb{N}$, consider the ball $B_{1 / n}\left(x_{0}\right)$. Since $B_{1 / n}\left(x_{0}\right) \in \mathscr{T}_{d}$ and $x_{0} \in B_{\varepsilon}\left(x_{0}\right)$, we can apply Lemma 3.38 and deduce that

$$
B_{1 / n}\left(x_{0}\right) \cap A \neq \varnothing .
$$

Let $x_{n} \in B_{1 / n}\left(x_{0}\right) \cap A$. Since n was arbitrary, we have constructed a sequence $\left\{x_{n}\right\} \subseteq A$ such that

$$
x_{n} \in B_{1 / n}\left(x_{0}\right), \quad \forall n \in \mathbb{N} .
$$

In particular, we have that

$$
d\left(x_{n}, x_{0}\right)<\frac{1}{n} \rightarrow 0
$$

as $n \rightarrow \infty$. Thus $x_{n} \rightarrow x_{0}$, showning that $x_{0} \in L(A)$.

Example 3.45

Consider \mathbb{R} with the Euclidean topology and $A:=[0,1)$. We have that

$$
\operatorname{Int} A=(0,1), \quad \bar{A}=[0,1], \quad \partial A=\{0,1\} .
$$

In particular

$$
\operatorname{Int} A \neq A, \quad \bar{A} \neq A,
$$

showing that A is neither open, nor closed.
The proof of the above statements is left as an exercise.

3.6 Density

Definition 3.46: Density
Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. We say that A is dense in X if

$$
A \cap U \neq \varnothing, \quad \forall U \in \mathscr{T}, U \neq \varnothing .
$$

Density can be characterized in terms of closure.

Proposition 3.47

Let (X, \mathscr{T}) be a topological space and $A \subseteq X$ a set. They are equivalent:

1. A is dense in X.
2. It holds

$$
\bar{A}=X .
$$

Proof

Part 1. Let A be dense in X. Suppose by contradiction that

$$
\bar{A} \neq X .
$$

This means $(\bar{A})^{c} \neq \varnothing$. Note that $(\bar{A})^{c}$ is open, being \bar{A} closed. By density of A in X we have

$$
A \cap(\bar{A})^{c} \neq \varnothing .
$$

Since $A \subseteq \bar{A}$, the above is a contradiction.

Part 2. Suppose that $\bar{A}=X$. Let $U \in \mathscr{T}$ with $U \neq \varnothing$. By contradiction, assume that

$$
A \cap U=\varnothing
$$

Therefore $A \subseteq U^{c}$. As U^{c} is closed, we have

$$
\bar{A} \subseteq U^{c}
$$

because \bar{A} is the smallest closed set containing A. Recalling that $\bar{A}=X$, we conclude that $U^{c}=X$. Therefore $U=\varnothing$, which is a contradiction.

Example 3.48

Consider \mathbb{R} with the Euclidean topology.

1. We have that the set of integers \mathbb{Z} is closed in \mathbb{R}. Indeed,

$$
\mathbb{Z}^{c}=\bigcup_{z \in \mathbb{Z}}(z, z+1)
$$

Since $(z, z+1)$ is open in \mathbb{R}, by (A2) we conclude that \mathbb{Z}^{c} is open, so that \mathbb{Z} is closed. Therefore

$$
\overline{\mathbb{Z}}=\mathbb{Z}
$$

showing that \mathbb{Z} is not dense in \mathbb{R}.
2. The rational numbers Q are instead dense in \mathbb{R}, as proven in the Analysis module. Therefore

$$
\overline{\mathbb{Q}}=\mathbb{R} .
$$

It is also easy to check that

$$
\operatorname{Int} Q=\varnothing .
$$

Therefore

$$
\operatorname{Int} \mathbb{Q} \neq \mathbb{Q}, \quad \overline{\mathbb{Q}} \neq \mathbb{Q}
$$

showing that \mathbb{Q} is neither open, nor closed.

Example 3.49

Consider \mathbb{R} with the cofinite topology

$$
\mathscr{T}_{\text {cofinite }}:=\left\{U \subset \mathbb{R}: U^{c} \text { is finite, or } U^{c}=\mathbb{R}\right\}
$$

We have that

$$
\overline{\mathbb{Z}}=\mathbb{R},
$$

showing that \mathbb{Z} is dense in \mathbb{R}.
Proof. Suppose C is a closed set such that $\mathbb{Z} \subseteq C$. By definition of $\mathscr{T}_{\text {cofinite }}$ we have $C=\mathbb{R}$ or C finite. Since $\mathbb{Z} \subseteq C$ and \mathbb{Z} is not finite, we conclude $C=\mathbb{R}$. This proves that \mathbb{R} is the only closed set containing \mathbb{Z}, and so $\overline{\mathbb{Z}}=\mathbb{R}$.

3.7 Hausdorff spaces

Hausdorff space are topological spaces in which points can be separated by means of disjoint open sets.

Definition 3.50

Let (X, \mathscr{T}) be a topological space. We say that X is a Hausdorff space if for every two points $x, y \in X$ with $x \neq y$ there exist $U, V \in \mathscr{T}$ such that

$$
x \in U, \quad y \in V, \quad U \cap V=\varnothing .
$$

The main example of Hausdorff spaces are metrizable spaces.

Proposition 3.51

Let (X, d) be a metric space with \mathscr{T}_{d} the topology induced by d. Then $\left(X, \mathscr{T}_{d}\right)$ is a Hausdorff space.

Proof

Let $x, y \in X$ with $x \neq y$. Set

$$
\varepsilon:=\frac{1}{2} d(x, y) \text {, }
$$

and define

$$
U:=B_{\varepsilon}(x), \quad V:=B_{\varepsilon}(y) .
$$

By Proposition 3.27 we know that $U, V \in \mathscr{T}_{d}$. Moreover $x \in U, y \in V$. We are left to show that

$$
U \cap V=\varnothing
$$

Suppose by contradiction that $U \cap V \neq \varnothing$ and let $z \in U \cap V$. Therefore

$$
d(x, z)<\varepsilon, \quad d(y, z)<\varepsilon .
$$

By triangle inequality we have

$$
d(x, y) \leq d(x, z)+d(y, z)<\varepsilon+\varepsilon=d(x, y)
$$

where in the last inequality we used the definition of ε. This is a contradiction. Therefore $U \cap V=\varnothing$ and $\left(X, \mathscr{T}_{d}\right)$ is Hausdorff.

In general, every metrizable space is Hausdorff.

Definition 3.52: Metrizable space

Let (X, \mathscr{T}) be a topological space. We say that the topology \mathscr{T} is metrizable if there exists a metric d on X such that

$$
\mathscr{T}=\mathscr{T}_{d},
$$

with \mathscr{T}_{d} the topology induced by d.

Corollary 3.53

Let (X, \mathscr{T}) be a metrizable space. Then X is Hausforff.

Proof

Since (X, \mathscr{T}) is metrizable, there exists a metric d on X such that

$$
\mathscr{T}=\mathscr{T}_{d} .
$$

By Proposition 3.51 we know that $\left(X, \mathscr{T}_{d}\right)$ is Hausdorff. Hence (X, \mathscr{T}) is Hausdorff.
As a conseuqence of Corollary 3.53 we have that spaces which are not metrizable are not Hausdorff. Let us make a few examples.

Example 3.54: Trivial topology is not Hausdorff

Let (X, \mathscr{T}) be a topological space with \mathscr{T} trivial topology. Assume that X has more than one element. Then X is not Hausdorff.

Indeed, let $x, y \in X$ with $x \neq y$. Suppose by contradiction that X is Hausdorff. Then there exist $U, V \in \mathscr{T}$ such that

$$
x \in U, \quad y \in V, \quad U \cap V=\varnothing .
$$

Recall that

$$
\mathscr{T}=\{\varnothing, X\} .
$$

Since $x \in U$ and $y \in V$, we deduce that U and V are non-empty. Since U and V are open, the only possibility is that

$$
U=V=X
$$

In this case we have

$$
U \cap V=X \cap X=X \neq \varnothing,
$$

leading to a contradiciton. Hence X is not Hausdorff.

Example 3.55: Cofinite topology on \mathbb{R}

Consider the following family \mathscr{T} of subsets of \mathbb{R}

$$
\mathscr{T}:=\left\{U \subseteq \mathbb{R}: U^{c} \text { is finite, or } U^{c}=\mathbb{R}\right\}
$$

Then $(\mathbb{R}, \mathscr{T})$ is a topological space which is not Hausdorff. The topology \mathscr{T} is called the cofinite topology.

Exercise: Show that $(\mathbb{R}, \mathscr{T})$ is not Hausdorff.

Example 3.56

Consider the following family \mathscr{T} of subsets of \mathbb{R}

$$
\mathscr{T}:=\{U=(-\infty, a): \quad-\infty \leq a \leq \infty\} .
$$

Then $(\mathbb{R}, \mathscr{T})$ is a topological space which is not Hausdorff.
We start by showing that $(\mathbb{R}, \mathscr{T})$ is a topological space. We need to check the properties of topologies:

- (A1) We have that

$$
(\infty, \infty)=\varnothing \in \mathscr{T}, \quad(-\infty, \infty)=\mathbb{R} \in \mathscr{T} .
$$

-(Az) Suppose that $A_{i} \in \mathscr{T}$ for all $i \in I$. By definition

$$
A_{i}=\left(-\infty, a_{i}\right), \quad-\infty \leq a_{i} \leq \infty .
$$

Set

$$
a:=\sup _{i \in I} a_{i}, \quad A:=(-\infty, a)
$$

Note that a always exists, and possibly $a=\infty$. Moreover $A \in \mathscr{T}$. We claim

$$
\begin{equation*}
A=\bigcup_{i \in I} A_{i} . \tag{3.8}
\end{equation*}
$$

To prove (3.8) first suppose that $x \in A$. Then $x<a$. Set $\varepsilon:=a-x$, so that $\varepsilon>0$. By definition of supremum there exists $i_{0} \in I$ such that

$$
a-\varepsilon<a_{i_{0}} .
$$

From the above, and from the definition of ε, we deduce

$$
a_{i_{0}}>a-\varepsilon=a-a+x=x,
$$

showing that $x \in\left(-\infty, a_{i_{0}}\right)=A_{i_{0}}$. Therefore

$$
A \subseteq \bigcup_{i \in I} A_{i} .
$$

Conversely, assume that $x \in \cup_{i \in I} A_{i}$. Therefore there exists $i_{0} \in I$ such that $x \in A_{i_{0}}=$ $\left(-\infty, a_{i_{0}}\right)$. In particular

$$
x<a_{i_{0}} \leq \sup _{i \in I} a_{i}=a
$$

showing that $x \in(-\infty, a)=A$. Therefore

$$
\bigcup_{i \in I} A_{i} \subseteq A
$$

and (3.8) is proven.

- (A3) Let $A, B \in \mathscr{T}$. Therefore

$$
A=(-\infty, a), \quad B=(-\infty, b),
$$

for some $a, b \in[-\infty, \infty]$. Set

$$
U:=A \cap B, \quad z:=\min \{a, b\} .
$$

It is immediate to check that

$$
U=(-\infty, z)
$$

showing that $U \in \mathscr{T}$.
Therefore $(\mathbb{R}, \mathscr{T})$ is a topological space. We now show that $(\mathbb{R}, \mathscr{T})$ is not Hausdorff. Suppose by contradiction that $(\mathbb{R}, \mathscr{T})$ is Hausdorff. Let $x, y \in \mathbb{R}$ with $x \neq y$. By assumption there exist $U, V \in \mathscr{T}$ such that

$$
x \in U, \quad y \in V, \quad U \cap V=\varnothing .
$$

By definition of \mathscr{T} there exist $a, b \in[-\infty, \infty]$ such that

$$
U=(-\infty, a), \quad V=(-\infty, b)
$$

Since $x \in U$ and $y \in V$, in particular U and V are non-empty. Therefore $a, b>-\infty$. Set

$$
z:=\min \{a, b\}, \quad Z:=U \cap V=(-\infty, z) .
$$

As $a, b>-\infty$, we have $z>-\infty$. Therefore $Z \neq \varnothing$. This is a contradiction, since $U \cap V=\varnothing$. Therefore $(\mathbb{R}, \mathscr{T})$ is not Hausdorff.

In Hausdorff spaces the limit of a sequence is unique.

Proposition 3.57: Uniqueness of limit in Hausdorff spaces

Let (X, \mathscr{T}) be a Hausdorff space. If a sequence $\left\{x_{n}\right\} \subseteq X$ converges, then the limit is unique.

Proof

Let $\left\{x_{n}\right\} \subseteq X$ be a convergent sequence. Suppose by contradiction that

$$
x_{n} \rightarrow x_{0}, \quad x_{n} \rightarrow y_{0}
$$

in X, for some $x_{0}, y_{0} \in X$ with $x_{0} \neq y_{0}$. Since X is Hausdorff, there exist $U, V \in \mathscr{T}$ such that

$$
x_{0} \in U, \quad y_{0} \in V, \quad U \cap V=\varnothing .
$$

As $x_{n} \rightarrow x_{0}$ and $U \in \mathscr{T}$ with $x_{0} \in U$, there exists $N_{1} \in \mathbb{N}$ such that

$$
x_{n} \in U, \quad \forall n \geq N_{1} .
$$

Similarly, since $x_{n} \rightarrow y_{0}$ and $V \in \mathscr{T}$ with $y_{0} \in U$, there exists $N_{2} \in \mathbb{N}$ such that

$$
x_{n} \in V, \quad \forall n \geq N_{2} .
$$

Take $N:=\max \left\{N_{1}, N_{2}\right\}$. Then

$$
x_{n} \in U \cap V, \quad \forall n \geq N .
$$

Since $U \cap V=\varnothing$, the above is a contradiction. Therefore the limit of x_{n} is unique.

3.8 Continuity

We extend the notion of continuity to topological spaces. To this end, we need the concept of pre-image of a set under a function.

Definition 3.58: Images and Pre-images
Let X, Y be sets and $f: X \rightarrow Y$ be a function.

- Let $U \subseteq X$. The image of U under f is the subset of Y defined by

$$
f(U):=\{y \in Y: \exists x \in X \text { s.t. } y=f(x)\}=\{f(x): x \in X\} .
$$

- Let $V \subseteq Y$. The pre-image of V under f is the subset of X defined by

$$
f^{-1}(V):=\{x \in X: f(x) \in V\} .
$$

Warning

The notation $f^{-1}(V)$ does not mean that we are inverting f. In fact, the pre-image is defined for all functions.

Let us gather useful properties of images and pre-images.

Proposition 3.59

Let X, Y be sets and $f: X \rightarrow Y$. We denote with the letter A sets in X and with the letter B sets in Y. We have

- $A \subseteq f^{-1}(f(A))$
- $A=f^{-1}(f(A))$ if f is injective
- $f\left(f^{-1}(B)\right) \subseteq B$
- $f\left(f^{-1}(B)\right)=B$ if f is surjective
- If $A_{1} \subseteq A_{2}$ then $f\left(A_{1}\right) \subseteq f\left(A_{2}\right)$
- If $B_{1} \subseteq B_{2}$ then $f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$
- If $A_{i} \subseteq X$ for $i \in I$ we have

$$
\begin{aligned}
& f\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f\left(A_{i}\right) \\
& f\left(\bigcap_{i \in I} A_{i}\right) \subseteq \bigcap_{i \in I} f\left(A_{i}\right)
\end{aligned}
$$

- If $B_{i} \subseteq Y$ for $i \in I$ we have

$$
\begin{aligned}
f^{-1}\left(\bigcup_{i \in I} B_{i}\right) & =\bigcup_{i \in I} f^{-1}\left(B_{i}\right) \\
f^{-1}\left(\bigcap_{i \in I} B_{i}\right) & =\bigcap_{i \in I} f^{-1}\left(B_{i}\right)
\end{aligned}
$$

Suppose Z is another set and $g: Y \rightarrow Z$. Let $C \subseteq Z$. Then

$$
\begin{aligned}
& (g \circ f)(A)=g(f(A)) \\
& (g \circ f)^{-1}(C)=f^{-1}\left(g^{-1}(C)\right)
\end{aligned}
$$

It is a good exercise to try and prove a few of the above properties. We omit the proof. We can now define continuous functions between topological spaces.

Definition 3.6o: Continuous function
Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces. Let $f: X \rightarrow Y$ be a function.

- Let $x_{0} \in X$. We say that f is continuous at x_{0} if it holds:

$$
\forall V \in \mathscr{T}_{Y} \text { s.t. } f\left(x_{0}\right) \in V, \exists U \in \mathscr{T}_{X} \text { s.t. } x_{0} \in U, f(U) \subseteq V \text {. }
$$

- We say that f is continuous from $\left(X, \mathscr{T}_{X}\right)$ to $\left(Y, \mathscr{T}_{Y}\right)$ if f is continuous at each point $x_{0} \in X$.

The following proposition presents a useful characterization of continuous functions in terms of preimages.

Proposition 3.61

Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces. Let $f: X \rightarrow Y$ be a function. They are equivalent:

1. f is continuous from $\left(X, \mathscr{T}_{X}\right)$ to $\left(Y, \mathscr{T}_{Y}\right)$.
2. It holds:

$$
f^{-1}(V) \in \mathscr{T}_{X}, \quad \forall V \in \mathscr{T}_{Y} .
$$

Important

In other words, a function $f: X \rightarrow Y$ is continuous if and only if the pre-image of open sets in Y are open sets in X.

The proof of Proposition 3.61 is simple, but very tedious. We choose to skip it.

Example 3.62

Let X be a set and $\mathscr{T}_{1}, \mathscr{T}_{2}$ be topologies on X. Define the identity map

$$
\operatorname{Id}_{X}:\left(X, \mathscr{T}_{1}\right) \rightarrow\left(X, \mathscr{T}_{2}\right), \quad \operatorname{Id}_{X}(x):=x
$$

They are equivalent:

1. Id_{X} is continuous from $\left(X, \mathscr{T}_{1}\right)$ to $\left(X, \mathscr{T}_{2}\right)$.
2. \mathscr{T}_{1} is finer than \mathscr{T}_{2}

$$
\mathscr{T}_{2} \subseteq \mathscr{T}_{1}
$$

Indeed, Id_{X} is continuous if and only if

$$
\operatorname{Id}_{X}^{-1}(V) \in \mathscr{T}_{1}, \quad \forall V \in \mathscr{T}_{2}
$$

But $\operatorname{Id}_{X}^{-1}(V)=V$, so that the above reads

$$
V \in \mathscr{T}_{1}, \quad \forall V \in \mathscr{T}_{2},
$$

which is equivalent to $\mathscr{T}_{2} \subseteq \mathscr{T}_{1}$.
Let us compare our new definition of contiuity with the classical notion of continuity in \mathbb{R}^{n}. Let us recall the definition of continuous function in \mathbb{R}^{n}.

Definition 3.63: Continuity in the classical sense

Let $f: \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We say that f is continuous at \mathbf{x}_{0} if it holds:

$$
\forall \varepsilon>0, \exists \delta>0 \text { s.t. }\left\|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right\|<\varepsilon \text { if }\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta .
$$

Proposition 3.64

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and suppose $\mathbb{R}^{n}, \mathbb{R}^{m}$ are equipped with the Euclidean topology. Let $\mathbf{x}_{0} \in \mathbb{R}^{n}$. They are equivalent:

1. f is continuous at \mathbf{x}_{0} in the topological sense.
2. f is continuous at \mathbf{x}_{0} in the classical sense.

Proof

Part 1. Suppose that f is continuous at \mathbf{x}_{0} in the topological sense. Let $\varepsilon>0$ and consider the set

$$
V:=B_{\varepsilon}\left(f\left(\mathbf{x}_{0}\right)\right) .
$$

We have that $V \subset \mathbb{R}^{m}$ is open and $f\left(\mathbf{x}_{0}\right) \in V$. As f is continuous in the topological sense, there exists $U \subset \mathbb{R}^{n}$ open with $\mathbf{x}_{0} \in U$ and such that

$$
\begin{equation*}
f(U) \subset V=B_{\varepsilon}\left(f\left(\mathbf{x}_{0}\right)\right) . \tag{3.9}
\end{equation*}
$$

Since U is open and $\mathbf{x}_{0} \in U$, there exists $\delta>0$ such that

$$
B_{\delta}\left(\mathbf{x}_{0}\right) \subset U .
$$

By the above inclusion and (3.9) we conclude that

$$
f\left(B_{\delta}\left(\mathbf{x}_{0}\right)\right) \subset f(U) \subset V=B_{\varepsilon}\left(f\left(\mathbf{x}_{0}\right)\right) .
$$

This is equivalent to

$$
\mathbf{x} \in B_{\delta}\left(\mathbf{x}_{0}\right) \quad \Longrightarrow \quad f(\mathbf{x}) \in B_{\varepsilon}\left(f\left(\mathbf{x}_{0}\right)\right)
$$

which reads

$$
\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta \quad \Longrightarrow \quad\left\|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right\|<\varepsilon
$$

Therefore f is continuous at \mathbf{x}_{0} in the classical sense.
Part 2. Suppose f is continuous at x_{0} in the classical sense. Let $V \subset \mathbb{R}^{m}$ be open and such that $f\left(\mathbf{x}_{0}\right) \in V$. Since V is open, there exists $\varepsilon>0$ such that

$$
\begin{equation*}
B_{\varepsilon}\left(f\left(\mathbf{x}_{0}\right)\right) \subset V . \tag{3.10}
\end{equation*}
$$

Since f is continous in the classical sense, there exists $\delta>0$ such that

$$
\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta \quad \Longrightarrow\left\|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right\|<\varepsilon
$$

The above is equivalent to

$$
\begin{equation*}
\mathbf{x} \in B_{\delta}\left(\mathbf{x}_{0}\right) \quad \Longrightarrow \quad f(\mathbf{x}) \in B_{\varepsilon}\left(f\left(\mathbf{x}_{0}\right)\right) \tag{3.11}
\end{equation*}
$$

Set

$$
U:=B_{\delta}\left(\mathbf{x}_{0}\right)
$$

and note that U is open in \mathbb{R}^{n} and $\mathbf{x}_{0} \in U$. By definition of image of a set, (3.11) reads

$$
f(U)=f\left(B_{\delta}\left(\mathbf{x}_{0}\right)\right) \subseteq B_{\varepsilon}\left(f\left(\mathbf{x}_{0}\right)\right)
$$

Recalling (3.10) we conclude that

$$
f(U) \subset V .
$$

In summary, we have shown that given $V \subset \mathbb{R}^{m}$ open and such that $f\left(\mathbf{x}_{0}\right) \in V$, there exists U open in \mathbb{R}^{n} such that $\mathbf{x}_{0} \in U$ and $f(U) \subset V$. Therefore f is continuous at \mathbf{x}_{0} in the topological sense.

A similar proof yields the characterization of continuity in metric spaces. The proof is left as an exercise.

Proposition 3.65

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Denote by \mathscr{T}_{X} and \mathscr{T}_{Y} the topologies induced by the metrics. Let $f: X \rightarrow Y$ and $x_{0} \in X$. They are equivalent:

1. f is continuous at x_{0} in the topological sense.
2. It holds:

$$
\forall \varepsilon>0, \exists \delta>0 \text { s.t. } \quad d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon \text { if } d_{X}\left(x, x_{0}\right)<\delta .
$$

Let us examine continuity in the cases of the trivial and discrete topologies.

Example 3.66

Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be a topological space. Suppose that \mathscr{T}_{Y} is the trivial topology, that is,

$$
\mathscr{T}_{Y}=\{\varnothing, Y\} .
$$

Then every function $f: X \rightarrow Y$ is continuous.
Indeed, we know that f is continuous if and only if it holds:

$$
f^{-1}(V) \in \mathscr{T}_{X}, \quad \forall V \in \mathscr{T}_{Y}
$$

We have two cases:

- $V=\varnothing$: Then

$$
f^{-1}(V)=f^{-1}(\varnothing)=\varnothing \in \mathscr{T}_{X} .
$$

- $V=Y$: Then

$$
f^{-1}(V)=f^{-1}(Y)=X \in \mathscr{T}_{X} .
$$

Therefore f is continuous.

Example 3.67

Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces. Suppose that \mathscr{T}_{Y} is the discrete topology, that is,

$$
\mathscr{T}_{Y}=\{V \text { s.t. } V \subseteq Y\} .
$$

Let $f: X \rightarrow Y$. They are equivalent:

1. f is continuous from X to Y.
2. $f^{-1}(\{y\}) \in \mathscr{T}_{X}$ for all $y \in Y$.

Indeed, suppose that f is continuous. Then

$$
f^{-1}(V) \in \mathscr{T}_{X}, \quad \forall V \in \mathscr{T}_{Y}
$$

As $V=\{y\} \in \mathscr{T}_{Y}$, we conclude that $f^{-1}(\{y\}) \in \mathscr{T}_{X}$.
Conversely, assume that $f^{-1}(\{y\}) \in \mathscr{T}_{X}$ for all $y \in Y$. Let $V \in \mathscr{T}_{Y}$. Trivially, we have

$$
V=\bigcup_{y \in V}\{y\} .
$$

Therefore

$$
f^{-1}(V)=f^{-1}\left(\bigcup_{y \in V}\{y\}\right)=\bigcup_{y \in V} f^{-1}(\{y\}) .
$$

As $f^{-1}(\{y\}) \in \mathscr{T}_{X}$ for all $y \in Y$, by property (A2) we conclude that $f^{-1}(V) \in \mathscr{T}_{X}$. Therefore f is continuous.

In a topological space, continuity preserves limits of sequences.

Proposition 3.68

Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces. Let $f: X \rightarrow Y$ be continuous. Let $\left\{x_{n}\right\} \subset X$ and $x_{0} \in X$. We have

$$
x_{n} \rightarrow x_{0} \text { in } X \quad \Longrightarrow \quad f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) \text { in } Y
$$

Proof

Let $V \in \mathscr{T}_{Y}$ be such that $f\left(x_{0}\right) \in V$. Since f is continuous there exists $U \in \mathscr{T}_{X}$ with $x_{0} \in U$ such that

$$
f(U) \subset V .
$$

Since $U \in \mathscr{T}_{X}$ and $x_{n} \rightarrow x_{0}$ in X, there exists $N \in \mathbb{N}$ such that

$$
x_{n} \in U, \quad \forall n \geq N
$$

Therefore

$$
f\left(x_{n}\right) \in f(U), \quad \forall n \geq N
$$

Seeing that $f(U) \subset V$, we conclude

$$
f\left(x_{n}\right) \in V, \quad \forall n \geq N,
$$

showing that $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ in Y.

Warning

The converse implication of Proposition 3.68 is false. That is, even if it holds

$$
x_{n} \rightarrow x_{0} \text { in } X \quad \Longrightarrow \quad f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) \text { in } Y .
$$

for all sequences $\left\{x_{n}\right\} \subset X$, the function f might not be continuous. A counterexample is given in Example 3.70 below.
For the above to hold, it is necessary for the topologies on X and Y to be first countable, as for example is the case for metrizable topologies, see Proposition 3.69 below.

Proposition 3.69

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Let $f: X \rightarrow Y$ and suppose that for all convergent sequences $\left\{x_{n}\right\} \subseteq X$, the sequence $\left\{f\left(x_{n}\right)\right\}$ is convergent in Y. Then f is continuous.

Proof

Suppose by contradiction f is not continuous at some point $x_{0} \in X$. Then there exists $\varepsilon_{0}>0$ such that, for all $\delta>0$ it holds

$$
d_{Y}\left(f(x), f\left(x_{0}\right)\right)>\varepsilon_{0}, \quad d_{X}\left(x, x_{0}\right)<\delta .
$$

We can therefore choose $\delta=1 / n$ and construct a sequence $\left\{x_{n}\right\} \subseteq X$ such that

$$
d_{Y}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right)>\varepsilon_{0}, \quad d_{X}\left(x_{n}, x_{0}\right)<\frac{1}{n}, \quad \forall n \in \mathbb{N} .
$$

Therefore $x_{n} \rightarrow x_{0}$ in X. Define the sequence

$$
y_{n}:= \begin{cases}x_{n} & \text { if } n \text { even } \\ x_{0} & \text { if } n \text { odd }\end{cases}
$$

As $x_{n} \rightarrow x_{0}$, we have $y_{n} \rightarrow x_{0}$. However $\left\{f\left(y_{n}\right)\right\}$ does not converge to any point in Y : Indeed $\left\{f\left(y_{n}\right)\right\}$ cannot converge to $f\left(x_{0}\right)$, since for n even we have

$$
d_{Y}\left(f\left(y_{n}\right), f\left(x_{0}\right)\right)=d_{Y}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right)>\varepsilon_{0} .
$$

Also $\left\{f\left(y_{n}\right)\right\}$ cannot converge to a point $y \neq f\left(x_{0}\right)$, since for n odd

$$
d_{Y}\left(f\left(y_{n}\right), y\right)=d_{Y}\left(f\left(x_{0}\right), y\right)>0 .
$$

Hence, we have produced a sequence $\left\{y_{n}\right\}$ which is convergent, but such that $\left\{f\left(y_{n}\right)\right\}$ does not converge. This contradicts our assumption. Hence f must be continuous.

Example 3.70

Consider \mathbb{R} with the co-countable topology:

$$
\mathscr{T}_{\mathrm{cc}}:=\left\{A \subseteq \mathbb{R}: A^{c}=\mathbb{R} \text { or } A^{c} \text { countable }\right\} .
$$

Sequences in $\left(\mathbb{R}, \mathscr{T}_{\mathrm{cc}}\right)$ converge if and only if they are eventually constant. Also consider the discrete topology on \mathbb{R}, denoted by $\mathscr{T}_{\text {discrete }}$. We have seen that sequences in ($\mathbb{R}, \mathscr{T}_{\text {discrete }}$) converge if and only if they are eventually constant. Consider the identity function

$$
f:\left(\mathbb{R}, \mathscr{T}_{\text {cc }}\right) \rightarrow\left(\mathbb{R}, \mathscr{T}_{\text {discrete }}\right), \quad f(x):=x .
$$

We have that:

- f is not continuous: Indeed $\{x\} \in \mathscr{T}_{\text {discrete }}$ but

$$
f^{-1}(\{x\})=\{x\} \notin \mathscr{T}_{\mathrm{cc}},
$$

since $\{x\}^{c}$ is neither \mathbb{R}, nor countable.

- If $\left\{x_{n}\right\}$ is convergent in $\mathscr{T}_{\text {cc }}$, then it is eventually constant. Therefore $\left\{f\left(x_{n}\right)\right\}$ is eventually constant, and so it is convergent in $\mathscr{T}_{\text {discrete }}$.

Let us make an observation on continuity of compositions.

Proposition 3.71

Let $\left(X, \mathscr{T}_{X}\right),\left(Y, \mathscr{T}_{Y}\right),\left(Z, \mathscr{T}_{Z}\right)$ be topological spaces. Let

$$
f: X \rightarrow Y, \quad g: Y \rightarrow Z,
$$

be given functions. If f and g are continuous, then

$$
(g \circ f): X \rightarrow Z
$$

is continuous.

Proof

Let $C \in \mathscr{T}_{Z}$. As g is continuous, we have that

$$
g^{-1}(C) \in \mathscr{T}_{Y}
$$

Since f is continuous, we also have

$$
f^{-1}\left(g^{-1}(C)\right) \in \mathscr{T}_{X}
$$

Therefore

$$
(g \circ f)^{-1}(C)=f^{-1}\left(g^{-1}(C)\right) \in \mathscr{T}_{X}
$$

so that $g \circ f$ is continuous.
We conclude the section by introducing homeomorphisms.
Definition 3.72: Homeomoprhim
Let $\left(X, \mathscr{T}_{X}\right),\left(Y, \mathscr{T}_{Y}\right)$ be topological space. A function $f: X \rightarrow Y$ is called an homeomorphism if they hold:

1. f is continuous.
2. There exists $g: Y \rightarrow X$ continuous such that

$$
g \circ f=\operatorname{Id}_{X}, \quad f \circ g=\operatorname{Id}_{Y} .
$$

The above is saying that f is a homeomorphism if it is continuous and has continuous inverse. Homeomorphisms are the way we say that two topological spaces look the same.

3.9 Subspace topology

Any subset Y in a topological space X inherits naturally a topological structure. Such structure is called subspace topology.

Definition 3.73: Subspace topology

Let (X, \mathscr{T}) be a topological space and $Y \subseteq X$ a subset. Define the family of sets

$$
\mathcal{S}:=\{A \subset Y: \exists U \in \mathscr{T} \text { s.t. } A=U \cap Y\} .
$$

The family \mathcal{S} is called subspace topology on Y induced by the inclusion $Y \subset X$.

Proof: Well-posedness of Definition 3.73

We have to show that (Y, \mathcal{S}) is a topological space:

- (A1) $\varnothing \in \mathcal{S}$ since

$$
\varnothing=\varnothing \cap Y
$$

and $\varnothing \in \mathscr{T}$. Similarly we have $Y \in \mathcal{S}$, since

$$
Y=X \cap Y,
$$

and $X \in \mathscr{T}$.

- (A2) Let $A_{i} \in \mathcal{S}$ for $i \in I$. By definition there exist $U_{i} \in \mathscr{T}$ such that

$$
A_{i}=U_{i} \cap Y, \quad \forall i \in I .
$$

Therefore

$$
\bigcup_{i \in I} A_{i}=\bigcup_{i \in I}\left(U_{i} \cap Y\right)=\left(\bigcup_{i \in I} U_{i}\right) \cap Y .
$$

The above proves that $\mathrm{u}_{i \in I} A_{i} \in \mathcal{S}$, since $\mathrm{u}_{i \in I} U_{i} \in \mathscr{T}$.

- (A3) Let $A_{1}, A_{2} \in \mathcal{S}$. By definition there exist $U_{1}, U_{2} \in \mathscr{T}$ such that

$$
A_{1}=U_{1} \cap Y, \quad A_{2}=U_{2} \cap Y
$$

Therefore

$$
A_{1} \cap A_{2}=\left(U_{1} \cap Y\right) \cap\left(U_{2} \cap Y\right)=\left(U_{1} \cap U_{2}\right) \cap Y
$$

The above proves that $A_{1} \cap A_{2} \in \mathcal{S}$, since $U_{1} \cap U_{2} \in \mathscr{T}$.
If the set Y is open, then sets are open in the subspace topology if and only if they are open in X.

Proposition 3.74

Let (X, \mathscr{T}) be a topological space and $Y \in \mathscr{T}$ a subset. Let $A \subset Y$. Then

$$
A \in \mathcal{S} \quad \Longleftrightarrow \quad A \in \mathscr{T}
$$

Proof

Suppose $A \in \mathcal{S}$. Then there exists $U \in \mathscr{T}$ such that

$$
A=U \cap Y
$$

Since $U, Y \in \mathscr{T}$, by property (A_{3}) of topologies it follows that

$$
A=U \cap Y \in \mathscr{T}
$$

Conversely, assume that $A \in \mathscr{T}$. Then

$$
A=A \cap Y
$$

showing that $A \in \mathcal{S}$.

Warning

Let (X, \mathscr{T}) be a topological space, $A \subset Y \subset X$. In general we could have

$$
A \in \mathcal{S} \quad \text { and } \quad A \notin \mathscr{T}
$$

For example consider $X=\mathbb{R}$ with \mathscr{T} the euclidean topology. Consider the subset $Y=[0,2)$ and equip Y with the subspace topology \mathcal{S}. Let $A=[0,1)$. Then $A \notin \mathscr{T}$ but $A \in \mathcal{S}$, since

$$
A=(-1,1) \cap Y
$$

and $(-1,1) \in \mathscr{T}$.

Example 3.75

Let $X=\mathbb{R}$ be equipped with \mathscr{T} the euclidean topology. Let \mathcal{S} be the subspace topology on \mathbb{Z}. Then \mathcal{S} coincides with the discrete topology.

Proof. The set $\{z\}$ is open in \mathcal{S} for all $z \in \mathbb{Z}$. Indeed,

$$
\{z\}=(z-1, z+1) \cap \mathbb{Z}
$$

and $(z-1, z+1) \in \mathscr{T}$. Thus $\{z\} \in \mathcal{S}$. Let now $A \subseteq \mathbb{Z}$. Then

$$
A=\bigcup_{z \in A}\{z\},
$$

and therefore $A \in \mathcal{S}$ by (A2). This proves that

$$
\mathcal{S}=\{A \text { s.t. } A \subseteq \mathbb{Z}\}
$$

that is, \mathcal{S} is the discrete topology on \mathbb{Z}.

3.10 Topological basis

We have seen that in metric spaces every open set is union of open balls, see Propostion 3.27. We can then regard the open balls as building blocks for the whole topology. In this context, we call the open balls a basis for the topology.

We can generalize the concept of basis to arbitrary topological spaces.

Definition 3.76: Topological basis

Let (X, \mathscr{T}) be a topological space and let $\mathscr{B} \subseteq \mathscr{T}$. We say that \mathscr{B} is a topological basis for the topology \mathscr{T} if for all $U \in \mathscr{T}$ there exist open sets $\left\{B_{i}\right\} \subseteq \mathscr{B}$, with I family of indices, such that

$$
\begin{equation*}
U=\bigcup_{i \in I} B_{i} . \tag{3.12}
\end{equation*}
$$

Example 3.77

1. Let (X, \mathscr{T}) be a topological space. Then $\mathscr{B}:=\mathscr{T}$ is a basis for \mathscr{T}.

This is true because one can just take $B=U$ in (3.12).
2. (X, d) metric space with topology \mathscr{T}_{d} induced by the metric. Then

$$
\mathscr{B}:=\left\{B_{r}(x): x \in X, r>0\right\}
$$

is a basis for \mathscr{T}_{d}.
This is true by Propostion 3.27.
3. Let (X, \mathscr{T}) with X the discrete topology. Then

$$
\mathscr{B}:=\{\{x\}: x \in X\}
$$

is a basis for \mathscr{T}.

This is true because for any $U \in \mathscr{T}$ we have

$$
U=\bigcup_{x \in U}\{x\} .
$$

Proposition 3.78

Let (X, \mathscr{T}) be a topological space and \mathscr{B} a basis for \mathscr{T}. They hold:

- (B1) We have

$$
\bigcup_{B \in \mathscr{B}} B=X .
$$

- (B2) If $U_{1}, U_{2} \in \mathscr{B}$ then there exist $\left\{B_{i}\right\} \subseteq \mathscr{B}$ such that

$$
U_{1} \cap U_{2}=\bigcup_{i \in I} B_{i} .
$$

Proof

- (B1) This holds because $X \in \mathscr{T}$. Therefore by definition of basis there exist $B_{i} \in \mathscr{B}$ such that

$$
X=\bigcup_{i \in I} B_{i} .
$$

Therefore taking the union over all $B \in \mathscr{B}$ yields X, and (B_{1}) follows.

- (B2) Let $U_{1}, U_{2} \in \mathscr{B}$. Then $U_{1}, U_{2} \in \mathscr{T}$, since $\mathscr{B} \subseteq \mathscr{T}$. By property (A3) we get that $U_{1} \cap U_{2} \in \mathscr{T}$. Since \mathscr{B} is a basis we conclude (B2).

Properties (B_{1}) and (B_{2}) from Proposition 3.78 are sufficient for generating a topology.

Proposition 3.79

Let X be a set and \mathscr{B} a collection of subsets of X such that $\left(\mathrm{B}_{1}\right)-(\mathrm{B} 2)$ hold. Define

$$
\mathscr{T}:=\left\{U \subseteq X: U=\bigcup_{i \in I} B_{i}, B_{i} \in \mathscr{B}\right\} .
$$

Then:

1. \mathscr{T} is a topology on X.
2. \mathscr{B} is a basis for \mathscr{T}.

Proof

1. We need to verify that \mathscr{T} is a topology:

- (A1) We have that $X \in \mathscr{T}$ by (B1). Moreover $\varnothing \in \mathscr{T}$, since \varnothing can be obtained as empty union. Therefore (A1) holds.
- (Az) Let $U_{i} \in \mathscr{T}$ for all $i \in I$. By definition of \mathscr{T} we have

$$
U_{i}=\bigcup_{k \in K_{i}} B_{k}^{i}
$$

for some family of indices K_{i} and $B_{k}^{i} \in \mathscr{B}$. Therefore

$$
U:=\bigcup_{i \in I} U_{i}=\bigcup_{i \in I, k \in K_{i}} B_{k}^{i},
$$

showing that $U \in \mathscr{T}$.

- (A3) Suppose that $U_{1}, U_{2} \in \mathscr{T}$. Then

$$
U_{1}=\bigcup_{i \in I_{1}} B_{i}^{1}, \quad U_{2}=\bigcup_{i \in I_{2}} B_{i}^{2}
$$

for $B_{i}^{1}, B_{i}^{2} \in \mathscr{B}$. From the above we have

$$
U_{1} \cap U_{2}=\bigcup_{i \in I_{1}, k \in I_{2}} B_{i}^{1} \cap B_{k}^{2}
$$

From property (B_{2}) we have that for each pair of indices (i, k) the set $B_{i}^{1} \cap B_{k}^{2}$ is the union of sets in \mathscr{B}. Therefore $U_{1} \cap U_{2}$ is union of sets in \mathscr{B}, showing that $U_{1} \cap U_{2} \in \mathscr{T}$.
2. This trivially follows from defintion of \mathscr{T} and definition of basis.

3.11 Product topology

Given two topological spaces $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ we would like to equip the cartesian product

$$
X \times Y=\{(x, y): x \in X, y \in Y\}
$$

with a topology. We proceed as follows.

Proposition 3.80

Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces. Define the family \mathscr{B} of subsets of $X \times Y$ as

$$
\mathscr{B}:=\left\{U \times V: U \in \mathscr{T}_{X}, V \in \mathscr{T}_{Y}\right\} \subset X \times Y .
$$

Then \mathscr{B} satisfies properties $\left(\mathrm{B}_{1}\right)$ and $\left(\mathrm{B}_{2}\right)$ from Proposition 3.78.
The proof is an easy check, and is left as an exercise. As \mathscr{B} satisfies (B_{1})-(B2), by Proposition 3.79 we know that

$$
\begin{equation*}
\mathscr{T}_{X \times Y}:=\left\{U \times V: U \times V=\bigcup_{i \in I} B_{i},, \quad B_{i} \in \mathscr{B}\right\} \tag{3.13}
\end{equation*}
$$

is a topology on $X \times Y$.

Definition 3.81: Product topology
Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces. We call $\mathscr{T}_{X \times Y}$ at (3.13) the product topology on $X \times Y$.

Example 3.82

Let \mathbb{R} be equipped with the Euclidean topology. The product topology on $\mathbb{R} \times \mathbb{R}$ coincides with the topology on \mathbb{R}^{2} equipped with the Euclidean topology.

Consider the projection maps

$$
\pi_{X}: X \times Y \rightarrow X, \quad \pi_{X}(x, y):=x
$$

and

$$
\pi_{Y}: X \times Y \rightarrow Y, \quad \pi_{Y}(x, y):=y
$$

Proposition 3.83

Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces and equip $X \times Y$ with the product topology $\mathscr{T}_{X \times Y}$. Then π_{X} and π_{Y} are continuous.

Proof

Let $U \in \mathscr{T}_{X}$. Then

$$
\pi_{X}^{-1}(U)=U \times Y
$$

We have that $U \times Y \in \mathscr{T}_{X \times Y}$ since $U \in \mathscr{T}_{X}$ and $Y \in \mathscr{T}_{Y}$. Therefore π_{X} is continuous. The proof that π_{Y} is continuous is similar, and is left as an exercise.

The following proposition gives a useful criterion to check whether a map into $X \times Y$ is continuous.

Proposition 3.84

Let $\left(X, \mathscr{T}_{X}\right)$ and $\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces and equip $X \times Y$ with the product topology $\mathscr{T}_{X \times Y}$. Let $\left(Z, \mathscr{T}_{Z}\right)$ be a topological space and

$$
f: Z \rightarrow X \times Y
$$

a function. They are equivalent:

1. f is continuous.
2. The compositions

$$
\pi_{X} \circ f: Z \rightarrow X, \quad \pi_{Y} \circ f: Z \rightarrow Y
$$

are continuous.
The proof is left as an exercise.

3.12 Connectedness

Suppose that (X, \mathscr{T}) is a topological space. By property $\left(\mathrm{A}_{1}\right)$ we have that

$$
\varnothing, X \in \mathscr{T}
$$

Therefore

$$
\varnothing^{c}=X, \quad X^{c}=\varnothing
$$

are closed. It follows that \varnothing and X are both open and closed.

Definition 3.85: Connected space

Let (X, \mathscr{T}) be a topological space. We say that:

- X is connected if the only subsets of X which are both open and closed are \varnothing and X.
- X is disconnected if it is not connected.

The following proposition gives two extremely useful equivalent definitions of connectedness. Before stating it, we define the concept of proper set.

Definition 3.86: Proper subset

Let X be a set. A subset $A \subseteq X$ is proper if

$$
A \neq \varnothing, \quad A \neq X .
$$

Proposition 3.87: Equivalent definition for connectedness
Let (X, \mathscr{T}) be a topological space. They are equivalent:

1. X is disconnected.
2. X is the disjoint union of two proper open subsets.
3. X is the disjoint union of two proper closed subsets.

Proof

Part 1. Point 1 implies Points 2 and 3.
Suppose X is disconnected. Then there exists $U \subseteq X$ which is open, closed, and such that

$$
\begin{equation*}
U \neq \varnothing, \quad U \neq X . \tag{3.14}
\end{equation*}
$$

Define

$$
A:=U, \quad B:=U^{c} .
$$

By definition of complement we have

$$
X=A \cup B, \quad A \cap B=\varnothing .
$$

Moreover:

- A and B are both open and closed, since U is both open and closed.
- A and B are proper, since (3.14) holds.

Therefore we conclude Points 2,3 .
Part 2. Point 2 implies Point 1. Suppose A, B are open, proper, and such that

$$
X=A \cup B, \quad A \cap B=\varnothing .
$$

This implies

$$
A^{c}=X \backslash A=B,
$$

showing that A^{c} is open, and hence A is closed. Therefore A is proper, open and closed, showing that X is disconnected.
Part 3. Point 3 implies Point 1. Suppose A, B are closed, proper, and such that

$$
X=A \cup B, \quad A \cap B=\varnothing .
$$

This implies

$$
A^{c}=X \backslash A=B,
$$

showing that A^{c} is closed, and hence A is open. Therefore A is proper, open and closed, showing that X is disconnected.

In the following we will use Point 2 and Point 3 in Proposition 3.87 as equivalent definitions of disconnected topological space.

Example 3.88

Consider the set $X=\{0,1\}$ with the subspace topology induced by the inclusion $X \subset \mathbb{R}$, where \mathbb{R} is equipped with the Euclidean topology $\mathscr{T}_{\text {euclidean. }}$. Then X is disconnected.

Proof. Note that

$$
X=\{0\} \cup\{1\}, \quad\{0\} \cap\{1\}=\varnothing .
$$

The set $\{0\}$ is open for the subspace topology, since

$$
\{0\}=X \cap(-1,1), \quad(-1,1) \in \mathscr{T}_{\text {euclidean }} .
$$

Similarly, also $\{1\}$ is open for the subspace topology, since

$$
\{1\}=X \cap(0,2), \quad(0,2) \in \mathscr{T}_{\text {euclidean }} .
$$

Clearly

$$
\{0\} \neq \varnothing, \quad\{1\} \neq \varnothing,
$$

showing that X is disconnected.

Example 3.89

Let $p \in \mathbb{R}$. The set $X=\mathbb{R} \backslash\{p\}$ is disconnected.
Proof. Define the sets

$$
A=(-\infty, p), \quad B=(p, \infty) .
$$

Then A, B are proper subsets of X, since $p \notin X$. Moreover

$$
X=A \cup B, \quad A \cap B=\varnothing .
$$

Finally we have that A, B are open for the subspace topology, since they are open in \mathbb{R}. Therefore X is disconnected.

Example 3.90

Let $n \geq 2$ and $A \subseteq \mathbb{R}^{n}$ be open and connected. Let $p \in A$. Then $X=A \backslash\{p\}$ is connected.
Exercise: Prove that X is connected.
The next theorem shows that connectedness is preserved by continuous maps.

Theorem 3.91

Let $\left(X, \mathscr{T}_{X}\right),\left(Y, \mathscr{T}_{Y}\right)$ be topological spaces. Suppose that $f: X \rightarrow Y$ is continuous and let $f(X) \subseteq Y$ be equipped with the subspace topology. If X is connected, then $f(X)$ is connected.

Proof

Suppose that A, B are open in $f(X)$ and such that

$$
f(X)=A \cup B, \quad A \cap B=\varnothing .
$$

if we show that

$$
\begin{equation*}
A=\varnothing \text { or } B=\varnothing \tag{3.15}
\end{equation*}
$$

the proof is concluded. Since A, B are open for the subspace topology, there exist $\widetilde{A}, \widetilde{B} \in \mathscr{T}_{Y}$ such that

$$
\begin{equation*}
A=\widetilde{A} \cap f(X), \quad B=\widetilde{B} \cap f(X) \tag{3.16}
\end{equation*}
$$

Since $f(X)=A \cup B$ we have

$$
\begin{aligned}
X & =f^{-1}(A \cup B) \\
& =f^{-1}(A) \cup f^{-1}(B) \\
& =f^{-1}(\widetilde{A}) \cup f^{-1}(\widetilde{B})
\end{aligned}
$$

where in the last equality we used (3.16). Since $A \cap B=\varnothing$, we also have that

$$
\begin{aligned}
f^{-1}(\widetilde{A}) \cap f^{-1}(\widetilde{B}) & =f^{-1}(A) \cap f^{-1}(B) \\
& =f^{-1}(A \cap B) \\
& =f^{-1}(\varnothing) \\
& =\varnothing
\end{aligned}
$$

where in the first equality we used (3.16). By continuity of f we have that

$$
f^{-1}(\widetilde{A}), f^{-1}(\widetilde{B}) \in \mathscr{T}_{X}
$$

Therefore, using that X is connected, we deduce that

$$
f^{-1}(\widetilde{A})=\varnothing \text { or } f^{-1}(\widetilde{B})=\varnothing .
$$

The above implies

$$
\widetilde{A} \cap f(X)=\varnothing \text { or } \widetilde{B} \cap f(X)=\varnothing .
$$

Recalling (3.16), we obtain (3.15), ending the proof.
An immediate corollary of Theorem 3.91 is that connectedness is a topological invariant, e.g., connectedness is preserved by homeomorphisms.

Corollary 3.92

Let $\left(X, \mathscr{T}_{X}\right),\left(Y, \mathscr{T}_{Y}\right)$ be homeomorhic topological spaces. Then

$$
X \text { is connected } \Longleftrightarrow Y \text { is connected }
$$

The proof follows immediately by Theorem 3.91, and is left to the reader as an exercise.

Example 3.93

Let $n \geq 2$. \mathbb{R}^{n} not homeomorphic to \mathbb{R}.
Proof. Suppose by contradiction that there exists an omeomorphism

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Define $p=f(0)$ and the restriction

$$
g: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R} \backslash\{p\}, \quad g(x)=f(x) .
$$

Since g is a restriction of aneomorphism, then g is an omeomorphism. We have that $\mathbb{R}^{n} \backslash\{0\}$ is connected, as a consequence of

Example 3.90. Hence, by Corollary 3.92, we infer that $\mathbb{R} \backslash\{p\}$ is connected. This is a contradiction, since $\mathbb{R} \backslash\{p\}$ is disconnected, as shown in Example 3.89.

Example 3.94

Define the 1D unit circle

$$
\mathbb{S}^{1}:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\} .
$$

Then S^{1} and $[0,1]$ are not homeomorphic.
Proof. Suppose by contradiction that there exists and omeomorphism

$$
f:[0,1] \rightarrow S^{1} .
$$

The restriction of f to $[0,1] \backslash\left\{\frac{1}{2}\right\}$ defines an omeomorphism

$$
g:\left([0,1] \backslash\left\{\frac{1}{2}\right\}\right) \rightarrow\left(\mathbb{S}^{1} \backslash\{\mathbf{p}\}\right), \quad \mathbf{p}:=f\left(\frac{1}{2}\right) .
$$

The set $[0,1] \backslash\left\{\frac{1}{2}\right\}$ is disconnected, since

$$
[0,1] \backslash\{1 / 2\}=[0,1 / 2) \cup(1 / 2,1]
$$

with $[0,1 / 2)$ and ($1 / 2,1]$ open for the subset topology, non-empty and disjoint. Therefore, using that g is an omeomorphism, we conclude that also $\mathbb{S}^{1} \backslash\{\mathbf{p}\}$ is disconnected. Let $\theta_{0} \in$ $[0,2 \pi)$ be the unique angle such that

$$
\mathbf{p}=\left(\cos \left(\theta_{0}\right), \sin \left(\theta_{0}\right)\right)
$$

Thus $\mathbb{S}^{1} \backslash\{\mathbf{p}\}$ is parametrized by

$$
\boldsymbol{\gamma}(t):=(\cos (t), \sin (t)), \quad t \in\left(\theta_{0}, \theta_{0}+2 \pi\right) .
$$

Since $\boldsymbol{\gamma}$ is continuous and $\left(\theta_{0}, \theta_{0}+2 \pi\right)$ is connected, by Theorem 3.91, we conclude that $\mathbb{S}^{1} \backslash\{\mathbf{p}\}$ is connected. Contradiction.

3.13 Intermediate Value Theorem

Another consequence of Theorem 3.91 is a generalization of the Intermediate Value Theorem to arbitrary topological spaces. Before providing statement and proof of such Theorem, we need to characterize the connected subsets of \mathbb{R}.

Definition 3.95: Interval

A subset $I \subset \mathbb{R}$ is an interval if it holds:

$$
\forall a, b \in I, x \in \mathbb{R} \text { s.t. } a<x<b \quad \Longrightarrow \quad x \in I .
$$

Theorem 3.96

Let \mathbb{R} be equipped with the Euclidean topology and let $I \subseteq \mathbb{R}$. They are equivalent:

1. I is connected.
2. I is an interval.

Proof

Part 1. Suppose I is connected. If $I=\{p\}$ for some $p \in \mathbb{R}$ then I is an interval and the thesis is achieved. Otherwise there exist $a, b \in I$ with $a<b$. Assume that $x \in \mathbb{R}$ is such that

$$
a<x<b
$$

We need to show that $x \in I$. Suppose by contradiction that $x \notin I$ and define the open sets

$$
A=(-\infty, x), \quad B=(x, \infty) .
$$

Then

$$
\widetilde{A}=(-\infty, x) \cap I, \quad \widetilde{B}=(x, \infty) \cap I
$$

are open in I for the subspace topology. Clearly

$$
\widetilde{A} \cap \widetilde{B}=\varnothing \text {. }
$$

Moreover

$$
I=\widetilde{A} \cup \widetilde{B}
$$

since $x \notin I$. We have:

- Since $a<x$ and $a \in I$, we have that $a \in \widetilde{A}$. Therefore $\widetilde{A} \neq \varnothing$.
- Similarly, $b>x$ and $b \in I$, therefore $b \in \widetilde{B}$. Hence $\widetilde{B} \neq \varnothing$.

Therefore I is disconnected, which is a contradiction.
Part 2. Suppose I is an interval. Suppose by contradiction that I is disconnected. Then there exist A, B proper and closed, such that

$$
I=A \cup B, \quad A \cap B=\varnothing .
$$

Since A and B are proper, there exist points $a \in A, b \in B$. WLOG we can assume $a<b$. Define

$$
\alpha=\sup S, \quad S:=\{x \in \mathbb{R}:[a, x) \cap I \subseteq A\} .
$$

Note that α exists finite since b is an upper bound for the set S.

Suppose by contradiction b is not an upper bound for S. Hence there exists $x \in \mathbb{R}$ such that $[a, x) \cap I \subseteq A$ and that $x>b$. As $b>a$, we conclude that $b \in[a, x) \cap I \subseteq A$. Thus $b \in A$, which is a contradiction, since $b \in B$ and $A \cap B=\varnothing$.

Moreover we have that $\alpha \in A$.
This is because the supremum α is the limit of a sequence in S, and hence of a sequence in A. Therefore α belongs to \bar{A}. Since A is closed, we infer $\alpha \in A$.

Note that $A^{c}=B$, which is closed. Therefore A^{c} is closed, showing that A is open. As $\alpha \in A$ and A is open in I, there exists $\varepsilon>0$ such that

$$
(\alpha-\varepsilon, \alpha+\varepsilon) \cap I \subseteq A
$$

In particular

$$
[a, \alpha+\varepsilon) \cap I \subseteq A,
$$

showing that $\alpha+\varepsilon \in S$. This is a contradiction, since α is the supremum of S.
We are finally ready to prove the Intermediate Value Theorem.

Theorem 3.97: Intermediate Value Theorem
Let (X, \mathscr{T}) be a connected topological space. Suppose that $f: X \rightarrow \mathbb{R}$ is continuous. Suppose that $a, b \in X$ are such that $f(a)<f(b)$. It holds:

$$
\forall c \in \mathbb{R} \text { s.t. } f(a)<c<f(b), \exists \xi \in X \text { s.t. } f(\xi)=c .
$$

Proof

As f is continuous and X is connected, by Theorem 3.91 we know that $f(X)$ is connected in \mathbb{R}. By Theorem 3.96 we have that $f(X)$ is an interval. Since $a, b \in X$ it follows $f(a), f(b) \in f(X)$. Therefore, if $c \in \mathbb{R}$ is such that

$$
f(a)<c<f(b)
$$

we conclude that $c \in f(X)$, since $f(X)$ is an interval. Hence there exists $\xi \in X$ such that $f(\xi)=c$.

3.14 Path connectedness

Definition 3.98: Path connectedness

Let (X, \mathscr{T}) be a topological space. We say that X is path connected if for every $x, y \in X$ there exist $a, b \in \mathbb{R}$ with $a<b$, and a continuous function

$$
\alpha:[a, b] \rightarrow X
$$

such that

$$
\alpha(a)=x, \quad \alpha(b)=y .
$$

Example 3.99

Let $A \subset \mathbb{R}^{n}$ be convex. Then A is path connected.
A is convex if for all $x, y \in A$ the segment connecting x to y is contained in A, namely,

$$
[x, y]:=\{(1-t) x+t y: t \in[0,1]\} \subseteq A .
$$

Therefore we can define

$$
\alpha:[0,1] \rightarrow A, \quad \alpha(t):=(1-t) x+t y .
$$

Clearly α is continuous, and $\alpha(0)=x, \alpha(1)=y$.

It turns out that path-connectedness implies connectedness.

Theorem 3.100

Let (X, \mathscr{T}) be a path connected topological space. Then X is connected.

Proof

Suppose that $X=A \cup B$ with $A, B \in \mathscr{T}$ and non-empty. In order to conclude that X is connected, we need to show that

$$
A \cap B \neq \varnothing .
$$

Since A and B are non-empty, we can find two points $x \in A$ and $b \in B$. As X is path connected, there exists $\alpha:[0,1] \rightarrow X$ continuous such that

$$
\alpha(0)=x, \quad \alpha(1)=y .
$$

In particular

$$
\alpha^{-1}(A) \neq \varnothing, \quad \alpha^{-1}(B) \neq \varnothing .
$$

Moreover

$$
\begin{aligned}
{[0,1] } & =\alpha^{-1}(X) \\
& =\alpha^{-1}(A \cup B) \\
& =\alpha^{-1}(A) \cup \alpha^{-1}(B) .
\end{aligned}
$$

As α is continuous, $\alpha^{-1}(A)$ and $\alpha^{-1}(B)$ are open in $[0,1]$. Suppose by contradiction that $A \cap B=\varnothing$. Then

$$
\alpha^{-1}(A) \cap \alpha^{-1}(B)=\alpha^{-1}(A \cap B)=\alpha^{-1}(\varnothing)=\varnothing .
$$

Hence $[0,1]$ is disconnected, which is a contradiction. Therefore $A \cap B \neq \varnothing$ and X is connected.
The converse of the above theorem does not hold. A counterexample is given by the so-called topologist curve, which will be examined in Proposition 3.102. Prior to this, we need a basic Lemma.

Lemma 3.101

Let (X, \mathscr{T}) be a topological space. Let $A, U \subseteq X$ with A connected and U open and closed. Suppose that $A \cap U \neq \varnothing$, then $A \subseteq U$.

Proof

The following set identities hold for any pair of sets U and A :

$$
\begin{aligned}
& A=(A \cap U) \cup\left(A \cap U^{c}\right) \\
& \varnothing=(A \cap U) \cap\left(A \cap U^{c}\right)
\end{aligned}
$$

Now, suppose by contradiction $A \nsubseteq U$. This means $A \cap U^{c} \neq \varnothing$. By assumption we also have $A \cap U \neq \varnothing$. Moreover the sets $A \cap U$ and $A \cap U^{c}$ are open for the subspace topology on A, since U and U^{c} are open in X. Hence A is the disjoint union of non-empty open sets, showing that A is disconnected. Contradiction. We conclude that $A \subseteq U$.

Proposition 3.102: Topologist curve

Consider \mathbb{R}^{2} with the Euclidean topology and define the sets

$$
X:=A \cup B
$$

where

$$
\begin{aligned}
A & :=\left\{\left(t, \sin \left(\frac{1}{t}\right)\right): t>0\right\} \\
B & :=\{(0, t): t \in[-1,1]\}
\end{aligned}
$$

Then X is connected, but not path connected.

Proof

Step 1. X is not path connected.
Let $x \in A$ and $y \in B$. There is no continuous function $\alpha:[0,1] \rightarrow X$ such that $\alpha(0)=x$ and $\alpha(1)=y$. If such α existed, then we would obtain a continuous extension for $t=0$ of the function

$$
f(t)=\sin \left(\frac{1}{t}\right), \quad x>0
$$

which is not possible. Hence X is not path connected.
Step 2. Preliminary facts.

- A is connected: Define the curve $\boldsymbol{\gamma}:(0, \infty) \rightarrow \mathbb{R}^{2}$ by

$$
\boldsymbol{\gamma}(t):=\left(t, \sin \left(\frac{1}{t}\right)\right) .
$$

Clearly $\boldsymbol{\gamma}$ is continuous. Since $(0, \infty)$ is connected, by Theorem 3.91 we have that $\gamma((0, \infty))=A$ is connected.

- B is connected: Indeed B is homeomorphic to the interval $[-1,1]$. Since $[-1,1]$ is connected, by Corollary 3.92 we conclude that B is connected.
- $\bar{A}=X$: This is because each point $y \in B$ is of the form $y=\left(0, t_{0}\right)$ for some $t_{0} \in[-1,1]$. By continuity of \sin and the Intermediate Value Theorem there exists some $z>0$ such that

$$
\sin (z)=t_{0} .
$$

Therefore $z_{n}:=z+2 n \pi$ satisfies

$$
z_{n} \rightarrow \infty, \quad \sin \left(z_{n}\right)=t_{0}, \quad \forall n \in \mathbb{N} .
$$

Define $s_{n}:=1 / z_{n}$. Trivially

$$
s_{n} \rightarrow 0, \quad \sin \left(\frac{1}{s_{n}}\right)=t_{0}, \quad \forall n \in \mathbb{N} .
$$

Therefore we obtain

$$
\left(s_{n}, \sin \left(\frac{1}{s_{n}}\right)\right) \rightarrow\left(0, t_{0}\right) .
$$

Hence the set B is contained in the set $L(A)$ of limit points of A. Since we are in \mathbb{R}^{2}, we have that $L(A)=\bar{A}$, proving that $B \subseteq \bar{A}$. Thus $\bar{A}=A \cup B=X$.

Step 3. X is connected.
Let $U \subseteq X$ be non-empty, open and closed. If we prove that $U=X$, we conclude that X is connected. Let us proceed.
Since U is non-empty, we can fix a point $x \in U$. We have two possibilities:

- $x \in A$: In this case $A \cap U \neq \varnothing$. Since A is connected and U is open and closed, by Lemma 3.101 we conclude $A \subseteq U$. As U is closed and contains A, then $\bar{A} \subseteq U$. But we have shown that

$$
\bar{A}=X
$$

and therefore $U=X$.

- $x \in B$: Then $U \cap B \neq \varnothing$. Since B is connected and U is open and closed, we can invoke Lemma 3.101 and conclude that $B \subseteq U$. Since $(0,0) \in B$, it follows that

$$
(0,0) \in U
$$

As U is open in X, and X has the subspace topology induced by the inclusion $X \subseteq \mathbb{R}^{2}$, there exists an open set W of \mathbb{R}^{2} such that

$$
U=X \cap W
$$

Therefore $(0,0) \in W$. As W is open in \mathbb{R}^{2}, there exists a radius $\varepsilon>0$ such that

$$
B_{\varepsilon}(0,0) \subseteq W
$$

Hence

$$
X \cap B_{\varepsilon}(0,0) \subseteq X \cap W=U
$$

The ball $B_{\varepsilon}(0,0)$ contains points of A, and therefore

$$
A \cap U \neq \varnothing
$$

Since A is connected and U is open and closed, we can again use Lemma 3.101 and obtain that $A \subseteq U$. Since we already had $B \subseteq U$, and since $U \subseteq X=A \cup B$, we conclude hence $U=X$.

Therefore $U=X$ in all possible cases, showing that X is connected.

4 Surfaces

Curves are 1 D objects in \mathbb{R}^{3}, parametrized via functions $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$. There is only one available direction in which to move on a curve:

- $t \mapsto \boldsymbol{\gamma}(t)$ moves forward on the curve
- $t \mapsto \boldsymbol{\gamma}(-t)$ moves backward on the curve

Figure 4.1: Sketch of a curve $\boldsymbol{\gamma}$.
Surfaces are 2 D objects in \mathbb{R}^{3}. There are two directions in which one can move on a surface.

Question 4.1

How to dercribe a surface mathematically?
A curve $\Gamma \subseteq \mathbb{R}^{3}$ can be described with one function $\boldsymbol{\gamma}:(a, b) \rightarrow \Gamma$. The idea is that Γ looks locally like \mathbb{R}.
A surface \mathcal{S} cannot be described, in general, with just one function $\sigma: U \rightarrow \mathcal{S}$, with $U \subseteq \mathbb{R}^{2}$ open set. The idea is that, to describe $\mathcal{\delta}$, one needs to piece together many local charts $\sigma_{i}: U_{i} \rightarrow \delta$ with $U_{i} \subseteq \mathbb{R}^{2}$ open. Such charts have to cover the whole surface \mathcal{S}, e.g.

$$
\mathcal{S}=\bigcup_{i} \boldsymbol{\sigma}_{i}\left(U_{i}\right)
$$

Figure 4.2: Sketch of a surfaces: Sphere, Torus, Möbius band.

Figure 4.3: A curve Γ can be described by a function $\boldsymbol{\gamma}:(a, b) \rightarrow \Gamma$.

Figure 4.4: A surface \mathcal{S} can be described by a family of charts $\sigma_{i}: U_{i} \rightarrow \mathcal{S}$ with $U_{i} \subseteq \mathbb{R}^{2}$ open set.

4.1 Preliminaries

Before proceeding with the formal definition of surface, we need to establish some basic notation and terminology regarding linear algebra, the topology of \mathbb{R}^{n}, and calculus for smooth maps from \mathbb{R}^{n} into \mathbb{R}^{m}.

4.1.1 Linear algebra

Definition 4.2: Bilinear form

Let V be a vector space and $B: V \times V \rightarrow \mathbb{R}$. We say that:

- B is bilinear if

$$
\begin{aligned}
& B\left(\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}, \mathbf{w}\right)=\lambda_{1} B\left(\mathbf{v}_{1}, \mathbf{w}\right)+\lambda_{2} B\left(\mathbf{v}_{2}, \mathbf{w}\right), \\
& B\left(\mathbf{w}, \lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{1} B\left(\mathbf{w}, \mathbf{v}_{1}\right)+\lambda_{2} B\left(\mathbf{w}, \mathbf{v}_{2}\right) .
\end{aligned}
$$

for all $\mathbf{v}_{i}, \mathbf{w} \in V, \lambda_{i} \in \mathbb{R}$.

- B is symmetric if

$$
B(\mathbf{v}, \mathbf{w})=B(\mathbf{w}, \mathbf{v})
$$

for all $\mathbf{v}, \mathbf{w} \in V$.
A bilinear map B is called bilinear form on V.

Notation

Let V be a vector space with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Then, for a vector $\mathbf{v} \in V$ there exist coefficients $\lambda_{1}, \ldots, \lambda_{n}$ such that

$$
\mathbf{v}=\lambda_{1} \mathbf{v}_{1}+\ldots+\lambda_{n} \mathbf{v}_{n} .
$$

We denote the vector of coefficients of \mathbf{v} by the column vector

$$
\mathbf{x}:=\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{T} \in \mathbb{R}^{n}
$$

The coefficients of a vector \mathbf{w} are denoted by

$$
\mathbf{y}:=\left(\mu_{1}, \ldots, \mu_{n}\right)^{T} .
$$

Bilinear forms can be represented by a matrix.

Remark 4.3: Matrix representation for bilinear forms
Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for the vector space V. Given a bilinear form $B: V \times V \rightarrow \mathbb{R}$ we define the matrix

$$
M:=\left(B\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)\right)_{i, j=1}^{n} \in \mathbb{R}^{n \times n}
$$

Then

$$
B(\mathbf{v}, \mathbf{w})=\mathbf{x}^{T} M \mathbf{y} .
$$

Proof. We can write \mathbf{v} and \mathbf{w} in cordinates as

$$
\mathbf{v}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}, \quad \mathbf{w}=\sum_{i=1}^{n} \mu_{i} \mathbf{v}_{i}
$$

for suitable coefficients $\lambda_{i}, \mu_{i} \in \mathbb{R}$. Using bilinearity of B we get

$$
\begin{aligned}
B(\mathbf{v}, \mathbf{w}) & =B\left(\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}, \sum_{j=1}^{n} \mu_{j} \mathbf{v}_{j}\right) \\
& =\sum_{i, j=1}^{n} \lambda_{i} \mu_{j} B\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right) \\
& =\mathbf{x}^{T} M \mathbf{y} .
\end{aligned}
$$

Definition 4.4: Quadratic form

Let V be a vector space and $B: V \times V \rightarrow \mathbb{R}$ be a bilinear form. The quadratic form associated to B is the map

$$
Q: V \rightarrow \mathbb{R}, \quad Q(\mathbf{v}):=B(\mathbf{v}, \mathbf{v}) .
$$

A symmetric bilinear form is uniquely determinded by its quadratic form, as stated in the following proposition.

Proposition 4.5

Let $B: V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form and $Q: V \rightarrow \mathbb{R}$ the associated quadratic form. Then

$$
B(u, v)=\frac{1}{2}(Q(\mathbf{v}+\mathbf{w})-Q(\mathbf{v})-Q(\mathbf{w})) .
$$

for all $\mathbf{v}, \mathbf{w} \in V$.
The proof is an easy check, and is left as an exercise.
Definition 4.6: Inner product
Let V be a vector space. An inner product on V is a symmetric bilinear form $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ such that

$$
\langle\mathbf{v}, \mathbf{v}\rangle>0, \quad \forall \mathbf{v} \in V .
$$

Moreover:

- The length of a vector $\mathbf{v} \in V$ with respect to B is defined as

$$
\|\mathbf{v}\|:=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle} .
$$

- Two vectors $\mathbf{v}, \mathbf{w} \in V$ are orthogonal if

$$
\langle\mathbf{v}, \mathbf{w}\rangle=0 .
$$

Example 4.7

Let $V=\mathbb{R}^{n}$ and consider the euclidean scalar product

$$
\mathbf{v} \cdot \mathbf{w}=\sum_{i=1}^{n} v_{i} w_{i}
$$

where $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$. Then

$$
\langle\mathbf{v}, \mathbf{w}\rangle:=\mathbf{v} \cdot \mathbf{w}
$$

is an inner product on \mathbb{R}^{n}.

Proposition 4.8

Let V be a vector space and $\langle\cdot, \cdot\rangle$ an inner product on V. There exists an orthonormal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V, that is, such that

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

In particular, the matrix M associated to $\langle\cdot, \cdot\rangle$ is the identity.

Definition 4.9: Linear map

Let V, W be vector spaces and $L: V \rightarrow W$. We say that L is linear if

$$
L(\lambda \mathbf{v}+\mu \mathbf{w})=\lambda L(\mathbf{v})+\mu L(\mathbf{w})
$$

for all $\mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in \mathbb{R}$.

Remark 4.10: Matrix representation of linear maps
Let V, W be vector spaces and $L: V \rightarrow W$ be a linear map. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of V and $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ be a basis of W. Then there exists a matrix $M \in \mathbb{R}^{m \times n}$ such that

$$
L \mathbf{v}=M \mathbf{x}, \quad \forall \mathbf{v} \in V
$$

Specifically, $M \in \mathbb{R}^{n \times n}$ is called the matrix associated to L with respect to the basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V and $\left\{\mathbf{w}_{1} \ldots, \mathbf{w}_{m}\right\}$ of W, and is defined by

$$
M:=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)
$$

where the coefficients $a_{i j}$ are such that

$$
L\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+\ldots+a_{m j} \mathbf{w}_{m}=\sum_{i=1}^{m} a_{i j} \mathbf{w}_{i} .
$$

In other words, the columns of M are given by the coordinates of the vectors $L\left(\mathbf{v}_{i}\right)$ with respect to the basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$.

Definition 4.11: Eigenvalues and eigenvectors
Let V be a vector space and $L: V \rightarrow V$ a linear map. We say that $\lambda \in \mathbb{R}$ is an eigenvalue of L if

$$
L(\mathbf{v})=\lambda \mathbf{v}
$$

for some $\mathbf{v} \in V$ with $\mathbf{v} \neq 0$. Such \mathbf{v} is called eigenvector of L associated to the eigenvalue λ.

Definition 4.12: Self-adjoint map
Let V be a vector space, $\langle\cdot, \cdot\rangle$ an inner product and $L: V \rightarrow V$ a linear map. We say that L is self-adjoint if

$$
\langle\mathbf{v}, L(\mathbf{w})\rangle=\langle L(\mathbf{v}), \mathbf{w}\rangle, \quad \forall \mathbf{v}, \mathbf{w} \in V .
$$

Theorem 4.13: Spectral Theorem

Let V be a vector space, $\langle\cdot, \cdot\rangle$ an inner product, and $L: V \rightarrow V$ a self-adjoint linear map. There exist an orthonormal basis of V

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}
$$

where \mathbf{v}_{i} are eigenvectors of L, that is,

$$
L \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}
$$

for some eigevalue $\lambda_{i} \in \mathbb{R}$. In particular, the matrix of L with respect to the basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is diagonal:

$$
M=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

There is also a matrix version of the spectral theorem. To state it, we need to introduce some terminology.

Definition 4.14

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. We say that:

- A is symmetric if

$$
A^{T}=A .
$$

- A is orthogonal if

$$
A^{T} A=I,
$$

where I is the identity matrix.

Remark $\mathbf{4 . 1 5}$

Let $L: V \rightarrow V$ be linear and $A \in \mathbb{R}^{n \times n}$ be the matrix associated to L with respect to any basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V. They are equivalent:

- L is self-adjoint,
- A is symmetric.

Definition 4.16: Matrix eigenvalues
Let $A \in \mathbb{R}^{n \times n}$ be a matrix. An eigenvalue of A is a number $\lambda \in \mathbb{R}$ such that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

for some $\mathbf{v} \in \mathbb{R}^{n}$ with $\mathbf{v} \neq 0$. The vector \mathbf{v} is called an eigenvector of A with eigenvalue λ.

Remark $\mathbf{4 . 1 7}$

Let $A \in \mathbb{R}^{n \times n}$. The eigenvalues of λ of A can be computed by solving the characteristic equation

$$
P(\lambda)=0,
$$

where P is the characteristic polynomial of A, defined by

$$
P(\lambda):=\operatorname{det}(A-\lambda I) .
$$

Remark $\mathbf{4 . 1 8}$

Let $L: V \rightarrow V$ be a linear map and A the associated matrix with respect to any basis of V. Then

$$
L(\mathbf{v})=A \mathbf{x}, \quad \forall \mathbf{v} \in V,
$$

where $\mathbf{x} \in \mathbb{R}^{n}$ is the vector of coordinates of \mathbf{v}. They are equivalent:

- λ is an eigenvalue of L of eigenvector \mathbf{v},
- λ is an eigenvalue of A of eigenvector \mathbf{x}.

Theorem 4.19: Spectral Theorem for matrices

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Consider \mathbb{R}^{n} equipped with the euclidean scalar product. There exist an orthonormal basis of V

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}
$$

where \mathbf{v}_{i} are eigenvectors of A, that is,

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}
$$

for some eigevalue $\lambda_{i} \in \mathbb{R}$. Moreover

$$
A=P D P^{T}
$$

where

$$
\begin{aligned}
& P:=\left(\mathbf{v}_{1}|\ldots| \mathbf{v}_{n}\right) \\
& D:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right) .
\end{aligned}
$$

Remark $\mathbf{4 . 2 0}$

The corresponedence between Theorem 4.13 and Theorem 4.19 is as follows. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ be any orthonormal basis of the vector space V. Define the linear map $L: V \rightarrow V$ such that

$$
L\left(\mathbf{v}_{j}\right)=\sum_{i=1}^{n} a_{i j} \mathbf{w}_{i}, \quad \forall j=1, \ldots, n
$$

In this way A is the matrix associated to L with respect to the basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$. Then L is self-adjoint. Moreover L and A have the same eigenvalues. By the Spectral Theorem there exists an orthonormal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V such that the matrix of L with respect to such basis, say D, is diagonal. Then

$$
A=P D P^{T}
$$

where P is the matrix of change of basis between $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, that is, $P=\left(p_{i j}\right)$ where

$$
\mathbf{w}_{j}=\sum_{i=1}^{n} p_{i j} \mathbf{v}_{i} .
$$

4.1.2 Topology of \mathbb{R}^{n}

The Euclidean norm on \mathbb{R}^{n} is denoted by

$$
\|\mathbf{x}\|:=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}, \quad \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

The Euclidean norm induces the distance

$$
d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} .
$$

Definition 4.21: Euclidean Topology

The pair $\left(\mathbb{R}^{n}, d\right)$ is a metric space. The topology induced by the metric d is called the Euclidean topology, denoted by \mathscr{T}. In this chapter we will always assume that \mathbb{R}^{n} is equipped with the Euclidean topology \mathscr{T}.

Definition 4.22: Open Sets

A set $U \subseteq \mathbb{R}^{n}$ is open if for all $\mathbf{x} \in U$ there exists $\varepsilon>0$ such that $B_{\varepsilon}(\mathbf{x}) \subseteq U$, where

$$
B_{\varepsilon}(\mathbf{x}):=\left\{\mathbf{y} \in \mathbb{R}^{n}:\|\mathbf{x}-\mathbf{y}\|<\varepsilon\right\}
$$

is the open ball of radius $\varepsilon>0$ and centered at \mathbf{x}. In this case we denote $U \in \mathscr{T}$, with \mathscr{T} the Euclidean topology in \mathbb{R}^{n}.

Definition 4.23: Closed Sets

A set $V \subseteq \mathbb{R}^{n}$ is closed if $V^{c}:=\mathbb{R}^{n} \backslash U$ is open.

Example 4.24

- The n-dimensional unit sphere

$$
\mathbb{S}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n+1}:\|x\|=1\right\}
$$

is not open in \mathbb{R}^{n+1}, since for any $\mathbf{x} \in \mathbb{S}^{n}$ we have

$$
B_{\varepsilon}(\mathbf{x}) \nsubseteq \mathbb{S}^{n} .
$$

- The n-dimensional unit cube

$$
C:=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left|x_{1}\right|+\ldots+\left|x_{n}\right|<1\right\}
$$

is open in \mathbb{R}^{n}, since one can always find $\varepsilon>0$ small enough so that

$$
B_{\varepsilon}(\mathbf{x}) \nsubseteq C .
$$

- The set

$$
V:=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left|x_{1}\right|+\ldots+\left|x_{n}\right| \geq 1\right\}
$$

is closed, since $V^{c}=C$ is the unit cube, which is open.

Definition 4.25: Subspace Topology

Given a subset $A \subseteq \mathbb{R}^{n}$ the subspace topology on A is the family of sets

$$
\mathscr{T}_{A}:=\{U \subseteq A: \exists W \in \mathscr{T} \text { s.t. } U=A \cap W\} .
$$

If $U \in \mathscr{T}_{A}$ we say that U is open in A.

4.1.3 Smooth functions

We recall some basic facts about smooth functions from \mathbb{R}^{n} into \mathbb{R}^{m}. For a vector valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ we denote its components by

$$
f=\left(f_{1}, \ldots, f_{m}\right) .
$$

Definition 4.26: Continuous Function

Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with U open. We say that f is continuous at $\mathbf{x} \in U$ if $\forall \varepsilon>0,, \exists \delta>0$ such that

$$
\|\mathbf{x}-\mathbf{y}\|<\delta \quad \Longrightarrow \quad\|f(\mathbf{x})-f(\mathbf{y})\|<\varepsilon
$$

We say that f is continuous in U if it is continuous for all $\mathbf{x} \in U$.

Remark 4.27

Let $f: U \subseteq \mathbb{R}^{n} \rightarrow V \subseteq \mathbb{R}^{m}$, with U, V open. We have that f is continuous if and only if $f^{-1}(A)$ is open in U, for all A open in V.

Definition 4.28: Homeomorphism
Let $f: U \subseteq \mathbb{R}^{n} \rightarrow V \subseteq \mathbb{R}^{m}$ with U, V open. We say that f is a homeomorphism if f is continuous and there exists inverse $f^{-1}: V \rightarrow U$ continuous.

Definition 4.29: Differentiable Function
Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with U open. We say that f is differentiable at $\mathbf{x} \in U$ if there exists a linear map $d f_{\mathbf{x}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{\varepsilon \rightarrow 0} \frac{f(\mathbf{x}+\varepsilon \mathbf{h})-f(\mathbf{x})-\varepsilon d f_{\mathbf{x}}(\mathbf{h})}{\varepsilon}=0,
$$

for all $\mathbf{h} \in \mathbb{R}^{n}$, where the limit is taken in \mathbb{R}^{m}. The map $d f_{\mathbf{x}}$ is called the differential of f at \mathbf{x}.
We denote by $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$ the standard basis of \mathbb{R}^{n}.

Definition 4.30: Partial Derivative
Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with U open be differentiable. The partial derivative of f at $\mathbf{x} \in U$ in direction \mathbf{e}_{i} is given by

$$
\frac{\partial f}{\partial x_{i}}:=\lim _{\varepsilon \rightarrow 0} \frac{f\left(\mathbf{x}+\varepsilon \mathbf{e}_{i}\right)-f(\mathbf{x})}{\varepsilon} .
$$

Definition 4.31: Jacobian Matrix
The linear map $d f_{\mathbf{x}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be represented in matrix form, with respect to the Euclidean basis, by the Jacobian matrix

$$
J f(x):=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{i, j} \in \mathbb{R}^{m \times n} .
$$

If $m=n$ then $J f \in \mathbb{R}^{n \times n}$ is a square matrix and we can compute its determinant, denoted by

$$
\operatorname{det}(J f)
$$

Definition 4.32: Multi-index notation

For a multi-index

$$
\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}
$$

we denote by

$$
|\alpha|:=\sum_{i=1}^{n}\left|\alpha_{i}\right|
$$

the length of the multi-index.

Definition 4.33: Smooth Function

Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with U open. We say that f is smooth if the derivatives

$$
\frac{\partial^{|\alpha|} f}{d \mathbf{x}^{\alpha}}:=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}} f
$$

exist for each multi-index $\alpha \in \mathbb{N}^{n}$. Note that in this case all the derivatives of f are automatically continuous.

Notation: Gradient and partial derivatives
Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be smooth. We denote the partial derivatives by

$$
\partial_{x_{i}} f:=\frac{\partial f}{\partial x_{i}}, \quad \partial_{x_{i} x_{j}} f:=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, \quad \partial_{x_{i} x_{j} x_{k}} f:=\frac{\partial^{3} f}{\partial x_{i} \partial x_{j} \partial x_{k}} .
$$

For $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ smooth we denote the gradient by

$$
\nabla f(\mathbf{x})=\left(f_{x_{1}}(\mathbf{x}), \ldots, f_{x_{n}}(\mathbf{x})\right)
$$

Example 4.34

The functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
f(x, y):=\cos (x) y, \quad g(x, y):=\left(x^{2}, y^{2}, x-y\right)
$$

are both smooth.

Definition 4.35: Diffeomorphism

Let $f: U \rightarrow V$ with $U \subseteq \mathbb{R}^{n}$ and $V \subseteq \mathbb{R}^{n}$ open. We say that f is a diffeomorphism between U and V if f is smooth and there exists smooth inverse $f^{-1}: V \rightarrow U$.

We recall, without proof, the Inverse Function Theorem. Please note that in the statement the function f is defined from \mathbb{R}^{n} into \mathbb{R}^{n}.

Theorem 4.36: Inverse Function Theorem
Let $f: U \rightarrow \mathbb{R}^{n}$ with $U \subseteq \mathbb{R}^{n}$ open. Suppose f is a smooth function and

$$
\operatorname{det} J f\left(\mathbf{x}_{0}\right) \neq 0,
$$

for some $\mathbf{x}_{0} \in U$. Then there exist open sets $U_{0}, V \subseteq \mathbb{R}^{n}$ such that $\mathbf{x}_{0} \in U_{0}, f\left(\mathbf{x}_{0}\right) \in V$ and $f: U_{0} \rightarrow V$ is a diffeomorphism.

Warning

Even if

$$
\operatorname{det} J f(\mathbf{x}) \neq 0,
$$

for all $\mathbf{x} \in U$, it is not guaranteed that f is a diffeomorphism between U and $f(U)$.
Non-vanishing Jacobian determinant is a necessary condition for being a diffeomorphism.

Proposition 4.37

Let $f: U \rightarrow \mathbb{R}^{n}$ with $U \subseteq \mathbb{R}^{n}$ open. Suppose f is a diffeomorphism on U. Then

$$
\operatorname{det} J f(\mathbf{x}) \neq 0, \quad \forall \mathbf{x} \in U
$$

Example 4.38

Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y):=(\cos (x) \sin (y), \sin (x) \sin (y)) .
$$

Then

$$
J f(x, y)=\left(\begin{array}{cc}
-\sin (x) \sin (y) & \cos (x) \cos (y) \\
\cos (x) \sin (y) & \sin (x) \cos (y)
\end{array}\right) .
$$

and

$$
\begin{aligned}
\operatorname{det} J f(x, y) & =-\sin ^{2}(x) \cos (y) \sin (y)-\cos ^{2}(x) \cos (y) \sin (y) \\
& =-\sin (y) \cos (y) \\
& =-\frac{1}{2} \sin (2 y)
\end{aligned}
$$

Therefore

$$
\operatorname{det} J f(x, y) \neq 0 \quad \Longleftrightarrow \quad y \neq \frac{n \pi}{2}, n \in \mathbb{N} .
$$

Hence f is a diffeomorphism away from the lines

$$
L_{n}:=\left\{\left(x, \frac{n \pi}{2}\right): x \in \mathbb{R}\right\} .
$$

4.2 Definition of Surface

We give our main definition of surface in \mathbb{R}^{3}.

Definition 4.39: Surface

Let $\mathcal{S} \subseteq \mathbb{R}^{3}$ be a connected set. We say that \mathcal{S} is a surface if for every point $\mathbf{p} \in \mathcal{S}$ there exist an open set $U \subseteq \mathbb{R}^{2}$ and a smooth map

$$
\boldsymbol{\sigma}: U \rightarrow \boldsymbol{\sigma}(U) \subseteq \mathcal{S}
$$

such that

- $\mathbf{p} \in \boldsymbol{\sigma}(U)$
- $\boldsymbol{\sigma}(U)$ is open in \mathcal{S}
- $\boldsymbol{\sigma}$ is a homeomorphism between U and $\sigma(U)$

Further:

- The homeomorphism $\boldsymbol{\sigma}$ is called a surface chart at \mathbf{p}.
- For each $i \in I$ suppose to have a surface chart

$$
\boldsymbol{\sigma}_{i}: U_{i} \rightarrow \boldsymbol{\sigma}\left(U_{i}\right) \subseteq \mathcal{S}
$$

We say that the family

$$
\mathscr{A}=\left\{\boldsymbol{\sigma}_{i}\right\}_{i \in I}
$$

is an atlas of \mathcal{S} if

$$
\mathcal{S}=\bigcup_{i \in I} \sigma_{i}\left(U_{i}\right)
$$

Remark 4.40

- A surface chart $\boldsymbol{\sigma}$ is a map

$$
\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}
$$

with $U \subseteq \mathbb{R}^{2}$ open. Therefore smoothness of $\boldsymbol{\sigma}$ is intended in the classical sense.

- Given a chart $\boldsymbol{\sigma}: U \rightarrow \boldsymbol{\sigma}(U)$, the set U is open in \mathbb{R}^{2} while $\boldsymbol{\sigma}(U)$ is open in $\mathcal{\delta}$ with the subspace topology. This means that there exists $W \subseteq \mathbb{R}^{3}$ open such that

$$
\boldsymbol{\sigma}(U)=W \cap \mathcal{S} .
$$

- The omeomorphism condition is saying that $\boldsymbol{\sigma}(U) \subseteq \mathcal{S}$ looks locally (around \mathbf{p}) like an open set $U \subseteq \mathbb{R}^{2}$.

$$
U \subseteq \mathbb{R}^{2} \text { OPEN }
$$

Figure 4.5: Sketch of the surface \mathcal{S} and chart $\sigma: U \rightarrow \sigma(U) \subseteq \mathcal{S}$. The set $U \subseteq \mathbb{R}^{2}$ is open in \mathbb{R}^{2} and $\sigma(U)$ is open in \mathcal{S}. This means there exists W open in \mathbb{R}^{3} such that $\boldsymbol{\sigma}(U)=\mathcal{S} \cap W$.

Notation

- Points in U will be denoted with the pair (u, v).
- Partial derivatives of a chart $\boldsymbol{\sigma}=\boldsymbol{\sigma}(u, v)$ will be denoted by

$$
\boldsymbol{\sigma}_{u}:=\frac{\partial \boldsymbol{\sigma}}{\partial u}, \quad \boldsymbol{\sigma}_{v}:=\frac{\partial \boldsymbol{\sigma}}{\partial v} .
$$

Similar notations are adopted for higher order derivatives, e.g.,

$$
\begin{array}{ll}
\boldsymbol{\sigma}_{u u}:=\frac{\partial^{2} \boldsymbol{\sigma}}{\partial u^{2}}, & \boldsymbol{\sigma}_{u v}:=\frac{\partial^{2} \boldsymbol{\sigma}}{\partial u \partial v} \\
\boldsymbol{\sigma}_{v u}:=\frac{\partial^{2} \boldsymbol{\sigma}}{\partial v \partial u}, & \boldsymbol{\sigma}_{v v}:=\frac{\partial^{2} \boldsymbol{\sigma}}{\partial v^{2}}
\end{array}
$$

- Components of $\boldsymbol{\sigma}$ will be denoted by

$$
\boldsymbol{\sigma}=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)
$$

Example 4.41: ${ }^{2} D$ Plane in \mathbb{R}^{3}

Planes in \mathbb{R}^{3} are surfaces with atlas containing one chart. Namely, a plane $\pi \subseteq \mathbb{R}^{3}$ is described by

$$
\pi=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x} \cdot \mathbf{w}=\lambda\right\}
$$

Let

- $\mathbf{p}, \mathbf{q} \in \mathbb{R}^{3}$ be ortoghonal to each other and to \mathbf{w}.
- $\mathbf{a} \in \pi$ be any point in the plane.

If $\mathbf{x} \in \pi$ then $\mathbf{x}-\mathbf{a}$ is parallel to the plane and π can be equivalently represented as

$$
\pi=\{\mathbf{a}+u \mathbf{p}+v \mathbf{q}: u, v \in \mathbb{R}\}
$$

Define the map

$$
\boldsymbol{\sigma}: \mathbb{R}^{2} \rightarrow \pi, \quad \boldsymbol{\sigma}(u, v):=\mathbf{a}+u \mathbf{p}+v \mathbf{q} .
$$

We have:

- σ is smooth.
- \mathbb{R}^{2} is obviously open.
- $\sigma\left(\mathbb{R}^{2}\right)$ is open in π, since $\sigma\left(\mathbb{R}^{2}\right)=\pi$.
- The inverse of $\boldsymbol{\sigma}$ is

$$
\sigma^{-1}: \pi \rightarrow \mathbb{R}^{2}, \quad \boldsymbol{\sigma}^{-1}(\mathbf{x})=((\mathbf{x}-\mathbf{a}) \cdot \mathbf{p},(\mathbf{x}-\mathbf{a}) \cdot \mathbf{q})
$$

- As σ^{-1} is continuous, then σ is a homeomorphism between \mathbb{R}^{2} and π.

Therefore σ is a chart for π. Since

$$
\boldsymbol{\sigma}\left(\mathbb{R}^{2}\right)=\pi
$$

we have that $\{\boldsymbol{\sigma}\}$ is an atlas for π, and hence π is a surface.

$\sigma(\mu, v)=\underline{a}+\mu \underline{p}+\sigma \underline{q}$

Figure 4.6: A plane π is a surface with atlas containing a single chart $\sigma: \mathbb{R}^{2} \rightarrow \pi$.

Example 4.42: Unit cylinder

Consider the infinite unit cylinder

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\} .
$$

\mathcal{S} is a surface with an atlas consisting of two charts:

$$
\boldsymbol{\sigma}_{i}: U_{i} \rightarrow \mathbb{R}^{3}, \quad \boldsymbol{\sigma}_{i}(u, v):=(\cos (u), \sin (u), v)
$$

for $i=1,2$, where

$$
U_{1}:=\left(0, \frac{3 \pi}{2}\right) \times \mathbb{R}, \quad U_{2}:=\left(\pi, \frac{5 \pi}{2}\right) \times \mathbb{R} .
$$

Indeed:

- σ_{i} is smooth.
- U_{i} is clearly open in \mathbb{R}^{2}.
- One can check that $\boldsymbol{\sigma}_{i}\left(U_{i}\right)$ is open in \mathcal{S}.
- $\boldsymbol{\sigma}_{i}$ is a homeomorphism of U_{i} in $\boldsymbol{\sigma}\left(U_{i}\right)$.
- $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ is an atlas for \mathcal{S}, since

$$
\mathcal{S}=\boldsymbol{\sigma}_{1}\left(U_{1}\right) \cup \sigma_{2}\left(U_{2}\right)
$$

Figure 4.7: Unit cylinder \mathcal{S} is a surface with atlas $\mathscr{A}=\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$. Depicted are the images $\boldsymbol{\sigma}_{1}\left(U_{1}\right)$ and $\boldsymbol{\sigma}_{2}\left(U_{2}\right)$.

Important

Consider again the unit cylinder

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}
$$

Define the map

$$
\sigma: U \rightarrow \mathbb{R}^{3}, \quad \sigma(u, v):=(\cos (u), \sin (u), v)
$$

where

$$
U:=[0,2 \pi] \times \mathbb{R}
$$

Clearly we have

$$
\boldsymbol{\sigma}(U)=\mathcal{S} .
$$

However $\{\boldsymbol{\sigma}\}$ is not an atlas for \mathcal{S}, since $\boldsymbol{\sigma}$ is not a chart. This is because $\boldsymbol{\sigma}$ is not invertible, as for example

$$
\boldsymbol{\sigma}(0,0)=\boldsymbol{\sigma}(2 \pi, 0)
$$

Therefore $\boldsymbol{\sigma}$ cannot be an omeomorphism between U and \mathcal{S}.

Example 4.43: Graph of a function

Let $U \subseteq \mathbb{R}^{2}$ be open and $f: U \rightarrow \mathbb{R}$ be smooth. The graph of f is the set

$$
\Gamma_{f}:=\{(u, v, f(u, v)):(u, v) \in U\} .
$$

We have that Γ_{f} is a surface with atlas given by

$$
\mathscr{A}=\{\boldsymbol{\sigma}\}
$$

where $\boldsymbol{\sigma}: U \rightarrow \Gamma_{f}$ is

$$
\boldsymbol{\sigma}(u, v):=(u, v, f(u, v)) .
$$

Let us check that Γ_{f} is a surface:

- $\boldsymbol{\sigma}$ is smooth since f is smooth.
- U is open in \mathbb{R}^{2} by assumption.
- $\boldsymbol{\sigma}(U)=\Gamma_{f}$, and therefore $\boldsymbol{\sigma}(U)$ is open in Γ_{f}.
- The inverse of σ is given by $\tilde{\boldsymbol{\sigma}}: \Gamma_{f} \rightarrow U$ defined as

$$
\tilde{\boldsymbol{\sigma}}(u, v, f(u, v)):=(u, v) .
$$

Clearly $\tilde{\boldsymbol{\sigma}}$ is continuous.

- Therefore σ is a homeomorphism of U into Γ_{f}.
- $\mathscr{A}=\{\boldsymbol{\sigma}\}$ is an atlas for Γ_{f}, since

$$
\Gamma_{f}=\boldsymbol{\sigma}(U)
$$

Let us conclude the section with an example of a set which is not a surface.

Example 4.44: Circular cone

Consider the circular cone

$$
\mathcal{S}:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}\right\} .
$$

Then \mathcal{S} is not a surface. This is essentially consequence of the fact that

$$
\mathcal{S} \backslash\{0\}
$$

is a disconnected set.
To see that \mathcal{S} is not a surface, suppose there exists an atlas $\left\{\boldsymbol{\sigma}_{i}\right\}$ of \mathcal{S}

$$
\boldsymbol{\sigma}_{i}: U_{i} \rightarrow \boldsymbol{\sigma}_{i}\left(U_{i}\right) \subseteq \mathcal{S} .
$$

In particular there exists a chart σ such that

$$
\mathbf{0} \in \boldsymbol{\sigma}(U)
$$

Let $\mathbf{x}_{0} \in U$ be the point such that

$$
\sigma\left(\mathbf{x}_{0}\right)=\mathbf{0}
$$

Since U is open in \mathbb{R}^{2}, there exists $\varepsilon>0$ such that $B_{\varepsilon}\left(\mathbf{x}_{0}\right) \subseteq U$. Since σ is a homeomorphism, we deduce that

$$
\sigma\left(B_{\varepsilon}\left(\mathbf{x}_{0}\right)\right)
$$

is open in \mathcal{S}. Hence there exists an open set W in \mathbb{R}^{3} such that

$$
\boldsymbol{\sigma}\left(B_{\varepsilon}\left(\mathbf{x}_{0}\right)\right)=\boldsymbol{\sigma}(U) \cap W
$$

As $\mathbf{0} \in \boldsymbol{\sigma}\left(B_{\varepsilon}\left(\mathbf{x}_{0}\right)\right)$, we conclude that $\mathbf{0} \in W$. Since W is open in \mathbb{R}^{3}, there exists $\delta>0$ such that

$$
B_{\delta}(\mathbf{0}) \subseteq W
$$

In particular we deduce that

$$
B_{\delta}(\mathbf{0}) \cap \boldsymbol{\sigma}(U) \subseteq \sigma\left(B_{\varepsilon}\left(\mathbf{x}_{0}\right)\right) .
$$

Hence $\boldsymbol{\sigma}\left(B_{\varepsilon}\left(\mathbf{x}_{0}\right)\right)$ contains points of both \mathcal{S}^{-}and \mathcal{S}^{+}, with

$$
\mathcal{S}^{-}:=\mathcal{S} \cap\{z<0\}, \quad \mathcal{S}^{+}:=\mathcal{S} \cap\{z>0\} .
$$

This implies that

$$
V:=\boldsymbol{\sigma}\left(B_{\varepsilon}\left(\mathbf{x}_{0}\right)\right) \backslash\{\mathbf{0}\}
$$

is disconnected, with disconnection given by

$$
V=\left(V \cap \mathcal{S}^{-}\right) \cup\left(V \cap \mathcal{S}^{+}\right) .
$$

However V is homeomorphic to

$$
B_{\varepsilon}\left(\mathbf{x}_{0}\right) \backslash\left\{\mathbf{x}_{0}\right\},
$$

which is instead connected. Contradiction. Hence \mathcal{S} is not a surface.

4.3 Regular Surfaces

We have defined a regular curve to be a map $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{n}$ such that

$$
\|\boldsymbol{\gamma}(t)\| \neq 0, \quad \forall t \in(a, b) .
$$

This allowed us to define tangent vectors and, eventually, Frenet frame.
We want to do something similar for surfaces: We look for a condition that eventually will allow us to define tangent planes. This is why we introduce regular charts and regular surfaces.

Figure 4.8: The circular cone is not a surface. This is because $\mathcal{S} \backslash\{\mathbf{0}\}$ is disconnected.

Definition 4.45: Regular Chart

Let $U \subseteq \mathbb{R}^{2}$ be open. A map

$$
\sigma=\sigma(u, v): U \rightarrow \mathbb{R}^{3}
$$

is called a regular chart if the partial derivatives

$$
\boldsymbol{\sigma}_{u}(u, v)=\frac{d \sigma}{d u}(u, v), \quad \sigma_{v}(u, v)=\frac{d \boldsymbol{\sigma}}{d v}(u, v)
$$

are linearly independent vectors of \mathbb{R}^{3} for all $(u, v) \in U$.
The following gives more insight into the regularity condition.

Proposition 4.46

Let $U \subseteq \mathbb{R}^{2}$ be open and consider a map

$$
\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}
$$

They are equivalent:

1. σ is a regular chart.
2. The differential $d \sigma_{\mathbf{x}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is injective for all $\mathbf{x} \in U$.
3. The Jacobian matrix

$$
J \boldsymbol{\sigma}(u, v)=\left(\begin{array}{cc}
\sigma_{u}^{1} & \sigma_{v}^{1} \\
\sigma_{u}^{2} & \sigma_{v}^{2} \\
\sigma_{u}^{3} & \sigma_{v}^{3}
\end{array}\right)
$$

has rank 2 for all $(u, v) \in U$.
4. It holds

$$
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} \neq 0 \quad \forall(u, v) \in U .
$$

Proof

Part 1. Equivalence of Point 1 and Point 4.
By the properties of vector product, we have that

$$
\sigma_{u} \times \sigma_{v} \neq 0 \quad \forall(u, v) \in U
$$

if and only if $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ are linearly independent for all $(u, v) \in U$.
Part 2. Equivalence of Point 2 and Point 3.
The differential $d \sigma_{\mathbf{x}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is represented in matrix form by the Jacobian

$$
J \sigma(u, v)=\left(\begin{array}{cc}
\sigma_{u}^{1} & \sigma_{v}^{1} \\
\sigma_{u}^{2} & \sigma_{v}^{2} \\
\sigma_{u}^{3} & \sigma_{v}^{3}
\end{array}\right)
$$

By standard linear algebra results, $J \boldsymbol{\sigma}$ has rank 2 if and only if $d \boldsymbol{\sigma}$ is injective.
Part 3. Equivalence of Point 1 and Point 3.
A 3×2 matrix has rank 2 if and only if its columns are linearly independent. Since the columns of $J \boldsymbol{\sigma}$ are $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$, we conclude that $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ are linearly independent.

We are now ready to define regular surfaces.

Definition 4.47: Regular surface

Let \mathcal{S} be a surface. Let

$$
\mathscr{A}=\left\{\boldsymbol{\sigma}_{i}\right\}_{i \in I},
$$

be an atlas for \mathcal{S}. We say that:

- \mathscr{A} is a regular atlas if the map σ_{i} is a regular chart for all $i \in I$.
- \mathcal{S} is a regular surface if there exists a regular atlas for \mathcal{S}.

Example 4.48: ${ }_{2}$ D Plane in \mathbb{R}^{3}

Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^{3}$, with \mathbf{p} and \mathbf{q} orthogonal. We have shown that the plane

$$
\pi=\{\mathbf{a}+u \mathbf{p}+v \mathbf{q}: u, v \in \mathbb{R}\}
$$

is a surface with atlas $\mathscr{A}=\{\boldsymbol{\sigma}\}$, where

$$
\boldsymbol{\sigma}: \mathbb{R}^{2} \rightarrow \pi, \quad \boldsymbol{\sigma}(u, v):=\mathbf{a}+u \mathbf{p}+v \mathbf{q}
$$

Then π is a regular surface, because $\boldsymbol{\sigma}$ is a regular chart. To see this, compute

$$
\sigma_{u}=\mathbf{p}, \quad \boldsymbol{\sigma}_{v}=\mathbf{q}
$$

Since \mathbf{p} and \mathbf{q} are orthogonal, then they are linearly independent. Thus σ_{u} and $\boldsymbol{\sigma}_{v}$ are linearly independent, and $\boldsymbol{\sigma}$ is a regular chart.

Example 4.49: Unit cylinder
Consider the infinite unit cylinder

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\} .
$$

We have seen that \mathcal{S} is a surface with atlas $\mathscr{A}=\left\{\boldsymbol{\sigma}_{1}, \sigma_{2}\right\}$ where we define

$$
\boldsymbol{\sigma}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \boldsymbol{\sigma}(u, v):=(\cos (u), \sin (u), v)
$$

and

$$
\begin{array}{ll}
\boldsymbol{\sigma}_{1}:=\left.\boldsymbol{\sigma}\right|_{U_{1}}, & \boldsymbol{\sigma}_{2}:=\left.\boldsymbol{\sigma}\right|_{U_{2}} \\
U_{1}:=\left(0, \frac{3 \pi}{2}\right) \times \mathbb{R}, & U_{2}:=\left(\pi, \frac{5 \pi}{2}\right) \times \mathbb{R}
\end{array}
$$

We have that \mathcal{S} is a regular surface, since the atlas \mathscr{A} is regular. Indeed:

$$
\boldsymbol{\sigma}_{u}=(-\sin (u), \cos (u), 0), \quad \sigma_{v}=(0,0,1)
$$

and therefore

$$
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}=(\cos (u), \sin (u), 0), \quad\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|=1
$$

This implies

$$
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} \neq 0, \quad \forall(u, v) \in \mathbb{R}^{2},
$$

showing that $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ are linearly independent. Therefore $\boldsymbol{\sigma}_{1}$ and $\boldsymbol{\sigma}_{2}$ are regular charts, being restrictions of $\boldsymbol{\sigma}$.

Example 4.50: Graph of a function

Let $U \subseteq \mathbb{R}^{2}$ be open and $f: U \rightarrow \mathbb{R}$ be smooth. The graph of f is the set

$$
\Gamma_{f}:=\{(u, v, f(u, v)):(u, v) \in U\} .
$$

We have seen that Γ_{f} is surface with atlas given by $\mathscr{A}=\{\boldsymbol{\sigma}\}$, where $\boldsymbol{\sigma}: U \rightarrow \Gamma_{f}$ is

$$
\boldsymbol{\sigma}(u, v):=(u, v, f(u, v))
$$

We have that Γ_{f} is regular, since \mathscr{A} is a regular atlas. Indeed,

$$
\boldsymbol{\sigma}_{u}=\left(1,0, f_{u}\right), \quad \boldsymbol{\sigma}_{v}=\left(0,1, f_{v}\right),
$$

and so

$$
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}=\left(-f_{u},-f_{v}, 1\right) \neq \mathbf{0},
$$

since the last component never vanishes. Therefore σ_{u} and σ_{v} are linearly independent and $\boldsymbol{\sigma}$ is a regular chart.

Example 4.51: Unit sphere

Consider the unit sphere in \mathbb{R}^{3}

$$
\mathbb{S}^{2}:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

We have that $\2 is a regular surface, with regular atlas

$$
\mathscr{A}=\left\{\sigma_{i}\right\}_{i=1}^{6},
$$

defined as follows: Let

$$
U:=\left\{(u, v) \in \mathbb{R}^{2}: u^{2}+v^{2}<1\right\}
$$

be the unit open ball in \mathbb{R}^{2} and define $\sigma_{i}: U \rightarrow \mathbb{R}^{3}$ by

$$
\begin{aligned}
& \sigma_{1}(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right) \\
& \sigma_{2}(u, v)=\left(u, v,-\sqrt{1-u^{2}-v^{2}}\right) \\
& \sigma_{3}(u, v)=\left(u, \sqrt{1-u^{2}-v^{2}}, v\right) \\
& \sigma_{4}(u, v)=\left(u,-\sqrt{1-u^{2}-v^{2}}, v\right) \\
& \sigma_{5}(u, v)=\left(\sqrt{1-u^{2}-v^{2}}, u, v\right) \\
& \sigma_{6}(u, v)=\left(-\sqrt{1-u^{2}-v^{2}}, u, v,\right)
\end{aligned}
$$

Exercise: Check that $\2 is a regular surface.

Remark 4.52: Spherical coordinates

The equivalent of polar coordinates in dimension 3 are spherical coordinates. A point $(x, y, z) \in \mathbb{R}^{3} \backslash\{\mathbf{0}\}$ can be represented in spherical coordinates by

$$
\begin{aligned}
& x=\rho \cos (\theta) \cos (\phi) \\
& y=\rho \cos (\theta) \sin (\phi) \\
& z=\rho \sin (\theta)
\end{aligned}
$$

where

$$
\rho:=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \phi \in[0,2 \pi], \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right],
$$

with the angles ϕ and θ as in Figure Figure 4.9.
It is clear that $z=\rho \sin (\theta)$, by basic trigonometry. To compute x and y, we note that the segment joining $\mathbf{0}$ to \mathbf{p} has length

$$
L=\rho \cos \theta
$$

Therefore we get

$$
\begin{aligned}
& x=L \cos (\phi)=\rho \cos (\theta) \cos (\phi) \\
& y=L \sin (\phi)=\rho \cos (\theta) \sin (\phi)
\end{aligned}
$$

concluding.

Example 4.53: Unit sphere in spherical coordinates
Consider again the unit sphere in \mathbb{R}^{3}

$$
\mathbb{S}^{2}:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\} .
$$

We want to give an alternative atlas for $\2 based on spherical coordinates. To this end, define

$$
U:=\left\{(\theta, \phi) \in \mathbb{R}^{2}:-\frac{\pi}{2}<\theta<\frac{\pi}{2}, 0<\phi<2 \pi\right\}
$$

and $\sigma: U \rightarrow \mathbb{R}^{3}$ by

$$
\boldsymbol{\sigma}(\theta, \phi):=(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta))
$$

We have:

- $\boldsymbol{\sigma}$ is smooth.
- U is open in \mathbb{R}^{2}.

Figure 4.9: Spherical coordinates in \mathbb{R}^{3}.

- Moreover

$$
\boldsymbol{\sigma}(U)=\mathbb{S}^{2} \backslash\left\{(x, 0, z) \in \mathbb{R}^{3}: x \geq 0\right\}
$$

as seen also in the left picture in Figure 4.10.

- The set $\boldsymbol{\sigma}(U)$ is evidently open in \mathbb{S}^{2}.
- It is easy to check that $\boldsymbol{\sigma}$ is invertible, with continuous inverse.
- Thus σ is a homeomorphism from U into $\sigma(U)$.

Let us check that σ is a regular chart:

$$
\begin{aligned}
& \boldsymbol{\sigma}_{\theta}=(-\sin (\theta) \cos (\phi),-\sin (\theta) \sin (\phi), \cos (\theta)) \\
& \boldsymbol{\sigma}_{\phi}=(-\cos (\theta) \sin (\phi), \cos (\theta) \cos (\phi), 0) .
\end{aligned}
$$

Therefore

$$
\boldsymbol{\sigma}_{\theta} \times \boldsymbol{\sigma}_{\phi}=\left(-\cos ^{2}(\theta) \cos (\phi),-\cos ^{2}(\theta) \sin (\phi),-\sin (\theta) \cos (\theta)\right),
$$

from which

$$
\left\|\boldsymbol{\sigma}_{\theta} \times \boldsymbol{\sigma}_{\phi}\right\|=|\cos (\theta)| .
$$

Since $(\theta, \phi) \in U$, we have $\theta \in(-\pi / 2, \pi / 2)$, and so

$$
\left\|\boldsymbol{\sigma}_{\theta} \times \boldsymbol{\sigma}_{\phi}\right\|=|\cos (\theta)| \neq 0,
$$

showing that $\boldsymbol{\sigma}_{\theta}$ and $\boldsymbol{\sigma}_{\phi}$ are linearly independent, and $\boldsymbol{\sigma}$ is regular.
Since $\sigma(U) \neq \mathbb{S}^{2}$, the chart $\boldsymbol{\sigma}$ does not form an atlas. We need a second chart. An option is to define $\tilde{\boldsymbol{\sigma}}: U \rightarrow \mathbb{R}^{3}$ by

$$
\tilde{\boldsymbol{\sigma}}:=(-\cos (\theta) \cos (\phi),-\sin (\theta),-\cos (\theta) \sin (\phi)) .
$$

Notice that $\tilde{\boldsymbol{\sigma}}$ is obtained by rotating $\boldsymbol{\sigma}$ by π about the z-axis and by $\pi / 2$ about the y-axis, as seen in the right picture in Figure 4.10. It is an exercise to check that $\tilde{\boldsymbol{\sigma}}$ is a regular chart.
Since we have

$$
\tilde{\boldsymbol{\sigma}}(U)=\mathbb{S}^{2} \backslash\left\{(x, y, 0) \in \mathbb{R}^{3}: x \leq 0\right\},
$$

it is immediate to see that

$$
\mathbb{S}^{2}=\boldsymbol{\sigma}(U) \cup \tilde{\boldsymbol{\sigma}}(U)
$$

Hence

$$
\mathscr{A}:=\{\boldsymbol{\sigma}, \tilde{\sigma}\}
$$

is a regular atlas for \mathbb{S}^{2}.

Figure 4.10: Image of the charts of the sphere from the above example.
Let us make an example of a non-regular surface.

Example 4.54

The surface parametrized by

$$
\boldsymbol{\sigma}(u, v)=\left(u, v^{2}, v^{3}\right), \quad \forall(u, v) \in \mathbb{R}^{2}
$$

is not regular. This is because

$$
\sigma_{u}=(1,0,0), \quad \boldsymbol{\sigma}_{v}=\left(0,2 v, 3 v^{2}\right)
$$

and therefore

$$
\boldsymbol{\sigma}_{v}(u, 0)=(0,0,0),
$$

showing that $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ are linearly dependent along the line

$$
L=\{(u, 0): u \in \mathbb{R}\} .
$$

Hence $\boldsymbol{\sigma}$ is not a regular chart.
Looking at Figure Figure 4.11 , it is clear that \mathcal{S} is not regular, since \mathcal{S} has a cusp along the line $\boldsymbol{\sigma}(L)$.

Figure 4.11: Example of non-regular surface.

4.4 Level surfaces

Definition 4.55: Level surface

Let $V \subseteq \mathbb{R}^{3}$ be an open set and $f: V \rightarrow \mathbb{R}$ be smooth. The level surface associated with f is the set

$$
\mathcal{S}_{f}:=f^{-1}(0)=\{(x, y, z) \in V: f(x, y, z)=0\} .
$$

We now give a result concerning regularity of level surfaces. The proof, rather technical, is based on the Implicit Function Theorem and can be found in Proposition 3.1.25 of [1]. We decide to omit it.

Theorem 4.56

Let $V \subseteq \mathbb{R}^{3}$ be an open set and $f: V \rightarrow \mathbb{R}$ be smooth. Consider the level surface

$$
\mathcal{S}_{f}=\{(x, y, z) \in V: f(x, y, z)=0\} .
$$

Suppose that

$$
\nabla f(x, y, z) \neq 0, \quad \forall(x, y, z) \in V .
$$

Then δ_{f} is a regular surface.

Example 4.57

We want to determine if the set defined by the equation

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}
$$

is a regular surface. Note that \mathcal{S} is a unit cylinder: From Example 4.49 we already know that \mathcal{S} is a regular surface.
Let us prove that \mathcal{S} is regular by using Theorem 4.56 . To this end, define the open set

$$
V:=\mathbb{R}^{3} \backslash\{(0,0, z): z \in \mathbb{R}\} .
$$

Note that V is obtained by removing the z-axis from \mathbb{R}^{3}. Also define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
f(x, y, z):=x^{2}+y^{2}-1 .
$$

We have

$$
\nabla f(x, y, z)=(2 x, 2 y, 0) \neq 0, \quad \forall(x, y, z) \in V .
$$

Since

$$
\mathcal{S}=\mathcal{S}_{f}
$$

by Theorem 4.56 we conclude that \mathcal{S} is a regular surface.

Example 4.58: Circular cone

We saw that the circular cone

$$
\mathcal{S}:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}\right\} .
$$

is not a surface. However the positive sheet

$$
\mathcal{S}^{+}:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}, z>0\right\}
$$

is a regular surface, see Figure 4.12 Indeed, define the open set

$$
V:=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}
$$

and the function $f: V \rightarrow \mathbb{R}$ by

$$
f(x, y, z):=x^{2}+y^{2}-z^{2} .
$$

We have

$$
\nabla f(x, y, z)=(2 x, 2 y,-2 z) \neq 0, \quad \forall(x, y, z) \in V .
$$

Since

$$
\mathcal{S}^{+}=\mathcal{S}_{f}
$$

by Theorem 4.56 we conclude that \mathcal{S} is a regular surface.
As a side note, a regular atlas for \mathcal{S}^{+}is given by $\mathscr{A}=\{\boldsymbol{\sigma}\}$ where $\boldsymbol{\sigma}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is defined by

$$
\boldsymbol{\sigma}(u, v):=\left(u, v, \sqrt{u^{2}+v^{2}}\right) .
$$

Figure 4.12: Positive sheet of circular cone.

4.5 Reparametrizations

We have defined the reparametrization of curves. In a similar way, one can reparametrize surface charts.

Definition 4.59

Suppose that $U, \widetilde{U} \subseteq \mathbb{R}^{2}$ are open sets and

$$
\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}, \quad \tilde{\boldsymbol{\sigma}}: \tilde{U} \rightarrow \mathbb{R}^{3}
$$

are surface charts. We say that $\tilde{\boldsymbol{\sigma}}$ is a reparametrization of $\boldsymbol{\sigma}$ if there exists a diffeomorphism

$$
\Phi: \widetilde{U} \rightarrow U
$$

such that

$$
\tilde{\boldsymbol{\sigma}}=\boldsymbol{\sigma} \circ \Phi,
$$

that is,

$$
\tilde{\boldsymbol{\sigma}}(\tilde{u}, \tilde{v})=\boldsymbol{\sigma}(\Phi(\tilde{u}, \tilde{v})), \quad \forall(\tilde{u}, \tilde{v}) \in \tilde{U} .
$$

We call Φ a reparametrization map.

Figure 4.13: Schematic illustration of surface chart σ and reparametrization $\tilde{\boldsymbol{\sigma}}$.

We will show that reparametrizations of regular charts are regular. To prove this, first we need to recall the chain rule for multivariable functions.

Remark 4.60: Chain rule

Suppose that $U, \widetilde{U} \subseteq \mathbb{R}^{2}$ are open sets,

$$
f: U \rightarrow \mathbb{R}^{3}
$$

is smooth, and

$$
\Phi: \widetilde{U} \rightarrow U
$$

is a diffeomorphism. Define $\tilde{f}: \tilde{U} \rightarrow \mathbb{R}^{3}$ by composition:

$$
\tilde{f}:=f \circ \Phi
$$

Explicitly, the above means

$$
\tilde{f}(\tilde{u}, \tilde{v})=f(\Phi(\tilde{u}, \tilde{v})), \quad \forall(\tilde{u}, \tilde{v}) \in \widetilde{U}
$$

We denote the components of f, \tilde{f} and Φ by

$$
\tilde{f}=\left(\tilde{f}^{1}, \tilde{f}^{2}, \tilde{f}^{3}\right), \quad f=\left(f^{1}, f^{2}, f^{3}\right), \quad \Phi=\left(\Phi^{1}, \Phi^{2}\right)
$$

The Jacobians are

$$
J \tilde{f}=\left(\begin{array}{cc}
\tilde{f}_{\tilde{u}}^{1} & \tilde{f}_{\tilde{\tilde{\tilde{}}}}^{1} \\
\tilde{f}_{\tilde{\tilde{u}}}^{2} & \tilde{f}_{\tilde{v}}^{2} \\
f_{\tilde{u}}^{3} & f_{\tilde{v}}^{3}
\end{array}\right), \quad J f=\left(\begin{array}{cc}
f_{u}^{1} & f_{v}^{1} \\
f_{u}^{2} & f_{v}^{2} \\
f_{u}^{3} & f_{v}^{3}
\end{array}\right), \quad J \Phi=\left(\begin{array}{cc}
\Phi_{\tilde{u}}^{1} & \Phi_{\tilde{\tilde{v}}}^{1} \\
\Phi_{\tilde{u}}^{2} & \Phi_{\tilde{v}}^{2}
\end{array}\right) .
$$

The chain rule states that

$$
J \tilde{f}(\tilde{u}, \tilde{v})=J f(\Phi(\tilde{u}, \tilde{v})) J \Phi(\tilde{u}, \tilde{v})
$$

By expanding the above identity we obtain the chain rule in vectorial form

$$
\begin{aligned}
& \tilde{f}_{\tilde{u}}(\tilde{u}, \tilde{v})=f_{u}(\Phi(\tilde{u}, \tilde{v})) \Phi_{\tilde{u}}^{1}(\tilde{u}, \tilde{v})+f_{v}(\Phi(\tilde{u}, \tilde{v})) \Phi_{\tilde{u}}^{2}(\tilde{u}, \tilde{v}) \\
& \tilde{f}_{\tilde{v}}(\tilde{u}, \tilde{v})=f_{u}(\Phi(\tilde{u}, \tilde{v})) \Phi_{\tilde{v}}^{1}(\tilde{u}, \tilde{v})+f_{v}(\Phi(\tilde{u}, \tilde{v})) \Phi_{\tilde{v}}^{2}(\tilde{u}, \tilde{v})
\end{aligned}
$$

As done previously, we introduce compact notation for reparametrizations and chain rule. Specifically, we denote the components of the diffeomorphism Φ by

$$
\begin{array}{lll}
\Phi^{1} & \rightsquigarrow & (\tilde{u}, \tilde{v}) \mapsto u(\tilde{u}, \tilde{v}) \\
\Phi^{2} & \rightsquigarrow \quad(\tilde{u}, \tilde{v}) \mapsto v(\tilde{u}, \tilde{v})
\end{array}
$$

Accordingly, the Jacobian of Φ is denoted as:

$$
J \Phi=\left(\begin{array}{cc}
\Phi_{\tilde{u}}^{1} & \Phi_{\tilde{v}}^{1} \\
\Phi_{\tilde{u}}^{2} & \Phi_{\tilde{v}}^{2}
\end{array}\right) \rightsquigarrow\left(\begin{array}{ll}
\frac{\partial u}{\partial \tilde{u}} & \frac{\partial u}{\partial \tilde{v}} \\
\frac{\partial v}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{v}}
\end{array}\right) .
$$

Hence, the chain rule in vectorial form reads

$$
\begin{aligned}
& \tilde{f}_{\tilde{u}}=f_{u} \frac{\partial u}{\partial \tilde{u}}+f_{v} \frac{\partial v}{\partial \tilde{u}} \\
& \tilde{f}_{\tilde{v}}=f_{u} \frac{\partial u}{\partial \tilde{v}}+f_{v} \frac{\partial v}{\partial \tilde{v}}
\end{aligned}
$$

We will now prove that the reparametrization of a regular chart is regular.

Proposition 4.61

Suppose that $U, \tilde{U} \subseteq \mathbb{R}^{2}$ are open sets and

$$
\sigma: U \rightarrow \mathbb{R}^{3}
$$

is a regular chart. Assume given a diffeomorphism

$$
\Phi: \widetilde{U} \rightarrow U
$$

The reparametrization $\tilde{\sigma}: \widetilde{U} \rightarrow \mathbb{R}^{3}$ defined by

$$
\tilde{\boldsymbol{\sigma}}=\boldsymbol{\sigma} \circ \Phi
$$

is a regular chart.

Proof

Since $\boldsymbol{\sigma}$ is a regular chart we have that $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ are linearly independent. Hence

$$
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} \neq 0
$$

To see that $\tilde{\boldsymbol{\sigma}}$ is regular it is sufficient to prove that

$$
\begin{equation*}
\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}} \neq 0 \tag{4.1}
\end{equation*}
$$

By chain rule we have

$$
\begin{aligned}
& \tilde{\boldsymbol{\sigma}}_{\tilde{u}}=\boldsymbol{\sigma}_{u} \frac{\partial u}{\partial \tilde{u}}+\boldsymbol{\sigma}_{v} \frac{\partial v}{\partial \tilde{u}} \\
& \tilde{\boldsymbol{\sigma}}_{\tilde{v}}=\boldsymbol{\sigma}_{u} \frac{\partial u}{\partial \tilde{v}}+\sigma_{v} \frac{\partial v}{\partial \tilde{v}}
\end{aligned}
$$

By the properties of vector product we get

$$
\begin{aligned}
\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}} & =\left(\boldsymbol{\sigma}_{u} \frac{\partial u}{\partial \tilde{u}}+\boldsymbol{\sigma}_{v} \frac{\partial v}{\partial \tilde{u}}\right) \times\left(\boldsymbol{\sigma}_{u} \frac{\partial u}{\partial \tilde{v}}+\boldsymbol{\sigma}_{v} \frac{\partial v}{\partial \tilde{v}}\right) \\
& =\frac{\partial u}{\partial \tilde{u}} \frac{\partial u}{\partial \tilde{v}}\left(\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{u}\right)+\frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}}\left(\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right) \\
& +\frac{\partial v}{\partial \tilde{u}} \frac{\partial u}{\partial \tilde{v}}\left(\boldsymbol{\sigma}_{v} \times \boldsymbol{\sigma}_{u}\right)+\frac{\partial v}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}}\left(\boldsymbol{\sigma}_{v} \times \boldsymbol{\sigma}_{v}\right) \\
& =\left(\frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}}-\frac{\partial v}{\partial \tilde{u}} \frac{\partial u}{\partial \tilde{v}}\right)\left(\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
\frac{\partial u}{\partial \tilde{u}} & \frac{\partial u}{\partial \tilde{v}} \\
\frac{\partial v}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{v}}
\end{array}\right)\left(\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right) \\
& =\operatorname{det} J \Phi\left(\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right) .
\end{aligned}
$$

Since Φ is a diffeomorphism, we have that

$$
\operatorname{det} J \Phi \neq 0
$$

from which we conclude (4.1).

4.6 Transition maps

Consider the situation in which two regular charts have overlapping image.
It is natural to ask wether these maps are reparametrizations of each other on the overlapping region, see Figure 4.14. If such reparametrization exists, it is called a transition map.

Definition 4.62: Transition map

Let \mathcal{S} be a regular surface and

$$
\boldsymbol{\sigma}: U \rightarrow \boldsymbol{\sigma}(U) \subseteq \mathcal{S}, \quad \tilde{\boldsymbol{\sigma}}: \widetilde{U} \rightarrow \tilde{\boldsymbol{\sigma}}(\widetilde{U}) \subseteq \mathcal{S}
$$

be regular charts. Assume that the images of $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ overlap, that is,

$$
I:=\sigma(U) \cap \tilde{\sigma}(\widetilde{U}) \neq \varnothing .
$$

The set I is open in $\mathcal{\delta}$, since it is intersection of open sets. Define the sets

$$
V:=\boldsymbol{\sigma}^{-1}(I) \subseteq U, \quad \widetilde{V}:=\tilde{\boldsymbol{\sigma}}^{-1}(I) \subseteq \widetilde{U}
$$

The sets V and \widetilde{V} are open and by construction

$$
\boldsymbol{\sigma}(V)=\tilde{\boldsymbol{\sigma}}(\widetilde{V})=I
$$

Figure 4.14: If the two regular charts σ and $\tilde{\sigma}$ have overlapping image, then they are reparametrization of each other, through a transition map Φ.

Therefore they are well defined the restrictions

$$
\left.\boldsymbol{\sigma}\right|_{V}: V \rightarrow I,\left.\quad \tilde{\boldsymbol{\sigma}}\right|_{\tilde{V}}: \widetilde{V} \rightarrow I
$$

which are homeomorphisms. The homeomorphism

$$
\Phi: \widetilde{V} \rightarrow V, \quad \Phi:=\sigma^{-1} \circ \tilde{\boldsymbol{\sigma}}
$$

is called a transition map from $\boldsymbol{\sigma}$ to $\tilde{\boldsymbol{\sigma}}$.

The theorem below states that transition maps between regular charts are diffeomorphisms. The proof is slightly technical and is based on the Implicit Function Theorem. We decide to omit it. The interested reader can find a proof at Page 117 of [6].

Theorem 4.63

Let \mathcal{S} be a regular surface. The transition maps between regular charts are diffeomorphisms.
We can now use Theorem 4.63 to show that transition maps are reparametrizations.

Proposition 4.64

Let \mathcal{S} be a regular surface and

$$
\boldsymbol{\sigma}: U \rightarrow \boldsymbol{\sigma}(U) \subseteq \mathcal{S}, \quad \tilde{\boldsymbol{\sigma}}: \widetilde{U} \rightarrow \tilde{\boldsymbol{\sigma}}(\widetilde{U}) \subseteq \mathcal{S}
$$

be regular charts. Assume that the images of $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ overlap, that is,

$$
\boldsymbol{\sigma}(U) \cap \tilde{\boldsymbol{\sigma}}(\widetilde{U}) \neq \varnothing .
$$

Then there exist open sets

$$
V \subseteq U, \quad \widetilde{V} \subseteq \widetilde{U}
$$

and a diffeomorphism

$$
\Phi: \widetilde{V} \rightarrow V
$$

such that $\left.\tilde{\boldsymbol{\sigma}}\right|_{\tilde{V}}$ is a reparametrization of $\left.\boldsymbol{\sigma}\right|_{V}$, that is,

$$
\left.\tilde{\boldsymbol{\sigma}}\right|_{\widetilde{V}}=\left(\left.\boldsymbol{\sigma}\right|_{V}\right) \circ \Phi .
$$

Proof

Define

$$
I:=\sigma(U) \cap \tilde{\sigma}(\widetilde{U}) \neq \varnothing .
$$

Note that this set is open in \mathcal{S}, being intersection of open sets. Set

$$
V:=\boldsymbol{\sigma}^{-1}(I), \quad \widetilde{V}:=\tilde{\boldsymbol{\sigma}}^{-1}(I) .
$$

The sets V and \widetilde{V} are open, since σ and $\tilde{\boldsymbol{\sigma}}$ are homeomorphisms, and hence are continuous. By construction we have

$$
\boldsymbol{\sigma}(V)=\tilde{\boldsymbol{\sigma}}(\widetilde{V})=I .
$$

Therefore they are well defined the restrictions

$$
\left.\boldsymbol{\sigma}\right|_{V}: V \rightarrow I,\left.\quad \tilde{\boldsymbol{\sigma}}\right|_{\tilde{V}}: \widetilde{V} \rightarrow I,
$$

which are homeomorphisms. Consider the transition map

$$
\Phi: \widetilde{V} \rightarrow V, \quad \Phi:=\boldsymbol{\sigma}^{-1} \circ \tilde{\boldsymbol{\sigma}} .
$$

By Theorem 4.63 we know that Φ is a diffeomorphism. Hence

$$
\left.\tilde{\boldsymbol{\sigma}}\right|_{\tilde{V}}=\left(\left.\boldsymbol{\sigma}\right|_{V}\right) \circ \Phi,
$$

with Φ diffeomorphism, showing that $\left.\tilde{\boldsymbol{\sigma}}\right|_{\tilde{V}}$ is a reparametrization of $\left.\sigma\right|_{V}$.

Important

Proposition 4.64 allows us to define properties of surfaces using charts, as long as we check that the property in question does not depend on reparametrization.

4.7 Functions between surfaces

We would like to define a concept of smooth function

$$
f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2},
$$

where \mathcal{S}_{1} and \mathcal{S}_{2} are regular surfaces. So far we know what a smooth function from \mathbb{R}^{n} into \mathbb{R}^{m} is. The idea is to use surface charts to define such f.

Definition 4.65

Let \mathcal{S}_{1} and \mathcal{S}_{2} be regular surfaces and let

$$
f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}
$$

be a map. We say that:

- f is smooth at $\mathbf{p} \in \mathcal{S}_{1}$ if there exist charts $\sigma_{i}: U_{i} \rightarrow \mathcal{S}_{i}$ for $i=1,2$ such that

$$
\mathbf{p} \in \boldsymbol{\sigma}_{1}\left(U_{1}\right), \quad f(\mathbf{p}) \in \boldsymbol{\sigma}_{2}\left(U_{2}\right)
$$

and

$$
\left(\sigma_{2}^{-1} \circ f \circ \sigma_{1}\right): U_{1} \rightarrow U_{2}
$$

is smooth.

- f is smooth if it is smooth for each $\mathbf{p} \in \mathcal{S}_{1}$.
- f is a diffeomorphism if f is smooth and invertible, with smooth inverse.

Figure 4.15: Sketch function f smooth at \mathbf{p} between the surfaces \mathcal{S}_{1} and \mathcal{S}_{2}.

Remark 4.66

- Definition 4.65 makes sense because $\boldsymbol{\sigma}_{2}^{-1}$ exists.
- The map $\sigma_{2}^{-1} \circ f \circ \sigma_{1}$ is only defined for $\mathbf{x} \in U_{1}$ such that

$$
f\left(\boldsymbol{\sigma}_{1}(\mathbf{x})\right) \in \boldsymbol{\sigma}_{2}\left(U_{2}\right)
$$

- The function $\sigma_{2}^{-1} \circ f \circ \sigma_{1}$ maps from \mathbb{R}^{2} into \mathbb{R}^{2}, therefore differentiability is intended in the classical sense.
- Definition 4.65 does not depend on the choice of charts $\boldsymbol{\sigma}_{1}$ and $\boldsymbol{\sigma}_{2}$

Indeed, suppose that $\tilde{\boldsymbol{\sigma}}_{i}: \widetilde{U}_{i} \rightarrow \delta_{i}$ are charts such that

$$
\mathbf{p} \in \tilde{\boldsymbol{\sigma}}_{1}\left(\widetilde{U}_{1}\right), \quad f(\mathbf{p}) \in \tilde{\boldsymbol{\sigma}}_{2}\left(\widetilde{U}_{2}\right)
$$

In particular we have

$$
\sigma_{i}\left(U_{i}\right) \cap \tilde{\boldsymbol{\sigma}}_{i}\left(\widetilde{U}_{i}\right) \neq \varnothing .
$$

As \mathcal{S}_{1} and \mathcal{S}_{2} are regular surfaces, by Theorem 4.63 there exist open sets

$$
V_{i} \subseteq U_{i}, \quad \widetilde{V}_{i} \subseteq \widetilde{U}_{i}
$$

and transition maps

$$
\Phi_{i}: \widetilde{V}_{i} \rightarrow V_{i}
$$

which are diffeomorphisms and satisfy

$$
\tilde{\boldsymbol{\sigma}}_{i}=\sigma_{i} \circ \Phi_{i} .
$$

Hence

$$
\begin{aligned}
\tilde{\boldsymbol{\sigma}}_{2}^{-1} \circ f \circ \tilde{\boldsymbol{\sigma}}_{1} & =\tilde{\boldsymbol{\sigma}}_{2}^{-1} \circ\left(\boldsymbol{\sigma}_{2} \circ \boldsymbol{\sigma}_{2}^{-1}\right) \circ f \circ\left(\boldsymbol{\sigma}_{1} \circ \boldsymbol{\sigma}_{1}^{-1}\right) \circ \tilde{\boldsymbol{\sigma}}_{1} \\
& =\left(\tilde{\boldsymbol{\sigma}}_{2}^{-1} \circ \boldsymbol{\sigma}_{2}\right) \circ\left(\boldsymbol{\sigma}_{2}^{-1} \circ f \circ \boldsymbol{\sigma}_{1}\right) \circ\left(\boldsymbol{\sigma}_{1}^{-1} \circ \tilde{\boldsymbol{\sigma}}_{1}\right) \\
& =\Phi_{2}^{-1} \circ\left(\boldsymbol{\sigma}_{2}^{-1} \circ f \circ \boldsymbol{\sigma}_{1}\right) \circ \Phi_{1}^{-1} .
\end{aligned}
$$

Since Φ_{i}^{-1} and $\boldsymbol{\sigma}_{2}^{-1} \circ f \circ \sigma_{1}$ are smooth, we conclude that

$$
\tilde{\boldsymbol{\sigma}}_{2}^{-1} \circ f \circ \tilde{\boldsymbol{\sigma}}_{1}
$$

is smooth. Hence Definition 4.65 does not depend on the choice of charts.

Proposition 4.67

If $f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ and $g: \mathcal{S}_{2} \rightarrow \mathcal{S}_{3}$ are smooth maps (resp. diffeomorphisms) between surfaces, then the composition

$$
(g \circ f): \mathcal{S}_{1} \rightarrow \mathcal{S}_{3}
$$

is smooth (resp. a diffeomorphisms).

Proof

Fix $\mathbf{p} \in \mathcal{S}_{1}$ and choose charts

$$
\boldsymbol{\sigma}_{i}: U_{i} \rightarrow \mathcal{S}_{i}
$$

such that

$$
\mathbf{p} \in \boldsymbol{\sigma}_{1}\left(U_{1}\right), \quad f(\mathbf{p}) \in \boldsymbol{\sigma}_{2}\left(U_{2}\right), \quad g(f(\mathbf{p})) \in \boldsymbol{\sigma}_{3}\left(U_{3}\right)
$$

Since f and g are smooth we have that the maps

$$
\boldsymbol{\sigma}_{2}^{-1} \circ f \circ \boldsymbol{\sigma}_{1}, \quad \boldsymbol{\sigma}_{3}^{-1} \circ g \circ \boldsymbol{\sigma}_{2}
$$

are smooth. Hence

$$
\boldsymbol{\sigma}_{3}^{-1} \circ(g \circ f) \circ \boldsymbol{\sigma}_{1}=\left(\boldsymbol{\sigma}_{3}^{-1} \circ g \circ \boldsymbol{\sigma}_{2}\right) \circ\left(\boldsymbol{\sigma}_{2}^{-1} \circ f \circ \boldsymbol{\sigma}_{1}\right)
$$

is smooth, ending the proof.

Definition 4.68

Let \mathcal{S}_{1} and \mathcal{S}_{2} be regular surfaces. We say that \mathcal{S}_{1} and \mathcal{S}_{2} are diffeomorphic if there exists $f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ diffeomorphism.

The key ideas around diffeomorphisms are:

- Two diffeomorphic surfaces are essentially the same. Indeed, it is immediate to show that being diffeomorphic is an equivalence relation on the set of regular surfaces.
- Two diffeomorphic surfaces have essentially the same charts, as shown in the next proposition.

Proposition 4.69

Let $\mathcal{\delta}$ and $\widetilde{\mathcal{S}}$ be regular surfaces and $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ be a diffeomorphism. If $\sigma: U \rightarrow \mathcal{\delta}$ is a regular chart for \mathcal{S} at \mathbf{p}, then

$$
\tilde{\boldsymbol{\sigma}}:=f \circ \boldsymbol{\sigma}: U \rightarrow \widetilde{\mathcal{S}}
$$

is a regular chart for $\widetilde{\mathcal{S}}$ at $f(\mathbf{p})$.

Proof

Let $\sigma_{2}: U_{2} \rightarrow \widetilde{\mathcal{S}}$ be a regular chart for $\widetilde{\mathcal{S}}$ at $f(\mathbf{p})$. By definition of diffeomorphism between surfaces, the map

$$
\Phi:=\boldsymbol{\sigma}_{2}^{-1} \circ f \circ \boldsymbol{\sigma}: U \rightarrow U_{2}
$$

is a diffeomorphism. Therfore

$$
(f \circ \boldsymbol{\sigma})(u, v)=\boldsymbol{\sigma}_{2}(\Phi(u, v))
$$

with Φ diffeomorphism, meaning that $f \circ \sigma$ is a reparametrization of σ_{2}. Since σ_{2} is regular, by Proposition 4.61 we deduce that $f \circ \boldsymbol{\sigma}$ is regular.

We conclude with the definition of local diffeomorphism between surfaces.

Definition 4.70: Local diffeomorphism

Let \mathcal{S}_{1} and \mathcal{S}_{2} be regular surfaces. A smooth map $f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ is called a local diffeomorphism if for each point $\mathbf{p} \in \mathcal{S}_{1}$ there exists an open set $V \subseteq \mathcal{S}_{1}$ such that $f(V) \subseteq \mathcal{S}_{2}$ is open and

$$
f: V \rightarrow f(V)
$$

is a diffeomorphism between surfaces.

The above definition is well posed since open subsets of surfaces are themselves surfaces.

4.8 Tangent space

We have seen that tangent vectors to regular curves allow to define the Frenet Frame, curvature and torsion. Eventually, these quantities are sufficient to characterize a curve. The anolgue concept of tangent vector for surfaces is called the tangent space. To avoid clumsy terminology, we make the following assumption.

Assumption 4.71

From now on, all the surfaces will be regular and all the charts will be regular.

Definition 4.72: Tangent vectors and tangent space

Let \mathcal{S} be a surface and $\mathbf{p} \in \mathcal{S}$. A tangent vector to \mathcal{S} at \mathbf{p} is any vector $\mathbf{v} \in \mathbb{R}^{3}$ such that

$$
\mathbf{v}=\dot{\gamma}(0),
$$

where $\boldsymbol{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{3}$ is a smooth curve such that

$$
\boldsymbol{\gamma}(-\varepsilon, \varepsilon) \subseteq \mathcal{S}, \quad \gamma(0)=\mathbf{p},
$$

where $\varepsilon>0$. The tangent space of \mathcal{S} at \mathbf{p} is the set

$$
T_{\mathbf{p}} \mathcal{S}:=\left\{\mathbf{v} \in \mathbb{R}^{3}: \mathbf{v} \text { tangent vector of } \mathcal{S} \text { at } \mathbf{p}\right\} .
$$

Figure 4.16: Tangent space $T_{\mathbf{p}} \mathcal{\delta}$ of surface $\mathcal{\delta}$ at the point \mathbf{p}. A tangent vector \mathbf{v} coincides with $\dot{\boldsymbol{\gamma}}(0)$ for some $\boldsymbol{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathcal{S}$ such that $\boldsymbol{\gamma}(0)=\mathbf{p}$.

Let us start with the most basic example: We want to compute the tangent space to an open set in \mathbb{R}^{2}.

Example 4.73

Let $U \subseteq \mathbb{R}^{2}$ be open and $\mathbf{p} \in U$. Then

$$
T_{\mathbf{p}} U=\mathbb{R}^{2}
$$

Proof. Let $\mathbf{v} \in T_{\mathbf{p}} U$. By definition there exists a smooth curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow U
$$

such that $\boldsymbol{\gamma}(0)=\mathbf{p}$ and $\dot{\boldsymbol{\gamma}}(0)=\mathbf{v}$. Since $U \subseteq \mathbb{R}^{2}$, it follows that $\boldsymbol{\gamma}$ is a plane curve, so that

$$
\mathbf{v}=\dot{\boldsymbol{\gamma}}(0) \in \mathbb{R}^{2} .
$$

Conversely, let $\mathbf{v} \in \mathbb{R}^{2}$. Since $\mathbf{p} \in U$ and U is open, there exists $\varepsilon>0$ such that $B_{\varepsilon}(p) \subseteq U$. Define the curve

$$
\boldsymbol{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{3}, \quad \boldsymbol{\gamma}(t):=\mathbf{p}+t \mathbf{v}
$$

By construction

$$
\boldsymbol{\gamma}(-\varepsilon, \varepsilon) \subseteq B_{\varepsilon}(\mathbf{p}) \subseteq U, \quad \boldsymbol{\gamma}(0)=\mathbf{p}, \quad \dot{\boldsymbol{\gamma}}(0)=\mathbf{v},
$$

showing that $\mathbf{v} \in T_{\mathbf{p}} U$.
In the above example we have seen that $T_{\mathbf{p}} U=\mathbb{R}^{2}$. This property holds in general for $T_{\mathbf{p}} \mathcal{S}$ with \mathcal{S} regular surface. Before proving this fact, we need a lemma.

Lemma 4.74

Let \mathcal{S} be regular and $\mathbf{p} \in \mathcal{S}$. Let $\boldsymbol{\sigma}: U \rightarrow \boldsymbol{\sigma}(U) \subseteq \mathcal{S}$ be a regular chart at \mathbf{p}, with

$$
\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}
$$

We have:

1. Suppose $\boldsymbol{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{3}$ is a smooth curve such that

$$
\boldsymbol{\gamma}(-\varepsilon, \varepsilon) \subseteq \boldsymbol{\sigma}(U), \quad \boldsymbol{\gamma}(0)=\mathbf{p} .
$$

Then there exist smooth functions

$$
u, v:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}
$$

such that

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\sigma}(u(t), v(t)), \quad \forall t \in(-\varepsilon, \varepsilon),
$$

and

$$
u(0)=u_{0}, \quad v(0)=v_{0}
$$

2. Conversely, assume $u, v:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$ are smooth functions such that

$$
u(0)=u_{0}, \quad v(0)=v_{0} .
$$

Then

$$
\boldsymbol{\gamma}(t):=\boldsymbol{\sigma}(u(t), v(t))
$$

is a smooth curve such that

$$
\boldsymbol{\gamma}(-\varepsilon, \varepsilon) \subseteq \mathcal{S}, \quad \boldsymbol{\gamma}(0)=\mathbf{p}
$$

Proof

Denote the coordinates of $\boldsymbol{\sigma}$ by

$$
\sigma(u, v)=(f(u, v), g(u, v), h(u, v)) .
$$

The differential of $\boldsymbol{\sigma}$ is

$$
d \boldsymbol{\sigma}=\left(\begin{array}{cc}
f_{u} & f_{v} \\
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right)
$$

Since $\boldsymbol{\sigma}$ is regular, by definition $d \boldsymbol{\sigma}$ has rank-2 at $\left(u_{0}, v_{0}\right)$. This means that at least one of the 3 minors

$$
\left(\begin{array}{cc}
f_{u} & f_{v} \\
g_{u} & g_{v}
\end{array}\right), \quad\left(\begin{array}{cc}
f_{u} & f_{v} \\
h_{u} & h_{v}
\end{array}\right), \quad\left(\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right) .
$$

is invertible. WLOG assume the first is invertible (the proof in case the other two are invertible is similar.) Define the map

$$
F: U \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad F(u, v)=(f(u, v), g(u, v))
$$

We have

$$
d F=\left(\begin{array}{ll}
f_{u} & f_{v} \\
g_{u} & g_{v}
\end{array}\right)
$$

which is invertible at $\left(u_{0}, v_{0}\right)$ by assumption. Hence, by the Inverse Function Theorem, there exist

- $W \subseteq U \subseteq \mathbb{R}^{2}$ open set with $\left(u_{0}, v_{0}\right) \in W$,
- $V \subseteq \mathbb{R}^{2}$ open set with $F\left(u_{0}, v_{0}\right) \in V$,
such that

$$
F: W \rightarrow V
$$

is a diffeomorphism. Hence

$$
F^{-1}: V \rightarrow W
$$

is smooth. Since $\boldsymbol{\gamma}(-\varepsilon, \varepsilon) \subseteq \boldsymbol{\sigma}(U)$, it is well defined the composition

$$
F^{-1} \circ \gamma:(-\varepsilon, \varepsilon) \rightarrow W \subseteq U .
$$

Moreover such composition is smooth, being F^{-1} and $\boldsymbol{\gamma}$ smooth. Therefore

$$
\begin{equation*}
\left(F^{-1} \circ \gamma\right)(t)=(u(t), v(t)) \tag{4.2}
\end{equation*}
$$

with u, v smooth. As $\boldsymbol{\gamma}(0)=\mathbf{p}$, by definition of F we have

$$
(u(0), v(0))=\left(F^{-1} \circ \boldsymbol{\gamma}\right)(0)=F^{-1}(\mathbf{p})=\left(u_{0}, v_{0}\right),
$$

showing that

$$
u(0)=u_{0}, \quad v(0)=v_{0} .
$$

Moreover, applying σ to both sides of (4.2) yields

$$
\boldsymbol{\sigma}(u(t), v(t))=\boldsymbol{\sigma}\left(\left(F^{-1} \circ \boldsymbol{\gamma}\right)\right)(t)=\boldsymbol{\gamma}(t)
$$

as we wanted to show.
The converse statement is trivial.

We are now ready to characterize $T_{\mathbf{p}} \mathcal{\delta}$ when \mathcal{S} is a regular surface.

Theorem 4.75

Let \mathcal{S} be a (regular) surface and $\mathbf{p} \in \mathcal{S}$. Let $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}$ be a chart at \mathbf{p}. Denote by $\left(u_{0}, v_{0}\right) \in U$ a point such that

$$
\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}
$$

Then

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}:=\left\{\lambda \boldsymbol{\sigma}_{u}+\mu \boldsymbol{\sigma}_{v}: \lambda, \mu \in \mathbb{R}\right\}
$$

where $\boldsymbol{\sigma}_{u}$ and σ_{v} are evaluated at $\left(u_{0}, v_{0}\right)$. In particular

$$
T_{\mathbf{p}} \mathcal{S}=\mathbb{R}^{2}
$$

Proof

Let $\boldsymbol{\sigma}: U \rightarrow \boldsymbol{\sigma}(U) \subseteq \mathcal{S}$ be a chart at p. If we show that

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\sigma_{u}, \sigma_{v}\right\}
$$

then we deduce

$$
T_{\mathbf{p}} \mathcal{S}=\mathbb{R}^{2}
$$

since $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ are linearly independent.
Step 1. Suppose $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$. By definition there exists a smooth curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathcal{S}$ such that

$$
\boldsymbol{\gamma}(0)=\mathbf{p}, \quad \dot{\boldsymbol{\gamma}}(0)=\mathbf{v} .
$$

By continuity, we can take ε small enough so that

$$
\boldsymbol{\gamma}(-\varepsilon, \varepsilon) \subseteq \boldsymbol{\sigma}(U) .
$$

By Lemma 4.74 there exist smooth functions $u, v:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$ such that

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\sigma}(u(t), v(t)), \quad \forall t \in(-\varepsilon, \varepsilon)
$$

and

$$
u(0)=u_{0}, \quad v(0)=v_{0} .
$$

Therefore, by chain rule,

$$
\dot{\boldsymbol{\gamma}}(t)=\sigma_{u}(u(t), v(t)) \dot{u}(t)+\sigma_{v}(u(t), v(t)) \dot{v}(t) .
$$

Evaluating the above at $t=0$ yields

$$
\begin{aligned}
\mathbf{v} & =\dot{\boldsymbol{\gamma}}(0) \\
& =\sigma_{u}(u(0), v(0)) \dot{u}(0)+\sigma_{v}(u(0), v(0)) \dot{v}(0) \\
& =\sigma_{u}\left(u_{0}, v_{0}\right) \dot{u}(0)+\sigma_{v}\left(u_{0}, v_{0}\right) \dot{v}(0),
\end{aligned}
$$

which shows

$$
\mathbf{v} \in \operatorname{span}\left\{\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right), \boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right)\right\}
$$

Step 2. Suppose that

$$
\mathbf{v} \in \operatorname{span}\left\{\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right), \boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right)\right\}
$$

Then there exist $\lambda, \mu \in \mathbb{R}$ such that

$$
\mathbf{v}=\lambda \boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right)+\mu \boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right) .
$$

Define the curve

$$
\boldsymbol{\gamma}(t):=\sigma\left(u_{0}+\lambda t, v_{0}+\mu t\right), \quad t \in(-\varepsilon, \varepsilon) .
$$

We have

$$
\boldsymbol{\gamma}(0)=\sigma\left(u_{0}, v_{0}\right)=\mathbf{p} .
$$

Therefore, for ε sufficiently small, we have

$$
\boldsymbol{\gamma}(-\varepsilon, \varepsilon) \subseteq \boldsymbol{\sigma}(U) .
$$

By chain rule

$$
\dot{\boldsymbol{\gamma}}(t)=\sigma_{u}\left(u_{0}+\lambda t, v_{0}+\mu t\right) \lambda+\boldsymbol{\sigma}_{v}\left(u_{0}+\lambda t, v_{0}+\mu t\right) \mu,
$$

and therefore

$$
\dot{\boldsymbol{\gamma}}(0)=\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right) \lambda+\boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right) \mu=\mathbf{v} .
$$

This proves that $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$, ending the proof.
Therefore $T_{\mathbf{p}} \mathcal{S}$ is always two-dimensional. This justifies the following definition.

Definition 4.76: Tangent plane
Let \mathcal{S} be a regular surface and $\mathbf{p} \in \mathcal{S}$. The set

$$
T_{\mathbf{p}} \mathcal{S}
$$

is called the tangent plane to δ at \mathbf{p}.

Remark 4.77

By definition $T_{\mathbf{p}} \mathcal{S}$ is a vector subspace of \mathbb{R}^{3}. As such, it holds that

$$
\mathbf{0} \in T_{\mathbf{p}} \mathcal{S} .
$$

To see this, take the curve $\boldsymbol{\gamma}(t) \equiv \mathbf{p}$. Then $\boldsymbol{\gamma}(0)=\mathbf{p}$ and $\dot{\boldsymbol{\gamma}}(0)=\mathbf{0}$, showing that $\mathbf{0} \in T_{\mathbf{p}} \mathcal{\delta}$.

Therefore $T_{\mathbf{p}} \mathcal{S}$ is a plane through the origin, no matter where the point $\mathbf{p} \in \mathcal{S}$ is located. When we draw the tangent plane as a plane resting on the surface, see Figure 4.16 , we are not drawing $T_{\mathbf{p}} \mathcal{S}$, but rather the plane

$$
\mathbf{p}+T_{\mathbf{p}} \mathcal{S},
$$

which is the affine tangent plane through $\mathbf{p} \in \mathcal{S}$.
It is possible to give a cartesian equation for the tangent plane

$$
T_{\mathbf{p}} \mathcal{S}
$$

and for the affine tangent plane

$$
\mathbf{p}+T_{\mathbf{p}} \mathcal{S}
$$

Proposition 4.78: Equation of tangent plane

Let \mathcal{S} be a regular surface and $\mathbf{p} \in \mathcal{S}$. Let $\boldsymbol{\sigma}$ be a regular chart at \mathbf{p}, with

$$
\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}=\left(x_{0}, y_{0}, z_{0}\right) .
$$

Let

$$
\mathbf{n}:=\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right) \times \boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right) .
$$

The equation of the tangent plane $T_{\mathbf{p}} \mathcal{S}$ is given by

$$
\mathbf{n}_{1} x+\mathbf{n}_{2} y+\mathbf{n}_{3} z=0, \quad \forall(x, y, z) \in \mathbb{R}^{3},
$$

where $\mathbf{n}=\left(\mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n}_{3}\right)$. The equation of the affine tangent plane $\mathbf{p}+T_{\mathbf{p}} \mathcal{S}$ is given by

$$
\mathbf{n}_{1}\left(x-x_{0}\right)+\mathbf{n}_{2}\left(y-x_{0}\right)+\mathbf{n}_{3}\left(z-z_{0}\right)=0, \quad \forall(x, y, z) \in \mathbb{R}^{3} .
$$

Proof

By Theorem 4.75 we know that

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right), \boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right)\right\} .
$$

By the properties of cross product, the vector \mathbf{n} is orthogonal to both $\sigma_{u}\left(u_{0}, v_{0}\right)$ and $\sigma_{v}\left(u_{0}, v_{0}\right)$. Therefore it is orthogonal to $T_{\mathbf{p}} \mathcal{S}$. The equation for $T_{\mathbf{p}} \mathcal{S}$ is then

$$
(x, y, z) \cdot \mathbf{n}=0, \forall(x, y, z) \in \mathbb{R}^{3} .
$$

In particular, the equation for the affine tangent plane $\mathbf{p}+T_{\mathbf{p}} \mathcal{S}$ is

$$
(x, y, z) \cdot \mathbf{n}=k, \quad \forall(x, y, z) \in \mathbb{R}^{3}
$$

for some $k \in \mathbb{R}$. To compute k, it is sufficient to evaluate the above equation at \mathbf{p}, since \mathbf{p} belongs to $\mathbf{p}+T_{\mathbf{p}} \mathcal{S}$. We obtain

$$
k=\mathbf{p} \cdot \mathbf{n} .
$$

Hence the equation for $\mathbf{p}+T_{\mathbf{p}} \mathcal{\delta}$ is

$$
\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \cdot \mathbf{n}=0, \quad \forall(x, y, z) \in \mathbb{R}^{3},
$$

ending the proof.

Example 4.79

Consider the surface \mathcal{S} defined by the chart

$$
\boldsymbol{\sigma}(u, v):=(\sqrt{1-v} \cos (u), \sqrt{1-v} \sin (u), v) .
$$

We want to compute the equation for the tangent plane $T_{\mathbf{p}} \mathcal{S}$, and for the affine tangent plane $\mathbf{p}+T_{\mathbf{p}} \mathcal{S}$. First, we need to check that σ is regular. We have

$$
\begin{aligned}
\sigma_{u} & =(-\sqrt{1-v} \sin (u), \sqrt{1-v} \cos (u), 0) \\
\sigma_{v} & =\left(\frac{1}{2}(1-v)^{-1 / 2} \cos (u), \frac{1}{2}(1-v)^{-1 / 2} \sin (u), 1\right)
\end{aligned}
$$

As the last component of $\boldsymbol{\sigma}_{u}$ is 0 and the last component of $\boldsymbol{\sigma}_{v}$ is 1 , we conclude that $\boldsymbol{\sigma}_{u}$ and σ_{v} are linearly independent. Thus σ is regular.
Suppose $\mathbf{p} \in \mathcal{S}$ is such that

$$
\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}
$$

for some $\left(u_{0}, v_{0}\right) \in \mathbb{R}^{2}$. By Theorem 4.75 we have

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right), \boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right)\right\}
$$

To find the equation of $T_{\mathbf{p}} \mathcal{S}$ we compute:

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sqrt{1-v} \sin (u) & \sqrt{1-v} \cos (u) & 0 \\
\frac{1}{2}(1-v)^{-1 / 2} \cos (u) & \frac{1}{2}(1-v)^{-1 / 2} \sin (u) & 1
\end{array}\right| \\
& =\left(\sqrt{1-v} \cos (u), \sqrt{1-v} \sin (u),-\frac{1}{2}\right)
\end{aligned}
$$

For

$$
\left(u_{0}, v_{0}\right)=\left(\frac{\pi}{4}, 0\right)
$$

we have

$$
\mathbf{p}=\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right),
$$

and therefore

$$
\mathbf{n}=\left(\boldsymbol{\sigma}_{u} \times \sigma_{v}\right)\left(u_{0}, v_{0}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2},-\frac{1}{2}\right) .
$$

The equation for $T_{\mathbf{p}} \mathcal{S}$ is therefore

$$
(x, y, z) \cdot \mathbf{n}=0, \quad \forall(x, y, z) \in \mathbb{R}^{3} .
$$

The above reads

$$
\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{2} y-\frac{1}{2} z=0 .
$$

The equation for $\mathbf{p}+T_{\mathbf{p}} \mathcal{S}$ is instead

$$
\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{2} y-\frac{1}{2} z=k
$$

for some $k \in \mathbb{R}$. To compute k, note that $\mathbf{p} \in \mathbf{p}+T_{\mathbf{p}} \mathcal{\delta}$, and therefore

$$
\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}=k \quad \Longrightarrow \quad k=1 .
$$

The equation for $\mathbf{p}+T_{\mathbf{p}} \mathcal{S}$ is then

$$
\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{2} y-\frac{1}{2} z=1 .
$$

Remark 4.80: Tangent space and derivations

The definition of tangent plane depends on the fact that \mathcal{S} is contained in \mathbb{R}^{3}. This is a serious drawback in many applications, as the surface \mathcal{S} does not necessarily need to be Euclidean. There is a way to get rid of such dependence, and give an intrinsic definition of tangent plane, depending only on the point \mathbf{p} and the surface \mathcal{S}.
The basic idea is as follows: If $U \subseteq \mathbb{R}^{2}$ is open and $\mathbf{p} \in U$, then $T_{\mathbf{p}} U=\mathbb{R}^{2}$. We can associate to any point $\mathbf{v} \in T_{\mathbf{p}} U$ a directional derivative acting on smooth functions $f: U \rightarrow \mathbb{R}$:

$$
\mathbf{v}=\left.\left(v_{1}, v_{2}\right) \mapsto \frac{\partial}{\partial v}\right|_{p}=\left.v_{1} \frac{\partial}{\partial x_{1}}\right|_{p}+\left.v_{2} \frac{\partial}{\partial x_{2}}\right|_{p}
$$

The above directional derivative is called a derivation.
The point is that derivations do not need to be defined through vectors, but can be defined as follows: D is a derivation if

- $D: C^{\infty}(U) \rightarrow \mathbb{R}$ is a linear operator, where $C^{\infty}(U)$ is the set of smooth functions $f: U \rightarrow \mathbb{R}$,
- D satisfies the Leibnitz rule

$$
D(f g)=f(\mathbf{p}) D(g)+g(\mathbf{p}) D(f), \quad \forall f, g \in C^{\infty}(U)
$$

The tangent plane at p can then be defined as

$$
T_{\mathbf{p}} U=\{D \text { derivation at } \mathbf{p}\}
$$

Therefore

$$
T_{\mathbf{p}} U \subseteq\left(C^{\infty}(U)\right)^{*},
$$

the dual space of smooth functions.
It is possible to do such construction directly on \mathcal{S}, by introducing the concepts of:

- germ of a function
- algebra of derivations, acting on germs

An in depth discussion can be found in Chapter 3.4 of [1].

4.9 Differential of smooth functions

Let $f: U \rightarrow V$ with $U, V \subseteq \mathbb{R}^{2}$ open. Suppose f is smooth. The differential of f at $\mathbf{p} \in U$ is a linear map

$$
d f_{\mathbf{p}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

We have seen that

$$
T_{\mathbf{p}} U=\mathbb{R}^{2}
$$

and therefore we can interpret $d f_{\mathbf{p}}$ as a map between tangent planes:

$$
d f_{\mathbf{p}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

Similarly, if $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ is a smooth map between surfaces, we can define its differential at $\mathbf{p} \in \mathcal{S}$ as a linear map

$$
d f_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{f(\mathbf{p})} \widetilde{\mathcal{S}}
$$

To define such map, we need the following lemma.

Lemma 4.81

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces and $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ a smooth map. For $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$ let $\boldsymbol{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathcal{S}$ be such that

$$
\boldsymbol{\gamma}(0)=\mathbf{p}, \quad \dot{\boldsymbol{\gamma}}(0)=\mathbf{v} .
$$

Define

$$
\tilde{\boldsymbol{\gamma}}:=f \circ \boldsymbol{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \widetilde{\mathcal{S}} .
$$

Then $\tilde{\gamma}$ is a smooth curve into \mathbb{R}^{3} and

$$
\tilde{\mathbf{v}} \in T_{f(\mathbf{p})} \widetilde{\mathcal{S}}, \quad \tilde{\mathbf{v}}:=\dot{\tilde{\gamma}}(0)
$$

Proof

Note that

$$
\tilde{\boldsymbol{\gamma}}=i \circ f \circ \boldsymbol{\gamma}
$$

with $i: \widetilde{\mathcal{S}} \rightarrow \mathbb{R}^{3}$ inclusion map. Since i, f, γ are smooth, we conclude that $\tilde{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{3}$ is smooth. Moreover

$$
\tilde{\boldsymbol{\gamma}}(0)=f(\boldsymbol{\gamma}(0))=f(\mathbf{p}),
$$

and therefore

$$
\tilde{\mathbf{v}}:=\dot{\tilde{\boldsymbol{\gamma}}}(0) \in T_{f(\mathbf{p})} \widetilde{\mathcal{S}}
$$

by definition of tangent space.

Definition 4.82: Differential of smooth function

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces and $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ a smooth map. The differential $d f_{\mathbf{p}}$ of f at \mathbf{p} is defined as the map

$$
d f_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{f(\mathbf{p})} \widetilde{\mathcal{S}}, \quad d f_{\mathbf{p}}(\mathbf{v}):=\tilde{\mathbf{v}}
$$

where $\tilde{\mathbf{v}}$ is as in Lemma 4.81 .
We now show that $d f_{\mathbf{p}}$ is well-defined and linear. Moreover we provide a representation of $d f_{\mathbf{p}}$ as a matrix.

Proposition 4.83

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces and $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ a smooth map. Denote the differential of f by

$$
d f_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{f(\mathbf{p})} \widetilde{\mathcal{S}}
$$

We have:

1. $d f_{\mathbf{p}}(\mathbf{v})$ does not depend on the choice of $\boldsymbol{\gamma}$.
2. $d f_{\mathbf{p}}$ is linear, that is,

$$
d f_{\mathbf{p}}(\lambda \mathbf{v}+\mu \mathbf{w})=\lambda d f_{\mathbf{p}}(\mathbf{v})+\mu d f_{\mathbf{p}}(\mathbf{w})
$$

for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{\delta}$ and $\lambda, \mu \in \mathbb{R}$.
3. Let

$$
\boldsymbol{\sigma}: U \rightarrow \mathcal{S}, \quad \tilde{\boldsymbol{\sigma}}: \widetilde{U} \rightarrow \widetilde{\mathcal{S}}
$$

be regular charts at \mathbf{p} and $f(\mathbf{p})$, respectively. Denote by

$$
(u, v) \mapsto(\alpha(u, v), \beta(u, v))
$$

the components of the smooth map

$$
\Psi:=\tilde{\boldsymbol{\sigma}}^{-1} \circ f \circ \boldsymbol{\sigma}: U \rightarrow \widetilde{U}
$$

In particular

$$
\tilde{\boldsymbol{\sigma}}(\alpha(u, v), \beta(u, v))=f(\boldsymbol{\sigma}(u, v)), \quad \forall(u, v) \in U .
$$

The matrix of the linear map $d f_{\mathbf{p}}$ with respect to the basis

$$
\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\} \text { on } T_{\mathbf{p}} \mathcal{S}, \quad\left\{\tilde{\boldsymbol{\sigma}}_{\tilde{u}}, \tilde{\boldsymbol{\sigma}}_{\tilde{v}}\right\} \text { on } T_{f(\mathbf{p})} \tilde{\mathcal{S}}
$$

is given by the Jacobian of the map Ψ, that is,

$$
d_{\mathbf{p}} f=J \Psi=\left(\begin{array}{cc}
\alpha_{u} & \alpha_{v} \\
\beta_{u} & \beta_{v}
\end{array}\right)
$$

For a proof, see the discussion at page 87 of [6].

Proposition 4.84

The following hold:

1. If \mathcal{S} is a regular surface and $\mathbf{p} \in \mathcal{S}$, the differential at \mathbf{p} of the identity map

$$
I: \mathcal{S} \rightarrow \mathcal{S}, \quad I(x):=x
$$

is the identity map

$$
I: T_{\mathbf{p}}(\mathcal{S}) \rightarrow T_{\mathbf{p}}(\mathcal{S}), \quad I(v):=v
$$

2. If $\mathcal{S}_{1}, \mathcal{S}_{2}$ and \mathcal{S}_{3} are regular surfaces and

$$
f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}, \quad g: \mathcal{S}_{2} \rightarrow \mathcal{S}_{3}
$$

are smooth maps, then

$$
d_{\mathbf{p}}(g \circ f)=d_{f(\mathbf{p})} g \circ d_{\mathbf{p}} f
$$

for all $\mathbf{p} \in T_{\mathbf{p}} \mathcal{S}_{1}$.
3. If $\mathcal{S}_{1}, \mathcal{S}_{2}$ are regular surfaces and

$$
f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}
$$

is a diffeomorphism, then the differential

$$
d_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{S}_{1} \rightarrow T_{f(\mathbf{p})} \mathcal{S}_{2}
$$

is invertible for all $\mathbf{p} \in \mathcal{S}_{1}$.

For a proof see Proposition 4.4 .5 in [6]. The above proposition says that the differential of diffeomorphism is invertible. The converse statement is true locally.

Theorem 4.85

Let \mathcal{S}_{1} and \mathcal{S}_{2} be regular surfaces. Suppose that

$$
f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}
$$

is smooth. They are equivalent:

1. f is a local diffeomorphism.
2. The differential $d_{\mathbf{p}} f: T_{\mathbf{p}} \mathcal{S}_{1} \rightarrow T_{f(\mathbf{p})} \mathcal{S}_{2}$ is invertible for all $\mathbf{p} \in \mathcal{S}_{1}$.

The proof is based on the Inverse Function Theorem, see Proposition 4.4.6 in [6].

4.10 Examples of Surfaces

4.10.1 Level surfaces

We have already seen level surfaces. Let us recall the defintion.

Definition 4.86: Level surface

Let $V \subseteq \mathbb{R}^{3}$ be an open set and $f: V \rightarrow \mathbb{R}$ be smooth. The level surface associated with f is the set

$$
\mathcal{S}_{f}:=f^{-1}(0)=\{(x, y, z) \in V: f(x, y, z)=0\} .
$$

The following Theorem gives a sufficient condition for \mathcal{S}_{f} to be a regular surface.

Theorem 4.87

Let $V \subseteq \mathbb{R}^{3}$ be an open set and $f: V \rightarrow \mathbb{R}$ be smooth. Suppose that

$$
\nabla f(x, y, z) \neq 0, \quad \forall(x, y, z) \in V
$$

Then δ_{f} is a regular surface.

Let us give a characterization of the tangent plane to \mathcal{S}_{f}.

Proposition 4.88

Let $V \subseteq \mathbb{R}^{3}$ be an open set and $f: V \rightarrow \mathbb{R}$ be smooth. Suppose that

$$
\nabla f(x, y, z) \neq 0, \quad \forall(x, y, z) \in V
$$

Then $\nabla f(\mathbf{p})$ is orthogonal to $T_{\mathbf{p}} \mathcal{S}_{f}$. In particular, the equation of $T_{\mathbf{p}} \mathcal{S}_{f}$ is given by

$$
\partial_{x} f(\mathbf{p}) x+\partial_{y} f(\mathbf{p}) y+\partial_{z} f(\mathbf{p}) z=0, \quad \forall(x, y, z) \in \mathbb{R}^{3}
$$

The equation for $\mathbf{p}+T_{\mathbf{p}} \mathcal{S}_{f}$ is given by

$$
\partial_{x} f(\mathbf{p})\left(x-x_{0}\right)+\partial_{y} f(\mathbf{p})\left(y-y_{0}\right)+\partial_{z} f(\mathbf{p})\left(z-z_{0}\right)=0, \forall(x, y, z) \in \mathbb{R}^{3}
$$

where $\mathbf{p}=\left(x_{0}, y_{0}, z_{0}\right)$.

Proof

Let $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}_{f}$. By definition there exists a smooth curve

$$
\boldsymbol{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathcal{S}_{f} \subseteq \mathbb{R}^{3}
$$

such that

$$
\boldsymbol{\gamma}(0)=\mathbf{p}, \quad \dot{\boldsymbol{\gamma}}(0)=\mathbf{v} .
$$

Since $\boldsymbol{\gamma}(t) \in \mathcal{S}_{f}$, we have that

$$
f(\boldsymbol{\gamma}(t))=0, \quad \forall t \in(-\varepsilon, \varepsilon) .
$$

By chain rule we get

$$
\nabla f(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t)=0, \quad \forall t \in(-\varepsilon, \varepsilon) .
$$

Evaluating the above at $t=0$ yields

$$
0=\nabla f(\boldsymbol{\gamma}(0)) \cdot \dot{\boldsymbol{\gamma}}(0)=\nabla f(\mathbf{p}) \cdot \mathbf{v}
$$

showing that \mathbf{v} is orthogonal to $\nabla f(\mathbf{p})$. Since \mathbf{v} is arbitrary, we conclude that $\nabla f(\mathbf{p})$ is orthogonal to $T_{\mathbf{p}} \mathcal{S}_{f}$. In particular, the equation for $T_{\mathbf{p}} \mathcal{S}_{f}$ is

$$
\nabla f(\mathbf{p}) \cdot(x, y, z)=0, \quad \forall(x, y, z) \in \mathbb{R}^{3} .
$$

Therefore the equation for $\mathbf{p}+T_{\mathbf{p}} \mathcal{\delta}$ is given by

$$
\nabla f(\mathbf{p}) \cdot(x, y, z)=k, \quad \forall(x, y, z) \in \mathbb{R}^{3}
$$

for some $k \in \mathbb{R}$. Since $\mathbf{p} \in \mathbf{p}+T_{\mathbf{p}} \mathcal{S}$, we can substitute

$$
(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)=\mathbf{p}
$$

in the above equation to obtain

$$
k=\nabla f(\mathbf{p}) \cdot\left(x_{0}, y_{0}, z_{0}\right)
$$

Hence the equation for $\mathbf{p}+T_{\mathbf{p}} \mathcal{S}$ is

$$
\nabla f(\mathbf{p}) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0, \quad \forall(x, y, z) \in \mathbb{R}^{3} .
$$

4.10.2 Quadrics

Quadrics are level surfaces

$$
S_{f}=\left\{(x, y, z) \in \mathbb{R}^{3}: f(x, y, z)=0\right\}
$$

where

$$
\begin{aligned}
f(x, y, z)= & a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+2 a_{4} x y+2 a_{5} x z+2 a_{6} y z+ \\
& +b_{1} x+b_{2} y+b_{3} z+c
\end{aligned}
$$

for some coefficients $a_{i}, b_{i}, c \in \mathbb{R}$. Let

$$
A=\left(\begin{array}{ccc}
a_{1} & a_{4} & a_{6} \\
a_{4} & a_{2} & a_{5} \\
a_{6} & a_{5} & a_{3}
\end{array}\right) \in \mathbb{R}^{3 \times 3}
$$

and

$$
\mathbf{x}=(x, y, z)^{T}, \quad \mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)^{T} .
$$

Then f can be represented by the quadratic form

$$
f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c .
$$

The expression $f=0$ is called a quadric equation.
As stated in the following theorem, there are 14 quadrics in total. Out of these:

- 9 are interesting surfaces,
- 3 are planes,
- 1 is a line,
- 1 is a point.

Theorem 4.89

Suppose \mathcal{S} is a level surface defined by a quadric equation. Then, up to rigid motions, \mathcal{S} can be described by one of the following equations:

1. Ellipsoid: $\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}+\frac{z^{2}}{r^{2}}=1$.
2. Hyperboloid of one sheet: $\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}-\frac{z^{2}}{r^{2}}=1$
3. Hyperboloid of two sheets: $\frac{x^{2}}{p^{2}}-\frac{y^{2}}{q^{2}}-\frac{z^{2}}{r^{2}}=1$
4. Elliptic Paraboloid: $\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}=z$
5. Hyperbolic Paraboloid: $\frac{x^{2}}{p^{2}}-\frac{y^{2}}{q^{2}}=z$
6. Quadric Cone: $\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}-\frac{z^{2}}{r^{2}}=0$
7. Elliptic Cylinder: $\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}=1$
8. Hyperbolic Cylinder: $\frac{x^{2}}{p^{2}}-\frac{y^{2}}{q^{2}}=1$
9. Parabolic Cylinder: $\frac{x^{2}}{p^{2}}=y$
10. Plane: $x=0$
11. Two parallel planes: $x^{2}=p^{2}$
12. Two intersecting planes: $\frac{x^{2}}{p^{2}}-\frac{y^{2}}{q^{2}}=0$
13. Straight line: $\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}=0$
14. Single point: $\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}+\frac{z^{2}}{r^{2}}=0$

The proof of Theorem 4.89 follows by diagonalizing the symmetric matrix A, and by studying the eigenvalues, see Theorem 5.5.2 in [6].

Example 4.90

The sphere is described by

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\} .
$$

This is an ellipsoid with

$$
p=q=r=1 .
$$

In particular we can write the sphere as the quadric equation:

$$
\mathbf{x}^{T}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{x}=1
$$

Example 4.91

Consider the level surface

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: f(x, y, z)=0\right\}
$$

with

$$
f(x, y, z)=x^{2}+2 y^{2}-4 z^{2}+2 x y+y z-6 x z+1=0 .
$$

Therefore \mathcal{S} is a quadric. The matrix associated to f is

$$
A=\left(\begin{array}{ccc}
1 & 1 & -3 \\
1 & 2 & 1 / 2 \\
-3 & 1 / 2 & -4
\end{array}\right)
$$

Diagonalizing the matrix A we obtain $A=P D P^{-1}$, with P matrix of eigenvectors and

$$
D=\left(\begin{array}{ccc}
-5.51 & 0 & 0 \\
0 & 1.55 & 0 \\
0 & 0 & 2.96
\end{array}\right) .
$$

Therefore, up to changing basis via the matrix P, S can be described by the quadric equation

$$
5.51 \tilde{x}^{2}-1.55 \tilde{y}^{2}-2.96 \tilde{z}^{2}=1
$$

showing that S is a Hyperboloid of two sheets.

4.10.3 Ruled surfaces

A ruled surface is a surface obtained as union of straight lines, called the rulings of the surface. By using curves, ruled surfaces can be defined in the following way.

Definition 4.92: Ruled surface

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a smooth curve and $\mathbf{a}:(a, b) \rightarrow \mathbb{R}^{3}$ a vector, such that $\dot{\boldsymbol{\gamma}}(t)$ and $\mathbf{a}(t)$ are linearly independent for all $t \in(a, b)$. A ruled surface is a surface with chart

$$
\sigma(u, v)=\gamma(u)+v \mathbf{a}(u) .
$$

We say that:

- $\boldsymbol{\gamma}$ is the base curve
- The lines $v \mapsto v \mathbf{a}(u)$ are the rulings

Proposition 4.93

A ruled surface \mathcal{S} is regular if v is sufficiently small.

Proof

A chart for \mathcal{S} is

$$
\boldsymbol{\sigma}_{u}=\dot{\boldsymbol{\gamma}}(u)+v \dot{\mathbf{a}}(u), \quad \boldsymbol{\sigma}_{v}=\mathbf{a}(u),
$$

with $\dot{\boldsymbol{\gamma}}$ and a linerly independent. Thus $\dot{\boldsymbol{\gamma}}(u)+v \dot{\mathbf{a}}(u)$ and a are linearly independent for v sufficiently small.

The same base curve can yield multiple ruled surfaces. For example, if $\boldsymbol{\gamma}$ is a circle, we can obtain both the unit cylinder and the Möbius band.

Example 4.94: Unit Cylinder

As seen in Example 4.49 , the cylinder is a surface with atlas $\mathscr{A}=\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$, where $\boldsymbol{\sigma}_{1}$ and $\boldsymbol{\sigma}_{2}$ are suitable restriction of

$$
\sigma(u, v)=(\cos (u), \cos (u), v), \quad(u, v) \in[0,2 \pi) \times \mathbb{R}
$$

We have

$$
\sigma(u, v)=\gamma(u)+v \mathbf{a}(u),
$$

with

$$
\boldsymbol{\gamma}(u):=(\cos (u), \cos (u), 0), \quad \mathbf{a}=(0,0,1) .
$$

Hence the unit cylinder is a ruled surface, see Figure 4.17.

Figure 4.17: Unit cylinder is a ruled surface with base curve $\boldsymbol{\gamma}$ and rulings given by vertical lines.

Example 4.95: Möbius band

The Möbius band is a ruled surface with chart

$$
\sigma=\boldsymbol{\gamma}(u)+v \mathbf{a}(u), \quad u \in(0,2 \pi), v \in\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

where

$$
\boldsymbol{\gamma}(u)=(\cos (u), \sin (u), 0)
$$

is the unit circle and

$$
\mathbf{a}=\left(-\sin \left(\frac{u}{2}\right) \cos (u),-\sin \left(\frac{u}{2}\right) \sin (u), \cos \left(\frac{u}{2}\right)\right)
$$

is a vector which does a full rotation while going around the unit circle $\boldsymbol{\gamma}$. This is shown in Figure 4.18.

4.10.4 Surfaces of Revolution

Surfaces of revolution are obtained by rotating a curve about the z-axis.

Figure 4.18: The Möbius band is a ruled surface with base curve $\boldsymbol{\gamma}$ and rulings given by rotating vertical lines.

Definition 4.96: Surface of revolution

Let $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ be a smooth curve in the (x, z)-plane, that is,

$$
\boldsymbol{\gamma}(u)=(f(u), 0, g(u)) .
$$

Suppose that $f>0$. The surface obtained by rotating γ about the z-axis is called surface of revolution. A chart for \mathcal{S} is given by

$$
\boldsymbol{\sigma}(u, v):=(f(u) \cos (v), f(u) \sin (v), g(u)), u \in(a, b), v \in[0,2 \pi) .
$$

Proposition 4.97

A surface of revolution is regular if and only if $\boldsymbol{\gamma}$ is regular.

Proof

We have

$$
\begin{aligned}
& \boldsymbol{\sigma}_{u}=(\dot{f}(u) \cos (v), \dot{f}(u) \sin (v), \dot{g}(u)), \\
& \boldsymbol{\sigma}_{v}=(-f(u) \sin (v), f(u) \cos (v), 0) .
\end{aligned}
$$

Therefore

$$
\sigma_{u} \times \sigma_{v}=(f \dot{g} \cos (v),-\dot{f} g \sin (v), f \dot{f})
$$

and

$$
\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|^{2}=f^{2}\left(\dot{f}^{2}+\dot{g}^{2}\right)=f^{2}\|\boldsymbol{\gamma}\|^{2} .
$$

Recall that $f>0$ by definition, so that $f^{2} \neq 0$. Therefore σ_{u} and σ_{v} are linearly independent if and only if $\boldsymbol{\gamma}$ is regular.

Example 4.98: Catenoid

The catenoid is the surface of revolution obtained by rotating the catenary about the z-axis, see Figure 4.19. Recall that the catenary function is defined by

$$
f(u)=\cosh (u) .
$$

Therefore the catenoid is obtained by rotating

$$
\boldsymbol{\gamma}(u)=(\cosh (u), 0, u) .
$$

A chart for the catenoid is given by

$$
\sigma(u, v)=(\cosh (u) \cos (v), \cosh (u) \sin (v), u)
$$

where $u \in \mathbb{R}$ and $v \in[0,2 \pi)$. Note that $f>0$ and

$$
\dot{\boldsymbol{\gamma}}=(\sinh (u), 0,1), \quad\|\dot{\boldsymbol{\gamma}}\|^{2}=1+\sinh (u)^{2} \geq 1 .
$$

Therefore $\boldsymbol{\gamma}$ is regular. By Proposition 4.97 we conclude that the catenoid is a regular surface.

4.11 First fundamental form

In this section we introduce the first fundamental form of a surface. This will allow us to compute:

- Inner product between tangent vectors
- Angle between tangent vectors
- Area of surface regions

Figure 4.19: The Catenoid is the surface of revolution obtained by rotating the catenary about the z-axis.

Moreover we can compute

- Length of curves on a surface
- Angle between curves on a surface

4.11.1 Length on surfaces

Let \mathcal{S} be a surface and consider two points $\mathbf{p}, \mathbf{q} \in \mathcal{S}$. The euclidean distance between \mathbf{p} and \mathbf{q} is

$$
\|\mathbf{p}-\mathbf{q}\| .
$$

However this measures the length of the straight segment which connects \mathbf{p} to \mathbf{q}. We are interested in measuring the distance on \mathcal{S}. A way to measure such distance is the following: Suppose

$$
\boldsymbol{\gamma}:\left(t_{0}, t_{1}\right) \rightarrow \mathcal{S}
$$

is a smooth curve such that

$$
\gamma\left(t_{0}\right)=\mathbf{p}, \quad \gamma\left(t_{1}\right)=\mathbf{q} .
$$

The distance between \mathbf{p} and \mathbf{q} on $\mathcal{\delta}$ is the length of $\boldsymbol{\gamma}$, i.e.,

$$
\int_{t_{0}}^{t_{1}}\|\dot{\boldsymbol{\gamma}}(t)\| d t
$$

Question 4.99

How do we compute the above integral?

Since $\boldsymbol{\gamma}(t) \in \mathcal{S}$, by definition we have

$$
\dot{\boldsymbol{\gamma}}(t) \in T_{\mathbf{x}} S, \quad \mathbf{x}:=\boldsymbol{\gamma}(t) .
$$

Therefore, computing $\|\dot{\gamma}(t)\|$ is equivalent to computing the length of tangent vectors. This motivates the definition of first fundamental form.

Definition 4.100: First fundamental form

Let \mathcal{S} be a regular surface and $\mathbf{p} \in \mathcal{S}$. The first fundamental form of \mathcal{S} at \mathbf{p} is the bilinear symmetric map

$$
I_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{S} \times T_{\mathbf{p}} \mathcal{S} \rightarrow \mathbb{R}, \quad I_{\mathbf{p}}(\mathbf{v}, \mathbf{w}):=\mathbf{v} \cdot \mathbf{w}
$$

Three observations:

- The first fundamental form of \mathcal{S} at \mathbf{p} is the map obtained by restricting the scalar product of \mathbb{R}^{3} to $T_{\mathbf{p}} \mathcal{S}$.
- Note that

$$
I_{\mathbf{p}}(\mathbf{v}, \mathbf{v})=\|\mathbf{v}\|^{2}
$$

so that $I_{\mathbf{p}}$ can be used to compute the length of tangent vectors.

- The definition of $I_{\mathbf{p}}$ does not depend on a chosen chart.

To use the first fundamental form in practice, we need to express $I_{\mathbf{p}}$ in terms of local charts. To this end, we first define the coordinates functions $d u$ and $d v$ on $T_{\mathbf{p}} S$.

Definition 4.101: Coordinate functions on tangent plane

Let $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}$ be a regular chart of \mathcal{S}. For each $\mathbf{p} \in \boldsymbol{\sigma}(U)$ we have

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\boldsymbol{\sigma}_{u}, \sigma_{\nu}\right\},
$$

where σ_{u} and σ_{v} are evaluated at the point $\left(u_{0}, v_{0}\right) \in U$ such that

$$
\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}
$$

Therefore, for each $\mathbf{v} \in T_{\mathbf{p}} \mathcal{\delta}$, there exist $\lambda, \mu \in \mathbb{R}$ such that

$$
\mathbf{v}=\lambda \boldsymbol{\sigma}_{u}+\mu \boldsymbol{\sigma}_{v} .
$$

The coordinate functions on $T_{\mathbf{p}} \mathcal{\delta}$ are the linear maps

$$
d u, d v: T_{\mathbf{p}} \mathcal{S} \rightarrow \mathbb{R}, \quad d u(\mathbf{v}):=\lambda, \quad d v(\mathbf{v}):=\mu
$$

Definition 4.102: First fundamental form of a chart
Let $\sigma: U \rightarrow \mathbb{R}^{3}$ be a regular chart of \mathcal{S}. Define the functions

$$
E, F, G: U \rightarrow \mathbb{R}
$$

by setting

$$
E:=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}, \quad F:=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}, \quad G:=\sigma_{v} \cdot \boldsymbol{\sigma}_{v} .
$$

Let $\mathbf{p} \in \boldsymbol{\sigma}(U)$ and denote by $\left(u_{0}, v_{0}\right) \in U$ the point such that

$$
\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}
$$

The first fundamental form of σ at \mathbf{p} is the quadratic form

$$
\mathscr{F}_{1}: T_{\mathbf{p}} \mathcal{S} \rightarrow \mathbb{R}
$$

defined by

$$
\begin{equation*}
\mathscr{F}_{1}(\mathbf{v}):=E d u^{2}(\mathbf{v})+2 F d u(\mathbf{v}) d v(\mathbf{v})+G d v^{2}(\mathbf{v}), \tag{4.3}
\end{equation*}
$$

for all $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$, where E, F, G are evaluated at $\left(u_{0}, v_{0}\right)$.

We usually omit the dependence on \mathbf{v} in (4.3), and write

$$
\mathscr{F}_{1}=E d u^{2}+2 F d u d v+G d v^{2} .
$$

The quadratic form \mathscr{F}_{1} is related to $I_{\mathbf{p}}$ in the following way.

Proposition 4.103

Let $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}$ be a regular chart of \mathcal{S}, and $\mathbf{p} \in \boldsymbol{\sigma}(U)$. Then

$$
I_{\mathbf{p}}(\mathbf{v}, \mathbf{w})=(d u(\mathbf{v}), d v(\mathbf{v}))\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)(d u(\mathbf{w}), d v(\mathbf{w}))^{T},
$$

for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$. In particular, \mathscr{F}_{1} is the quadratic form associated to the symmetric bilinear form $I_{\mathbf{p}}$, that is,

$$
\mathscr{F}_{1}(\mathbf{v})=I_{\mathbf{p}}(\mathbf{v}, \mathbf{v}), \quad \forall \mathbf{v} \in T_{\mathbf{p}} \mathcal{S} .
$$

Proof

By Theorem 4.75 we have

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{\nu}\right\}
$$

Therefore, for $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$, there exist $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in \mathbb{R}$ such that

$$
\mathbf{v}=\lambda_{1} \boldsymbol{\sigma}_{u}+\mu_{1} \sigma_{v}, \quad \mathbf{w}=\lambda_{2} \boldsymbol{\sigma}_{u}+\mu_{2} \boldsymbol{\sigma}_{v}
$$

We have

$$
\begin{aligned}
I_{\mathbf{p}}(\mathbf{v}, \mathbf{w})= & \mathbf{v} \cdot \mathbf{w} \\
= & \lambda_{1} \lambda_{2} \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}+\left(\lambda_{1} \mu_{2}+\lambda_{2} \mu_{1}\right) \boldsymbol{\sigma}_{u} \cdot \sigma_{v}+\mu_{1} \mu_{2} \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} \\
= & E d u(\mathbf{v}) d u(\mathbf{w})+F(d u(\mathbf{v}) d v(\mathbf{w})+d u(\mathbf{w}) d v(\mathbf{v})) \\
& +G d v(\mathbf{v}) d v(\mathbf{w}) \\
= & (d u(\mathbf{v}), d v(\mathbf{v}))\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)(d u(\mathbf{w}), d v(\mathbf{w}))^{T} .
\end{aligned}
$$

The fact that

$$
I_{\mathbf{p}}(\mathbf{v}, \mathbf{v})=\mathscr{F}_{1}(\mathbf{v})
$$

follows from the first part of the statement and definition of \mathscr{F}_{1}.

Remark 4.104: Linear algebra interpretation

Using linear algebra, Proposition 4.103 has a clear interpretation, as follows. $I_{\mathbf{p}}$ is a symmetric bilinear form on the vector space $T_{\mathbf{p}} \mathcal{S}$. Fixing the basis $\left\{\sigma_{u}, \sigma_{\nu}\right\}$ for $T_{\mathbf{p}} \mathcal{S}$, we can represent $I_{\mathbf{p}}$ via the matrix

$$
\begin{aligned}
M & :=\left(\begin{array}{cc}
I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{u}\right) & I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right) \\
I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{u}\right) & I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{v}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u} & \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v} \\
\sigma_{v} \cdot \boldsymbol{\sigma}_{u} & \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}
\end{array}\right) \\
& =\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right),
\end{aligned}
$$

where we used that $\sigma_{u} \cdot \sigma_{v}=\sigma_{v} \cdot \sigma_{u}$.

Notation

With a little abuse of notation, we also denote by \mathscr{F}_{1} the 2×2 matrix

$$
\mathscr{F}_{1}:=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) .
$$

Remark 4.105: First fundamental form and reparametrizations

The first fundamental form $I_{\mathbf{p}}$ depends only on the surface \mathcal{S} and the point \mathbf{p}. Instead the representation of $I_{\mathbf{p}}$

$$
\mathscr{F}_{1}=E d u^{2}+2 F d u d v+G d v^{2}
$$

depends on the choice of chart $\sigma: U \rightarrow \mathbb{R}^{3}$. Indeed suppose that $\tilde{\boldsymbol{\sigma}}: \widetilde{U} \rightarrow \mathbb{R}^{3}$ is a reparametrization of $\boldsymbol{\sigma}$, that is,

$$
\tilde{\boldsymbol{\sigma}}=\boldsymbol{\sigma} \circ \Phi,
$$

where $\Phi: \widetilde{U} \rightarrow U$ is a diffeomorphism. Recall that we denote the components Φ^{1} and Φ^{2} of Φ by

$$
(\tilde{u}, \tilde{v}) \mapsto u(\tilde{u}, \tilde{v}), \quad(\tilde{u}, \tilde{v}) \mapsto v(\tilde{u}, \tilde{v}),
$$

respectively. The Jacobian of Φ is then

$$
J \Phi=\left(\begin{array}{ll}
\frac{\partial u}{\partial \tilde{u}} & \frac{\partial u}{\partial \tilde{v}} \\
\frac{\partial v}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{v}}
\end{array}\right) .
$$

Denote the first fundamental form of $\tilde{\boldsymbol{\sigma}}$ by

$$
\widetilde{\mathscr{F}}_{1}=\widetilde{E} d \tilde{u}^{2}+2 \widetilde{F} d \tilde{u} d \tilde{v}+\widetilde{G} d \tilde{v}^{2} .
$$

The linear maps $d u, d v$ and $d \tilde{u}, d \tilde{v}$ are related by

$$
\begin{equation*}
d u=\frac{\partial u}{\partial \tilde{u}} d \tilde{u}+\frac{\partial u}{\partial \tilde{v}} d \tilde{v}, \quad d v=\frac{\partial v}{\partial \tilde{u}} d \tilde{u}+\frac{\partial v}{\partial \tilde{v}} d \tilde{v} \tag{4.4}
\end{equation*}
$$

Moreover the matrices of \mathscr{F}_{1} and $\widetilde{\mathscr{F}}_{1}$ are related by

$$
\left(\begin{array}{cc}
\widetilde{E} & \widetilde{F} \tag{4.5}\\
\widetilde{F} & \widetilde{G}
\end{array}\right)=(J \Phi)^{T}\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) J \Phi .
$$

The proof of the above statements follows by basic linear algebra: The pairs $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{u}\right\}$ and $\left\{\tilde{\boldsymbol{\sigma}}_{\tilde{u}}, \tilde{\boldsymbol{\sigma}}_{\tilde{v}}\right\}$ are bases for the vector space $T_{\mathbf{p}} \mathcal{S}$. The change of basis matrix is given exactly by $J \Phi$. Therefore formulas (4.4) and (4.5) are consequence of change of basis results for linear maps and bilinear forms, respectively.

Let us compute the first fundamental form of a plane and of a cylinder.

Example 4.106: Plane

Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^{3}$. Suppose that \mathbf{p} and \mathbf{q} are orthonormal vectors, that is,

$$
\|\mathbf{p}\|=\|\mathbf{q}\|=1, \quad \mathbf{p} \cdot \mathbf{q}=0
$$

Consider the plane with chart

$$
\boldsymbol{\sigma}(u, v)=\mathbf{a}+u \mathbf{p}+v \mathbf{q}, \quad(u, v) \in \mathbb{R}^{2}
$$

Prove that the first fundamental form of $\boldsymbol{\sigma}$ is

$$
\mathscr{F}_{1}=d u^{2}+d v^{2} .
$$

We have

$$
\sigma_{u}=\mathbf{p}, \quad \boldsymbol{\sigma}_{v}=\mathbf{q}
$$

and therefore

$$
\begin{aligned}
& E=\boldsymbol{\sigma}_{u} \cdot \sigma_{u}=\|\mathbf{p}\|^{2}=1 \\
& F=\boldsymbol{\sigma}_{u} \cdot \sigma_{v}=\mathbf{p} \cdot \mathbf{q}=0 \\
& G=\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}=\|\mathbf{q}\|^{2}=1
\end{aligned}
$$

Then the first fundamental form is

$$
\mathscr{F}_{1}=E d u^{2}+2 F d u d v+G d v^{2}=d u^{2}+d v^{2} .
$$

Two remarks concerning Example 4.106:

- The above example should not be surprising, since distances on a plane are the same as Euclidean distances, given that straight segments are contained in the plane.
- If we drop the assumption of \mathbf{p} and \mathbf{q} being orthonormal, then

$$
\mathscr{F}_{1}=\|\mathbf{p}\|^{2} d u^{2}+\mathbf{p} \cdot \mathbf{q} d u d v+\|\mathbf{q}\|^{2} d v^{2} .
$$

Again, this is not surprising, due to Remark 4.105.

Example 4.107: Unit cylinder

Consider the unit cylinder with chart

$$
\boldsymbol{\sigma}(u, v)=(\cos (u), \sin (u), v), \quad(u, v) \in(0,2 \pi) \times \mathbb{R}
$$

Prove that the first fundamental form of $\boldsymbol{\sigma}$ is

$$
\mathscr{F}_{1}=d u^{2}+d v^{2} .
$$

We have

$$
\boldsymbol{\sigma}_{u}=(-\sin (u), \cos (u), 0), \quad \boldsymbol{\sigma}_{v}=(0,0,1),
$$

and therefore

$$
\begin{aligned}
& E=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}=1 \\
& F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=0 \\
& G=\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}=1
\end{aligned}
$$

Then the first fundamental form is

$$
\mathscr{F}_{1}=E d u^{2}+2 F d u d v+G d v^{2}=d u^{2}+d v^{2} .
$$

Remark 4.108

We have seen that a plane and the unit cylinder have the same first fundamental form

$$
\mathscr{F}_{1}=d u^{2}+d v^{2} .
$$

Therefore lengths are the same on the two surfaces.

4.11.2 Length of curves

Let us show how the first fundamental form allows to compute the length of curves with values on surfaces.

Proposition $\mathbf{4 . 1 0 9}$

Let \mathcal{S} be a regular surface with chart $\sigma: U \rightarrow \mathbb{R}^{3}$. Suppose

$$
\boldsymbol{\gamma}:\left(t_{0}, t_{1}\right) \rightarrow \boldsymbol{\sigma}(U) \subseteq \mathcal{S}
$$

is a smooth curve. Then

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\sigma}(u(t), v(t))
$$

for some smooth functions $u, v:\left(t_{0}, t_{1}\right) \rightarrow \mathbb{R}$ and

$$
\int_{t_{0}}^{t_{1}}\|\dot{\boldsymbol{\gamma}}(t)\| d t=\int_{t_{0}}^{t_{1}} \sqrt{E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2}} d t
$$

where \dot{u}, \dot{v} are computed at t, and E, F, G are computed at $(u(t), v(t))$.

Proof

Since $\boldsymbol{\gamma}$ takes values into $\boldsymbol{\sigma}(U)$, by Lemma 4.74 there exist smooth functions u, v such that

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\sigma}(u(t), v(t)), \quad \forall t \in\left(t_{0}, t_{1}\right) .
$$

By chain rule we have

$$
\dot{\boldsymbol{\gamma}}(t)=\dot{u}(t) \boldsymbol{\sigma}_{u}(u(t), v(t))+\dot{v}(t) \boldsymbol{\sigma}_{v}(u(t), v(t)) .
$$

The above means that the coefficients of $\dot{\boldsymbol{\gamma}}$ with respect to the basis $\left\{\sigma_{u}, \sigma_{v}\right\}$ are \dot{u}, \dot{v}, i.e.,

$$
d u(d g)=\dot{u}, \quad d v(\dot{\boldsymbol{\gamma}})=\dot{v} .
$$

By Proposition 4.103 we get

$$
\begin{aligned}
\|\dot{\boldsymbol{\gamma}}(t)\|^{2} & =\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}} \\
& =I_{\mathbf{p}}(\dot{\boldsymbol{\gamma}}, \dot{\boldsymbol{\gamma}}) \\
& =E d u(\dot{\boldsymbol{\gamma}})^{2}+2 F d u(\dot{\boldsymbol{\gamma}}) d v(\boldsymbol{\gamma})+G d v(\dot{\boldsymbol{\gamma}})^{2} \\
& =E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2},
\end{aligned}
$$

concluding the proof.

Example 4.110: Cone

Consider the cone with chart

$$
\sigma(u, v)=(u \cos (v), u \sin (v), u),
$$

where $u>0$ and $v \in[0,2 \pi]$.

1. Prove that the first fundamental form of $\boldsymbol{\sigma}$ is

$$
\mathscr{F}_{1}=2 d u^{2}+u^{2} d v^{2} .
$$

2. Let $\boldsymbol{\gamma}(t):=\boldsymbol{\sigma}(t, t)$. Show that

$$
\int_{\pi / 2}^{\pi}\|\dot{\boldsymbol{\gamma}}(t)\| d t=\int_{\pi / 2}^{\pi} \sqrt{2+t^{2}} d t
$$

We have

$$
\boldsymbol{\sigma}_{u}=(\cos (v), \sin (v), 1), \quad \boldsymbol{\sigma}_{v}=(-u \sin (v), u \cos (v), 0) .
$$

Therefore

$$
\begin{aligned}
& E=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}=\cos ^{2}(v)+\sin ^{2}(v)+1=2 \\
& F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=-u \cos (v) \sin (v)+u \cos (v) \sin (v)=0 \\
& G=\boldsymbol{\sigma}_{v} \cdot \sigma_{v}=u^{2} \sin ^{2}(v)+u^{2} \cos ^{2}(v)=u^{2}
\end{aligned}
$$

The first fundamental form of σ is

$$
\mathscr{F}_{1}=2 d u^{2}+u^{2} d v^{2}
$$

Concering the curve $\boldsymbol{\gamma}$, we have

$$
\boldsymbol{\gamma}(t):=\boldsymbol{\sigma}(t, t),
$$

so that

$$
u(t)=t, \quad v(t)=t
$$

In particular

$$
\dot{u}=1, \quad \dot{v}=1
$$

and

$$
\begin{aligned}
& E(u(t), v(t))=E(t, t)=2 \\
& F(u(t), v(t))=F(t, t)=0 \\
& G(u(t), v(t))=G(t, t)=t^{2} .
\end{aligned}
$$

By Proposition 4.109 we have

$$
\begin{aligned}
\int_{\pi / 2}^{\pi}\|\dot{\boldsymbol{\gamma}}(t)\| d t & =\int_{\pi / 2}^{\pi} \sqrt{E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2}} d t \\
& =\int_{\pi / 2}^{\pi} \sqrt{2+t^{2}} d t .
\end{aligned}
$$

4.11.3 Local isometries

We have seen that a plane $\boldsymbol{\pi}$ and a cylinder \mathscr{C} have the same first fundamental form. This means that scalar product on the two surfaces is the same, as is the length of curves. In this case we say that $\boldsymbol{\pi}$ and \mathscr{C} are locally isometric. Let us give a general definition of such concept.

Definition 4.111: Local isometry

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces. A local diffeomorphism $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ is a local isometry if for all $\mathbf{p} \in \mathcal{S}$ the differential $d_{\mathbf{p}} f: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{f(\mathbf{p})} \widetilde{\mathcal{S}}$ satisfies

$$
\mathbf{v} \cdot \mathbf{w}=d_{\mathbf{p}} f(\mathbf{v}) \cdot d_{\mathbf{p}} f(\mathbf{w}), \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}
$$

We say that \mathcal{S} and $\widetilde{\mathcal{S}}$ are locally isometric if there exists a local isometry $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$.

Figure 4.20: Sketch of local isometry f between \mathcal{S} and $\widetilde{\mathcal{S}}$. The scalar product between tangent vectors \mathbf{v} and \mathbf{w} is preserved by $d_{\mathbf{p}} f$.

Notation

For brevity we denote

$$
\langle\mathbf{v}, \mathbf{w}\rangle:=\mathbf{v} \cdot \mathbf{w}, \quad\langle\mathbf{v}, \mathbf{w}\rangle_{f}:=d_{\mathbf{p}} f(\mathbf{v}) \cdot d_{\mathbf{p}} f(\mathbf{w}),
$$

and also

$$
\|\mathbf{v}\|:=\sqrt{\langle v, v\rangle}, \quad\|\mathbf{v}\|_{f}:=\sqrt{\langle v, v\rangle_{f}} .
$$

Remark 4.112

A local diffeomorphism $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ is a local isometry if and only if

$$
\langle\mathbf{v}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{v}\rangle_{f}, \quad \forall \mathbf{v} \in T_{\mathbf{p}} \mathcal{S}
$$

The proof follows from the elementary identity

$$
\mathbf{v} \cdot \mathbf{w}=\frac{1}{2}((\mathbf{v}+\mathbf{w}) \cdot(\mathbf{v}+\mathbf{w})-\mathbf{v} \cdot \mathbf{v}-\mathbf{w} \cdot \mathbf{w}),
$$

which holds for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$ (and more in general in arbitrary vector spaces with inner product).

[^0]
Proposition 4.113

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces and $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ be a local diffeomorphism. They are equivalent:

1. f is a local isometry
2. Let $\boldsymbol{\gamma}$ be a curve in \mathcal{S} and consider the curve $\tilde{\boldsymbol{\gamma}}=f \circ \boldsymbol{\gamma}$ on $\widetilde{\mathcal{S}}$. Then $\boldsymbol{\gamma}$ and $\tilde{\boldsymbol{\gamma}}$ have the same length.

Proof

Part 1. Suppose $\boldsymbol{\gamma}:\left(t_{0}, t_{1}\right) \rightarrow \mathcal{S}$ is a smooth curve. Consider the smooth curve $\tilde{\boldsymbol{\gamma}}:=f \circ \boldsymbol{\gamma}:\left(t_{0}, t_{1}\right) \rightarrow \widetilde{\mathcal{S}}$. Setting $\mathbf{p}:=\boldsymbol{\gamma}(t)$, by definition of differential of a function between surfaces we have

$$
\dot{\tilde{\boldsymbol{\gamma}}}(t)=d f_{\mathbf{p}}(\dot{\boldsymbol{\gamma}}(t)) .
$$

Hence

$$
\begin{aligned}
\|\dot{\tilde{\boldsymbol{\gamma}}}(t)\|^{2} & =\dot{\boldsymbol{\gamma}}(t) \cdot \dot{\boldsymbol{\gamma}}(t) \\
& \left.=d f_{\mathbf{p}} \dot{\boldsymbol{\gamma}}(t)\right) \cdot d f_{\mathbf{p}}(\dot{\boldsymbol{\gamma}}(t)) \\
& =\dot{\boldsymbol{\gamma}}(t) \cdot \dot{\boldsymbol{\gamma}}(t) \\
& =\|\dot{\boldsymbol{\gamma}}(t)\|^{2}
\end{aligned}
$$

where in the second last inequality we used that f is a local isometry. Therefore $\boldsymbol{\gamma}$ and $\tilde{\boldsymbol{\gamma}}$ have the same length:

$$
\int_{t_{0}}^{t_{1}}\|\dot{\tilde{\gamma}}(t)\| d t=\int_{t_{0}}^{t_{1}}\|\dot{\boldsymbol{\gamma}}(t)\| d t
$$

Part 2. Let $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$. Then there exists a curve $\boldsymbol{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathcal{S}$ such that

$$
\boldsymbol{\gamma}(0)=\mathbf{p}, \quad \dot{\boldsymbol{\gamma}}(0)=\mathbf{v} .
$$

Define the curve $\tilde{\gamma}:=f \circ \gamma:(-\varepsilon, \varepsilon) \rightarrow \widetilde{\mathcal{S}}$. By assumption γ and $\tilde{\gamma}$ have the same length, that is,

$$
\int_{-\varepsilon}^{\varepsilon} \sqrt{\dot{\tilde{\boldsymbol{\gamma}}}(t) \cdot \dot{\tilde{\boldsymbol{\gamma}}}(t)} d t=\int_{-\varepsilon}^{\varepsilon} \sqrt{\dot{\boldsymbol{\gamma}}(t) \cdot \dot{\boldsymbol{\gamma}}(t)} d t .
$$

Since the above is true for each $\varepsilon>0$, we infer

$$
\dot{\tilde{\boldsymbol{\gamma}}}(0) \cdot \dot{\tilde{\boldsymbol{\gamma}}}(0)=\dot{\boldsymbol{\gamma}}(0) \cdot \dot{\boldsymbol{\gamma}}(0) .
$$

Recall that by definition of differential we have

$$
d f_{\mathbf{p}}(\mathbf{v})=\dot{\tilde{\boldsymbol{\gamma}}}(0) .
$$

Therefore

$$
\begin{aligned}
d f_{\mathbf{p}}(\mathbf{v}) \cdot d f_{\mathbf{p}}(\mathbf{v}) & =\dot{\tilde{\boldsymbol{\gamma}}}(0) \cdot \dot{\tilde{\boldsymbol{\gamma}}}(0) \\
& =\dot{\boldsymbol{\gamma}}(0) \cdot \dot{\boldsymbol{\gamma}}(0) \\
& =\mathbf{v} \cdot \mathbf{v} .
\end{aligned}
$$

As \mathbf{v} was arbitrary, we showed that

$$
d f_{\mathbf{p}}(\mathbf{v}) \cdot d f_{\mathbf{p}}(\mathbf{v})=\mathbf{v} \cdot \mathbf{v}, \quad \forall \mathbf{v} \in T_{\mathbf{p}}(\mathcal{S})
$$

Thanks to Remark 4.112 we conclude that f is a local isometry.
We have seen that local isometries preserve the length of curves. It also happen that they preserve the first fundamental form.

Theorem 4.114

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces and $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ be a local diffeomorphism. They are equivalent:

1. f is a local isometry.
2. Let $\sigma: U \rightarrow \mathcal{S}$ be a regular chart of \mathcal{S} and consider the chart of $\widetilde{\mathcal{S}}$ given by

$$
\tilde{\boldsymbol{\sigma}}=f \circ \boldsymbol{\sigma}: U \rightarrow \tilde{\mathcal{S}} .
$$

Then $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ have the same first fundamental form, that is,

$$
E=\widetilde{E}, \quad F=\widetilde{F}, \quad G=\widetilde{G}
$$

where

$$
\begin{array}{lll}
E=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}, & F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}, & G=\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}, \\
\widetilde{E}=\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{u}, & \widetilde{F}=\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{v}, & \widetilde{G}=\tilde{\boldsymbol{\sigma}}_{v} \cdot \tilde{\boldsymbol{\sigma}}_{v} .
\end{array}
$$

Proof

Part 1. Suppose that f is a local isometry, that is,

$$
\mathbf{v} \cdot \mathbf{w}=d_{\mathbf{p}} f(\mathbf{v}) \cdot d_{\mathbf{p}} f(\mathbf{w}), \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S} .
$$

Let $\boldsymbol{\sigma}$ be a chart for \mathcal{S} at \mathbf{p}. Define $\tilde{\boldsymbol{\sigma}}=f \circ \boldsymbol{\sigma}$. By Proposition $4.69, \tilde{\boldsymbol{\sigma}}$ is a regualar chart of $\tilde{\mathcal{S}}$ at $f(\mathbf{p})$. Now, recall the statement of Proposition 4.83: if

$$
\tilde{\sigma}(\alpha(u, v), \beta(u, v))=f(\sigma(u, v))
$$

for some smooth maps

$$
\alpha, \beta: U \rightarrow \widetilde{U}
$$

then the matrix of $d_{\mathbf{p}} f$ with respect to the basis

$$
\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\} \text { of } T_{\mathbf{p}} \mathcal{S}, \quad\left\{\tilde{\boldsymbol{\sigma}}_{u}, \tilde{\boldsymbol{\sigma}}_{v}\right\} \text { of } T_{f(\mathbf{p})} \widetilde{\mathcal{S}}
$$

is given by

$$
d_{\mathbf{p}} f=\left(\begin{array}{cc}
\alpha_{u} & \alpha_{v} \\
\beta_{u} & \beta_{v}
\end{array}\right)
$$

In our case, we have $U=\widetilde{U}$ and

$$
\tilde{\boldsymbol{\sigma}}(u, v)=f(\boldsymbol{\sigma}(u, v)),
$$

so that

$$
\alpha(u, v)=u, \quad \beta(u, v)=v .
$$

Therefore

$$
d_{\mathbf{p}} f=\left(\begin{array}{ll}
\alpha_{u} & \alpha_{v} \\
\beta_{u} & \beta_{v}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

which means that

$$
\begin{aligned}
& d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{u}\right)=1 \cdot \tilde{\boldsymbol{\sigma}}_{u}+0 \cdot \tilde{\boldsymbol{\sigma}}_{v}=\tilde{\boldsymbol{\sigma}}_{u} \\
& d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{v}\right)=0 \cdot \tilde{\boldsymbol{\sigma}}_{u}+1 \cdot \tilde{\boldsymbol{\sigma}}_{v}=\tilde{\boldsymbol{\sigma}}_{v}
\end{aligned}
$$

Usingg that f is a local isometry we get To this end, note that

$$
\begin{aligned}
E & =\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}=d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{u}\right) \cdot d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{u}\right) \\
& =\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{u}=\widetilde{E} .
\end{aligned}
$$

Simlarly, we obtain also

$$
\begin{aligned}
F & =\sigma_{u} \cdot \boldsymbol{\sigma}_{v}=d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{u}\right) \cdot d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{v}\right) \\
& =\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{v}=\widetilde{F}
\end{aligned}
$$

and

$$
\begin{aligned}
G & =\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}=d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{v}\right) \cdot d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{v}\right) \\
& =\tilde{\boldsymbol{\sigma}}_{v} \cdot \tilde{\boldsymbol{\sigma}}_{v}=\widetilde{G},
\end{aligned}
$$

showing that σ and $\tilde{\boldsymbol{\sigma}}$ have the same first fundamental form.
Part 2. Define $\tilde{\sigma}=f \circ \sigma$ and suppose that $\boldsymbol{\sigma}$ and $\tilde{\sigma}$ have the same first fundamental form. In particular they hold

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} \cdot \sigma_{u} & =\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{u} \\
\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v} & =\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{v} \\
\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} & =\tilde{\boldsymbol{\sigma}}_{v} \cdot \tilde{\boldsymbol{\sigma}}_{v}
\end{aligned}
$$

As discussed above, since $\tilde{\boldsymbol{\sigma}}=f \circ \boldsymbol{\sigma}$, by Proposition 4.83 we get

$$
d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{u}\right)=\tilde{\boldsymbol{\sigma}}_{u}, \quad d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{v}\right)=\tilde{\boldsymbol{\sigma}}_{v}
$$

Let $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$. Since $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}$ is a basis for $T_{\mathbf{p}} \mathcal{S}$ we get

$$
\mathbf{v}=\lambda \boldsymbol{\sigma}_{u}+\mu \boldsymbol{\sigma}_{v}
$$

for some $\lambda, \mu \in \mathbb{R}$. Therefore

$$
\begin{aligned}
d_{\mathbf{p}} f(\mathbf{v}) & =d_{\mathbf{p}} f\left(\lambda \sigma_{u}+\mu \boldsymbol{\sigma}_{v}\right) \\
& =\lambda d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{u}\right)+\mu d_{\mathbf{p}} f\left(\boldsymbol{\sigma}_{v}\right) \\
& =\lambda \tilde{\boldsymbol{\sigma}}_{u}+\mu \tilde{\boldsymbol{\sigma}}_{v} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{v} & =\left(\lambda \boldsymbol{\sigma}_{u}+\mu \boldsymbol{\sigma}_{v}\right) \cdot\left(\lambda \boldsymbol{\sigma}_{u}+\mu \boldsymbol{\sigma}_{v}\right) \\
& =\lambda^{2}\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}\right)+2 \lambda \mu\left(\boldsymbol{\sigma}_{u} \cdot \sigma_{v}\right)+\mu^{2}\left(\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}\right) \\
& =\lambda^{2}\left(\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{u}\right)+2 \lambda \mu\left(\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{v}\right)+\mu^{2}\left(\tilde{\boldsymbol{\sigma}}_{v} \cdot \tilde{\boldsymbol{\sigma}}_{v}\right) \\
& =\left(\lambda \tilde{\boldsymbol{\sigma}}_{u}+\mu \tilde{\boldsymbol{\sigma}}_{v}\right) \cdot\left(\lambda \tilde{\boldsymbol{\sigma}}_{u}+\mu \tilde{\boldsymbol{\sigma}}_{v}\right) \\
& =d_{\mathbf{p}} f(\mathbf{v}) \cdot d_{\mathbf{p}} f(\mathbf{v}),
\end{aligned}
$$

showing that

$$
\mathbf{v} \cdot \mathbf{v}=d_{\mathbf{p}} f(\mathbf{v}) \cdot d_{\mathbf{p}} f(\mathbf{v}), \quad \forall \mathbf{v} \in T_{\mathbf{p}} \mathcal{S}
$$

By Remark 4.112 we conclude that f is a local isometry.

4.11.4 Angles on surfaces

We want to define the notion of angle between tangent vectors.

Definition 4.115: Angle between tangent vectors

Let \mathcal{S} be a regular surface and $\mathbf{p} \in \mathcal{S}$. The angle between two vectors $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$ is defined as the number θ such that

$$
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

The angle between tangent vectors can be computed in terms of local charts.

Figure 4.21: Sketch of angle θ between two vectors \mathbf{v}, \mathbf{w} in $T_{\mathbf{p}} \mathcal{S}$.

Proposition $\mathbf{4 . 1 1 6}$

Let \mathcal{S} be a regular surface and $\boldsymbol{\sigma}$ a regular chart at \mathbf{p}. Let $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$. Then

$$
\cos (\theta)=\frac{E \lambda \tilde{\lambda}+F(\lambda \tilde{\mu}+\tilde{\lambda} \mu)+G \mu \tilde{\mu}}{\left(E \lambda^{2}+2 F \lambda \mu+G \mu^{2}\right)^{1 / 2}\left(E \tilde{\lambda}^{2}+2 F \tilde{\lambda} \tilde{\mu}+G \tilde{\mu}^{2}\right)^{1 / 2}},
$$

where $\lambda, \mu, \tilde{\lambda}, \tilde{\mu} \in \mathbb{R}$ are such that

$$
\mathbf{v}=\lambda \sigma_{u}+\mu \sigma_{v}, \quad \mathbf{w}=\tilde{\lambda} \sigma_{u}+\tilde{\mu} \sigma_{v}
$$

Proof

By definition the angle between \mathbf{v} and \mathbf{w} is

$$
\begin{equation*}
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|} \tag{4.6}
\end{equation*}
$$

The vectors $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}$ form a basis of $T_{\mathbf{p}} \mathcal{S}$. Therefore

$$
\mathbf{v}=\lambda \sigma_{u}+\mu \sigma_{v}, \quad \mathbf{w}=\tilde{\lambda} \sigma_{u}+\tilde{\mu} \sigma_{v} .
$$

for some $\lambda, \mu, \tilde{\lambda}, \tilde{\mu} \in \mathbb{R}$. Hence, the coordinates of \mathbf{v} and \mathbf{w} with respect to the basis $\left\{\boldsymbol{\sigma}_{u}, \sigma_{v}\right\}$ are

$$
\mathbf{v}=(\lambda, \mu), \quad \mathbf{w}=(\tilde{\lambda}, \tilde{\mu}) .
$$

By Proposition 4.103 we get

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{w} & =I_{\mathbf{p}}(\mathbf{v}, \mathbf{w}) \\
& =(\lambda, \mu)\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)(\tilde{\lambda}, \tilde{\mu})^{T} \\
& =E \lambda \tilde{\lambda}+F(\lambda \tilde{\mu}+\tilde{\lambda} \mu)+G \mu \tilde{\mu}
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
& \|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}=E \lambda^{2}+2 F \lambda \mu+G \mu^{2} \\
& \|\mathbf{w}\|^{2}=\mathbf{w} \cdot \mathbf{w}=E \tilde{\lambda}^{2}+2 F \tilde{\lambda} \tilde{\mu}+G \tilde{\mu}^{2}
\end{aligned}
$$

Substituting in (4.6) we conclude.

4.11.5 Angle between curves

Since tangent vectors are derivatives of curves with values in \mathcal{S}, it also makes sense to define the angle between two intersecting curves.

Definition 4.117: Angle between curves

Let \mathcal{S} be a regular surface and suppose to have two curves

$$
\boldsymbol{\gamma}:(a, b) \rightarrow \mathcal{S}, \quad \tilde{\boldsymbol{\gamma}}:(\tilde{a}, \tilde{b}) \rightarrow \mathcal{S}
$$

such that

$$
\boldsymbol{\gamma}\left(t_{0}\right)=\mathbf{p}, \quad \tilde{\boldsymbol{\gamma}}\left(\tilde{t}_{0}\right)=\mathbf{p}
$$

Then

$$
\dot{\boldsymbol{\gamma}}\left(t_{0}\right), \dot{\tilde{\boldsymbol{\gamma}}}\left(\tilde{t}_{0}\right) \in T_{\mathbf{p}} \mathcal{S}
$$

The angle θ between $\boldsymbol{\gamma}$ and $\tilde{\boldsymbol{\gamma}}$ is the angle between $\dot{\boldsymbol{\gamma}}\left(t_{0}\right)$ and $\dot{\boldsymbol{\gamma}}\left(\tilde{t}_{0}\right)$, that is,

$$
\cos (\theta)=\frac{\dot{\boldsymbol{\gamma}} \cdot \dot{\tilde{\boldsymbol{\gamma}}}}{\|\dot{\boldsymbol{\gamma}}\|\|\dot{\boldsymbol{\gamma}}\|}
$$

where $\tilde{\boldsymbol{\gamma}}$ is evaluated at t_{0} and $\dot{\tilde{\gamma}}$ at \tilde{t}_{0}.

Figure 4.22: Sketch of angle θ between two curves $\boldsymbol{\gamma}$ and $\tilde{\boldsymbol{\gamma}}$ on \mathcal{S}.

Proposition $\mathbf{4 . 1 1 8}$

Let \mathcal{S} be a regular surface and $\boldsymbol{\sigma}$ a regular chart at \mathbf{p}. Suppose given two curves

$$
\boldsymbol{\gamma}:(a, b) \rightarrow \mathcal{S}, \quad \tilde{\boldsymbol{\gamma}}:(\tilde{a}, \tilde{b}) \rightarrow \mathcal{S}
$$

such that

$$
\boldsymbol{\gamma}\left(t_{0}\right)=\mathbf{p}, \quad \tilde{\boldsymbol{\gamma}}\left(\tilde{t}_{0}\right)=\mathbf{p} .
$$

The angle between $\boldsymbol{\gamma}$ and $\tilde{\boldsymbol{\gamma}}$ is

$$
\cos (\theta)=\frac{E \dot{u} \dot{\tilde{u}}+F(\dot{u} \dot{\tilde{v}}+\dot{\tilde{u}} \dot{v})+G \dot{v} \dot{\tilde{v}}}{\left(E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2}\right)^{1 / 2}\left(E \dot{\tilde{u}}^{2}+2 F \dot{\tilde{u}} \dot{\tilde{v}}+G \dot{\tilde{v}}^{2}\right)^{1 / 2}},
$$

where $u, v, \tilde{u}, \tilde{v}$ are smooth functions such that

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\sigma}(u(t), v(t)), \quad \tilde{\boldsymbol{\gamma}}(t)=\boldsymbol{\sigma}(\tilde{u}(t), \tilde{v}(t))
$$

Proof

By definition the angle between $\boldsymbol{\gamma}$ and $\tilde{\boldsymbol{\gamma}}$ is

$$
\begin{equation*}
\cos (\theta)=\frac{\dot{\boldsymbol{\gamma}} \cdot \dot{\tilde{\boldsymbol{\gamma}}}}{\|\dot{\boldsymbol{\gamma}}\| \|} . \tag{4.7}
\end{equation*}
$$

As $\boldsymbol{\gamma}, \tilde{\boldsymbol{\gamma}}$ are smooth curves with values in \mathcal{S}, by Lemma 4.74 there exist smooth functions $u, v, \tilde{u}, \tilde{v}$ such that

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\sigma}(u(t), v(t)), \quad \tilde{\boldsymbol{\gamma}}(t)=\boldsymbol{\sigma}(\tilde{u}(t), \tilde{v}(t)) .
$$

Differentiating the above expressions we obtain

$$
\dot{\boldsymbol{\gamma}}=\dot{u} \boldsymbol{\sigma}_{u}+\dot{v} \boldsymbol{\sigma}_{v}, \quad \dot{\tilde{\boldsymbol{\gamma}}}=\dot{\tilde{u}} \boldsymbol{\sigma}_{u}+\dot{\tilde{v}} \boldsymbol{\sigma}_{v} .
$$

Therefore the coordinates of $\dot{\boldsymbol{\gamma}}$ and $\dot{\boldsymbol{\gamma}}$ with respect to the basis $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}$ of $T_{\mathbf{p}} \mathcal{S}$ are

$$
\dot{\boldsymbol{\gamma}}=(\dot{u}, \dot{v}), \quad \dot{\tilde{\boldsymbol{\gamma}}}=(\dot{\tilde{u}}, \dot{\tilde{v}}) .
$$

By Proposition 4.103 we get

$$
\begin{aligned}
\dot{\boldsymbol{\gamma}} \cdot \dot{\tilde{\boldsymbol{\gamma}}} & =I_{\mathbf{p}}(\dot{\boldsymbol{\gamma}}, \dot{\tilde{\boldsymbol{\gamma}}}) \\
& =(\dot{u}, \dot{v})\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)(\dot{\tilde{u}}, \dot{\tilde{v}})^{T} \\
& =E \dot{u} \dot{\tilde{u}}+F(\dot{u} \dot{\tilde{v}}+\dot{\tilde{u}} \dot{v})+G \dot{v} \dot{\tilde{v}} .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
& \|\dot{\boldsymbol{\gamma}}\|^{2}=\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}}=E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2} \\
& \|\dot{\tilde{\boldsymbol{\gamma}}}\|^{2}=\dot{\tilde{\gamma}} \cdot \dot{\tilde{\boldsymbol{\gamma}}}=E \dot{\tilde{u}}^{2}+2 F \dot{\tilde{u}} \dot{\tilde{v}}+G \dot{\tilde{v}}^{2} .
\end{aligned}
$$

Substituting in (4.7) we conclude.

4.11.6 Conformal maps

Local isometries are maps which preserve the scalar product of tangent vectors. We want to consider maps which preserve the angle of tangent vectors. These will be called conformal maps.

Definition 4.119: Conformal map

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces. A local diffeomorphism $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ is a conformal mapping if for all
$\mathbf{p} \in \mathcal{S}$ and $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$ is holds

$$
\theta=\tilde{\theta}
$$

with $\theta, \tilde{\theta}$ the angles between \mathbf{v}, \mathbf{w} and $d_{\mathbf{p}} f(\mathbf{v}), d_{\mathbf{p}} f(\mathbf{w})$, respectively.

Figure 4.23: Sketch of conformal map f between \mathcal{S} and $\widetilde{\mathcal{S}}$. The angles between tangent vectors are preserved by $d_{\mathbf{p}} f$.

Remark 4.120

We have that f is a conformal map if and only if

$$
\frac{\langle\mathbf{v}, \mathbf{w}\rangle}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{\langle\mathbf{v}, \mathbf{w}\rangle_{f}}{\|\mathbf{v}\|_{f}\|\mathbf{w}\|_{f}}, \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S} .
$$

This follows immediately by the definition of angle between tangent vectors.

Proposition $\mathbf{4 . 1 2 1}$

Let f be a local isometry. Then f is a conformal map.

Proof

By definition of local isometry we have

$$
\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{v}, \mathbf{w}\rangle_{f}, \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S} .
$$

In particular we have

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{v}\rangle_{f}=\|\mathbf{v}\|_{f}^{2},
$$

for all $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$. Therefore

$$
\frac{\langle\mathbf{v}, \mathbf{w}\rangle}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{\langle\mathbf{v}, \mathbf{w}\rangle_{f}}{\|\mathbf{v}\|_{f}\|\mathbf{w}\|_{f}},
$$

showing that f is a conformal map.
Therefore every local isometry is a conformal map. The converse is false, as we will show in Example 4.124 below. Before giving the example, let us provide a characterization of conformal maps in terms of the first fundamental form.

Theorem 4.122

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces and $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ a local diffeomorphism. They are equivalent:

1. f is a conformal map.
2. There exists a function $\lambda: \mathcal{S} \rightarrow \mathbb{R}$ such that

$$
\langle\mathbf{v}, \mathbf{w}\rangle_{f}=\lambda(\mathbf{p})\langle\mathbf{v}, \mathbf{w}\rangle, \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S} .
$$

Proof

Step 1. Suppose f is a conformal map, so that

$$
\begin{equation*}
\frac{\langle\mathbf{v}, \mathbf{w}\rangle}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{\langle\mathbf{v}, \mathbf{w}\rangle_{f}}{\|\mathbf{v}\|_{f}\|\mathbf{w}\|_{f}}, \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S} . \tag{4.8}
\end{equation*}
$$

Let $\left\{\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right\}$ be an orthonormal basis for $T_{\mathbf{p}} \mathcal{S}$, that is,

$$
\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right\rangle=0, \quad\left\|\boldsymbol{\alpha}_{1}\right\|=\left\|\boldsymbol{\alpha}_{2}\right\|=1 .
$$

Define

$$
\begin{aligned}
\lambda(\mathbf{p}) & :=\left\langle\boldsymbol{\alpha}_{\mathbf{1}}, \boldsymbol{\alpha}_{\mathbf{1}}\right\rangle_{f}=\left\|\boldsymbol{\alpha}_{1}\right\|_{f}^{2}, \\
\mu(\mathbf{p}) & :=\left\langle\boldsymbol{\alpha}_{\mathbf{1}}, \boldsymbol{\alpha}_{\mathbf{2}}\right\rangle_{f}, \\
v(\mathbf{p}) & :=\left\langle\boldsymbol{\alpha}_{\mathbf{2}}, \boldsymbol{\alpha}_{\mathbf{2}}\right\rangle_{f}=\left\|\boldsymbol{\alpha}_{2}\right\|_{f}^{2} .
\end{aligned}
$$

By (4.8) we have

$$
\frac{\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{\mathbf{2}}\right\rangle}{\left\|\boldsymbol{\alpha}_{1}\right\|\left\|\boldsymbol{\alpha}_{2}\right\|}=\frac{\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{\mathbf{2}}\right\rangle_{f}}{\left\|\boldsymbol{\alpha}_{1}\right\|_{f}\left\|\boldsymbol{\alpha}_{\mathbf{2}}\right\|_{f}}
$$

Since $\boldsymbol{\alpha}_{1} \cdot \boldsymbol{\alpha}_{2}=0$, from the above we get

$$
\mu(\mathbf{p})=\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right\rangle_{f}=0
$$

Moreover, since $\boldsymbol{\alpha}_{1}$ and $\boldsymbol{\alpha}_{2}$ are orthonormal, the angle between $\boldsymbol{\alpha}_{1}$ and $\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}$ is $\theta=\pi / 4$. By definition of angle between vectors, we infer

$$
\frac{\sqrt{2}}{2}=\cos (\theta)=\frac{\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right\rangle}{\left\|\boldsymbol{\alpha}_{1}\right\|\left\|\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{1}\right\|}
$$

On the other hand, using (4.8) we get

$$
\frac{\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{1}+\alpha_{2}\right\rangle}{\left\|\boldsymbol{\alpha}_{1}\right\|\left\|\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{1}\right\|}=\frac{\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right\rangle_{f}}{\left\|\boldsymbol{\alpha}_{1}\right\|_{f}\left\|\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right\|_{f}}
$$

The numerator of the right hand side satisfies

$$
\begin{aligned}
\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right\rangle_{f} & =\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{1}\right\rangle_{f}+\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right\rangle_{f} \\
& =\lambda(\mathbf{p})+\mu(\mathbf{p}) \\
& =\lambda(\mathbf{p})
\end{aligned}
$$

since $\mu(\mathbf{p})=0$. Concerning the denominator, we have

$$
\begin{aligned}
\left\|\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right\|_{f}^{2} & =\left\|\boldsymbol{\alpha}_{1}\right\|_{f}^{2}+\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right\rangle_{f}+\left\|\boldsymbol{\alpha}_{2}\right\|_{f}^{2} \\
& =\lambda(\mathbf{p})+\mu(\mathbf{p})+v(\mathbf{p}) \\
& =\lambda(\mathbf{p})+v(\mathbf{p})
\end{aligned}
$$

since $\mu(\mathbf{p})=0$. Putting together the last 4 groups of equations, we obtain

$$
\frac{\sqrt{2}}{2}=\frac{\lambda}{\lambda^{1 / 2}(\lambda+v)^{1 / 2}} .
$$

Rearraging the above equation yields

$$
\lambda(\mathbf{p})=v(\mathbf{p}) .
$$

Now let $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$. Since $\left\{\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right\}$ is a basis for $T_{\mathbf{p}} \mathcal{S}$, there exist $v_{1}, v_{2} \in \mathbb{R}$ such that

$$
\mathbf{v}=v_{1} \boldsymbol{\alpha}_{1}+v_{2} \boldsymbol{\alpha}_{2} .
$$

Therefore

$$
\begin{aligned}
\langle\mathbf{v}, \mathbf{v}\rangle & =v_{1}^{2}\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{1}\right\rangle+2 v_{1} v_{2}\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right\rangle+v_{2}^{2}\left\langle\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2}\right\rangle \\
& =v_{1}^{2}+v_{2}^{2},
\end{aligned}
$$

where we used that $\boldsymbol{\alpha}_{1}$ and $\boldsymbol{\alpha}_{2}$ are orthonormal. On the other hand,

$$
\begin{aligned}
\langle\mathbf{v}, \mathbf{v}\rangle_{f} & =v_{1}^{2}\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{1}\right\rangle_{f}+2 v_{1} v_{2}\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right\rangle_{f}+v_{2}^{2}\left\langle\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2}\right\rangle_{f} \\
& =v_{1}^{2} \lambda(\mathbf{p})+2 v_{1} v_{2} \mu(\mathbf{p})+v_{2}^{2} v(\mathbf{p}) \\
& =\lambda(\mathbf{p})\left(v_{1}^{2}+v_{2}^{2}\right)
\end{aligned}
$$

where we used that $\lambda(\mathbf{p})=v(\mathbf{p})$ and $\mu(\mathbf{p})=0$. Thus

$$
\langle\mathbf{v}, \mathbf{v}\rangle_{f}=\lambda(\mathbf{p})\left(v_{1}^{2}+v_{2}^{2}\right)=\lambda(\mathbf{p})\langle\mathbf{v}, \mathbf{v}\rangle,
$$

for all $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$. Since $\langle\cdot, \cdot\rangle$ and $\langle\cdot, \cdot\rangle_{f}$, by arguing as in Remark 4.112 we conclude that

$$
\langle\mathbf{v}, \mathbf{w}\rangle_{f}=\lambda(\mathbf{p})\langle\mathbf{v}, \mathbf{w}\rangle
$$

for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$.
Step 2. Suppose that there exists a function $\lambda: \mathcal{S} \rightarrow \mathbb{R}$ such that

$$
\langle\mathbf{v}, \mathbf{w}\rangle_{f}=\lambda(\mathbf{p})\langle\mathbf{v}, \mathbf{w}\rangle, \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S} .
$$

In particular, we have

$$
\|\mathbf{v}\|_{f}=\sqrt{\lambda(\mathbf{p})}\|\mathbf{v}\|, \quad \forall \mathbf{v} \in T_{\mathbf{p}} \mathcal{S}
$$

Then

$$
\frac{\langle\mathbf{v}, \mathbf{w}\rangle_{f}}{\|\mathbf{v}\|_{f}\|\mathbf{w}\|_{f}}=\frac{\lambda(\mathbf{p})\langle\mathbf{v}, \mathbf{w}\rangle}{\sqrt{\lambda(\mathbf{p})}\|\mathbf{v}\| \sqrt{\lambda(\mathbf{p})}\|\mathbf{w}\|}=\frac{\langle\mathbf{v}, \mathbf{w}\rangle}{\|\mathbf{v}\|\|\mathbf{w}\|},
$$

showing that f is a conformal map.

Corollary $\mathbf{4 . 1 2 3}$

Let \mathcal{S} and $\widetilde{\mathcal{S}}$ be regular surfaces and $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ be a local diffeomorphism. They are equivalent:

1. f is a conformal map.
2. Let $\sigma: U \rightarrow \mathcal{S}$ be a regular chart of \mathcal{S} and consider the chart of $\widetilde{\mathcal{S}}$ given by

$$
\tilde{\boldsymbol{\sigma}}=f \circ \boldsymbol{\sigma}: U \rightarrow \widetilde{\mathcal{S}} .
$$

There exists $\lambda: U \rightarrow \mathbb{R}$ such that

$$
\widetilde{F}_{1}=\lambda(u, v) \mathscr{F}_{1}, \quad \forall(u, v) \in U,
$$

where \mathscr{F}_{1} and $\widetilde{\mathscr{F}}_{1}$ are the first fundamental forms of σ and $\tilde{\boldsymbol{\sigma}}$, respectively.
The follows by using Theorem 4.122, and by adapting the argument in the proof of Theorem 4.114.

Example 4.124: Conformal maps are not local isometries

Consider the plane \mathcal{S} with chart

$$
\boldsymbol{\sigma}(u, v):=(u, v, 0) .
$$

Let $\widetilde{\mathcal{S}}$ be the sphere with parametrization

$$
\tilde{\boldsymbol{\sigma}}(u, v):=(\operatorname{sech}(u) \cos (v), \operatorname{sech}(u) \sin (v), \tanh (u)) .
$$

We have

$$
\boldsymbol{\sigma}_{u}=(1,0,0), \quad \boldsymbol{\sigma}_{v}=(0,1,0),
$$

so that

$$
\begin{aligned}
& E=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}=1 \\
& F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=0 \\
& G=\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}=1
\end{aligned}
$$

Therefore the first fundamental form of \mathcal{S} is

$$
\mathscr{F}_{1}=d u^{2}+d v^{2} .
$$

Using the identitities

$$
\begin{aligned}
& \frac{d}{d u}(\operatorname{sech}(u))=-\operatorname{sech}(u) \tanh (u) \\
& \frac{d}{d u}(\tanh (u))=\operatorname{sech}^{2}(u)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \tilde{\boldsymbol{\sigma}}_{u}=\left(-\operatorname{sech}(u) \tanh (u) \cos (v),-\operatorname{sech}(u) \tanh (u) \sin (v), \operatorname{sech}^{2}(u)\right) \\
& \tilde{\boldsymbol{\sigma}}_{v}=(-\operatorname{sech}(u) \sin (v), \operatorname{sech}(u) \cos (v), 0)
\end{aligned}
$$

By recalling that

$$
\operatorname{sech}^{2}(u)+\tanh ^{2}(u)=1,
$$

we compute

$$
\begin{aligned}
& \widetilde{E}=\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{u}=\operatorname{sech}^{2}(u)\left(\tanh ^{2}(u)+\operatorname{sech}^{2}(u)\right)=\operatorname{sech}^{2}(u) \\
& \widetilde{F}=\tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{v}=0 \\
& \widetilde{G}=\tilde{\boldsymbol{\sigma}}_{v} \cdot \tilde{\boldsymbol{\sigma}}_{v}=\operatorname{sech}^{2}(u)\left(\cos ^{2}(v)+\sin ^{2}(v)\right)=\operatorname{sech}^{2}(u)
\end{aligned}
$$

Hence the first fundamental form of $\widetilde{\mathcal{S}}$ is

$$
\widetilde{\mathscr{F}}_{1}=\operatorname{sech}^{2}(u)\left(d u^{2}+d v^{2}\right) .
$$

Now, consider the map $f: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ defined by

$$
f(u, v, 0)=\tilde{\boldsymbol{\sigma}}(u, v) .
$$

In particular f satisfies

$$
f(\boldsymbol{\sigma}(u, v))=\tilde{\boldsymbol{\sigma}}(u, v) .
$$

We have:

- f is not a local isometry.

If f was a local isometry, by Theorem 4.114 we would conclude that $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}=f \circ \boldsymbol{\sigma}$ have the same first fundamental form. However

$$
\mathscr{F}_{1}=d u^{2}+d v^{2} \neq \operatorname{sech}^{2}(u)\left(d u^{2}+d v^{2}\right)=\widetilde{\mathscr{F}}_{1} .
$$

- f is a conformal map.

The first fundamental forms of $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}=f \circ \boldsymbol{\sigma}$ satisfy

$$
\widetilde{\mathscr{F}}_{1}=\lambda(u, v) \mathscr{F}_{1}, \quad \lambda(u, v):=\operatorname{sech}(u) .
$$

Therefore f is a conformal map by Corollary 4.123.

4.11.7 Conformal parametrizations

We conclude this section with the definition of conformally flat surface and conformal parametrization.

Definition 4.125: Conformally flat surface and conformal parametrization
Let \mathcal{S} be a regular surface and

$$
\sigma: U \rightarrow \mathcal{S}
$$

be a regular chart of \mathcal{S}. We say that \mathcal{S} is conformally flat and σ is a conformal parametrization if the first fundamental form of $\boldsymbol{\sigma}$ satisfies

$$
\mathscr{F}_{1}=\lambda(u, v)\left(d u^{2}+d v^{2}\right)
$$

for some smooth function $\lambda: U \rightarrow \mathbb{R}$.
Definition 4.125 is motivated by the following Theorem: It states that angles on conformally flat surfaces look like angles on a plane.

Theorem 4.126

Let \mathcal{S} be a regular surface and

$$
\boldsymbol{\sigma}: U \rightarrow \boldsymbol{\sigma}(U) \subseteq \mathcal{S}
$$

be a regular chart of δ. Define the plane π charted by

$$
\tilde{\boldsymbol{\sigma}}(u, v)=(u, v, 0), \quad \forall(u, v) \in U .
$$

1. They are equivalent:

- σ is a conformal parametrization.
- There exists a conformal map $f: \pi \rightarrow \boldsymbol{\sigma}(U) \subseteq \mathcal{S}$.

2. A conformal parametrization σ preserves angles between vectors, in the following sense: Suppose $\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}$ are curves in \mathbb{R}^{2} such that

$$
\boldsymbol{\gamma}_{1}\left(t_{0}\right)=\boldsymbol{\gamma}_{2}\left(t_{0}\right) .
$$

Consider the corresponding curves on \mathcal{S} given by

$$
\tilde{\boldsymbol{\gamma}}_{1}:=\boldsymbol{\sigma} \circ \boldsymbol{\gamma}_{1}, \quad \tilde{\boldsymbol{\gamma}}_{2}=\boldsymbol{\sigma} \circ \boldsymbol{\gamma}_{2} .
$$

If

$$
\dot{\boldsymbol{\gamma}}_{1}\left(t_{0}\right), \dot{\boldsymbol{\gamma}}_{2}\left(t_{0}\right) \text { form an angle } \theta \text {, }
$$

then

$$
\dot{\tilde{\boldsymbol{\gamma}}}_{1}\left(t_{0}\right), \dot{\tilde{\boldsymbol{\gamma}}}_{2}\left(t_{0}\right) \text { form an angle } \theta .
$$

Proof

Proof of Point 1. Define the diffeomorphism $f: \pi \rightarrow \delta$ by

$$
f(u, v, 0)=\boldsymbol{\sigma}(u, v) .
$$

In particular

$$
f(\tilde{\boldsymbol{\sigma}}(u, v))=\boldsymbol{\sigma}(u, v) .
$$

By Corollary 4.123 we have that f is a conformal map if and only if there exists $\lambda: \pi \rightarrow \mathbb{R}$ such that

$$
\mathscr{F}_{1}=\lambda(u, v) \widetilde{\mathscr{F}}_{1},
$$

where \mathscr{F}_{1} and $\widetilde{\mathscr{F}}_{1}$ are the first fundamental forms of \mathcal{S} and $\boldsymbol{\pi}$, respectively. Since $\boldsymbol{\pi}$ is a plane, the first fundamental form is given by

$$
\widetilde{\mathscr{F}}_{1}=d u^{2}+d v^{2} .
$$

Therefore

$$
\mathscr{F}_{1}=\lambda(u, v)\left(d u^{2}+d v^{2}\right),
$$

showing that σ is a conformal parametrization.
Proof of Point 2. Suppose σ is a conformal parametrization. By the proof of Point 1 we have that

$$
f: \pi \rightarrow \mathcal{S}, \quad f(u, v, 0)=\sigma(u, v),
$$

is a conformal map. Since $T_{\mathbf{p}} \pi=\mathbb{R}^{2}$ and $f=\boldsymbol{\sigma}$, it follows by the definition of differential and f being conformal that the angle between $\boldsymbol{\gamma}_{1}$ and $\boldsymbol{\gamma}_{2}$ is the same as the angle between $\tilde{\boldsymbol{\gamma}}_{1}$ and $\tilde{\boldsymbol{\gamma}}_{2}$.

Example 4.127: Unit cylinder

The cylinder \mathcal{S} charted by

$$
\boldsymbol{\sigma}(u, v)=(\cos (u), \sin (u), v)
$$

is conformally flat, since the first fundamental form of σ is

$$
\mathscr{F}_{1}=d u^{2}+d v^{2} .
$$

Therefore $\boldsymbol{\sigma}$ is a conformal parametrization of \mathcal{S}.

Example 4.128: Shpere
Consider the parametrization of the sphere

$$
\sigma(u, v)=(\operatorname{sech}(u) \cos (v), \operatorname{sech}(u) \sin (v), \tanh (u)) .
$$

In Example 4.124 we have seen that the first fundamental form of $\boldsymbol{\sigma}$ is

$$
\mathscr{F}_{1}=\operatorname{sech}(u)\left(d u^{2}+d v^{2}\right) .
$$

Therefore $\boldsymbol{\sigma}$ is a conformal parametrization of the sphere.

4.12 Second fudamental form

The first fundamental form allows to measure distances on a surface. However it does not give any information on how curved a surface is: For example, we saw that a plane and a cylinder have the same first fundamental form

$$
\mathscr{F}_{1}=d u^{2}+d v^{2} .
$$

However the plane is flat, while the cylinder curves. We would like to find a measure of curvature which allows us to tell these two surfaces apart.

4.12.1 Unit normal and orientability

Before talking about curvatures, we need to clarify what we mean by normal vector to a surface and orientability. Let \mathcal{S} be a regular surface and $\mathbf{p} \in \mathcal{S}$. The tangent plane $T_{\mathbf{p}} \mathcal{S}$ passes through the origin. Therefore $T_{\mathbf{p}} \mathcal{S}$ is completely determined by giving a unit vector \mathbf{N} perpendicular to it:

$$
T_{\mathbf{p}} \mathcal{S}=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x} \cdot \mathbf{N}=0\right\} .
$$

In this case we write

$$
\mathbf{N} \perp T_{\mathbf{p}} \mathcal{S},
$$

to denote that \mathbf{N} is perpendicular to $T_{\mathbf{p}} \mathcal{S}$. Clearly, also $-\mathbf{N}$ is a unit vector, and

$$
(-\mathbf{N}) \perp T_{\mathbf{p}} \mathcal{S} .
$$

Question 4.129

Which unit normal should we choose between \mathbf{N} and $-\mathbf{N}$?
There is no right answer to the above question. One way to proceed is the following.

Remark 4.130

Suppose that $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}$ is a regular chart for $\mathcal{\delta}$. Let $\mathbf{p} \in \sigma(U)$. Then

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\boldsymbol{\sigma}_{u}, \sigma_{\nu}\right\} .
$$

Therefore we can choose the unit normal to $T_{\mathbf{p}} \mathcal{S}$ as

$$
\mathbf{N}_{\boldsymbol{\sigma}}:=\frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|}
$$

Clearly $\mathbf{N}_{\boldsymbol{\sigma}}$ has unit norm. Moreover

$$
\mathbf{N}_{\boldsymbol{\sigma}} \cdot \boldsymbol{\sigma}_{u}=0, \quad \mathbf{N}_{\boldsymbol{\sigma}} \cdot \boldsymbol{\sigma}_{v}=0
$$

by the properties of cross product, showing that \mathbf{N}_{σ} is perpendicular to $T_{\mathbf{p}} \mathcal{S}$.
There is however an issue: $\mathbf{N}_{\boldsymbol{\sigma}}$ is not independent on the choice of chart $\boldsymbol{\sigma}$. Indeed, suppose that $\tilde{\boldsymbol{\sigma}}: \widetilde{U} \rightarrow$ \mathbb{R}^{3} is a reparametrization of $\boldsymbol{\sigma}$, that is,

$$
\tilde{\boldsymbol{\sigma}}=\boldsymbol{\sigma} \circ \Phi, \quad \Phi: \widetilde{U} \rightarrow U,
$$

with Φ diffeomorphism. As shown in the proof of Proposition 4.61, we have

$$
\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}}=\operatorname{det}(J \Phi) \boldsymbol{\sigma}_{u} \times \sigma_{v} .
$$

Hence

$$
\mathbf{N}_{\tilde{\boldsymbol{\sigma}}}=\frac{\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}}}{\left\|\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}}\right\|}=\frac{\operatorname{det} J \Phi}{|\operatorname{det} J \Phi|} \frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|}= \pm \mathbf{N}_{\boldsymbol{\sigma}} .
$$

Therefore the sign on the right hand side depends on the sign of the Jacobian determinant of the transition map Φ.

The above remark motivates the following definitions.

Definition 4.131: Standard unit normal of a chart
Let \mathcal{S} be a regular surface and $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}$ a regular chart. The standard unit normal of $\boldsymbol{\sigma}$ is the smooth function

$$
\mathbf{N}_{\boldsymbol{\sigma}}: U \rightarrow \mathbb{R}^{3}, \quad \mathbf{N}_{\boldsymbol{\sigma}}:=\frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|} .
$$

Definition 4.132: Charts with same orientation

Let \mathcal{S} be a regular surface and $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}, \tilde{\boldsymbol{\sigma}}: \tilde{U} \rightarrow \mathbb{R}^{3}$ regular charts such that

$$
\boldsymbol{\sigma}(U) \cap \tilde{\boldsymbol{\sigma}}(\widetilde{U}) \neq \varnothing .
$$

Denote by Φ the transition map between $\tilde{\boldsymbol{\sigma}}$ and $\boldsymbol{\sigma}$. We say that:

1. σ and $\tilde{\boldsymbol{\sigma}}$ determine the same orientation if

$$
\operatorname{det} J \Phi>0
$$

where Φ is defined.
2. σ and $\tilde{\boldsymbol{\sigma}}$ determine opposite orientations if

$$
\operatorname{det} J \Phi<0
$$

where Φ is defined.

Example 4.133

Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^{3}$ and suppose that \mathbf{p} and \mathbf{q} are linearly independent. The plane spanned by \mathbf{p}, \mathbf{q} and passing through a can be parametrized by

$$
\boldsymbol{\sigma}(u, v):=\mathbf{a}+\mathbf{p} u+\mathbf{q} v, \quad \forall(u, v) \in \mathbb{R}^{2} .
$$

An alternative parametrization is given by

$$
\tilde{\boldsymbol{\sigma}}(u, v):=\mathbf{a}+\mathbf{q} u+\mathbf{p} v, \quad \forall(u, v) \in \mathbb{R}^{2} .
$$

We have

$$
\boldsymbol{\sigma}_{u}=\mathbf{p}, \quad \boldsymbol{\sigma}_{v}=\mathbf{q}
$$

and therefore

$$
\mathbf{N}_{\sigma}=\frac{\mathbf{p} \times \mathbf{q}}{\|\mathbf{p} \times \mathbf{q}\|}
$$

Similarly, we have

$$
\mathbf{N}_{\tilde{\sigma}}=\frac{\mathbf{q} \times \mathbf{p}}{\|\mathbf{q} \times \mathbf{p}\|}=\frac{-\mathbf{p} \times \mathbf{q}}{\|\mathbf{p} \times \mathbf{q}\|}
$$

showing that

$$
\mathbf{N}_{\sigma}=-\mathbf{N}_{\tilde{\sigma}}
$$

Hence $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ determine opposite orientations.
If a surface can be covered by charts with the same orientation, it is called orientable.
Definition 4.134: Orientable surface
Let \mathcal{S} be a regular surface. Then:

1. An atlas $\mathscr{A}=\left\{\sigma_{i}\right\}_{i \in I}$ is oriented if the following property holds:

$$
\sigma_{i}\left(U_{i}\right) \cap \sigma_{j}\left(U_{j}\right) \neq \varnothing \quad \Longrightarrow \quad \operatorname{det} J \Phi>0
$$

where Φ is the transition map between σ_{i} and σ_{j}.
2. \mathcal{S} is orientable if there exists an oriented atlas \mathscr{A}.
3. If an oriented atlas \mathscr{A} is assigned, we say that \mathcal{S} is oriented by \mathscr{A}.

Example 4.135

All the surfaces we encountered in these Lecture Notes are orientable, except for the Möbius band in Example 4.95. Details about the non-orientability of the Möbius band can be found in Example $4.5 \cdot 3$ in [6].

Example 4.136

Let $\sigma: U \rightarrow \mathbb{R}^{3}$ be a regular chart. Then

$$
\mathcal{S}_{\boldsymbol{\sigma}}:=\boldsymbol{\sigma}(U)
$$

is a regular surface with atlas $\mathscr{A}=\{\boldsymbol{\sigma}\}$. Therefore $\delta_{\boldsymbol{\sigma}}$ is orientable.
This is because we have only one chart. Therefore any transition map Φ will be the identity, so that $\operatorname{det} J \Phi=1>0$.

Warning: Orientability is a global property
The above example is saying that orientability is a global property: To determine wether a surface \mathcal{S} is orientable, we need to examine the transition maps for the entire atlas \mathscr{A}. This is because a single local parametrization $\boldsymbol{\sigma}(U) \subseteq \mathcal{S}$ is always orientable.

Remark 4.137

Let $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ be regular charts with transition map Φ. We have seen in Remark 4.130 that

$$
\mathbf{N}_{\tilde{\boldsymbol{\sigma}}}=\frac{\operatorname{det} J \Phi}{|\operatorname{det} J \Phi|} \mathbf{N}_{\boldsymbol{\sigma}} .
$$

If $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$ determine the same orientation, then

$$
\operatorname{det} J \Phi>0
$$

which implies

$$
\mathbf{N}_{\tilde{\sigma}}=\mathbf{N}_{\boldsymbol{\sigma}} .
$$

Hence, if \mathcal{S} is an orientable surface, one can define a unit normal vector at each point of \mathcal{S}, without ambiguity.

Definition 4.138: Unit normal of a surface
Let $\mathcal{\delta}$ be a regular surface. A unit normal of $\mathcal{\delta}$ is a smooth function $\mathbf{N}: \mathcal{S} \rightarrow \mathbb{R}^{3}$ such that

$$
\mathbf{N}(\mathbf{p}) \perp T_{\mathbf{p}} \mathcal{S}, \quad\|\mathbf{N}(\mathbf{p})\|=1, \quad \forall \mathbf{p} \in \mathcal{S}
$$

Warning

We require the function $\mathbf{p} \mapsto \mathbf{N}(\mathbf{p})$ to be globally defined on \mathcal{S} and smooth.

Proposition 4.139

Let \mathcal{S} be a regular surface. They are equivalent:

1. \mathcal{S} is orientable.
2. There exists a unit normal $\mathbf{N}: \mathcal{S} \rightarrow \mathbb{R}^{3}$.

The proof follows from the above arguments. For details, we refer the reader to Proposition 4.3.7 in [1].
In view of the above propostion, for an oriented surface there is a natural choice of unit normal, which we call standard unit normal of \mathcal{S}.

Definition 4.140: Standard unit normal of a surface
Let \mathcal{S} be a regular surface oriented by the atlas \mathscr{A}. The standard unit normal to \mathcal{S} is the map $\mathbf{N}: \mathcal{S} \rightarrow$ \mathbb{R}^{3} such that

$$
\mathbf{N} \circ \sigma=\mathbf{N}_{\boldsymbol{\sigma}},
$$

for each chart $\sigma \in \mathscr{A}$, where

$$
\mathbf{N}_{\boldsymbol{\sigma}}: U \rightarrow \mathbb{R}^{3}, \quad \mathbf{N}_{\boldsymbol{\sigma}}=\frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|}
$$

is the standard unit normal of $\boldsymbol{\sigma}$.

Notation

In the following we will denote by \mathbf{N} both the standard unit normal of \mathcal{S} and of a chart.

4.12.2 Definition of Second fundamental form

We can now start our discussion about curvature of surfaces. We can make a similar argument to the one we made for curves: If $\boldsymbol{\gamma}$ is a unit speed curve, the curvature of $\boldsymbol{\gamma}$ is defined as

$$
\kappa(t)=\|\ddot{\gamma}(t)\| .
$$

The quantity $\kappa(t)$ gave us a measure of how much $\boldsymbol{\gamma}$ is deviating from a straight line. Similarly, we would like to quantify how much a surface \mathcal{S} is deviating from the tangent plane $T_{\mathbf{p}} \mathcal{S}$. Recall that

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\},
$$

where σ is a regular chart of \mathcal{S} at \mathbf{p}. The standard unit normal of σ is

$$
\mathbf{N}=\frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|},
$$

which is orthogonal to $T_{\mathbf{p}} \mathcal{\delta}$. Let $\left(u_{0}, v_{0}\right) \in \mathbb{R}^{2}$ be the point such that

$$
\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}
$$

As the scalar quantities Δu and Δv vary, the point

$$
\sigma\left(u_{0}+\Delta u, v_{0}+\Delta v\right) \in \mathcal{S}
$$

deviates from the tangent plane $T_{\mathbf{p}} \mathcal{S}$. Since \mathbf{N} is orthogonal to $T_{\mathbf{p}} \mathcal{S}$, the deviation is given by

$$
\delta:=\left[\boldsymbol{\sigma}\left(u_{0}+\Delta u, v_{0}+\Delta v\right)-\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)\right] \cdot \mathbf{N}
$$

as shown in Figure 4.24.

Figure 4.24: The point $\sigma\left(u_{0}+\Delta u, v_{0}+\Delta v\right)$ on \mathcal{S} deviates from $T_{\mathbf{p}} \mathcal{S}$ by a quantity δ.
Using Taylor's formula we get

$$
\begin{aligned}
\boldsymbol{\sigma}\left(u_{0}+\Delta u, v_{0}+\Delta v\right) & =\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)+\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right) \Delta u+\boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right) \Delta v \\
& +\frac{1}{2}\left(\boldsymbol{\sigma}_{u u}\left(u_{0}, v_{0}\right)(\Delta u)^{2}+2 \boldsymbol{\sigma}_{u v}\left(u_{0}, v_{0}\right) \Delta u \Delta v+\boldsymbol{\sigma}_{v v}\left(u_{0}, v_{0}\right)(\Delta v)^{2}\right) \\
& +R(\Delta u, \Delta v)
\end{aligned}
$$

where $R(\Delta u, \Delta v)$ is a remainder such that

$$
\lim _{\Delta \rightarrow 0} \frac{R(\Delta u, \Delta v)}{\Delta}=0, \quad \Delta:=(\Delta u)^{2}+(\Delta v)^{2}
$$

Since \mathbf{N} is orthogonal to σ_{u} and σ_{v}, if we multiply the above Taylor expansion by \mathbf{N}, and ignore the remainder, we obtain

$$
\delta=\frac{1}{2}\left(L(\Delta u)^{2}+2 M \Delta u \Delta v+N(\Delta v)^{2}\right)
$$

where we set

$$
L:=\boldsymbol{\sigma}_{u u} \cdot \mathbf{N}, \quad M:=\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}, \quad N:=\boldsymbol{\sigma}_{v v} \cdot \mathbf{N}
$$

The expression

$$
\mathscr{F}_{2}:=L d u^{2}+2 M d u d v+N d v^{2}
$$

is called the second fundamental form of \mathcal{S}. Therefore \mathscr{F}_{2} measures how much the surface \mathcal{S} deviates from being a plane. Let us make this definition precise.

Definition 4.141: Second fundamental form of a chart

Let $\sigma: U \rightarrow \mathbb{R}^{3}$ be a regular chart of \mathcal{S}. Denote the standard unit normal of $\boldsymbol{\sigma}$ by

$$
\mathbf{N}: U \rightarrow \mathbb{R}^{3}, \quad \mathbf{N}=\frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|}
$$

Define the functions

$$
L, M, N: U \rightarrow \mathbb{R}
$$

by setting

$$
L:=\boldsymbol{\sigma}_{u u} \cdot \mathbf{N}, \quad M:=\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}, \quad N:=\boldsymbol{\sigma}_{v v} \cdot \mathbf{N} .
$$

Let $\mathbf{p} \in \boldsymbol{\sigma}(U)$ and denote by $\left(u_{0}, v_{0}\right) \in U$ the point such that

$$
\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}
$$

The second fundamental form of σ at \mathbf{p} is the quadratic form

$$
\mathscr{F}_{2}: T_{\mathbf{p}} \mathcal{S} \rightarrow \mathbb{R}
$$

defined by

$$
\begin{equation*}
\mathscr{F}_{2}(\mathbf{v}):=L d u^{2}(\mathbf{v})+2 M d u(\mathbf{v}) d v(\mathbf{v})+N d v^{2}(\mathbf{v}) \tag{4.9}
\end{equation*}
$$

for all $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$. Here L, M, N are evaluated at $\left(u_{0}, v_{0}\right)$, and $d u, d v$ are the coordinate functions as in Definition 4.101.

Notation

With a little abuse of notation, we also denote by \mathscr{F}_{2} the 2×2 matrix

$$
\mathscr{F}_{2}=\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right) .
$$

Remark 4.142: Second fundamental form and reparametrizations
The second fundamental form

$$
\mathscr{F}_{2}=L d u^{2}+2 M d u d v+N d v^{2}
$$

depends on the choice of chart $\sigma: U \rightarrow \mathbb{R}^{3}$. Indeed, let us adopt the same notations as Remark 4.105. Suppose that $\tilde{\boldsymbol{\sigma}}: \widetilde{U} \rightarrow \mathbb{R}^{3}$ is a reparametrization of $\boldsymbol{\sigma}$ with

$$
\tilde{\boldsymbol{\sigma}}=\boldsymbol{\sigma} \circ \Phi,
$$

where $\Phi: \widetilde{U} \rightarrow U$ is a diffeomorphism. Denote the second fundamental form of $\tilde{\boldsymbol{\sigma}}$ by

$$
\tilde{\mathscr{F}}_{2}=\tilde{L} d \tilde{u}^{2}+2 \tilde{M} d \tilde{u} d \tilde{v}+\widetilde{N} d \tilde{v}^{2}
$$

The matrices of \mathscr{F}_{2} and $\widetilde{\mathscr{F}}_{2}$ are related by

$$
\left(\begin{array}{cc}
\tilde{L} & \tilde{M} \tag{4.10}\\
\widetilde{M} & \widetilde{N}
\end{array}\right)= \pm(J \Phi)^{T}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right) J \Phi
$$

where (4.10) holds with + if $\operatorname{det} J \Phi>0$ and - if $\operatorname{det} J \Phi<0$.
Formula (4.10) holds by a change of variable argument. The sign depends on the sign of $\operatorname{det} J \Phi$ because

$$
\tilde{\mathbf{N}}=\frac{\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}}}{\left\|\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}}\right\|}=\frac{\operatorname{det} J \Phi}{|\operatorname{det} J \Phi|} \frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|}= \pm \mathbf{N}
$$

as shown in Remark 4.130.
Let us show that a plane and a cylinder have different second fundamental forms.

Example 4.143: Plane

Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^{3}$. Suppose that \mathbf{p} and \mathbf{q} are orthonormal vectors, that is,

$$
\|\mathbf{p}\|=\|\mathbf{q}\|=1, \quad \mathbf{p} \cdot \mathbf{q}=0
$$

Consider the plane with chart

$$
\boldsymbol{\sigma}(u, v)=\mathbf{a}+u \mathbf{p}+v \mathbf{q}, \quad(u, v) \in \mathbb{R}^{2}
$$

Prove that the second fundamental form of $\boldsymbol{\sigma}$ is

$$
\mathscr{F}_{2}=0 .
$$

This reflects the intuition that a plane is flat, and therefore there is no curvature.
We have

$$
\sigma_{u}=\mathbf{p}, \quad \boldsymbol{\sigma}_{v}=\mathbf{q}
$$

The principal unit normal is

$$
\mathbf{N}=\frac{\mathbf{p} \times \mathbf{q}}{\|\mathbf{p} \times \mathbf{q}\|}
$$

while the second derivatives are

$$
\sigma_{\mathbf{u}}=\sigma_{\mathbf{u}}=\sigma_{\mathbf{u}}=\mathbf{0}
$$

Therefore

$$
\begin{aligned}
L & =\boldsymbol{\sigma}_{u u} \cdot \mathbf{N}=0 \\
M & =\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}=0 \\
N & =\boldsymbol{\sigma}_{v v} \cdot \mathbf{N}=0
\end{aligned}
$$

and the second fundamental form is

$$
\mathscr{F}_{2}=L d u^{2}+2 M d u d v+N d v^{2}=0 .
$$

Example 4.144: Unit cylinder

Consider the unit cylinder with chart

$$
\boldsymbol{\sigma}(u, v)=(\cos (u), \sin (u), v), \quad(u, v) \in(0,2 \pi) \times \mathbb{R}
$$

Prove that the second fundamental form of $\boldsymbol{\sigma}$ is

$$
\mathscr{F}_{2}=-d u^{2} .
$$

This reflects the intuition that the cylinder curves only when moving in the v-direction. In such direction we are moving on a circle of radius 1 , therefore we expect the curvature to be -1 .

We have

$$
\boldsymbol{\sigma}_{u}=(-\sin (u), \cos (u), 0), \quad \sigma_{v}=(0,0,1)
$$

and also

$$
\boldsymbol{\sigma}_{u u}=(-\cos (u),-\sin (u), 0), \quad \boldsymbol{\sigma}_{u v}=\sigma_{v v}=0 .
$$

We have also

$$
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sin (u) & \cos (u) & 0 \\
0 & 0 & 1
\end{array}\right|=(\cos (u), \sin (u), 0)
$$

so that

$$
\left\|\boldsymbol{\sigma}_{u} \times \sigma_{v}\right\|=\sqrt{\cos ^{2}(u)+\sin ^{2}(u)}=1 .
$$

The principal unit normal is

$$
\mathbf{N}=\frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|}=(\cos (u), \sin (u), 0)
$$

We finally compute

$$
\begin{aligned}
L & =\boldsymbol{\sigma}_{u u} \cdot \mathbf{N} \\
& =(-\cos (u),-\sin (u), 0) \cdot(\cos (u), \sin (u), 0) \\
& =-\cos ^{2}(u)-\sin ^{2}(u)=-1 \\
M & =\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}=0 \\
N & =\boldsymbol{\sigma}_{v v} \cdot \mathbf{N}=0
\end{aligned}
$$

The second fundamental form is

$$
\mathscr{F}_{2}=L d u^{2}+2 M d u d v+N d v^{2}=-d u^{2} .
$$

Remark $\mathbf{4 . 1 4 5}$

We have seen that a plane and the unit cylinder have the same first fundamental form

$$
\mathscr{F}_{1}=\widetilde{\mathscr{F}}_{1}=d u^{2}+d v^{2},
$$

while their second fundamental forms differ: we have

$$
\mathscr{F}_{2}=0, \quad \widetilde{\mathscr{F}}_{2}=-d u^{2},
$$

respectively.

4.12.3 Gauss and Weingarten maps

Another way to quantify how much a surface \mathcal{S} is curving is by examining the behavior of standard unit normal \mathbf{N}. If \mathcal{S} is a plane spanned by vectors \mathbf{p} and \mathbf{q}, then its standard unit normal is

$$
\mathbf{N}=\frac{\mathbf{p} \times \mathbf{q}}{\|\mathbf{p} \times \mathbf{q}\|}
$$

which is constant across \mathcal{S}. If \mathcal{S} is a general surface, measuring the variation of \mathbf{N} will tell us how much \mathcal{S} is deviating from being a plane. This is the idea behind the definition of the Gauss and Weingarten maps.

Remark 4.146

Let \mathcal{S} be oriented and $\mathbf{N}: \mathcal{S} \rightarrow \mathbb{R}^{3}$ be the standard unit normal. In particular \mathbf{N} is a smooth map and

$$
\mathbf{N}(\mathbf{p}) \perp T_{\mathbf{p}} \mathcal{S}, \quad\|\mathbf{N}(\mathbf{p})\|=1, \quad \forall \mathbf{p} \in \mathcal{S}
$$

Since $T_{\mathbf{p}} \mathcal{\delta}$ passes through the origin and \mathbf{N} has norm 1, it follows that

$$
\mathbf{N}(\mathbf{p}) \in \mathbb{S}^{2}:=\left\{\mathbf{x} \in \mathbb{R}^{3}:\|\mathbf{x}\|=1\right\}
$$

where \mathbb{S}^{2} is the unit sphere in \mathbb{R}^{3}. Thus $\mathbf{N}: \mathcal{S} \rightarrow \mathbb{S}^{2}$.

Definition 4.147: Gauss map

Let \mathcal{S} be an oriented surface and \mathbf{N} the standard unit normal to \mathcal{S}. The Gauss map of \mathcal{S} is the map

$$
\mathscr{G}_{\mathcal{S}}: \mathcal{S} \rightarrow \mathbb{S}^{2}, \quad \mathscr{G}_{\mathcal{S}}(\mathbf{p}):=\mathbf{N}(\mathbf{p})
$$

Figure 4.25: The Gauss map $\mathscr{G}_{\mathcal{S}}$ of \mathcal{S} is defined as $\mathscr{G}_{\mathcal{S}}(\mathbf{p}):=\mathbf{N}(\mathbf{p})$. Note that $\mathscr{G}_{\mathcal{S}}(\mathbf{p}) \in \mathbb{S}^{2}$.

Remark $\mathbf{4 . 1 4 8}$

The Gauss map of \mathcal{S} is just the standard unit normal of \mathcal{S}. By definition of standard unit normal to \mathcal{S} we obtain that

$$
\mathscr{G}_{\mathcal{S}} \circ \boldsymbol{\sigma}=\mathbf{N}
$$

for all charts $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}$, where $\mathbf{N}=\mathbf{N}_{\boldsymbol{\sigma}}$ is the standard unit normal to $\boldsymbol{\sigma}$, that is,

$$
\mathbf{N}: U \rightarrow \mathbb{R}^{3}, \quad \mathbf{N}:=\frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|} .
$$

Example 4.149

1. Suppose \mathcal{S} is the unit sphere \mathbb{S}^{2}. Then $\mathscr{G}_{\mathcal{S}}: \mathcal{S} \rightarrow \mathbb{S}^{2}$ is the identity, see Figure 4.26.
2. Let $\mathbf{a}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ with \mathbf{v} and \mathbf{w} linearly independent. Let \mathcal{S} be the plane

$$
\boldsymbol{\sigma}(u, v):=\mathbf{a}+\mathbf{v} u+\mathbf{w} v, \quad \forall(u, v) \in \mathbb{R}^{2} .
$$

The Gauss map of $\mathcal{\delta}$ is constant:

$$
\mathscr{G}_{\mathcal{S}}(\mathbf{p})=\frac{\mathbf{v} \times \mathbf{w}}{\|\mathbf{v} \times \mathbf{w}\|}
$$

for all $\mathbf{p} \in \mathcal{S}$, see Figure 4.27.
3. Let \mathcal{S} be the unit cylinder

$$
\sigma(u, v)=(\cos (u), \sin (u), v), \quad(u, v) \in(0,2 \pi) \times \mathbb{R}
$$

Then

$$
\boldsymbol{\sigma}_{u}=(-\sin (u), \cos (u), 0), \quad \boldsymbol{\sigma}_{v}=(0,0,1),
$$

and

$$
\sigma_{u} \times \boldsymbol{\sigma}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sin (u) & \cos (u) & 0 \\
0 & 0 & 1
\end{array}\right|=(\cos (u), \sin (u), 0)
$$

Therefore

$$
\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|=1,
$$

and

$$
\mathbf{N}=\frac{\boldsymbol{\sigma}_{u} \times \sigma_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \sigma_{v}\right\|}=(\cos (u), \sin (u), 0)
$$

The Gauss map of \mathcal{S} is

$$
\mathscr{G}_{\mathcal{S}}(\mathbf{p})=\left(\cos \left(u_{0}\right), \sin \left(u_{0}\right), 0\right),
$$

where $\left(u_{0}, v_{0}\right)$ is such that $\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)=\mathbf{p}$. Note that $\mathscr{S}_{\mathcal{S}}$ maps \mathcal{S} into the equator of \mathbb{S}^{2}, see Figure 4.28.

Figure 4.26: The Gauss map $\mathscr{G}_{\mathcal{S}}$ of a sphere is the identity.

Figure 4.27: The Gauss map $\mathscr{G}_{\mathcal{S}}$ of a plane is constant.

Figure 4.28 : If \mathcal{S} is the unit cylinder, the Gauss map $\mathscr{G}_{\mathcal{S}}$ maps \mathcal{S} into the equator of \mathbb{S}^{2}.

Remark $\mathbf{4 . 1 5 0}$

By definition, the Gauss map is a smooth function between surfaces. Therefore the differential of $\mathscr{G}_{\mathcal{S}}$ is well defined, and

$$
d_{\mathbf{p}} \mathscr{G}_{\mathcal{S}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{\mathscr{G}_{\mathcal{S}}(\mathbf{p})} \mathcal{S}^{2}
$$

for all $\mathbf{p} \in \mathcal{S}$. We have that

$$
\begin{equation*}
T_{\mathscr{G}_{\mathcal{S}}(\mathbf{p})} \mathbb{S}^{2}=T_{\mathbf{p}} \mathcal{S} \tag{4.11}
\end{equation*}
$$

see Figure 4.29. Therefore

$$
d_{\mathbf{p}} \mathscr{G}_{\mathcal{S}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{\mathbf{p}} \mathcal{S}
$$

Proof. The tangent plane $T_{\mathscr{G}_{\mathcal{S}}(\mathbf{p})} \mathbb{S}^{2}$ passes through the origin and

$$
\mathscr{G}(\mathbf{p}) \perp T_{\mathscr{G}_{\mathcal{S}}(\mathbf{p})} \mathbb{S}^{2}
$$

By definition $\mathscr{G}(\mathbf{p})=\mathbf{N}(\mathbf{p})$, and thus

$$
\mathbf{N}(\mathbf{p}) \perp T_{\mathscr{G}_{\mathcal{S}}(\mathbf{p})} \mathbb{S}^{2}
$$

Since by definition

$$
\mathbf{N}(\mathbf{p}) \perp T_{\mathbf{p}} \mathcal{S}
$$

we infer (4.11).

Figure 4.29: We ca identify $T_{\mathscr{G}_{\mathcal{S}}(\mathbf{p})} \mathbb{S}^{2}$ with $T_{\mathbf{p}} \mathcal{S}$. This is because $\mathscr{G}(\mathbf{p}) \perp T_{\mathscr{G}_{\mathcal{S}}(\mathbf{p})} \mathbb{S}^{2}$ and $\mathscr{G}(\mathbf{p})=\mathbf{N}(\mathbf{p})$.

Definition 4.151: Weingarten map

Let \mathcal{S} be an orientable surface and $\mathscr{G}: \mathcal{S} \rightarrow \mathbb{S}^{2}$ its Gauss map. The Weingarten map $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ of \mathcal{S} at \mathbf{p} is the negative differential of the Gauss map at \mathbf{p}, that is,

$$
\mathscr{V}_{\mathbf{p}, \mathcal{S}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{\mathbf{p}} \mathcal{S}, \quad \mathscr{V}_{\mathbf{p}, \mathcal{S}}(\mathbf{v}):=-d_{\mathbf{p}} \mathscr{G}(\mathbf{v}),
$$

for all $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$.

Important

The Gauss map encodes information on the standard unit normal \mathbf{N} to \mathcal{S}. Hence its derivative, the Weingarten map, detects the rate of change of \mathbf{N}.

Remark 4.152

The minus sign in the definition of $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ is a convention, just like we defined the torsion to be the scalar τ such that

$$
\dot{\mathbf{b}}=-\tau \mathbf{n} .
$$

The Weingarten map allows us to define a bilnear form on $T_{\mathbf{p}} \mathcal{S}$. We call such bilinear form the second

fundamental form of \mathcal{S}.

Definition 4.153: Second fundamental form of a surface
Let \mathcal{S} be an orientable surface and denote by

$$
\mathscr{W}_{\mathbf{p}, \mathcal{S}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{\mathbf{p}} \mathcal{S}
$$

its Weingarten map at \mathbf{p}. The second fundamental form of \mathcal{S} at \mathbf{p} is the map

$$
I I_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{S} \times T_{\mathbf{p}} \mathcal{S} \rightarrow \mathbb{R}
$$

defined by

$$
I I_{\mathbf{p}}(\mathbf{v}, \mathbf{w}):=\mathscr{W}_{\mathbf{p}, \mathcal{S}}(\mathbf{v}) \cdot \mathbf{w}, \quad \forall \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S} .
$$

Remark $\mathbf{4 . 1 5 4}$

The second fudamental form $I I_{\mathbf{p}}$ of \mathcal{S} is bilinear.
Indeed, $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ is linear, being the differential of a smooth map. Hence $I I_{\mathbf{p}}$ is bilinear, given that the scalar product is bilinear.

Remark 4.155: Matrix of the second fundamental form
Let $\boldsymbol{\sigma}$ be a chart at $\mathbf{p} \in \mathcal{S}$. Since $I I_{\mathbf{p}}$ is a bilinear form on $T_{\mathbf{p}} \mathcal{S}$, it can be represented by the 2×2 matrix

$$
A=\left(\begin{array}{cc}
I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{u}\right) & I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right) \\
I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \sigma_{u}\right) & I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \sigma_{v}\right)
\end{array}\right),
$$

given that $\left\{\sigma_{u}, \sigma_{v}\right\}$ is a basis for $T_{\mathbf{p}} \mathcal{S}$. In a not so shocking turn of events, it happens that

$$
A=\mathscr{F}_{2}=\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

where

$$
L=\boldsymbol{\sigma}_{u u} \cdot \mathbf{N}, \quad M=\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}, \quad N=\boldsymbol{\sigma}_{v v} \cdot \mathbf{N} .
$$

Therefore, the second fundamental form $I I_{\mathbf{p}}$ coincides with the second fundamental form \mathscr{F}_{2} of the chart σ. We prove this statement in the next theorem.

Theorem 4.156

Let \mathcal{S} be an orientable surface and $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}$ be a regular chart. Let $\mathbf{p} \in \boldsymbol{\sigma}(U)$.

1. The second funamental form $I I_{\mathbf{p}}$ is a symmetric bilinear map.
2. It holds

$$
I I_{\mathbf{p}}(\mathbf{v}, \mathbf{w})=(d u(\mathbf{v}), d v(\mathbf{v}))\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)(d u(\mathbf{w}), d v(\mathbf{w}))^{T}
$$

for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$, where

$$
L=\boldsymbol{\sigma}_{u u} \cdot \mathbf{N}, \quad M=\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}, \quad N=\boldsymbol{\sigma}_{v v} \cdot \mathbf{N} .
$$

3. \mathscr{F}_{2} is the quadratic form associated to $I I_{\mathbf{p}}$, that is,

$$
\mathscr{F}_{2}(\mathbf{v})=I I_{\mathbf{p}}(\mathbf{v}, \mathbf{v}), \quad \forall \mathbf{v} \in T_{\mathbf{p}} \mathcal{S} .
$$

To prove Theorem 4.156 we use the following two Lemmas.

Lemma $\mathbf{4 . 1 5 7}$

Let $\boldsymbol{\sigma}: U \rightarrow \mathbb{R}^{3}$ be a regular chart with standard unit normal $\mathbf{N}: U \rightarrow \mathbb{R}^{3}$. Then

$$
\begin{aligned}
& \mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{u}=-L, \\
& \mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{v}=\mathbf{N}_{v} \cdot \boldsymbol{\sigma}_{u}=-M, \\
& \mathbf{N}_{v} \cdot \boldsymbol{\sigma}_{v}=-N .
\end{aligned}
$$

Proof

The vectors $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ form a basis for $T_{\mathbf{p}} \mathcal{S}$. Since \mathbf{N} is orthogonal to $T_{\mathbf{p}} \mathcal{S}$ by definition, it follows that

$$
\mathbf{N} \cdot \boldsymbol{\sigma}_{u}=0, \quad \mathbf{N} \cdot \boldsymbol{\sigma}_{v}=0
$$

Differentiating the above with respect to u and v yields the thesis. For example, we have

$$
\frac{\partial}{\partial u}\left(\mathbf{N} \cdot \boldsymbol{\sigma}_{u}\right)=0 .
$$

On the other hand, by chain rule,

$$
\frac{\partial}{\partial u}\left(\mathbf{N} \cdot \boldsymbol{\sigma}_{u}\right)=\mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{u}+\mathbf{N} \cdot \boldsymbol{\sigma}_{u u}=\mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{u}+L,
$$

from which we infer

$$
\mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{u}=-L
$$

The rest of the proof follows similarly.

Lemma $\mathbf{4 . 1 5 8}$

Let \mathcal{S} be an orientable surface and $\mathscr{W}_{\mathbf{p}, \mathcal{S}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{\mathbf{p}} \mathcal{S}$ be its Weingarten map at \mathbf{p}. Let $\boldsymbol{\sigma}$ be a regular chart at \mathbf{p}, with $\sigma\left(u_{0}, v_{0}\right)=\mathbf{p}$. Then

$$
\mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{u}\right)=-\mathbf{N}_{u}, \quad \mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{v}\right)=-\mathbf{N}_{v}
$$

where $\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}, \mathbf{N}_{u}, \mathbf{N}_{v}$ are evaluated at $\left(u_{0}, v_{0}\right)$.

Proof

Since $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ is defined as $-d_{\mathbf{p}} \mathscr{G}_{\mathcal{S}}$, we can compute $\mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{u}\right)$ and $\mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{v}\right)$ by using the definition of differential of a smooth function. To this end, consider the curve

$$
\boldsymbol{\gamma}(t):=\boldsymbol{\sigma}\left(u_{0}+t, v_{0}\right) .
$$

We have that $\boldsymbol{\gamma}$ is a smooth curve in $\mathcal{\delta}$ and

$$
\dot{\boldsymbol{\gamma}}(t)=\boldsymbol{\sigma}_{u}\left(u_{0}+t, v_{0}\right) .
$$

Therefore

$$
\boldsymbol{\gamma}(0)=\sigma\left(u_{0}, v_{0}\right)=\mathbf{p}, \quad \dot{\boldsymbol{\gamma}}(0)=\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right) .
$$

Define

$$
\tilde{\boldsymbol{\gamma}}(t):=\left(\mathscr{G}_{\mathcal{S}} \circ \boldsymbol{\gamma}\right)(t) .
$$

By Remark 4.148

$$
\tilde{\boldsymbol{\gamma}}(t)=\mathscr{G}_{\mathcal{S}}(\gamma(t))=\mathscr{G}_{\mathcal{S}}\left(\boldsymbol{\sigma}\left(u_{0}+t, v_{0}\right)\right)=\mathbf{N}\left(u_{0}+t, v_{0}\right) .
$$

Thus

$$
\dot{\tilde{\boldsymbol{\gamma}}}(t)=\mathbf{N}_{u}\left(u_{0}+t, v_{0}\right), \quad \dot{\tilde{\boldsymbol{\gamma}}}(0)=\mathbf{N}_{u}\left(u_{0}, v_{0}\right) .
$$

By definition of differential, we have

$$
\mathscr{V}_{\mathbf{p}, \mathcal{\delta}}\left(\boldsymbol{\sigma}_{u}\right)=-d_{\mathbf{p}} \mathscr{G}_{\mathcal{S}}\left(\boldsymbol{\sigma}_{u}\right)=-\dot{\boldsymbol{\gamma}}(0)=-\mathbf{N}_{u}\left(u_{0}, v_{0}\right),
$$

as we wanted to prove. To show that

$$
\mathscr{W}_{\mathbf{p}, \delta}\left(\boldsymbol{\sigma}_{v}\right)=-\mathbf{N}_{v}\left(u_{0}, v_{0}\right),
$$

it is sufficient to consider the curve

$$
\boldsymbol{\gamma}(t):=\boldsymbol{\sigma}\left(u_{0}, v_{0}+t\right),
$$

and argue similarly. This is left as an exercise.
We can now prove Theorem 4.156

Proof: Proof of Theorem 4.156
By Theorem 4.75 we have

$$
T_{\mathbf{p}} \mathcal{S}=\operatorname{span}\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{\nu}\right\} .
$$

Therefore, for $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{\delta}$, there exist $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in \mathbb{R}$ such that

$$
\mathbf{v}=\lambda_{1} \boldsymbol{\sigma}_{u}+\mu_{1} \sigma_{v}, \quad \mathbf{w}=\lambda_{2} \boldsymbol{\sigma}_{u}+\mu_{2} \boldsymbol{\sigma}_{v}
$$

By bilinearity of $I I_{\mathbf{p}}$ we infer

$$
\begin{aligned}
I I_{\mathbf{p}}(\mathbf{v}, \mathbf{w})= & \lambda_{1} \lambda_{2} I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{u}\right)+\lambda_{1} \mu_{2} I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right) \\
& +\lambda_{2} \mu_{1} I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{u}\right)+\mu_{1} \mu_{2} I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{v}\right) \\
= & d u(\mathbf{v}) d u(\mathbf{w}) I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{u}\right)+d u(\mathbf{v}) d v(\mathbf{w}) I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right) \\
& +d v(\mathbf{v}) d u(\mathbf{v}) I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{u}\right)+d v(\mathbf{v}) d v(\mathbf{w}) I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{v}\right) \\
= & (d u(\mathbf{v}), d v(\mathbf{v}))\left(\begin{array}{ll}
I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{u}\right) & I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right) \\
I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{u}\right) & I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{v}\right)
\end{array}\right)(d u(\mathbf{w}), d v(\mathbf{w}))^{T} .
\end{aligned}
$$

By Lemma 4.158 and Lemma 4.157 we have

$$
\mathscr{W}_{\mathbf{p}, \mathcal{\delta}}\left(\sigma_{u}\right)=-\mathbf{N}_{u}, \quad L=-\mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{u} .
$$

Therefore, using the above and the definition of $I I_{\mathbf{p}}$, we get

$$
I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{u}\right)=\mathscr{W}_{\mathbf{p}, \delta}\left(\boldsymbol{\sigma}_{u}\right) \cdot \boldsymbol{\sigma}_{u}=-\mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{u}=L
$$

With similar calculations we obtain

$$
I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right)=I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{u}\right)=M, \quad I I_{\mathbf{p}}\left(\boldsymbol{\sigma}_{v}, \boldsymbol{\sigma}_{v}\right)=N
$$

concluding the proof of point 2. In particular this also proves that $I I_{\mathbf{p}}$ is symmetric, which is Point 1 of the statement. The fact that

$$
I I_{\mathbf{p}}(\mathbf{v}, \mathbf{v})=\mathscr{F}_{2}(\mathbf{v})
$$

follows from Point 2 and definition of \mathscr{F}_{2}.

4.12.4 Matrix of Weingarten map

The Weingarten map is a linear map

$$
\mathscr{V}_{\mathbf{p}, \mathcal{S}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{\mathbf{p}} \mathcal{S}
$$

We would like to find a formula to compute $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$. This is easily done: Given a chart $\boldsymbol{\sigma}$ at \mathbf{p}, we have that $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}$ is a basis for the vector space $T_{\mathbf{p}} \mathcal{S}$. Therefore there exists a 2×2 matrix A which represents $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$,
that is,

$$
\mathscr{V}_{\mathbf{p}, \mathcal{S}}(\mathbf{v})=A \mathbf{v}, \quad \forall \mathbf{v} \in T_{\mathbf{p}} \mathcal{S} .
$$

It turns out that

$$
A=\mathscr{F}_{1}^{-1} \mathscr{F}_{2},
$$

where we recall that

$$
\mathscr{F}_{1}=\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right), \quad \mathscr{F}_{2}=\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right),
$$

where

$$
\begin{array}{lrr}
E=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}, & F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}, & G=\sigma_{v} \cdot \boldsymbol{\sigma}_{v}, \\
L=\boldsymbol{\sigma}_{u u} \cdot \mathbf{N}, & M=\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}, & N=\sigma_{v v} \cdot \mathbf{N},
\end{array}
$$

and

$$
\mathbf{N}=\frac{\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|}
$$

Let us prove this claim.

Theorem 4.159: Matrix of Weingarten map

Let \mathcal{S} be an orientable surface and $\mathscr{V}_{\mathbf{p}, \mathcal{S}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{\mathbf{p}} \mathcal{S}$ be its Weingarten map at \mathbf{p}. Let $\boldsymbol{\sigma}$ be a regular chart at \mathbf{p}, with $\sigma\left(u_{0}, v_{0}\right)=\mathbf{p}$. Then

$$
\mathscr{W}_{\mathbf{p}, \mathcal{S}}(\mathbf{v})=\mathscr{F}_{1}^{-1} \mathscr{F}_{2}\binom{\lambda}{\mu}, \quad \forall v \in T_{\mathbf{p}} \mathcal{S},
$$

where

$$
\mathbf{v}=\lambda \boldsymbol{\sigma}_{u}+\mu \boldsymbol{\sigma}_{v}
$$

with $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ evaluated at $\left(u_{0}, v_{0}\right)$.

Proof

By Theorem 4.75 we know that $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{\nu}\right\}$ is a basis of $T_{\mathbf{p}} \mathcal{S}$. Since $\mathscr{W}_{\mathbf{p}, \mathcal{S}}: T_{\mathbf{p}} \mathcal{S} \rightarrow T_{\mathbf{p}} \mathcal{S}$ is linear, by standard linear algebra results there exist coefficients $a, b, c, d \in \mathbb{R}$ such that

$$
\mathscr{W}_{\mathbf{p}, \mathcal{S}}(\mathbf{v})=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\lambda}{\mu} \quad \forall \mathbf{v} \in T_{\mathbf{p}} \mathcal{S},
$$

where

$$
\mathbf{v}=\lambda \boldsymbol{\sigma}_{u}+\mu \boldsymbol{\sigma}_{v}
$$

The coefficients $a, b, c, d \in \mathbb{R}$ can be compute by solving the linear system

$$
\begin{aligned}
& \mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{u}\right)=a \boldsymbol{\sigma}_{u}+b \boldsymbol{\sigma}_{v} \\
& \mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{v}\right)=c \boldsymbol{\sigma}_{u}+d \boldsymbol{\sigma}_{v} .
\end{aligned}
$$

By Lemma 4.158 we have

$$
\mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{u}\right)=-\mathbf{N}_{u}, \quad \mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{v}\right)=-\mathbf{N}_{v}
$$

so that we obtain

$$
\begin{aligned}
& -\mathbf{N}_{u}=a \boldsymbol{\sigma}_{u}+b \boldsymbol{\sigma}_{v} \\
& -\mathbf{N}_{v}=c \boldsymbol{\sigma}_{u}+d \boldsymbol{\sigma}_{v} .
\end{aligned}
$$

Taking the scalar product of the above equations with σ_{u} and σ_{v} we get

$$
\begin{aligned}
& -\mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{u}=a\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}\right)+b\left(\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{u}\right) \\
& -\mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{v}=a\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}\right)+b\left(\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}\right) \\
& -\mathbf{N}_{v} \cdot \boldsymbol{\sigma}_{u}=c\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}\right)+d\left(\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{u}\right) \\
& -\mathbf{N}_{v} \cdot \boldsymbol{\sigma}_{v}=c\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}\right)+d\left(\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}\right)
\end{aligned}
$$

By Lemma 4.157 we have

$$
\begin{array}{ll}
\mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{u}=-L, & \mathbf{N}_{u} \cdot \boldsymbol{\sigma}_{v}=-M, \\
\mathbf{N}_{v} \cdot \boldsymbol{\sigma}_{u}=-M, & \mathbf{N}_{v} \cdot \boldsymbol{\sigma}_{v}=-N .
\end{array}
$$

If in addition we recall the definition of E, F, G, we obtain

$$
\begin{aligned}
L & =a E+b F \\
M & =a F+b G \\
M & =c E+d F \\
N & =c F+d G
\end{aligned}
$$

The above equations are equivalent to the matrix multiplication

$$
\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right),
$$

which reads

$$
\mathscr{F}_{1} A=\mathscr{F}_{2} .
$$

Now, notice that

$$
\operatorname{det} \mathscr{F}_{1}>0 .
$$

Indeed, recall Cauchy-Schwarz inequality:

$$
\mathbf{v} \cdot \mathbf{v} \leq\|\mathbf{v}\|\|\mathbf{w}\|, \quad \forall \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}
$$

where the inequality is strict if and only if \mathbf{v} and \mathbf{w} are linearly independent. Since \mathcal{S} is regular, we have that σ_{u} and σ_{v} are linearly independent. Therefore by Cauchy-Schwarz we have

$$
\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}<\left\|\boldsymbol{\sigma}_{u}\right\|\left\|\boldsymbol{\sigma}_{v}\right\|
$$

and so, squaring both sides,

$$
\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}\right)^{2}<\left\|\boldsymbol{\sigma}_{u}\right\|^{2}\left\|\boldsymbol{\sigma}_{v}\right\|^{2}
$$

Hence

$$
\begin{aligned}
\operatorname{det}\left(\mathscr{F}_{1}\right) & =E G-F^{2} \\
& =\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}\right)\left(\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}\right)-\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}\right)^{2} \\
& =\left\|\boldsymbol{\sigma}_{u}\right\|^{2}\left\|\boldsymbol{\sigma}_{v}\right\|^{2}-\left(\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}\right)^{2}>0 .
\end{aligned}
$$

In particular the matrix \mathscr{F}_{1} is invertible and thus

$$
A=\mathscr{F}_{1}^{-1} \mathscr{F}_{2},
$$

concluding the proof.

Important

A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\operatorname{det}(A) \neq 0$. In such case the inverse A^{-1} is computed via the formula

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{cof}(A)^{T}
$$

where $\operatorname{cof}(A)$ is the cofactor matrix of A. For $n=2$ the above formula reads:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

If the matrix is diagonal, then

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
1 / \lambda & 0 \\
0 & 1 / \mu
\end{array}\right) .
$$

Notation

In the following we denote the matrix of $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ by the symbol \mathscr{W}.

Example 4.160: Helicoid

The Helicoid is charted by

$$
\boldsymbol{\sigma}(u, v)=(u \cos (v), u \sin (v), \lambda v), \quad u \in[0,1], v \in[0,4 \pi),
$$

where $\lambda>0$ is a constant, see Figure $4 \cdot 30$. Prove that the matrix of the Weingarten map is

$$
\mathscr{W}=\left(\begin{array}{cc}
0 & -\frac{\lambda}{\left(u^{2}+\lambda^{2}\right)^{1 / 2}} \\
\frac{\lambda}{\left(u^{2}+\lambda^{2}\right)^{3 / 2}} & 0
\end{array}\right) .
$$

Solution. We compute

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} & =(\cos (v), \sin (v), 0) \\
\boldsymbol{\sigma}_{v} & =(-u \sin (v), u \cos (v), \lambda) \\
\boldsymbol{\sigma}_{u u} & =(0,0,0) \\
\boldsymbol{\sigma}_{u v} & =(-\sin (v), \cos (v), 0) \\
\boldsymbol{\sigma}_{v v} & =(-u \cos (v),-u \sin (v), 0)
\end{aligned}
$$

from which

$$
\begin{aligned}
& E=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}=1 \\
& F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=0 \\
& G=\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}=u^{2}+\lambda^{2},
\end{aligned}
$$

so that the first fundamental form is

$$
\mathscr{F}_{1}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & u^{2}+\lambda^{2}
\end{array}\right) .
$$

Since \mathscr{F}_{1} is diagonal, the inverse is immediately computed

$$
\mathscr{F}_{1}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{u^{2}+\lambda^{2}}
\end{array}\right) .
$$

Moreover

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos (v) & \sin (v) & 0 \\
-u \sin (v) & u \cos (v) & \lambda
\end{array}\right| \\
& =(\lambda \sin (v),-\lambda \cos (v), u)
\end{aligned}
$$

and so

$$
\left\|\boldsymbol{\sigma}_{u} \times \sigma_{v}\right\|=\sqrt{u^{2}+\lambda^{2}} .
$$

The standard unit normal to σ is

$$
\mathbf{N}=\frac{\boldsymbol{\sigma}_{u} \times \sigma_{v}}{\left\|\boldsymbol{\sigma}_{u} \times \sigma_{v}\right\|}=\frac{1}{\sqrt{u^{2}+\lambda^{2}}}(\lambda \sin (v),-\lambda \cos (v), u) .
$$

Hence

$$
\begin{aligned}
L & =\boldsymbol{\sigma}_{u u} \cdot \mathbf{N}=0 \\
M & =\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}=-\frac{\lambda}{\sqrt{u^{2}+\lambda^{2}}} \\
N & =\boldsymbol{\sigma}_{v v} \cdot \mathbf{N}=0
\end{aligned}
$$

and the second funamental form \mathscr{F}_{2} is

$$
\mathscr{F}_{2}=\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)=\left(\begin{array}{cc}
0 & -\frac{\lambda}{\sqrt{u^{2}+\lambda^{2}}} \\
-\frac{\lambda}{\sqrt{u^{2}+\lambda^{2}}} & 0
\end{array}\right)
$$

Finally

$$
\begin{aligned}
\mathscr{W} & =\mathscr{F}_{1}^{-1} \mathscr{F}_{2} \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{u^{2}+\lambda^{2}}
\end{array}\right)\left(\begin{array}{cc}
0 & -\frac{\lambda}{\sqrt{u^{2}+\lambda^{2}}} \\
-\frac{\lambda}{\sqrt{u^{2}+\lambda^{2}}} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & -\frac{\lambda}{\left(u^{2}+\lambda^{2}\right)^{1 / 2}} \\
\frac{\lambda}{\left(u^{2}+\lambda^{2}\right)^{3 / 2}} & 0
\end{array}\right)
\end{aligned}
$$

Example 4.161

Find the Weingarten matrix of the following surface chart

$$
\boldsymbol{\sigma}(u, v)=\left(u-v, u+v, u^{2}+v^{2}\right) .
$$

Solution. Start by computing the first fundamental form:

$$
\begin{aligned}
\sigma_{u} & =(1,1,2 u) \\
\sigma_{v} & =(-1,1,2 v) \\
E & =\sigma_{u} \cdot \sigma_{u}=2\left(1+2 u^{2}\right) \\
F & =\sigma_{u} \cdot \sigma_{v}=4 u v \\
G & =\sigma_{v} \cdot \sigma_{v}=2\left(1+2 v^{2}\right)
\end{aligned}
$$

Figure 4.30: Plot of Helicoid.
so that

$$
\mathscr{F}_{1}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)=\left(\begin{array}{ll}
2\left(1+2 u^{2}\right) & 4 u v \\
4 u v & 2\left(1+2 v^{2}\right)
\end{array}\right)
$$

The determinant of \mathscr{F}_{1} is

$$
\operatorname{det}\left(\mathscr{F}_{1}\right)=4\left(1+2 u^{2}+2 v^{2}\right)
$$

and therefore

$$
\begin{aligned}
\mathscr{F}_{1}^{-1} & =\frac{1}{\operatorname{det}\left(\mathscr{F}_{1}\right)}\left(\begin{array}{ll}
G & -F \\
-F & E
\end{array}\right) \\
& =\frac{1}{2\left(1+2 u^{2}+2 v^{2}\right)}\left(\begin{array}{ll}
1+2 v^{2} & -2 u v \\
-2 u v & 1+2 u^{2}
\end{array}\right) .
\end{aligned}
$$

We now need to compute the second fundamental form

$$
\begin{aligned}
\boldsymbol{\sigma}_{u u} & =(0,0,2) \\
\boldsymbol{\sigma}_{u v} & =(0,0,0) \\
\boldsymbol{\sigma}_{v v} & =(0,0,2) \\
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 2 u \\
-1 & 1 & 2 v
\end{array}\right| \\
& =2(v-u,-u-v, 1) \\
\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\| & =2\left(1+2 u^{2}+2 v^{2}\right)^{\frac{1}{2}} \\
\mathbf{N} & =\frac{(v-u,-u-v, 1)}{\left(1+2 u^{2}+2 v^{2}\right)^{\frac{1}{2}}} \\
L & =\boldsymbol{\sigma}_{u u} \cdot \mathbf{N}=\frac{2}{\left(1+2 u^{2}+2 v^{2}\right)^{\frac{1}{2}}} \\
M & =\boldsymbol{\sigma}_{u v} \cdot \mathbf{N}=0 \\
N & =\boldsymbol{\sigma}_{v v} \cdot \mathbf{N}=\frac{2}{\left(1+2 u^{2}+2 v^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

so that

$$
\begin{aligned}
\mathscr{F}_{2} & =\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right) \\
& =\frac{2}{\left(1+2 u^{2}+2 v^{2}\right)^{\frac{1}{2}}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

The matrix of the Weingarten map is

$$
\begin{aligned}
\mathscr{W} & =\mathscr{F}_{1}^{-1} \mathscr{F}_{2} \\
& =\frac{1}{\left(1+2 u^{2}+2 v^{2}\right)^{\frac{3}{2}}}\left(\begin{array}{ll}
1+2 v^{2} & -2 u v \\
-2 u v & 1+2 u^{2}
\end{array}\right) .
\end{aligned}
$$

4.13 Curvatures

Curvatures of a surface \mathcal{S} are scalars associated to the Weingarten map $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$. We will define:

- Gaussian curvature
- Mean curvature
- Principal curvatures
- Normal curvature
- Geodesic curvature

4.13.1 Gaussian and mean curvature

The Weingarten map of \mathcal{S} encodes the rate of change of the standard unit normal \mathbf{N}. We use this map to produce scalar values, which we call curvatures. The first two curvatures that we consider are called Gaussian and mean curvatures.

Definition 4.162: Gaussian and mean curvature
Let \mathcal{S} be an orientable surface and let \mathscr{W} denote the matrix of the Weingarten map $\mathscr{V}_{\mathbf{p}, \mathcal{S}}$ of \mathcal{S} at \mathbf{p}. We define:

- The Gaussian curvature of \mathcal{S} at \mathbf{p} as

$$
K:=\operatorname{det}(\mathscr{W}),
$$

- The mean curvature of \mathcal{S} at \mathbf{p} as

$$
H:=\frac{1}{2} \operatorname{trace}(\mathscr{W}),
$$

Notation: Trace of a 2×2 matrix

We recall that the trace of a 2×2 matrix A is defined as the sum of the diagonal entries, that is,

$$
\operatorname{trace} A=a+d, \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Remark $\mathbf{4 . 1 6 3}$

The Gaussian curvature and mean curvature do not depend on the choice of basis of $T_{\mathbf{p}} \mathcal{S}$. Indeed, if $\widetilde{\mathscr{W}}$ is the matrix of the Weingarten map with respect to the basis $\left\{\tilde{\boldsymbol{\sigma}}_{u}, \tilde{\sigma}_{v}\right\}$ of $T_{\mathbf{p}} \mathcal{S}$, then

$$
\operatorname{det}(\mathscr{W})=\operatorname{det}(\widetilde{\mathscr{W}}), \quad \operatorname{trace}(\mathscr{W})=\operatorname{trace}(\widetilde{\mathscr{W}}) .
$$

The above is true by a general linear algebra result: The determinant and trace of a matrix are invariant under change of basis.

Since we have shown that the matrix of the Weingarten map is

$$
\mathscr{W}=\mathscr{F}_{1}^{-1} \mathscr{F}_{2},
$$

we can express K and H in terms of the first and second fundamental forms.

Proposition 4.164

Let \mathcal{S} be an orientable surface and σ a regular chart at \mathbf{p}. Then

$$
K=\frac{L N-M^{2}}{E G-F^{2}}, \quad H=\frac{L G-2 M F-N E}{2\left(E G-F^{2}\right)} .
$$

Proof

By Theorem 4.159 the matrix of the Weingarten map $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ of \mathcal{S} at \mathbf{p} is given by

$$
\mathscr{W}=\mathscr{F}_{1}^{-1} \mathscr{F}_{2} .
$$

We have

$$
\begin{aligned}
& \operatorname{det}\left(\mathscr{F}_{1}\right)=\left|\begin{array}{cc}
E & F \\
F & G
\end{array}\right|=E F-G^{2}, \\
& \operatorname{det}\left(\mathscr{F}_{2}\right)=\left|\begin{array}{cc}
L & M \\
M & N
\end{array}\right|=L N-M^{2} .
\end{aligned}
$$

By the properties of determinant we get

$$
\operatorname{det}\left(\mathscr{F}_{1}^{-1}\right)=\frac{1}{\operatorname{det}\left(\mathscr{F}_{1}\right)}=\frac{1}{E F-G^{2}},
$$

and therefore

$$
\begin{aligned}
K & =\operatorname{det}(\mathscr{W})=\operatorname{det}\left(\mathscr{F}_{1}^{-1} \mathscr{F}_{2}\right) \\
& =\operatorname{det}\left(\mathscr{F}_{1}^{-1}\right) \operatorname{det}\left(\mathscr{F}_{2}\right)=\frac{L N-M^{2}}{E G-F^{2}} .
\end{aligned}
$$

To compute H we need to find the diagonal entries of \mathscr{W}. Since

$$
\mathscr{F}_{1}^{-1}=\frac{1}{E G-F^{2}}\left(\begin{array}{cc}
G & -F \\
-F & E
\end{array}\right)
$$

we have

$$
\mathscr{W}=\frac{1}{E G-F^{2}}\left(\begin{array}{cc}
G & -F \\
-F & E
\end{array}\right)\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right) .
$$

From the above we compute

$$
\begin{aligned}
& w_{11}=\frac{1}{E G-F^{2}}(L G-M F) \\
& w_{22}=\frac{1}{E G-F^{2}}(-M F+E N)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
H & =\frac{1}{2} \operatorname{trace} \mathscr{W} \\
& =\frac{1}{2}\left(w_{11}+w_{22}\right) \\
& =\frac{L G-2 M F+E N}{2\left(E G-F^{2}\right)} .
\end{aligned}
$$

Example 4.165: Plane

Consider the plane charted by

$$
\boldsymbol{\sigma}(u, v)=\mathbf{a}+\mathbf{p} u+\mathbf{q} v, \quad u \in(0,2 \pi), u, v \in \mathbb{R} .
$$

We have already computed in Example 4.106 and Example 4.143 that the first and second fundamental forms of $\boldsymbol{\sigma}$ are

$$
\mathscr{F}_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathscr{F}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Therefore the matrix of the Weingarten map is

$$
\mathscr{W}=\mathscr{F}_{1}^{-1} \mathscr{F}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Hence the Gaussian curvature is

$$
K=\operatorname{det}(\mathscr{W})=0,
$$

while the mean curvature is

$$
H=\frac{1}{2} \operatorname{trace} \mathscr{W}=0 .
$$

Example 4.166: Unit cylinder

Consider the unit cylinder charted by

$$
\boldsymbol{\sigma}(u, v)=(\cos (u), \sin (u), v), \quad u \in(0,2 \pi), v \in \mathbb{R} .
$$

We have already computed in Example 4.107 and Example 4.144 that the first and second fundamental forms of $\boldsymbol{\sigma}$ are

$$
\mathscr{F}_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathscr{F}_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) .
$$

Therefore the matrix of the Weingarten map is

$$
\begin{aligned}
\mathscr{W} & =\mathscr{F}_{1}^{-1} \mathscr{F}_{2} \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Therefore the Gaussian curvature is

$$
K=\operatorname{det}(\mathscr{W})=0,
$$

while the mean curvature is

$$
H=\frac{1}{2} \operatorname{trace} \mathscr{W}=-\frac{1}{2}
$$

4.13.2 Principal curvatures

Let V be a two-dimensional vector space. For a linear map $L: V \rightarrow V$ we say that $\lambda \in \mathbb{R}$ is an eigenvalue of L with eigenvector $\mathbf{v} \in V$ if

$$
L(\mathbf{v})=\lambda \mathbf{v}, \quad \mathbf{v} \neq 0 .
$$

Suppose $A \in \mathbb{R}^{2 \times 2}$ is the matrix of L with respect to a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ of V. Denote by

$$
\mathbf{x}=(\lambda, \mu), \quad \mathbf{v}=\lambda \mathbf{w}_{1}+\mu \mathbf{w}_{2} .
$$

the vector of coordinates of \mathbf{v}. Then

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

meaning that λ is an eigenvalue of A with eigenvector \mathbf{x}. The eigenvalues of A can be computed by solving the characteristic equation

$$
P(\lambda)=0, \quad P(\lambda):=\operatorname{det}(A-\lambda I)
$$

where P is the characteristic polynomial of A. Finally, we recall that $A \in \mathbb{R}^{2 \times 2}$ is diagonalizable if there exists a diagonal matrix D and an invertible matrix P such that

$$
A=P^{-1} D P
$$

Theorem 4.167

Let \mathcal{S} be an orientable surface and let $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ be the Weingarten map at \mathbf{p}. There exist scalars $\kappa_{1}, \kappa_{2} \in \mathbb{R}$ and an orthonormal basis $\left\{\mathbf{t}_{1}, \mathbf{t}_{2}\right\}$ of $T_{\mathbf{p}} \mathcal{S}$ such that

$$
\mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{1}\right)=\kappa_{1} \mathbf{t}_{1}, \quad \mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{2}\right)=\kappa_{2} \mathbf{t}_{2} .
$$

Proof

Let $\boldsymbol{\sigma}$ be a chart for \mathcal{S} at \mathbf{p}. Then $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}$ is a basis of $T_{\mathbf{p}} \mathcal{S}$. Let \mathscr{W} be the matrix of $\mathscr{V}_{\mathbf{p}, \mathcal{S}}$ with respect to such basis. By Theorem 4.159 we have

$$
\mathscr{W}=\mathscr{F}_{1}^{-1} \mathscr{F}_{2} .
$$

Recall that

$$
\mathscr{F}_{1}^{-1}=\frac{1}{E G-F^{2}}\left(\begin{array}{cc}
G & -F \\
-F & E
\end{array}\right) .
$$

Thus \mathscr{F}_{1}^{-1} is symmetric. Since \mathscr{F}_{2} is symmetric, and the product of symmetric matrices is symmetric, we conclude that \mathscr{W} is symmetric. Therefore $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ is self-adjoint, see Remark 4.15. The thesis now follows from the Spectral Theorem, see Theorem 4.13.

The matrix version of Theorem 4.167 is given in the following Corollary.

Corollary 4.168

Let \mathcal{S} be orientable, and let \mathscr{W} the matrix of the Weingarten map $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ with respect to the basis $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}$ of $T_{\mathbf{p}} \mathcal{S}$, where σ is a regular chart at \mathbf{p}. Let $\kappa_{1}, \kappa_{2}, \mathbf{t}_{1}, \mathbf{t}_{2}$ be as in Theorem 4.167. Let $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in \mathbb{R}$ be such that

$$
\mathbf{t}_{1}=\lambda_{1} \sigma_{u}+\mu_{1} \boldsymbol{\sigma}_{v}, \quad \mathbf{t}_{2}=\lambda_{2} \boldsymbol{\sigma}_{u}+\mu_{2} \boldsymbol{\sigma}_{v}
$$

and denote

$$
\mathbf{x}_{1}=\left(\lambda_{1}, \mu_{1}\right), \quad \mathbf{x}_{2}=\left(\lambda_{2}, \mu_{2}\right) .
$$

They hold:

- The scalars κ_{1}, κ_{2} are eingenvalues of \mathscr{W} of eigenvectors \mathbf{x}_{1} and \mathbf{x}_{2}, that is,

$$
\mathscr{W} \mathbf{x}_{1}=\kappa_{1} \mathbf{x}_{1}, \quad \mathscr{W} \mathbf{x}_{2}=\kappa_{2} \mathbf{x}_{2}
$$

- The matrix \mathscr{W} is diagonalizable, with

$$
\mathscr{W}=P^{-1} D P, \quad D=\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right), \quad P=\left(\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
\mu_{1} & \mu_{2}
\end{array}\right) .
$$

Proof

Recall that \mathscr{W} is the matrix of $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ with respect to the basis $\left\{\sigma_{u}, \sigma_{v}\right\}$ of $T_{\mathbf{p}} \mathcal{S}$. Therefore, by definition of $\mathbf{x}_{1}, \mathbf{x}_{2}$ we get

$$
\mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{1}\right)=\mathscr{W} \mathbf{x}_{1}, \quad \mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{2}\right)=\mathscr{W} \mathbf{x}_{2} .
$$

The thesis follows by Theorem 4.167 and the Spectral Theorem for matrices, see Theorem 4.19.
The eigenvalues and eigenvectors of the weingarten map have a name.
Definition 4.169: Principal curvatures and vectors
Let \mathcal{S} be an orientable surface and $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ be the Weingarten map of \mathcal{S} at \mathbf{p}. We define:

- The principal curvatures of \mathcal{S} at \mathbf{p} are the eigenvalues κ_{1}, κ_{2} of $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$.
- The principal vectors corresponding to κ_{1} and κ_{2} are the eigenvectors $\mathbf{t}_{\mathbf{1}}, \mathbf{t}_{2}$.

Remark 4.170: Computing principal curvatures and vectors

Corollary 4.168 gives an explicit way to compute the principal curvatures and vectors:

1. Compute the eigenvalues of \mathscr{W}. This is done by solving for κ the equation

$$
\operatorname{det}(\mathscr{W}-\kappa I)=0 .
$$

This gives one of the principal curvatures

$$
\kappa_{i}=\kappa
$$

2. Compute the eigenvector(s) related to the eigenvalue κ. This is done by finding scalars λ, μ which solve the linear system

$$
\left(\mathscr{W}-\kappa_{i} I\right)\binom{\lambda}{\mu}=0
$$

This gives the eigenvector of \mathscr{W}

$$
\mathbf{x}_{i}=(\lambda, \mu)
$$

3. The principal vector associated to κ_{i} is

$$
\mathbf{t}_{i}=\lambda \boldsymbol{\sigma}_{u}+\mu \boldsymbol{\sigma}_{v}
$$

Remark 4.171: Computing principal curvatures and vectors

If the matrix of the Weingarten map has the form

$$
\mathscr{W}=\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

then \mathscr{W} is already diagonal. The eigenvalues of \mathscr{W} are κ_{1} and κ_{2}, with eigenvectors

$$
\mathbf{x}_{1}=(1,0), \quad \mathbf{x}_{2}=(0,1) .
$$

Therefore κ_{1}, κ_{2} are the principal curvatures, with principal vectors given by

$$
\mathbf{t}_{1}=\sigma_{u}, \quad \mathbf{t}_{2}=\sigma_{v} .
$$

The principal curvatures are related to the Gaussian and mean curvatures.

Proposition $\mathbf{4 . 1 7 2}$

Let \mathcal{S} be an orientable surface. Then

$$
K=\kappa_{1} \kappa_{2}, \quad H=\frac{\kappa_{1}+\kappa_{2}}{2} .
$$

Proof

By Corollary 4.168 we have

$$
\mathscr{W}=P^{-1} D P, \quad D=\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right) .
$$

By the properties of determinant

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \quad \forall A, B \in \mathbb{R}^{2 \times 2}
$$

By definition of Gaussian curvature and the above formula we infer

$$
\begin{aligned}
K & =\operatorname{det}(\mathscr{W}) \\
& =\operatorname{det}\left(P^{-1} D P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(D) \operatorname{det}(P) \\
& =\operatorname{det}(D) \\
& =\kappa_{1} \kappa_{2},
\end{aligned}
$$

where we also used that

$$
\operatorname{det}\left(P^{-1}\right)=\frac{1}{\operatorname{det}(P)}
$$

The trace satisfies

$$
\operatorname{trace}(A B)=\operatorname{trace}(B A), \quad \forall A, B \in \mathbb{R}^{2 \times 2}
$$

By definition of mean curvature and the above formula we get

$$
\begin{aligned}
H & =\frac{1}{2} \operatorname{trace}(\mathscr{W}) \\
& =\frac{1}{2} \operatorname{trace}\left(P^{-1} D P\right) \\
& =\frac{1}{2} \operatorname{trace}\left(P P^{-1} D\right) \\
& =\frac{1}{2} \operatorname{trace}(D) \\
& =\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right),
\end{aligned}
$$

concluding the proof.

Important

In general κ_{1} and κ_{2} are hard to compute, as they require solving a second order equation. Instead K and H are easier to compute, as they are directly expressed in terms of the first and second fundamental form coefficients.

Example 4.173: Unit Cylinder

Consider the unit cylinder charted by

$$
\sigma(u, v)=(\cos (u), \sin (u), v), \quad u \in(0,2 \pi), v \in \mathbb{R}
$$

We have already computed in Example 4.166 that the matrix of the Weingarten map is

$$
\mathscr{W}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) .
$$

Since \mathscr{W} is diagonal, the eigenvalues are the diagonal entries of \mathscr{W} and eigenvectors are

$$
\mathbf{x}_{1}=(1,0), \quad \mathbf{x}_{2}=(0,1)
$$

Therefore the principal curvatures are

$$
\kappa_{1}=-1, \quad \kappa_{2}=0
$$

and the principal vectors are

$$
\begin{aligned}
& \mathbf{t}_{1}=\boldsymbol{\sigma}_{u}=(-\sin (u), \cos (v), 0), \\
& \mathbf{t}_{2}=\boldsymbol{\sigma}_{v}=(0,0,1),
\end{aligned}
$$

as shown in Figure 4.31.

Figure 4.31: Principal vectors of the unit cylinder.

Example 4.174: Sphere

Consider the chart for the sphere

$$
\sigma(u, v)=(\cos (u) \sin (v), \sin (u) \sin (v), \cos (v))
$$

Prove that

$$
\mathscr{F}_{1}=\mathscr{F}_{2}=\left(\begin{array}{cc}
\sin ^{2}(v) & 0 \\
0 & 1
\end{array}\right), \quad \mathscr{W}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

and

$$
K=H=\kappa_{1}=\kappa_{2}=1, \quad \mathbf{t}_{1}=\boldsymbol{\sigma}_{u}, \quad \mathbf{t}_{2}=\boldsymbol{\sigma}_{v} .
$$

Solution. We compute

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} & =(-\sin (u) \sin (v), \cos (u) \sin (v), 0) \\
\boldsymbol{\sigma}_{v} & =(\cos (u) \cos (v), \sin (u) \cos (v),-\sin (v)) \\
E & =\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u}=\sin ^{2}(v) \\
F & =\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=0 \\
G & =\boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v}=1
\end{aligned}
$$

and therefore the first fundamental form is

$$
\mathscr{F}_{1}=\left(\begin{array}{cc}
\sin ^{2}(v) & 0 \\
0 & 1
\end{array}\right)
$$

Moreover

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sin (u) \sin (v) & \cos (u) \sin (v) & 0 \\
\cos (u) \cos (v) & \sin (u) \cos (v) & -\sin (v)
\end{array}\right| \\
& =\left(-\cos (u) \sin ^{2}(v),-\sin (u) \sin ^{2}(v),-\cos (v) \sin (v)\right) \\
\left\|\boldsymbol{\sigma}_{u} \times \sigma_{v}\right\| & =|\sin (v)| \\
\mathbf{N} & =(-\cos (u) \sin (v),-\sin (u) \sin (v),-\cos (v)) \\
\sigma_{u u} & =(-\cos (u) \sin (v),-\sin (u) \sin (v), 0) \\
\boldsymbol{\sigma}_{u v} & =(-\sin (u) \cos (v), \cos (u) \cos (v), 0) \\
\sigma_{v v} & =(-\cos (u) \sin (v),-\sin (u) \sin (v),-\cos (v)) \\
L & =\sigma_{u u} \cdot \mathbf{N}=\sin ^{2}(v) \\
M & =\sigma_{u v} \cdot \mathbf{N}=0 \\
N & =\sigma_{v v} \cdot \mathbf{N}=1
\end{aligned}
$$

so that the second fundamental form is

$$
\mathscr{F}_{2}=\left(\begin{array}{cc}
\sin ^{2}(v) & 0 \\
0 & 1
\end{array}\right) .
$$

In particular the matrix of the Weingarten map is

$$
\mathscr{W}=\mathscr{F}_{1}^{-1} \mathscr{F}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Since \mathscr{W} is diagonal, the principal curvatures are

$$
\kappa_{1}=\kappa_{2}=1
$$

and the principal vectors

$$
\mathbf{t}_{1}=\sigma_{u}, \quad \mathbf{t}_{2}=\sigma_{v} .
$$

Finally, we have that

$$
H=\frac{\kappa_{1}+\kappa_{2}}{2}=1, \quad K=\kappa_{1} \kappa_{2}=1
$$

Example 4.175: Torus

Consider a circle \mathscr{C} contained in the $x z$-plane, with center at distance $b>0$ from the z-axis and radius a, with $0<a<b$. The torus is obtained by rotating \mathscr{C} around the z-axis. This surface is charted by

$$
\boldsymbol{\sigma}(\theta, \phi)=((a+b \cos (\theta)) \cos (\phi),(a+b \cos (\theta)) \sin (\phi), b \sin (\theta)),
$$

where $\theta \in(-\pi / 2, \pi / 2)$ and $\phi \in(0,2 \pi)$. One can compute that the first and second fundamental forms are

$$
\begin{aligned}
& \mathscr{F}_{1}=\left(\begin{array}{cc}
b^{2} & 0 \\
0 & (a+b \cos (\theta))^{2}
\end{array}\right) \\
& \mathscr{F}_{2}=\left(\begin{array}{cc}
b & 0 \\
0 & (a+b \cos (\theta)) \cos (\theta)
\end{array}\right) .
\end{aligned}
$$

Therefore the matrix of the Weingarten map is

$$
\mathscr{W}=\mathscr{F}_{1}^{-1} \mathscr{F}_{2}=\left(\begin{array}{cc}
\frac{1}{b} & 0 \\
0 & \frac{\cos (\theta)}{a+b \cos (\theta)}
\end{array}\right)
$$

Since \mathscr{W} is diagonal, the principal curvatures are

$$
\kappa_{1}=\frac{1}{b}, \quad \kappa_{2}=\frac{\cos (\theta)}{a+b \cos (\theta)},
$$

and the principal vectors

$$
\mathbf{t}_{1}=\sigma_{u}, \quad \mathbf{t}_{2}=\sigma_{v} .
$$

The Gaussian and mean curvature are

$$
\begin{aligned}
& K=\kappa_{1} \kappa_{2}=\frac{\cos (\theta)}{b(a+b \cos (\theta))} \\
& H=\frac{\kappa_{1}+\kappa_{2}}{2}=\frac{a+2 b \cos (\theta)}{2 b(a+b \cos (\theta))}
\end{aligned}
$$

4.13.3 Normal and geodesic curvatures

Let \mathcal{S} be a regular surface and consider all the curves $\boldsymbol{\gamma}$ on \mathcal{S} passing through the point $\mathbf{p} \in \mathcal{S}$.

Question 4.176

Which curves through \mathbf{p} have greatest or lowest curvature?
We start our analysis with the following proposition.

Proposition $\mathbf{4 . 1 7 7}$

Let \mathcal{S} be a regular surface and $\boldsymbol{\gamma}:(a, b) \rightarrow \mathcal{\delta}$ be a unit speed curve. Then

$$
\{\dot{\boldsymbol{\gamma}}, \mathbf{N}, \mathbf{N} \times \dot{\boldsymbol{\gamma}}\}
$$

is an orthornormal basis of \mathbb{R}^{3} for all $t \in(a, b)$, where \mathbf{N} is the standard unit normal to \mathcal{S} evaluated at $\mathbf{p}=\boldsymbol{\gamma}(t)$.

Proof

By definition

$$
\dot{\boldsymbol{\gamma}}(t) \in T_{\mathbf{p}} \mathcal{S}, \quad \mathbf{p}:=\boldsymbol{\gamma}(t),
$$

for all $t \in(a, b)$. This means $\dot{\gamma}$ is tangent to \mathcal{S}. Thus

$$
\dot{\gamma} \cdot \mathbf{N}=0 .
$$

We have $\|\dot{\boldsymbol{\gamma}}\|=1$ since $\boldsymbol{\gamma}$ is unit speed. Moreover $\|\mathbf{N}\|=1$ by definition. Since $\dot{\boldsymbol{\gamma}}$ and \mathbf{N} are orthogonal, we also obtain

$$
\|\mathbf{N} \times \dot{\boldsymbol{\gamma}}\|=\|\mathbf{N}\|\|\dot{\boldsymbol{\gamma}}\|=1
$$

by the properties of vector product. Finally

$$
(\mathbf{N} \times \dot{\boldsymbol{\gamma}}) \cdot \mathbf{N}=0, \quad(\mathbf{N} \times \dot{\boldsymbol{\gamma}}) \cdot \dot{\boldsymbol{\gamma}}=0,
$$

by the properties of vector product.

Important

Notice that the basis

$$
\{\dot{\gamma}, \mathbf{N}, \mathbf{N} \times \dot{\boldsymbol{\gamma}}\}
$$

does not coincide with the Frenet frame of $\boldsymbol{\gamma}$ in general.

Proposition 4.178

Let \mathcal{S} be a regular surface and $\boldsymbol{\gamma}:(a, b) \rightarrow \mathcal{\delta}$ be a unit speed curve. Then

$$
\begin{equation*}
\ddot{\boldsymbol{\gamma}}=\kappa_{n} \mathbf{N}+\kappa_{g}(\mathbf{N} \times \dot{\boldsymbol{\gamma}}), \tag{4.12}
\end{equation*}
$$

where \mathbf{N} is evaluated at $\mathbf{p}:=\boldsymbol{\gamma}(t)$ and κ_{n}, κ_{g} are scalars depedent on \mathbf{p}. Moreover

$$
\begin{gather*}
\kappa_{n}=\ddot{\boldsymbol{\gamma}} \cdot \mathbf{N}, \quad \kappa_{g}=\ddot{\boldsymbol{\gamma}} \cdot(\mathbf{N} \times \dot{\boldsymbol{\gamma}}), \tag{4.13}\\
\kappa^{2}=\kappa_{n}^{2}+\kappa_{g}^{2} \tag{4.14}\\
\kappa_{n}=\kappa \cos (\phi), \quad \kappa_{g}= \pm \kappa \sin (\phi) \tag{4.15}
\end{gather*}
$$

where κ is the curvature of $\boldsymbol{\gamma}$ and ϕ is the angle between \mathbf{N} and \mathbf{n}, the principal unit normal of $\boldsymbol{\gamma}$.

Proof

Part 1. By Proposition 4.177 we know that

$$
\{\dot{\boldsymbol{\gamma}}, \mathbf{N}, \mathbf{N} \times \dot{\boldsymbol{\gamma}}\}
$$

is an orthornormal basis of \mathbb{R}^{3}. Hence

$$
\ddot{\boldsymbol{\gamma}}=a \dot{\boldsymbol{\gamma}}+b \mathbf{N}+c(\mathbf{N} \times \dot{\boldsymbol{\gamma}}),
$$

for some coefficients $a, b, c \in \mathbb{R}$. Since $\boldsymbol{\gamma}$ is unit speed, we have that

$$
\dot{\boldsymbol{\gamma}} \cdot \ddot{\boldsymbol{\gamma}}=0 .
$$

On the other hand,

$$
\dot{\boldsymbol{\gamma}} \cdot \ddot{\boldsymbol{\gamma}}=a(\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}})+b(\dot{\boldsymbol{\gamma}} \cdot \mathbf{N})+c \dot{\boldsymbol{\gamma}} \cdot(\mathbf{N} \times \dot{\boldsymbol{\gamma}})=a,
$$

since $\dot{\boldsymbol{\gamma}}$ is orthogonal to \mathbf{N} and $\mathbf{N} \times \dot{\boldsymbol{\gamma}}$, and

$$
\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}}=\|\dot{\boldsymbol{\gamma}}\|^{2}=1
$$

Therefore $a=0$ and

$$
\ddot{\boldsymbol{\gamma}}=b \mathbf{N}+c(\mathbf{N} \times \dot{\boldsymbol{\gamma}}) .
$$

Setting $\kappa_{n}:=b$ and $\kappa_{g}:=c$ we conclude (4.12).
Part 2. Taking the scalar product of (4.12) with \mathbf{N} yields

$$
\ddot{\boldsymbol{\gamma}} \cdot \mathbf{N}=\kappa_{n}\|\mathbf{N}\|^{2}+\kappa_{g}(\mathbf{N} \times \dot{\boldsymbol{\gamma}}) \cdot \mathbf{N}=\kappa_{n},
$$

where we used that \mathbf{N} and $\mathbf{N} \times \dot{\boldsymbol{\gamma}}$ are orthonormal vectors. Similarly, taking the scalar product of (4.12) with $\mathbf{N} \times \dot{\boldsymbol{\gamma}}$ yields the second equation in (4.13).

Part 3. By (4.12) we infer

$$
\begin{aligned}
\|\ddot{\boldsymbol{\gamma}}\|^{2} & =\kappa_{n}^{2}\|\mathbf{N}\|^{2}+2 \kappa_{n} \kappa_{g} \mathbf{N} \cdot(\mathbf{N} \times \dot{\boldsymbol{\gamma}})+\kappa_{g}^{2}\|\mathbf{N} \times \dot{\boldsymbol{\gamma}}\|^{2} \\
& =\kappa_{n}^{2}+\kappa_{g}^{2},
\end{aligned}
$$

where we used that \mathbf{N} and $\mathbf{N} \times \dot{\boldsymbol{\gamma}}$ are orthonormal. Since $\kappa(t)=\|\ddot{\boldsymbol{\gamma}}(t)\|$, we get (4.14).
Part 4. Recalling that

$$
\ddot{\boldsymbol{\gamma}}=\kappa \mathbf{n}
$$

from the first equation in (4.13) we obtain

$$
\begin{aligned}
\kappa_{n} & =\ddot{\boldsymbol{\gamma}} \cdot \mathbf{N} \\
& =\kappa \mathbf{n} \cdot \mathbf{N} \\
& =\kappa\|\mathbf{n}\|^{2}\|\mathbf{N}\|^{2} \cos (\phi) \\
& =\kappa \cos (\phi),
\end{aligned}
$$

where we used that \mathbf{n} and \mathbf{N} have unit norm. Hence the first equation in (4.15) is established. By (4.14) we get

$$
\begin{aligned}
\kappa_{g}^{2} & =\kappa^{2}-\kappa_{n}^{2} \\
& =\kappa^{2} \cos ^{2}(\phi)-\kappa_{n}^{2} \\
& =\kappa^{2}\left(\cos ^{2}(\phi)-1\right) \\
& =\kappa^{2} \sin ^{2}(\phi),
\end{aligned}
$$

from which we obtain the second equation in (4.15).
The quantities κ_{n} and κ_{g} are the normal and geodesic curvatures of γ.

Definition 4.179: Normal and geodesic curvature

Let \mathcal{S} be regular and $\boldsymbol{\gamma}:(a, b) \rightarrow \mathcal{S}$ a unit speed curve. By (4.12) we have

$$
\ddot{\boldsymbol{\gamma}}=\kappa_{n} \mathbf{N}+\kappa_{g}(\mathbf{N} \times \dot{\boldsymbol{\gamma}})
$$

for \mathbf{N} the standard unit normal to \mathcal{S} and scalars $\kappa_{n}, \kappa_{g} \in \mathbb{R}$. We call

- κ_{n} the normal curvature of $\boldsymbol{\gamma}$,
- κ_{g} the geodesic curvature of γ.

The normal curvature κ_{n} can be computed via the second fundamental form, as shown in the theorem below.

Theorem 4.18o

Let \mathcal{S} be a regular surface and $\boldsymbol{\gamma}:(a, b) \rightarrow \mathcal{\delta}$ a unit speed curve. Denote $\mathbf{p}:=\boldsymbol{\gamma}(t)$. We have:

1. The normal curvature κ_{n} satisfies

$$
\kappa_{n}=I I_{\mathbf{p}}(\dot{\boldsymbol{\gamma}}, \dot{\boldsymbol{\gamma}}) .
$$

2. Let $\boldsymbol{\sigma}$ be a chart for \mathcal{S} at \mathbf{p}. Then

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\sigma}(u(t), v(t))
$$

for some smooth functions $u, v:(a, b) \rightarrow \mathbb{R}$, and

$$
\kappa_{n}=L \dot{u}^{2}+2 M \dot{u} \dot{v}+N \dot{v}^{2} .
$$

Proof

Part 1. By definition we have

$$
\dot{\boldsymbol{\gamma}}(t) \in T_{\mathbf{p}} \mathcal{S}
$$

when $\mathbf{p}=\boldsymbol{\gamma}(t)$. Set

$$
\begin{equation*}
\tilde{\boldsymbol{\gamma}}(t):=\mathbf{N}(\boldsymbol{\gamma}(t)) . \tag{4.16}
\end{equation*}
$$

By definition of differential we have

$$
\begin{equation*}
d_{\mathbf{p}} \mathbf{N}(\dot{\boldsymbol{\gamma}}(t))=\dot{\tilde{\boldsymbol{\gamma}}}(t) . \tag{4.17}
\end{equation*}
$$

Note that

$$
\tilde{\boldsymbol{\gamma}}(t) \cdot \dot{\boldsymbol{\gamma}}(t)=0,
$$

since \mathbf{N} is normal to \mathcal{S} at \mathbf{p} and $\dot{\boldsymbol{\gamma}}(t) \in T_{\mathbf{p}}(\mathcal{S})$. Differentiating the above expression we get

$$
\begin{aligned}
0 & =\frac{d}{d t}(\tilde{\boldsymbol{\gamma}}(t) \cdot \dot{\boldsymbol{\gamma}}(t)) \\
& =\tilde{\boldsymbol{\gamma}}(t) \cdot \ddot{\boldsymbol{\gamma}}(t)+\dot{\boldsymbol{\gamma}}(t) \cdot \dot{\boldsymbol{\gamma}}(t) \\
& =\mathbf{N}(\boldsymbol{\gamma}(t)) \cdot \ddot{\boldsymbol{\gamma}}(t)+d_{\mathbf{p}} \mathbf{N}(\dot{\boldsymbol{\gamma}}(t)) \cdot \dot{\boldsymbol{\gamma}}(t)
\end{aligned}
$$

where in the last equation we used (4.16) and (4.17). Hence

$$
\begin{equation*}
-d_{\mathbf{p}} \mathbf{N}(\dot{\boldsymbol{\gamma}}(t)) \cdot \dot{\boldsymbol{\gamma}}(t)=\mathbf{N}(\boldsymbol{\gamma}(t)) \cdot \ddot{\boldsymbol{\gamma}}(t) \tag{4.18}
\end{equation*}
$$

By definition of Weingarten and Gauss map we get

$$
\begin{equation*}
\mathscr{W}_{\mathbf{p}, \mathcal{S}}(\dot{\boldsymbol{\gamma}}(t))=-d_{\mathbf{p}} \mathscr{G}(\dot{\boldsymbol{\gamma}}(t))=-d_{\mathbf{p}} \mathbf{N}(\dot{\boldsymbol{\gamma}}(t)) . \tag{4.19}
\end{equation*}
$$

Therefore, using (4.18) and (4.19), we infer

$$
\begin{aligned}
I I_{\mathbf{p}}(\dot{\boldsymbol{\gamma}}(t), \dot{\boldsymbol{\gamma}}(t)) & =\mathscr{W}_{\mathbf{p}, \delta}(\dot{\boldsymbol{\gamma}}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \\
& =-d_{\mathbf{p}} \mathbf{N}(\dot{\boldsymbol{\gamma}}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \\
& =\mathbf{N}(\boldsymbol{\gamma}(t)) \cdot \ddot{\boldsymbol{\gamma}}(t) \\
& =\kappa_{n},
\end{aligned}
$$

where in the last equality we used (4.13).
Part 2. Let $\boldsymbol{\sigma}$ be a chart at \mathbf{p} and

$$
\boldsymbol{\gamma}(t)=\boldsymbol{\sigma}(u(t), v(t))
$$

Differentiating the above expression we get

$$
\dot{\boldsymbol{\gamma}}(t)=\dot{u} \boldsymbol{\sigma}_{u}+\dot{v} \boldsymbol{\sigma}_{v} .
$$

By definition of $d u$ and $d v$, see Definition 4.101, we have

$$
d u(\dot{\boldsymbol{\gamma}}(t))=\dot{u}(t), \quad d v(\dot{\gamma}(t))=\dot{v}(t) .
$$

Therefore, using Part 1 and Theorem 4.156, we obtain

$$
\begin{aligned}
\kappa_{n} & =I I_{\mathbf{p}}(\dot{\boldsymbol{\gamma}}(t), \dot{\boldsymbol{\gamma}}(t)) \\
& =L d u(\dot{\boldsymbol{\gamma}}(t))^{2}+2 M d u(\dot{\boldsymbol{\gamma}}(t)) d v(\dot{\boldsymbol{\gamma}}(t))+N d v(\dot{\boldsymbol{\gamma}}(t))^{2} \\
& =L \dot{u}^{2}+2 M \dot{u} \dot{v}+N \dot{v}^{2} .
\end{aligned}
$$

Example 4.181: Curves on the sphere
Consider the chart for the sphere

$$
\sigma(u, v)=(\cos (u) \sin (v), \sin (u) \sin (v), \cos (v))
$$

Show that

$$
\kappa_{n}(t)=1
$$

for all unit speed curves on the sphere.
Solution. We have computed in Example 4.174 that the second fundamental form of $\boldsymbol{\sigma}$ is

$$
\mathscr{F}_{2}=\sin ^{2}(v) d u^{2}+d v^{2}
$$

Let $\boldsymbol{\gamma}$ be a unit speed curve on the sphere, that is,

$$
\begin{equation*}
\boldsymbol{\gamma}(t)=\sigma(u(t), v(t)) . \tag{4.20}
\end{equation*}
$$

By Theorem 4.180 the normal curvature of $\boldsymbol{\gamma}$ is

$$
\kappa_{n}=\sin ^{2}(v) \dot{u}^{2}+\dot{v}^{2} .
$$

Differentiating (4.20) we get

$$
\begin{aligned}
\dot{\gamma}(t)= & \frac{d}{d t}(\cos (u(t)) \sin (v(t)), \sin (u(t)) \sin (v(t)), \cos (v(t))) \\
= & (-\dot{u} \sin (u) \sin (v)+\dot{v} \cos (u) \cos (v), \dot{u} \cos (u) \sin (v)+ \\
& \dot{v} \sin (u) \cos (v),-\dot{v} \sin (v))
\end{aligned}
$$

so that

$$
\|\dot{\boldsymbol{\gamma}}(t)\|^{2}=\sin ^{2}(v) \dot{u}^{2}+\dot{v}^{2} .
$$

Since $\boldsymbol{\gamma}$ is unit speed, we also get

$$
\|\dot{\boldsymbol{\gamma}}\|^{2}=1
$$

showing that

$$
\kappa_{n}=\sin ^{2}(v) \dot{u}^{2}+\dot{v}^{2}=1,
$$

as required.
The normal curvature κ_{n} is related to the principal curvatures κ_{1} and κ_{2}.

Theorem 4.182: Euler's Theorem

Let \mathcal{S} be a regular surface and denote by κ_{1}, κ_{2} the principal curvatures with principal vectors $\mathbf{t}_{1}, \mathbf{t}_{2}$. Let $\boldsymbol{\gamma}$ be a unit speed curve on \mathcal{S}. The normal curvature of $\boldsymbol{\gamma}$ is given by

$$
\kappa_{n}=\kappa_{1} \cos ^{2}(\theta)+\kappa_{2} \sin ^{2}(\theta),
$$

where θ is the angle between $\dot{\boldsymbol{\gamma}}$ and \mathbf{t}_{1}.

Proof

Let $\boldsymbol{\gamma}$ be a unit speed curve on \mathcal{S} and set

$$
\mathbf{p}:=\boldsymbol{\gamma}(t) .
$$

By Theorem 4.167 the principal vectors $\left\{\mathbf{t}_{1}, \mathbf{t}_{2}\right\}$ form an orthonormal basis of $T_{\mathbf{p}} \mathcal{S}$. Since by definition

$$
\dot{\boldsymbol{\gamma}}(t) \in T_{\mathbf{p}} \mathcal{S},
$$

there exist scalars $\lambda, \mu \in \mathbb{R}$ such that

$$
\dot{\gamma}(t)=\lambda \mathbf{t}_{1}+\mu \mathbf{t}_{2} .
$$

As $\boldsymbol{\gamma}$ is unit speed and $\mathbf{t}_{1}, \mathbf{t}_{2}$ orthonormal, we infer

$$
1=\|\dot{\boldsymbol{\gamma}}(t)\|^{2}=\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}}=\lambda^{2}+\mu^{2} .
$$

Therefore there exists $\theta \in[0,2 \pi]$ such that

$$
\lambda=\cos (\theta), \quad \mu=\sin (\theta) .
$$

Hence

$$
\begin{equation*}
\dot{\boldsymbol{\gamma}}(t)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2} . \tag{4.21}
\end{equation*}
$$

In particular, we can take the scalar product of (4.21) with \mathbf{t}_{1} to get

$$
\cos (\theta)=\lambda=\dot{\boldsymbol{\gamma}}(t) \cdot \mathbf{t}_{1} .
$$

Since $\dot{\boldsymbol{\gamma}}$ and \mathbf{t}_{1} are unit vectors, from the above equation we conclude that θ is the angle between $\dot{\boldsymbol{\gamma}}$ and \mathbf{t}_{1}. In addition, recall that

$$
\mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{1}\right)=\kappa_{1} \mathbf{t}_{1}, \quad \mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{2}\right)=\kappa_{2} \mathbf{t}_{2},
$$

and $\mathbf{t}_{1}, \mathbf{t}_{2}$ are orthonormal. Thus

$$
\begin{aligned}
& I I_{\mathbf{p}}\left(\mathbf{t}_{1}, \mathbf{t}_{1}\right)=\mathscr{V}_{\mathbf{p}, \delta}\left(\mathbf{t}_{1}\right) \cdot \mathbf{t}_{1}=\kappa_{1}\left\|\mathbf{t}_{1}\right\|^{2}=\kappa_{1} \\
& I I_{\mathbf{p}}\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right)=\mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{1}\right) \cdot \mathbf{t}_{2}=\kappa_{1} \mathbf{t}_{1} \cdot \mathbf{t}_{2}=0 \\
& I I_{\mathbf{p}}\left(\mathbf{t}_{2}, \mathbf{t}_{1}\right)=\mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{2}\right) \cdot \mathbf{t}_{1}=\kappa_{2} \mathbf{t}_{2} \cdot \mathbf{t}_{1}=0 \\
& I I_{\mathbf{p}}\left(\mathbf{t}_{2}, \mathbf{t}_{2}\right)=\mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{2}\right) \cdot \mathbf{t}_{2}=\kappa_{2}\left\|\mathbf{t}_{2}\right\|^{2}=\kappa_{2}
\end{aligned}
$$

By Theorem 4.18o, equation (4.21), and bilinearity of $I I_{\mathbf{p}}$, we get

$$
\begin{aligned}
\kappa_{n}= & I I_{\mathbf{p}}(\dot{\boldsymbol{\gamma}}, \dot{\boldsymbol{\gamma}}) \\
= & \cos ^{2}(\theta) I I_{\mathbf{p}}\left(\mathbf{t}_{1}, \mathbf{t}_{1}\right)+\cos (\theta) \sin (\theta) I I_{\mathbf{p}}\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right) \\
& +\sin (\theta) \cos (\theta) I I_{\mathbf{p}}\left(\mathbf{t}_{2}, \mathbf{t}_{1}\right)+\sin ^{2}(\theta) I I_{\mathbf{p}}\left(\mathbf{t}_{2}, \mathbf{t}_{2}\right) \\
= & \cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2}
\end{aligned}
$$

ending the proof.
As an immediate corollary of the Euler's Theorem we get the next statement.

Corollary $\mathbf{4 . 1 8 3}$

Let \mathcal{S} be a regular surface and κ_{1}, κ_{2} its principal curvatures at \mathbf{p} with principal vectors $\mathbf{t}_{1}, \mathbf{t}_{2}$. Then:

- κ_{1} and κ_{2} are the minimum and maximum values of κ_{n}, for all unit speed curves on $\mathcal{\delta}$ passing through \mathbf{p}.
- The directions of lowest and highest curvature on \mathcal{S} are given by \mathbf{t}_{1} and \mathbf{t}_{2}.

In Example 4.181 we have shown with a direct argument that

$$
\kappa_{n}=1
$$

for all unit speed curves on the sphere. Thanks to Euler's Theorem we can obtain an immediate proof of this fact.

Example 4.184: Curves on the sphere

Let us consider again the chart for the sphere

$$
\sigma(u, v)=(\cos (u) \sin (v), \sin (u) \sin (v), \cos (v))
$$

as seen in Example 4.181. By Example 4.174, the principal curvatures of $\boldsymbol{\sigma}$ are

$$
\kappa_{1}=\kappa_{2}=1 .
$$

By Euler's Theorem, for any curve $\boldsymbol{\gamma}$ on the sphere we have

$$
\kappa_{n}=\kappa_{1} \cos ^{2}(\theta)+\kappa_{2} \sin ^{2}(\theta)=1 .
$$

4.13.4 Local shape of a surface

The principal curvatures κ_{1} and κ_{2} determine the maximum and minimum curvature of a surface $\mathcal{\delta}$, see Corollary 4.183 . Hence we can study the local shape of \mathcal{S} in function of κ_{1} and κ_{2}.

Theorem 4.185: Local structure of surfaces

Let \mathcal{S} be a regular surface and $\mathbf{p} \in \mathcal{S}$. In the vicinity of \mathbf{p} the surface \mathcal{S} is approximated by the quadric surface of equation

$$
\begin{equation*}
z=\frac{1}{2}\left(x^{2} \kappa_{1}(\mathbf{p})+y^{2} \kappa_{2}(\mathbf{p})\right), \tag{4.22}
\end{equation*}
$$

where $\kappa_{1}(\mathbf{p}), \kappa_{2}(\mathbf{p})$ are the principal curvatures of \mathcal{S} at \mathbf{p}.

Proof

By Theorem 4.167 the principal vectors $\left\{\mathbf{t}_{1}, \mathbf{t}_{2}\right\}$ are an orthonormal basis of $T_{\mathbf{p}} \mathcal{\delta}$. Therefore the standard unit normal \mathbf{N} at \mathbf{p} is orthogonal to both \mathbf{t}_{1} and \mathbf{t}_{2}. Up to rotations and translations, we can assume WLOG that $\mathbf{p}=\mathbf{0}$ and

$$
\begin{equation*}
\mathbf{t}_{1}=(1,0,0), \quad \mathbf{t}_{2}=(0,1,0), \quad \mathbf{N}=(0,0,1) . \tag{4.23}
\end{equation*}
$$

Let $\boldsymbol{\sigma}$ be a chart for $\mathcal{\delta}$ at \mathbf{p}. Up to reparametrizing, we can assume that

$$
\sigma(0,0)=\mathbf{p}=\mathbf{0} .
$$

As $\mathbf{N}=(0,0,1)$, it follows that $T_{\mathbf{p}} \mathcal{S}$ is the $x y$-plane

$$
T_{\mathbf{p}} \mathcal{S}=\mathbb{R}^{2}=\{(x, y, 0): x, y \in \mathbb{R}\} .
$$

Since $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}$ is a basis for $T_{\mathbf{p}} \mathcal{\mathcal { S }}$, we have that for each $(x, y) \in \mathbb{R}^{2}$ there exist $(s, t) \in \mathbb{R}^{2}$ such that

$$
\begin{equation*}
(x, y, 0)=s \boldsymbol{\sigma}_{u}+t \boldsymbol{\sigma}_{v} \tag{4.24}
\end{equation*}
$$

where $\boldsymbol{\sigma}_{u}$ and σ_{v} are evaluated at $(0,0)$. The Taylor approximation of $\boldsymbol{\sigma}$ at $(0,0)$ is

$$
\begin{aligned}
\sigma(s, t)= & \boldsymbol{\sigma}(0,0)+s \boldsymbol{\sigma}_{u}+t \boldsymbol{\sigma}_{v} \\
& +\frac{1}{2}\left(s^{2} \sigma_{u u}+2 s t \boldsymbol{\sigma}_{u v}+t^{2} \boldsymbol{\sigma}_{v v}\right)+R \\
= & (x, y, 0)+\frac{1}{2}\left(s^{2} \boldsymbol{\sigma}_{u u}+2 s t \boldsymbol{\sigma}_{u v}+t^{2} \boldsymbol{\sigma}_{v v}\right)+R
\end{aligned}
$$

where R is a remainder and the derivatives of σ are evaluated at $(0,0)$. Hence, if x, y are small (and thus s, t are small), we have that

$$
\boldsymbol{\sigma}(s, t) \approx(x, y, z)
$$

where

$$
\begin{aligned}
z & :=\frac{1}{2}\left(s^{2} \boldsymbol{\sigma}_{u u}+2 s t \boldsymbol{\sigma}_{u v}+t^{2} \boldsymbol{\sigma}_{v v}\right) \cdot \mathbf{N} \\
& =\frac{1}{2}\left(L s^{2}+2 M s t+N t^{2}\right),
\end{aligned}
$$

with L, M, N coefficients of the second fundamental form of $\boldsymbol{\sigma}$ at $(0,0)$. Set

$$
\mathbf{v}:=s \boldsymbol{\sigma}_{u}+t \boldsymbol{\sigma}_{v}
$$

By Theorem 4.156 we have

$$
L s^{2}+2 M s t+N t^{2}=I I_{\mathbf{p}}(\mathbf{v}, \mathbf{v})=\mathscr{W}_{\mathbf{p}, \mathcal{S}}(\mathbf{v}) \cdot \mathbf{v}
$$

On the other hand, using (4.23) and (4.24) we get

$$
\mathbf{v}=s \boldsymbol{\sigma}_{u}+t \boldsymbol{\sigma}_{v}=(x, y, 0)=x \mathbf{t}_{1}+y \mathbf{t}_{2} .
$$

Since the Weingarten map is linear we get

$$
\begin{aligned}
\mathscr{W}_{\mathbf{p}, \mathcal{S}}(\mathbf{v}) & =x \mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{1}\right)+y \mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\mathbf{t}_{2}\right) \\
& =x \kappa_{1} \mathbf{t}_{1}+y \kappa_{2} \mathbf{t}_{2},
\end{aligned}
$$

where we used that \mathbf{t}_{1} and \mathbf{t}_{2} are eigenvectors of $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ with eigenvalues κ_{1} and κ_{2}. Hence

$$
\begin{aligned}
\mathscr{W}_{\mathbf{p}, \delta}(\mathbf{v}) \cdot \mathbf{v} & =x \kappa_{1} \mathbf{t}_{1}+y \kappa_{2} \mathbf{t}_{2} \cdot\left(x \mathbf{t}_{1}+y \mathbf{t}_{2}\right) \\
& =x^{2} \kappa_{1}+y^{2} \kappa_{2}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
z & =\frac{1}{2}\left(L s^{2}+2 M s t+N t^{2}\right) \\
& =\frac{1}{2} \mathscr{W}_{\mathbf{p}, \delta}(\mathbf{v}) \cdot \mathbf{v} \\
& =\frac{1}{2}\left(x^{2} \kappa_{1}+y^{2} \kappa_{2}\right),
\end{aligned}
$$

showing that

$$
\sigma(t, s) \approx\left(x, y, \frac{1}{2}\left(x^{2} \kappa_{1}+y^{2} \kappa_{2}\right)\right) .
$$

Thanks to Theorem 4.185 we can distinguish between 4 approximating shapes.
Definition 4.186: Local shape types
Let \mathcal{S} be a regular surface and denote by $\kappa_{1}(\mathbf{p})$ and $\kappa_{2}(\mathbf{p})$ its principal curvatures at \mathbf{p}. The point \mathbf{p} is

- Elliptic if

$$
\kappa_{1}(\mathbf{p})>0, \kappa_{2}(\mathbf{p})>0 \quad \text { or } \quad \kappa_{1}(\mathbf{p})<0, \kappa_{2}(\mathbf{p})<0
$$

Then (4.22) is the equation of an elliptic paraboloid.

- Hyperbolic if

$$
\kappa_{1}(\mathbf{p})<0<\kappa_{2}(\mathbf{p}) \quad \text { or } \quad \kappa_{2}(\mathbf{p})<0<\kappa_{1}(\mathbf{p})
$$

Then (4.22) is the equation of a hyperbolic paraboloid.

- Parabolic if

$$
\kappa_{1}(\mathbf{p})=0, \kappa_{2}(\mathbf{p}) \neq 0 \quad \text { or } \quad \kappa_{2}(\mathbf{p}) \neq 0, \kappa_{1}(\mathbf{p})=0
$$

Then (4.22) is the equation of a parabolic cylinder.

- Planar if

$$
\kappa_{1}(\mathbf{p})=\kappa_{2}(\mathbf{p})=0
$$

Then (4.22) is the equation of a plane.

Example 4.187

Consider the surface chart

$$
\boldsymbol{\sigma}(u, v)=\left(u-v, u+v, u^{2}+v^{2}\right) .
$$

Show that $\mathbf{p}=\boldsymbol{\sigma}(1,0)$ is an elliptic point. Therefore $\boldsymbol{\sigma}$ is approximated by an elliptic paraboiloid in the vicinity of \mathbf{p}.

Solution. In Example 4.161 we have shown that the Weingarten matrix of σ is

$$
\mathscr{W}=\frac{1}{\left(1+2 u^{2}+2 v^{2}\right)^{\frac{3}{2}}}\left(\begin{array}{ll}
1+2 v^{2} & -2 u v \\
-2 u v & 1+2 u^{2}
\end{array}\right) .
$$

For $u=1$ and $v=1$ we obtain

$$
\mathscr{W}=\frac{1}{3^{\frac{3}{2}}}\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)=\left(\begin{array}{ll}
3^{-\frac{3}{2}} & 0 \\
0 & 3^{-\frac{1}{2}}
\end{array}\right) .
$$

Therefore the principal curvatures at \mathbf{p} are

$$
\kappa_{1}(\mathbf{p})=3^{-\frac{3}{2}}, \quad \kappa_{2}(\mathbf{p})=3^{-\frac{1}{2}} .
$$

Since $\kappa_{1}(\mathbf{p})>0$ and $\kappa_{2}(\mathbf{p})>0$ we have that \mathbf{p} is an elliptic point.

ELLIPTIC

$$
\begin{gathered}
k_{1}, k_{2}>0 \\
\text { oR } \\
k_{1}, k_{2}<0
\end{gathered}
$$

parabolic

$$
k_{1}=0, k_{2} \neq 0
$$

Dr. Silvio Fanzon
$k_{2}=0, k_{1} \neq 0$ \qquad

HYPERBOLIC

$$
\begin{gathered}
k_{1}<0<k_{2} \\
O R
\end{gathered}
$$

$$
k_{2}<0<k_{1}
$$

Planar

$$
k_{1}=k_{2}=0
$$

4.13.5 Umbilical points

Definition 4.188: Umbilical point
Let \mathcal{S} be a regular surface and denote by $\kappa_{1}(\mathbf{p})$ and $\kappa_{2}(\mathbf{p})$ its principal curvatures at \mathbf{p}. We say that \mathbf{p} is an umbilic if

$$
\kappa_{1}(\mathbf{p})=\kappa_{2}(\mathbf{p})
$$

Remark $\mathbf{4 . 1 8 9}$

Umbilical points might be planar or elliptic.
Suppose that \mathbf{p} is an umbilic, that is,

$$
\kappa_{1}=\kappa_{2}
$$

at \mathbf{p}. Let κ_{n} be the normal curvature of a unit speed curve $\boldsymbol{\gamma}$ passing through \mathbf{p}. By Theorem 4.182 we have

$$
\kappa_{n}=\kappa_{1} \cos ^{2}(\theta)+\kappa_{2} \sin ^{2}(\theta)=\kappa_{1} .
$$

Therefore κ_{n} does not depend on $\boldsymbol{\gamma}$. Intuitively, this can only happen if in the vicinity of \mathbf{p} the surface looks like a sphere or a plane. Indeed, the following theorem holds.

Theorem 4.190

Let \mathcal{S} be a regular surface such that every point $\mathbf{p} \in \mathcal{S}$ is umbilic. Then \mathcal{S} is an open subset of plane or a sphere.

Proof

By assumption we have

$$
\begin{equation*}
\kappa_{1}(\mathbf{p})=\kappa_{2}(\mathbf{p})=\kappa(\mathbf{p}), \quad \forall \mathbf{p} \in \mathcal{S} . \tag{4.25}
\end{equation*}
$$

Step 1. κ is constant.
By Theorem 4.167 the principal vectors $\left\{\mathbf{t}_{1}, \mathbf{t}_{2}\right\}$ are an orthonormal basis of $T_{\mathbf{p}} \mathcal{S}$. Hence, for each $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$ there exist $\lambda, \mu \in \mathbb{R}$ such that

$$
\mathbf{v}=\lambda \mathbf{t}_{1}+\mu \mathbf{t}_{2} .
$$

Using the linearity of $\mathscr{W}_{\mathbf{p}, \mathcal{S}}$ and (4.25) we obtain

$$
\begin{aligned}
\mathscr{W}_{\mathbf{p}, \delta}(\mathbf{v}) & =\lambda \mathscr{W}_{\mathbf{p}, \delta}\left(\mathbf{t}_{1}\right)+\mu \mathscr{W}_{\mathbf{p}, \delta}\left(\mathbf{t}_{2}\right) \\
& =\lambda \kappa \mathbf{t}_{1}+\mu \kappa \mathbf{t}_{2} \\
& =\kappa \mathbf{v},
\end{aligned}
$$

showing that

$$
\begin{equation*}
\mathscr{V}_{\mathbf{p}, \mathcal{S}}(\mathbf{v})=\kappa \mathbf{v}, \quad \forall \mathbf{v} \in T_{\mathbf{p}} \mathcal{S} . \tag{4.26}
\end{equation*}
$$

Let $\sigma: U \rightarrow \mathbb{R}^{3}$ be a chart of \mathcal{S}. Up to restricting σ, we can assume that U is connected. By Lemma 4.158 we have

$$
\mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{u}\right)=-\mathbf{N}_{u}, \quad \mathscr{W}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{v}\right)=-\mathbf{N}_{v} .
$$

On the other hand, by (4.26) we infer

$$
\mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{u}\right)=\kappa \boldsymbol{\sigma}_{u}, \quad \mathscr{V}_{\mathbf{p}, \mathcal{S}}\left(\boldsymbol{\sigma}_{v}\right)=\kappa \boldsymbol{\sigma}_{v},
$$

from which

$$
\begin{equation*}
\mathbf{N}_{u}=-\kappa \boldsymbol{\sigma}_{u}, \quad \mathbf{N}_{v}=-\kappa \boldsymbol{\sigma}_{v} . \tag{4.27}
\end{equation*}
$$

Thus

$$
\left(\kappa \sigma_{u}\right)_{v}=-\left(\mathbf{N}_{u}\right)_{v}=-\left(\mathbf{N}_{v}\right)_{u}=\left(\kappa \boldsymbol{\sigma}_{v}\right)_{u} .
$$

Moreover

$$
\begin{aligned}
& \left(\kappa \boldsymbol{\sigma}_{u}\right)_{v}=\kappa_{v} \boldsymbol{\sigma}_{u}+\kappa \boldsymbol{\sigma}_{u v} \\
& \left(\kappa \boldsymbol{\sigma}_{v}\right)_{u}=\kappa_{u} \sigma_{v}+\kappa \boldsymbol{\sigma}_{u v},
\end{aligned}
$$

so that

$$
\begin{equation*}
\kappa_{v} \sigma_{u}=\kappa_{u} \sigma_{v} . \tag{4.28}
\end{equation*}
$$

Recall that $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$ are linearly independent, being \mathcal{S} regular. Hence the linear combination at (4.28) must be trivial, implying

$$
\kappa_{u}=\kappa_{v}=0 .
$$

Since U is connected, the above implies that κ is constant.
Step 2. We have the two cases $\kappa=0$ and $\kappa \neq 0$.

- Assume $\kappa=0$. By (4.27) we get that

$$
\mathbf{N}_{u}=\mathbf{N}_{v}=\mathbf{0},
$$

which implies \mathbf{N} is constant. Therefore

$$
(\mathbf{N} \cdot \boldsymbol{\sigma})_{u}=\mathbf{N}_{u} \cdot \boldsymbol{\sigma}+\mathbf{N} \cdot \boldsymbol{\sigma}_{u}=0
$$

since $\mathbf{N}_{u}=\mathbf{0}$ and $\mathbf{N} \cdot \boldsymbol{\sigma}_{u}=0$ because \mathbf{N} is orthogonal to $T_{\mathbf{p}} \mathcal{S}$. Similarly we get

$$
(\mathbf{N} \cdot \boldsymbol{\sigma})_{v}=0
$$

showing that $\mathbf{N} \cdot \boldsymbol{\sigma}$ is constant. Hence there exists $c \in \mathbb{R}$ such that

$$
\mathbf{N} \cdot \sigma(u, v)=c, \quad \forall(u, v) \in U
$$

This shows $\sigma(U)$ is contained in the plane

$$
\pi=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{N} \cdot \mathbf{x}=c\right\} .
$$

- Assume $\kappa \neq 0$. Condition (4.27) implies

$$
\mathbf{N}=-\kappa \boldsymbol{\sigma}+\mathbf{a}
$$

for some $\mathbf{a} \in \mathbb{R}^{3}$ constant vector. Thus

$$
\left\|\boldsymbol{\sigma}-\frac{1}{\kappa} \mathbf{a}\right\|^{2}=\left\|-\frac{1}{\kappa} \mathbf{N}\right\|^{2}=\frac{1}{\kappa^{2}},
$$

given that $\|\mathbf{N}\|=1$. Therefore $\sigma(U)$ is contained in the sphere of center \mathbf{a} / κ and radius $1 / \kappa$.

5 Plots with Python

5.1 Curves in Python

5.1.1 Curves in 2D

Suppose we want to plot the parabola $y=t^{2}$ for t in the interval [-3,3]. In our language, this is the twodimensional curve

$$
\boldsymbol{\gamma}(t)=\left(t, t^{2}\right), \quad t \in[-3,3] .
$$

The two Python libraries we use to plot $\boldsymbol{\gamma}$ are numpy and matplotlib. In short, numpy handles multidimensional arrays and matrices, and can perform high-level mathematical functions on them. For any question you may have about numpy, answers can be found in the searchable documentation available here. Instead matplotlib is a plotting library, with documentation here. Python libraries need to be imported every time you want to use them. In our case we will import:

```
import numpy as np
import matplotlib.pyplot as plt
```

The above imports numpy and the module pyplot from matplotlib, and renames them to np and plt , respectively. These shorthands are standard in the literature, and they make code much more readable.
The function for plotting 2 D graphs is called $\mathrm{plot}(\mathrm{x}, \mathrm{y})$ and is contained in plt . As the syntax suggests, plot takes as arguments two arrays

$$
x=\left[x_{1}, \ldots, x_{n}\right], \quad y=\left[y_{1}, \ldots, y_{n}\right] .
$$

As output it produces a graph which is the linear interpolation of the points $\left(x_{i}, y_{i}\right)$ in \mathbb{R}^{2}, that is, consecutive points $\left(x_{i}, y_{i}\right)$ and $\left(x_{i+1}, y_{i+1}\right)$ are connected by a segment. Using plot, we can graph the curve $\boldsymbol{\gamma}(t)=\left(t, t^{2}\right)$ like so:

```
# Code for plotting gamma
import numpy as np
import matplotlib.pyplot as plt
# Generating array t
t = np.array([-3,-2, -1,0,1,2,3])
# Computing array f
```

```
f = t**2
# Plotting the curve
plt.plot(t,f)
# Plotting dots
plt.plot(t,f,"ko")
# Showing the plot
plt.show()
```


Let us comment the above code. The variable t is a numpy array containing the ordered values

$$
\begin{equation*}
t=[-3,-2,-1,0,1,2,3] . \tag{5.1}
\end{equation*}
$$

This array is then squared entry-by-entry via the operation $t * * 2$ and saved in the new numpy array f, that is,

$$
f=[9,4,1,0,1,4,9] .
$$

The arrays t and f are then passed to $\operatorname{plot}(\mathrm{t}, \mathrm{f})$, which produces the above linear interpolation, with t on the x-axis and f on the y-axis. The command $\operatorname{plot}\left(\mathrm{t}, \mathrm{f}, \mathrm{'ko}^{\prime}\right)$ instead plots a black dot at each point $\left(t_{i}, f_{i}\right)$. The latter is clearly not needed to obtain a plot, and it was only included to highlight the fact that plot is actually producing a linear interpolation between points. Finally plt.show() displays the figure in the user window ${ }^{1}$.
Of course one can refine the plot so that it resembles the continuous curve $\boldsymbol{\gamma}(t)=\left(t, t^{2}\right)$ that we all have in mind. This is achieved by generating a numpy array t with a finer stepsize, invoking the function

[^1]np. linspace ($\mathrm{a}, \mathrm{b}, \mathrm{n}$). Such call will return a numpy array which contains n evenly spaced points, starts at a, and ends in b. For example np. linspace $(-3,3,7)$ returns our original array t at 5.1 , as shown below

```
    # Displaying output of np.linspace
    import numpy as np
    # Generates array t by dividing interval
    # (-3,3) in 7 parts
    t = np.linspace(-3,3, 7)
    # Prints array t
print("t =", t)
\(\mathrm{t}=[-3 .-2 .-1.0 .1 .2 .3\).
```

In order to have a more refined plot of $\boldsymbol{\gamma}$, we just need to increase n.

```
# Plotting gamma with finer step-size
import numpy as np
import matplotlib.pyplot as plt
# Generates array t by dividing interval
# (-3,3) in 100 parts
t = np.linspace(-3,3, 100)
# Computes f
f = t**2
# Plotting
plt.plot(t,f)
plt.show()
```


We now want to plot a parametric curve $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{2}$ with

$$
\gamma(t)=(x(t), y(t)) .
$$

Clearly we need to modify the above code. The variable t will still be a numpy array produced by linspace. We then need to introduce the arrays x and y which ecode the first and second components of $\boldsymbol{\gamma}$, respectively.

```
import numpy as np
import matplotlib.pyplot as plt
# Divides time interval (a,b) in n parts
# and saves output to numpy array t
t = np.linspace(a, b, n)
# Computes gamma from given functions x(y) and y(t)
x = x(t)
y = y(t)
# Plots the curve
plt.plot(x,y)
# Shows the plot
plt.show()
```

We use the above code to plot the 2D curve known as the Fermat's spiral

$$
\begin{equation*}
\boldsymbol{\gamma}(t)=(\sqrt{t} \cos (t), \sqrt{t} \sin (t)) \quad \text { for } \quad t \in[0,50] . \tag{5.2}
\end{equation*}
$$

```
# Plotting Fermat's spiral
import numpy as np
import matplotlib.pyplot as plt
# Divides time interval (0,50) in 500 parts
t = np.linspace(0, 50, 500)
# Computes Fermat's Spiral
x = np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)
# Plots the Spiral
plt.plot(x,y)
plt.show()
```

Before displaying the output of the above code, a few comments are in order. The array t has size 500 , due to the behavior of linspace. You can also fact check this information by printing np.size(t), which is the numpy function that returns the size of an array. We then use the numpy function np. sqrt to compute the square root of the array t. The outcome is still an array with the same size of t, that is,

$$
t=\left[t_{1}, \ldots, t_{n}\right] \quad \Longrightarrow \quad \sqrt{t}=\left[\sqrt{t_{1}}, \ldots, \sqrt{t_{n}}\right] .
$$

Similary, the call np. $\cos (\mathrm{t})$ returns the array

$$
\cos (t)=\left[\cos \left(t_{1}\right), \ldots, \cos \left(t_{n}\right)\right]
$$

The two arrays $n p . s q r t(t)$ and $n p . \cos (t)$ are then multiplied, term-by-term, and saved in the array x. The array y is computed similarly. The command plt.plot (x, y) then yields the graph of the Fermat's spiral:

The above plots can be styled a bit. For example we can give a title to the plot, label the axes, plot the spiral by means of green dots, and add a plot legend, as coded below:

```
# Adding some style
import numpy as np
import matplotlib.pyplot as plt
# Computing Spiral
t = np.linspace(0, 50, 500)
x = np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)
# Generating figure
plt.figure(1, figsize = (4,4))
```


Figure 5.1: Fermat's spiral

```
# Plotting the Spiral with some options
plt.plot(x, y, '--', color = 'deeppink', linewidth = 1.5, label = 'Spiral')
# Adding grid
plt.grid(True, color = 'lightgray')
# Adding title
plt.title("Fermat's spiral for t between 0 and 50")
# Adding axes labels
plt.xlabel("x-axis", fontsize = 15)
plt.ylabel("y-axis", fontsize = 15)
# Showing plot legend
plt.legend()
# Show the plot
plt.show()
```


Figure 5.2: Adding a bit of style

Let us go over the novel part of the above code:

- plt.figure(): This command generates a figure object. If you are planning on plotting just one figure at a time, then this command is optional: a figure object is generated implicitly when calling plt.plot. Otherwise, if working with n figures, you need to generate a figure object with plt. figure(i) for each i between 1 and n. The number i uniquely identifies the i-th figure: whenever you call plt.figure(i), Python knows that the next commands will refer to the i-th figure. In our case we only have one figure, so we have used the identifier 1 . The second argument figsize $=(a, b)$ in plt.figure () specifies the size of figure 1 in inches. In this case we generated a figure 4×4 inches.
- plt. plot: This is plotting the arrays x and y , as usual. However we are adding a few aestethic touches: the curve is plotted in dashed style with --, in deep pink color and with a line width of 1.5. Finally this plot is labelled Spiral.
- plt.grid: This enables a grid in light gray color.
- plt.title: This gives a title to the figure, displayed on top.
- plt.xlabel and plt.ylabel: These assign labels to the axes, with font size 15 points.
- plt. legend(): This plots the legend, with all the labels assigned in the plt.plot call. In this case the only label is Spiral.

Matplotlib styles

There are countless plot types and options you can specify in matplotlib, see for example the Matplotlib Gallery. Of course there is no need to remember every single command: a quick Google search can do wonders.

i Generating arrays

There are several ways of generating evenly spaced arrays in Python. For example the function np.arange ($\mathrm{a}, \mathrm{b}, \mathrm{s}$) returns an array with values within the half-open interval $[a, b)$, with spacing between values given by s. For example
import numpy as $n p$
$\mathrm{t}=\mathrm{np}$.arange $(0,1,0.2)$
print("t =", t)
$t=\left[\begin{array}{llllll}0 . & 0.2 & 0.4 & 0.6 & 0.8\end{array}\right]$

5.1.2 Implicit curves 2D

A curve $\boldsymbol{\gamma}$ in \mathbb{R}^{2} can also be defined as the set of points $(x, y) \in \mathbb{R}^{2}$ satisfying

$$
f(x, y)=0
$$

for some given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. For example let us plot the curve $\boldsymbol{\gamma}$ implicitly defined by

$$
f(x, y)=\left(3 x^{2}-y^{2}\right)^{2} y^{2}-\left(x^{2}+y^{2}\right)^{4}
$$

for $-1 \leq x, y \leq 1$. First, we need a way to generate a grid in \mathbb{R}^{2} so that we can evaluate f on such grid. To illustrate how to do this, let us generate a grid of spacing 1 in the 2 D square $[0,4]^{2}$. The goal is to obtain the 5×5 matrix of coordinates

$$
A=\left(\begin{array}{lllll}
(0,0) & (1,0) & (2,0) & (3,0) & (4,0) \\
(0,1) & (1,1) & (2,1) & (3,1) & (4,1) \\
(0,2) & (1,2) & (2,2) & (2,3) & (2,4) \\
(0,3) & (1,3) & (2,3) & (3,3) & (3,4) \\
(0,4) & (1,4) & (2,4) & (3,4) & (4,4)
\end{array}\right)
$$

which corresponds to the grid of points
To achieve this, first generate x and y coordinates using

```
x = np.linspace(0, 4, 5)
y = np.linspace(0, 4, 5)
```


Figure 5.3: The 5×5 grid corresponding to the matrix A

This generates coordinates

$$
x=[0,1,2,3,4], \quad y=[0,1,2,3,4] .
$$

We then need to obtain two matrices X and Y : one for the x coordinates in A, and one for the y coordinates in A. This can be achieved with the code

$$
\begin{aligned}
& \mathrm{X}[0,0]=0 \\
& \mathrm{X}[0,1]=1 \\
& \mathrm{X}[0,2]=2 \\
& \mathrm{X}[0,3]=3 \\
& \mathrm{X}[0,4]=4 \\
& \mathrm{X}[1,0]=0 \\
& \mathrm{X}[1,1]=1 \\
& \ldots \\
& \mathrm{X}[4,3]=3 \\
& \mathrm{X}[4,4]=4
\end{aligned}
$$

and similarly for Y. The output would be the two matrices X and Y

$$
X=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 & 4
\end{array}\right), \quad Y=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4
\end{array}\right)
$$

If now we plot X against Y via the command

```
plt.plot(X, Y, 'k.')
```

we obtain Figure 5.3. In the above command the style 'k.' represents black dots. This procedure would be impossible with large vectors. Thankfully there is a function in numpy doing exactly what we need: np.meshgrid.

```
    # Demonstrating np.meshgrid
    import numpy as np
    # Generating x and y coordinates
    xlist = np.linspace(0, 4, 5)
    ylist = np.linspace(0, 4, 5)
    # Generating grid X, Y
    X, Y = np.meshgrid(xlist, ylist)
    # Printing the matrices X and Y
# np.array2string is only needed to align outputs
print('X =', np.array2string(X, prefix='X= '))
print('\n')
print('Y =', np.array2string(Y, prefix='Y= '))
X = [[0. 1. 1. 2. 3. 4.]
    [0. 1. 2. 3. 4.]
    [0. 1. 2. 3. 4.]
    [0. 1. 2. 3. 4.]
    [0. 1. 2. 3. 4.]]
Y = [[0. 0. 0. 0. 0.]
    [1. 1. 1. 1. 1.]
    [2. 2. 2. 2. 2.]
    [3. 3. 3. 3. 3.]
    [4. 4. 4. 4. 4.]]
```

Now that we have our grid, we can evaluate the function f on it. This is simply done with the command

$$
\mathrm{Z}=((3 *(\mathrm{X} * * 2)-\mathrm{Y} * * 2) * * 2) *(\mathrm{Y} * * 2)-(\mathrm{X} * * 2+\mathrm{Y} * * 2) * * 4
$$

This will return the matrix Z containing the values $f\left(x_{i}, y_{i}\right)$ for all $\left(x_{i}, y_{i}\right)$ in the grid $[X, Y]$. We are now interested in plotting the points in the grid $[X, Y]$ for which Z is zero. This is achieved with the command

```
plt.contour(X, Y, Z, [0])
```

Putting the above observations together, we have the code for plotting the curve $f=0$ for $-1 \leq x, y \leq 1$.

```
# Plotting f=0
import numpy as np
import matplotlib.pyplot as plt
# Generates coordinates and grid
xlist = np.linspace(-1, 1, 5000)
ylist = np.linspace(-1, 1, 5000)
X, Y = np.meshgrid(xlist, ylist)
# Computes f
Z =((3*(X**2) - Y**2)**2)*(Y**2) - (X**2 + Y**2)**4
# Creates figure object
plt.figure(figsize = (4,4))
# Plots level set Z = 0
plt.contour(X, Y, Z, [0])
# Set axes labels
plt.xlabel("x-axis", fontsize = 15)
plt.ylabel("y-axis", fontsize = 15)
# Shows plot
plt.show()
```


Figure 5.4: Plot of the curve defined by $\mathrm{f}=\mathrm{o}$

5.1.3 Curves in 3D

Plotting in 3D with matplotlib requires the mplot3d toolkit, see here for documentation. Therefore our first lines will always be

```
# Packages for 3D plots
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
```

We can now generate empty 3D axes

```
# Generates and plots empty 3D axes
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# Creates figure object
fig = plt.figure(figsize = (4,4))
```

```
# Creates 3D axes object
ax = plt.axes(projection = '3d')
# Shows the plot
plt.show()
```


In the above code fig is a figure object, while ax is an axes object. In practice, the figure object contains the axes objects, and the actual plot information will be contained in axes. If you want multiple plots in the figure container, you should use the command

```
ax = fig.add_subplot(nrows = m, ncols = n, pos = k)
```

This generates an axes object ax in position k with respect to a m x ngrid of plots in the container figure. For example we can create a 3×2 grid of empty 3 D axes as follows

```
# Generates 3 x 2 empty 3D axes
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# Creates container figure object
fig = plt.figure(figsize = (6,8))
```

```
# Creates 6 empty 3D axes objects
ax1 = fig.add_subplot(3, 2, 1, projection = '3d')
ax2 = fig.add_subplot(3, 2, 2, projection = '3d')
ax3 = fig.add_subplot(3, 2, 3, projection = '3d')
ax4 = fig.add_subplot(3, 2, 4, projection = '3d')
ax5 = fig.add_subplot(3, 2, 5, projection = '3d')
ax6 = fig.add_subplot(3, 2, 6, projection = '3d')
# Shows the plot
plt.show()
```


We are now ready to plot a 3 D parametric curve $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ of the form

$$
\boldsymbol{\gamma}(t)=(x(t), y(t), z(t))
$$

with the code

```
# Code to plot 3D curve
```

import numpy as np
import matplotlib.pyplot as plt

```
from mpl_toolkits import mplot3d
# Generates figure and 3D axes
fig = plt.figure(figsize = (size1,size2))
ax = plt.axes(projection = '3d')
# Plots grid
ax.grid(True)
# Divides time interval (a,b)
# into n parts and saves them in array t
t = np.linspace(a, b, n)
# Computes the curve gamma on array t
# for given functions x(t), y(t), z(t)
x = x(t)
y = y(t)
z = z(t)
# Plots gamma
ax.plot3D(x, y, z)
# Setting title for plot
ax.set_title('3D Plot of gamma')
# Setting axes labels
ax.set_xlabel('x', labelpad = 'p')
ax.set_ylabel('y', labelpad = 'p')
ax.set_zlabel('z', labelpad = 'p')
# Shows the plot
plt.show()
```

For example we can use the above code to plot the Helix

$$
\begin{equation*}
x(t)=\cos (t), \quad y(t)=\sin (t), \quad z(t)=t \tag{5.3}
\end{equation*}
$$

for $t \in[0,6 \pi]$.
\# Plotting 3D Helix
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

```
# Generates figure and 3D axes
fig = plt.figure(figsize = (4,4))
ax = plt.axes(projection = '3d')
# Plots grid
ax.grid(True)
# Divides time interval (0,6pi) in 100 parts
t = np.linspace(0, 6*np.pi, 100)
# Computes Helix
x = np.cos(t)
y = np.sin(t)
z = t
# Plots Helix - We added some styling
ax.plot3D(x, y, z, color = "deeppink", linewidth = 2)
# Setting title for plot
ax.set_title('3D Plot of Helix')
# Setting axes labels
ax.set_xlabel('x', labelpad = 20)
ax.set_ylabel('y', labelpad = 20)
ax.set_zlabel('z', labelpad = 20)
# Shows the plot
plt.show()
```


3D Plot of Helix

We can also change the viewing angle for a 3D plot store in ax. This is done via

```
ax.view_init(elev = e, azim = a)
```

which displays the 3 D axes with an elevation angle elev of e degrees and an azimuthal angle azim of a degrees. In other words, the ${ }_{3} \mathrm{D}$ plot will be rotated by e degrees above the xy-plane and by a degrees around the z -axis. For example, let us plot the helix with 2 viewing angles. Note that we generate 2 sets of axes with the add_subplot command discussed above.

```
# Plotting 3D Helix
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# Generates figure object
fig = plt.figure(figsize = (4,4))
# Generates 2 sets of 3D axes
ax1 = fig.add_subplot(1, 2, 1, projection = '3d')
ax2 = fig.add_subplot(1, 2, 2, projection = '3d')
# We will not show a grid this time
ax1.grid(False)
```

```
ax2.grid(False)
# Divides time interval (0,6pi) in 100 parts
t = np.linspace(0, 6*np.pi, 100)
# Computes Helix
x = np.cos(t)
y = np.sin(t)
z = t
# Plots Helix on both axes
ax1.plot3D(x, y, z, color = "deeppink", linewidth = 1.5)
ax2.plot3D(x, y, z, color = "deeppink", linewidth = 1.5)
# Setting title for plots
ax1.set_title('Helix from above')
ax2.set_title('Helix from side')
# Changing viewing angle of ax1
# View from above has elev = 90 and azim = 0
ax1.view_init(elev = 90, azim = 0)
# Changing viewing angle of ax2
# View from side has elev = 0 and azim = 0
ax2.view_init(elev = 0, azim = 0)
# Shows the plot
plt.show()
```

Helix from above Helix from side

5.1.4 Interactive plots

Matplotlib produces beautiful static plots; however it lacks built in interactivity. For this reason I would also like to show you how to plot curves with Plotly, a very popular Python graphic library which has built in interactivity. Documentation for Plotly and lots of examples can be found here.

5.1.4.1 2D Plots

Say we want to plot the 2 D curve $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{2}$ parametrized by

$$
\gamma(t)=(x(t), y(t)) .
$$

The Plotly module needed is called graph_objects, usually imported as go. The function for line plots is called Scatter. For documentation and examples see link. The code for plotting $\boldsymbol{\gamma}$ is as follows.

```
# Plotting gamma 2D
# Import libraries
import numpy as np
import plotly.graph_objects as go
# Compute times grid by dividing (a,b) in
# n equal parts
t = np.linspace(a, b, n)
# Compute the parametric curve gamma
# for given functions x(t) and y(t)
x = x(t)
y = y(t)
# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()
# Create the line plot object
data = go.Scatter(x = x, y = y, mode = 'lines', name = 'gamma')
# Add "data" plot to the figure "fig"
fig.add_trace(data)
# Display the figure
fig.show()
```

Some comments about the functions called above:

- go.Figure: generates an empty Plotly figure
- go.Scatter: generates the actual plot. By default a scatter plot is produced. To obtain linear interpolation of the points, set mode = 'lines'. You can also label the plot with name = "string"
- add_trace: adds a plot to a figure
- show: displays a figure

As an example, let us plot the Fermat's Spiral defined at 5.2. Compared to the above code, we also add a bit of styling.

```
# Plotting Fermat's Spiral
# Import libraries
import numpy as np
import plotly.graph_objects as go
# Compute times grid by dividing (0,50) in
# 500 equal parts
t = np.linspace(0, 50, 500)
# Computes Fermat's Spiral
x = np.sqrt(t) * np.cos(t)
y = np.sqrt(t) * np.sin(t)
# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()
# Create the line plot object
data = go.Scatter(x = x, y = y, mode = 'lines', name = 'gamma')
# Add "data" plot to the figure "fig"
fig.add_trace(data)
# Here we start with the styling options
# First we set a figure title
fig.update_layout(title_text = "Plotting Fermat's Spiral with Plotly")
# Adjust figure size
fig.update_layout(autosize = False, width = 600, height = 600)
# Change background canvas color
fig.update_layout(paper_bgcolor = "snow")
# Axes styling: adding title and ticks positions
```

```
fig.update_layout(
xaxis=dict(
    title_text="X-axis Title",
    titlefont=dict(size=20),
    tickvals=[-6, -4, -2, 0, 2, 4, 6],
    ),
yaxis=dict(
    title_text="Y-axis Title",
    titlefont=dict(size=20),
    tickvals=[-6, -4, -2, 0, 2, 4, 6],
    )
)
# Display the figure
fig.show()
```

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, please click here for the digital version of these notes. Note that the style customizations could be listed in a single call of the function update_layout. There are also pretty buit-in themes available, see here. The layout can be specified with the command

```
fig.update_layout(template = template_name)
```

where template_name can be "plotly", "plotly_white", "plotly_dark", "ggplot2", "seaborn", "simple_white".

5.1.4.2 3D Plots

We now want to plot a 3 D curve $\boldsymbol{\gamma}:(a, b) \rightarrow \mathbb{R}^{3}$ parametrized by

$$
\boldsymbol{\gamma}(t)=(x(t), y(t), z(t)) .
$$

Again we use the Plotly module graph_objects, imported as go. The function for ${ }_{3} \mathrm{D}$ line plots is called Scatter3d, and documentation and examples can be found at link. The code for plotting γ is as follows.
\# Plotting gamma 3D

```
# Import libraries
import numpy as np
import plotly.graph_objects as go
# Compute times grid by dividing (a,b) in
# n equal parts
t = np.linspace(a, b, n)
# Compute the parametric curve gamma
# for given functions x(t), y(t), z(t)
x = x(t)
y = y(t)
z = z(t)
# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()
# Create the line plot object
data = go.Scatter3d(x = x, y = y, z = z, mode = 'lines', name = 'gamma')
# Add "data" plot to the figure "fig"
fig.add_trace(data)
# Display the figure
fig.show()
```

The functions go. Figure, add_trace and show appearing above are described in the previous Section. The new addition is go. Scatter3d, which generates a ${ }_{3} D$ scatter plot of the points stored in the array $[x, y, z]$. Setting mode = 'lines' results in a linear interpolation of such points. As before, the curve can be labeled by setting name = "string".

As an example, we plot the 3D Helix defined at 5.3 . We also add some styling. We can also use the same predefined templates descirbed for go. Scatter in the previous section, see here for official documentation.

```
# Plotting 3D Helix
# Import libraries
import numpy as np
import plotly.graph_objects as go
# Divides time interval (0,6pi) in 100 parts
t = np.linspace(0, 6*np.pi, 100)
```

```
# Computes Helix
x = np.cos(t)
y = np.sin(t)
z = t
# Create empty figure object and saves
# it in the variable "fig"
fig = go.Figure()
# Create the line plot object
# We add options for the line width and color
data = go.Scatter3d(
    x = x, y = y, z = z,
    mode = 'lines', name = 'gamma',
    line = dict(width = 10, color = "darkblue")
    )
# Add "data" plot to the figure "fig"
fig.add_trace(data)
# Here we start with the styling options
# First we set a figure title
fig.update_layout(title_text = "Plotting 3D Helix with Plotly")
# Adjust figure size
fig.update_layout(
    autosize = False,
    width = 600,
    height = 600
    )
# Set pre-defined template
fig.update_layout(template = "seaborn")
# Options for curve line style
# Display the figure
fig.show()
```

Unable to display output for mime type(s): text/html
The above code generates an image that cannot be rendered in pdf. To see the output, please click here for
the digital version of these notes. Once again, the style customizations could be listed in a single call of the function update_layout.

5.2 Surfaces in Python

5.2.1 Plots with Matplotlib

I will take for granted all the commands explained in Section 5.1. Suppose we want to plot a surface S which is defined by the parametric equations

$$
x=x(u, v), \quad y=y(u, v), \quad z=z(u, v)
$$

for $u \in(a, b)$ and $v \in(c, d)$. This can be done via the function called plot_surface contained in the mplot3d Toolkit. This function works as follows: first we generate a mesh-grid [U, V] from the coordinates (u, v) via the command

```
[U, V] = np.meshgrid(u, v)
```

Then we compute the parametric surface on the mesh

```
x = x (U, V)
y = y (U,V)
z = z (U, V)
```

Finally we can plot the surface with the command

```
plt.plot_surface(x, y, z)
```

The complete code looks as follows.

```
# Plotting surface S
# Importing numpy, matplotlib and mplot3d
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# Generates figure object of size m x n
fig = plt.figure(figsize = (m,n))
# Generates 3D axes
ax = plt.axes(projection = '3d')
```

```
# Shows axes grid
ax.grid(True)
# Generates coordinates u and v
# by dividing the interval (a,b) in n parts
# and the interval (c,d) in m parts
u = np.linspace(a, b, m)
v = np.linspace(c, d, n)
# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)
# Computes S given the functions x, y, z
# on the grid [U,V]
x = x(U,V)
y = y(U,V)
z = z(U,V)
# Plots the surface S
ax.plot_surface(x, y, z)
# Setting plot title
ax.set_title('The surface S')
# Setting axes labels
ax.set_xlabel('x', labelpad=10)
ax.set_ylabel('y', labelpad=10)
ax.set_zlabel('z', labelpad=10)
# Setting viewing angle
ax.view_init(elev = e, azim = a)
# Showing the plot
plt.show()
```

For example let us plot a cone described parametrically by:

$$
x=u \cos (v), \quad y=u \sin (v), \quad z=u
$$

for $u \in(0,1)$ and $v \in(0,2 \pi)$. We adapt the above code:
\# Plotting a cone

```
# Importing numpy, matplotlib and mplot3d
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# Generates figure object of size 4 x 4
fig = plt.figure(figsize = (4,4))
# Generates 3D axes
ax = plt.axes(projection = '3d')
# Shows axes grid
ax.grid(True)
# Generates coordinates u and v by dividing
# the intervals (0,1) and (0,2pi) in 100 parts
u = np.linspace(0, 1, 100)
v = np.linspace(0, 2*np.pi, 100)
# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)
# Computes the surface on grid [U,V]
x = U * np.cos(V)
y = U * np.sin(V)
Z = U
# Plots the cone
ax.plot_surface(x, y, z)
# Setting plot title
ax.set_title('Plot of a cone')
# Setting axes labels
ax.set_xlabel('x', labelpad=10)
ax.set_ylabel('y', labelpad=10)
ax.set_zlabel('z', labelpad=10)
# Setting viewing angle
ax.view_init(elev = 25, azim = 45)
# Showing the plot
plt.show()
```


Plot of a cone

As discussed in Section 5.1, we can have multiple plots in the same figure. For example let us plot the torus viewed from 2 angles. The parametric equations are:

$$
\begin{aligned}
& x=(R+r \cos (u)) \cos (v) \\
& y=(R+r \cos (u)) \sin (v) \\
& z=r \sin (u)
\end{aligned}
$$

for $u, v \in(0,2 \pi)$ and with

- R distance from the center of the tube to the center of the torus
- r radius of the tube

```
# Plotting torus seen from 2 angles
# Importing numpy, matplotlib and mplot3d
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# Generates figure object of size 9 x 5
fig = plt.figure(figsize = (9,5))
# Generates 2 sets of 3D axes
ax1 = fig.add_subplot(1, 2, 1, projection = '3d')
ax2 = fig.add_subplot(1, 2, 2, projection = '3d')
```

```
# Shows axes grid
ax1.grid(True)
ax2.grid(True)
# Generates coordinates u and v by dividing
# the interval (0,2pi) in 100 parts
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(0, 2*np.pi, 100)
# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)
# Computes the torus on grid [U,V]
# with radii r = 1 and R = 2
R = 2
r = 1
x = (R + r * np.cos(U)) * np.cos(V)
y = (R + r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)
# Plots the torus on both axes
ax1.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors =
    -> 'snow')
ax2.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors =
    -> 'snow')
# Setting plot titles
ax1.set_title('Torus')
ax2.set_title('Torus from above')
# Setting range for z axis in ax1
ax1.set_zlim(-3,3)
# Setting viewing angles
ax1.view_init(elev = 35, azim = 45)
ax2.view_init(elev = 90, azim = 0)
# Showing the plot
plt.show()
```

Torus

Torus from above

Notice that we have added some customization to the plot_surface command. Namely, we have set the color of the figure with color $=$ 'dimgray' and of the edges with edgecolors $=$ 'snow'. Moreover the commands rstride and cstride set the number of wires you see in the plot. More precisely, they set by how much the data in the mesh $[U, V]$ is downsampled in each direction, where rstride sets the row direction, and cstride sets the column direction. On the torus this is a bit difficult to visualize, due to the fact that $[U, V]$ represents angular coordinates. To appreciate the effect, we can plot for example the paraboiloid

$$
\begin{aligned}
& x=u \\
& y=v \\
& z=-u^{2}-v^{2}
\end{aligned}
$$

for $u, v \in[-1,1]$.

```
# Showing the effect of rstride and cstride
# Importing numpy, matplotlib and mplot3d
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# Generates figure object of size 6 x 6
fig = plt.figure(figsize = (6,6))
    # Generates 2 sets of 3D axes
```

```
ax1 = fig.add_subplot(2, 2, 1, projection = '3d')
ax2 = fig.add_subplot(2, 2, 2, projection = '3d')
ax3 = fig.add_subplot(2, 2, 3, projection = '3d')
ax4 = fig.add_subplot(2, 2, 4, projection = '3d')
# Generates coordinates u and v by dividing
# the interval (-1,1) in 100 parts
u = np.linspace(-1, 1, 100)
v = np.linspace(-1, 1, 100)
# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)
# Computes the paraboloid on grid [U,V]
x = U
y = V
Z = - U**2 - V**2
# Plots the paraboloid on the 4 axes
# but with different stride settings
ax1.plot_surface(x, y, z, rstride = 5, cstride = 5, color = 'dimgray', edgecolors =
@ 'snow')
```

ax2.plot_surface(x, y, z, rstride $=5$, cstride $=20$, color $=$ 'dimgray', edgecolors =
\rightarrow 'snow')
ax3.plot_surface(x, y, z, rstride $=20$, cstride $=5$, color $=$ 'dimgray', edgecolors =
\rightarrow 'snow')
ax4.plot_surface(x, y, z, rstride $=10$, cstride $=10$, color $=$ 'dimgray', edgecolors
$\omega=$ 'snow' $^{\prime}$)

```
# Setting plot titles
ax1.set_title('rstride = 5, cstride = 5')
ax2.set_title('rstride = 5, cstride = 20')
ax3.set_title('rstride = 20, cstride = 5')
ax4.set_title('rstride = 10, cstride = 10')
# We do not plot axes, to get cleaner pictures
ax1.axis('off')
ax2.axis('off')
ax3.axis('off')
ax4.axis('off')
```


rstride $=20$, cstride $=5$
rstride $=10$, cstride $=10$

In this case our mesh is 100×100, since u and v both have 100 components. Therefore setting rstride and cstride to 5 implies that each row and column of the mesh is sampled one time every 5 elements, for a total of

$$
100 / 5=20
$$

samples in each direction. This is why in the first picture you see a 20×20 grid. If instead one sets rstride and cstride to 10 , then each row and column of the mesh is sampled one time every 10 elements, for a total of

$$
100 / 10=10
$$

samples in each direction. This is why in the fourth figure you see a 10 x 10 grid.

5.2.2 Plots with Plotly

As done in Section 5.1.4, we now see how to use Plotly to generate an interactive 3D plot of a surface. This can be done by means of functions contained in the Plotly module graph_objects, usually imported as go. Specifically, we will use the function go. Surface. The code will look similar to the one used to plot surfaces with matplotlib:

- generate meshgrid on which to compute the parametric surface,
- store such surface in the numpy array $[x, y, z]$,
- pass the array $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ to go.Surface to produce the plot.

The full code is below.

```
# Plotting a Torus with Plotly
# Import "numpy" and the "graph_objects" module from Plotly
import numpy as np
import plotly.graph_objects as go
# Generates coordinates u and v by dividing
# the interval (0,2pi) in 100 parts
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(0, 2*np.pi, 100)
# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)
# Computes the torus on grid [U,V]
# with radii r = 1 and R = 2
R = 2
r = 1
x = (R + r * np.cos(U)) * np.cos(V)
y = (R + r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)
# Generate and empty figure object with Plotly
# and saves it to the variable called "fig"
fig = go.Figure()
# Plot the torus with go.Surface and store it
# in the variable "data". We also do now show the
# plot scale, and set the color map to "teal"
data = go.Surface(
```

```
    x = x , y = y, z = z,
    showscale = False,
    colorscale='teal'
    )
# Add the plot stored in "data" to the figure "fig"
# This is done with the command add_trace
fig.add_trace(data)
# Set the title of the figure in "fig"
fig.update_layout(title_text="Plotting a Torus with Plotly")
# Show the figure
fig.show()
```

Unable to display output for mime type(s): text/html

The above code generates an image that cannot be rendered in pdf. To see the output, see the link to the digital version of these notes. To further customize your plots, you can check out the documentation of go. Surface at this link. For example, note that we have set the colormap to teal: for all the pretty colorscales available in Plotly, see this page.

One could go even fancier and use the tri-surf plots in Plotly. This is done with the function create_trisurf contained in the module figure_factory of Plotly, usually imported as ff. The documentation can be found here. We also need to import the Python library scipy, which we use to generate a Delaunay triangulation for our plot. Let us for example plot the torus.

```
# Plotting Torus with tri-surf
# Importing libraries
import numpy as np
import plotly.figure_factory as ff
from scipy.spatial import Delaunay
# Generates coordinates u and v by dividing
# the interval (0,2pi) in 100 parts
u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(0, 2*np.pi, 20)
# Generates grid [U,V] from the coordinates u, v
U, V = np.meshgrid(u, v)
# Collapse meshes to 1D array
```

```
# This is needed for create_trisurf
U = U.flatten()
V = V.flatten()
# Computes the torus on grid [U,V]
# with radii r = 1 and R = 2
R = 2
r = 1
x = (R + r * np.cos(U)) * np.cos(V)
y = (R + r * np.cos(U)) * np.sin(V)
z = r * np.sin(U)
# Generate Delaunay triangulation
points2D = np.vstack([U,V]).T
tri = Delaunay(points2D)
simplices = tri.simplices
# Plot the Torus
fig = ff.create_trisurf(
    x=x, y=y, z=z,
    colormap = "Portland",
    simplices=simplices,
    title="Torus with tri-surf",
    aspectratio=dict(x=1, y=1, z=0.3),
    show_colorbar = False
    )
# Adjust figure size
fig.update_layout(autosize = False, width = 700, height = 700)
# Show the figure
fig.show()
```

Unable to display output for mime type(s): text/html

Again, the above code generates an image that cannot be rendered in pdf. To see the output, see the link to the digital version of these notes.

License

Reuse

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Citation

For attribution, please cite this work as:
Fanzon, Silvio. (2023). Lecture Notes on Differential Geometry.
https://www.silviofanzon.com/2023-Differential-Geometry-Notes/
BibTex citation:

```
@electronic{Fanzon-Diff-Geom-2023,
    author = {Fanzon, Silvio},
    title = {Lecture Notes on Differential Geometry},
    url = {https://www.silviofanzon.com/2023-Differential-Geometry-Notes/},
    year = {2023}}
```


References

[1] Abate, Marco and Tovena, Francesca. Curves and Surfaces. Springer, 2011.
[2] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Second Edition. Dover Books on Mathematics, 2017.
[3] R. Johansson. Numerical Python. Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib. Second Edition. Apress, 2019.
[4] Kong, Qingkai, Siauw, Timmy, and Bayen, Alexandre. Python Programming and Numerical Methods. Academic Press, 2020.
[5] M. Manetti. Topology. Second Edition. Springer, 2023.
[6] A. Pressley. Elementary Differential Geometry. Second Edition. Springer, 2010.
[7] V. A. Zorich. Mathematical Analysis I. Second Edition. Springer, 2015.
[8] V. A. Zorich. Mathematical Analysis II. Second Edition. Springer, 2016.

[^0]: Local isometries preserve the length of curves, as shown in the following proposition.

[^1]: ${ }^{1}$ The command plt. show() can be omitted if working in Jupyter Notebook, as it is called by default.

