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Welcome

These are the Lecture Notes of Differential Geometry 661955 for T1 2023/24 at the University of Hull. We
will study curves and surfaces in R®. I will follow these lecture notes during the course. If you have any
question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Up to date information about the course, Tutorials and Homework will be published on the University of Hull
Canvas Website

canvas.hull.ac.uk/courses/67594
and on the Course Webpage hosted on my website

silviofanzon.com/blog/2023/Differential-Geometry

Digital Notes
Digital version of these notes available at

silviofanzon.com/2023-Differential-Geometry-Notes

Readings

Main textbooks:

« Pressley [6] for differential geometry,
« Manetti [5] for general topology.

Other interesting readings are the books by do Carmo [2] and Abate, Tovena [1]. I will assume some knowl-
edge from Analysis and Linear Algebra. A good place to revise these topics are the books by Zorich [7, 8].


mailto: S.Fanzon@hull.ac.uk
https://canvas.hull.ac.uk/courses/67594
https://www.silviofanzon.com/blog/2023/Differential-Geometry/
https://www.silviofanzon.com/2023-Differential-Geometry-Notes/
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Visualization

It is important to visualize the geometrical objects and concepts we are going to talk about in this course. I
will show basic Python code to plot curves and surfaces. This part of the course is not required for the final
examination. If you want to have fun plotting with Pyhton, I recommend installation through Anaconda or
Miniconda. The actual coding can then be done through Jupyter Notebook. Good references for scientific
Python programming are [3, 4].

If you do not want to mess around with Python, you can still visualize pretty much everything we will do in
this course using the excellent online 3D grapher tool CalcPlot3D. To understand how it works, please refer
to the help manual or to the short video introduction. Another nice tool is Desmos.

! You are not expected to purchase any of the above books. These lecture notes will cover 100% of the
topics you are expected to known in order to excel in the final exam.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk


https://www.anaconda.com
https://docs.conda.io/en/latest/miniconda.html
https://jupyter.org
https://c3d.libretexts.org/CalcPlot3D/index.html/
https://c3d.libretexts.org/CalcPlot3D/CalcPlot3D-Help/front.html
https://c3d.libretexts.org/CalcPlot3D/CalcPlot3D-Help/section-1.html
https://www.desmos.com

1 Curves

Curves are, intuitively speaking, 1D objects in the 2D or 3D space. For example in two dimensions one could
think of a straight line, a hyperbole or a circle. These can be all described by an equation in the x and y
coordinates: respectively

y=2x+1, y=¢€, x*+y*=1.
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Figure 1.1: Plotting straight line y = 2x + 1

Goal

The aim of this course is to study curves by differentiating them.

Question

In what sense do we differentiate the above curves?
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Figure 1.2: Plot of hyperbole y = ¢*
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Figure 1.3: Plot of unit circle of equation x? + y* = 1
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It is clear that we need a way to mathematically describe the curves. One way of doing it is by means
of Cartesian equations. This means that the curve is described as the set of points (x,y) € R? where the
equation

fGey)=c,
is satisfied, where
f:R>>R.
is some given function, and
ceR

some given value. In other words, the curve is identified with the subset of R? given by

C={(x,y) eR*: f(x,y)=c}.

For example, in the case of the straight line, we would have

fle,y)=y—-2x, c=1.
while for the circle
f(x,y):x2+y2 ,c=1.

But what about for example a helix in 3 dimensions? It would be more difficult to find an equation of the
form

fG,y,2) =0

to describe such object.

-1.0

-0.5 —05

0.5
10 ~L0

0.0

Figure 1.4: Plot of a 3D Helix

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Problem

We need a unified way to describe curves.

1.1 Parametrized curves

Rather than Cartesian equations, a more useful way of thinking about curves is viewing them as the path
traced out by a moving point. If y(t) represents the position a point in R"” at time ¢, the whole curve can be
identified by the function

Yy R->RY y=y@®).

This motivates the following definition of parametrized curve, which will be our main definition of
curve.

Definition 1.1: Parametrized curve

A parametrized curve in R” is a function
Yy : (a,b) > R".
where

—0<a<b< oo,

A few remarks:

« The symbol (a, b) denotes an open interval
(a,b)={teR : a<t<b}.

+ The requirement that
—o<a<b< oo

means that the interval (a, b) is possibly unbounded.
« For each t € (a,b) the quantity y(¢) is a vector in R".
« The components of y(¢) are denoted by

Y® = (@, ....va@),

where the components are functions
vi ¢ (a.b) >R,

foralli=1,...,n.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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1.2 Parametrizing Cartesian curves

At the start we said that examples of curves in R? were the straight line, the hyperbole and the circle, with

equations

y=2x+1, y=¢, x?+y*=1.

We saw that these can be represented by Cartesian equations

fGy)=c

for some function f : R? — R and value ¢ € R. Curves that can be represented in this way are called level
curves. Let us give a precise definition.

Definition 1.2: Level curve

A level curve in R" is a set C ¢ R" which can be described as

C={(xc1,..sx) €ER" = f(xq,..., %) =}

for some given function
f:R'*>R

and value
ceR.

We now want to represent level curves by means of parametrizations.

Definition 1.3
Suppose given a level curve C C R". We say that a curve
y : (a.b) > R"

parametrizes C if

C={(n®,.... () : t€(ab)}.

Question

Can we represent the level curves we saw above by means of a parametrization y?

The answer is YES, as shown in the following examples.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Example 1.4: Parametrizing the straight line
The straight line
y=2x+1

is a level curve with
C={x.»erR : f(xy)=c},
where
flx,y) :=y—2x, c¢:=1.
How do we represent C as a parametrized curve y? We know that the curve is 2D, therefore we need

to find a function
Yy : (a,b) > R2

with componenets
r® = (). r20).

The curve y needs to be chosen so that it parametrizes the set C, in the sense that

C=1n®.r() : te(ab). (11)

Thus we need to have
(. 3) = (v2) - (12)
How do we define such y? Note that the points (x, y) in C satisfy

(x,y)eC &= y=2x+1.
Therefore, using (1.2), we have that
Y1=x, Yo=y=2x+1

from which we deduce that y must satisfy

r2(t) = 2y, (1) + 1 (13)
for all t € (a,b). We can then choose
n@ :=t,
and from (1.3) we deduce that
ya(t) =2t+1.
This choice of y works:
C={(x,2x+1) : x€R} (1.4)
={t2t+1) : —oo<t< oo} (15)
={(n®,y2(1)) : —oo <t < oo}, (1.6)

where in the second line we just swapped the symbol x with the symbol ¢. In this case we have to choose
the time interval as

((l, b) = (—OO’ Oo) .

In this way y satisfies (1.1) and we have successfully parametrized the straight line C.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Remark 1.5: Parametrization is not unique
Let us consider again the straight line
C={(x,y)€eR? : 2x+1=y}.

We saw thaty : (—o0,0) — R? defined by

y@®) :=(t2t+1)
is a parametrization of C. But of course any y satisfying

r2(t) = 21 () + 1
would yield a parametrization of C. For example one could choose

n®=2t, yp@)=2pt)+1=4+1.
In general, any time rescaling would work: the curve y defined by
n@® =nt, yp@®=2pn)+1=2n+1
parametrizes C for all n € IN. Hence there are infinitely many parametrizations of C.
Example 1.6: Parametrizing the circle
The circle C is described by all the points (x, y) € R? such that
x? + y2 =1.
Therefore if we want to find a curve
Y =01

which parametrizes C, this has to satisfy

n@)? +y)? =1 (17)

for allt € (a, b).

How to find such curve? We could proceed as in the previous example, and set

n@) :=t.

Then (1.7) implies

from which we also deduce that

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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are the only admissible values of t. However this curve does not represent the full circle C, but only the
upper half, as seen in the plot below.
Simlarly, another solution to (1.7) would be y with

n®=t, plt)=-—1-1,

fort € [—1, 1]. However this choice does not parametrize the full circle C either, but only the bottom half,
as seen in the plot below.
How to represent the whole circle? Recall the trigonometric identity

cos(t)? + sin(t)? = 1
for all t € R. This suggests to choose y as
@) :=cost), y,(t) := sin(t)

for t € [0,2). This way y satisfies (1.7), and actually parametrizes C, as shown below.
Note the following:

« If we had chosen t € [0, 4] then y would have covered C twice.

« If we had chosen t € [0, 7], then y would have covered the upper semi-circle

If we had chosen t € [r, 2], then y would have covered the lower semi-circle
Similarly, we can choose t € [/6, /2] to cover just a portion of C, as shown below.

1.00 A

0.75 A

0.50 A

0.25 A

0.00

-1.0 -0.5 0.0 0.5 1.0
Figure 1.5: Upper semi-circle

Finally we are also able to give a mathematical description of the 3D Helix.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Figure 1.6: Lower semi-circle
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Figure 1.7: Lower semi-circle
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Figure 1.8: Plotting a portion of C

Example 1.7: Parametrizing the helix
The Helix plotted above can be parametrized by
Y : (—00,00) > R3

defined by
y1(t) = cos(t), ya(t) =sin(t), y3(t) =t.

The above equations are in line with our intuition: the helix can be drawn by tracing a circle while at the
same time lifting the pencil.

1.3 Smooth curves

Let us recall the definition of parametrized curve.

Definition 1.8: Parametrized curve

A parametrized curve in R” is a function
Yy : (a,b) > R".

where

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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(a,b)={teR : a<t<b},

with
—0<a<b< oo,

The components of y(t) € R" are denoted by
Y(t) = (Yl (t)’ ceey }’n(t)) 5

where the components are functions
vi ¢ (ab) >R,

foralli=1,...,n.

As we already mentioned, the aim of the course is to study curves by differentiating them. Let us see what
that means for curves.

Definition 1.9: Smooth functions

A scalar function f : (a,b) = Ris called smooth if the derivative

af
drt

exists foralln > 1and t € (a,b).

We will denote the first and second derivatives of f as follows:

. df . d¥f
Fo=a Tm
Example 1.10
The function f(x) = x* is smooth, with
df 5 d*f )
L =4x3, — =12x2,
a = T
d® d*
O o &,
dt’ dt
d*f
=0 forall n>5.
dr
Other examples smooth functions are polynomials, as well as
f(t) = cos(t), f(t)=sin(t), f(t)=¢.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Definition 1.11

Lety : (a,b) » R" with
y(®) = (1), ....¥n(®)

be a parametrized curve. We say that y is smooth if the components
Y : (a,b) >R

are smooth for all i = 1,...,n. The derivatives of y are

dky L (dk}ﬁ den)
dik dtk 7 dik

for all k € IN. As a shorthand, we will denote the first derivative of y as

L (dn dny

Y =u \aa

and the second by

. dYy (dzh dzyn)
yi=—=— :

T oar di2’" dr?

In Figure 1.9 we skectch a smooth and a non-smooth curve. Notice that the curve on the right is smooth,
except for the point x.

We will work under the following assumption.

Assumption

All the parametrized curves in this lecture notes are assumed to be smooth.

Example 1.12

The circle

y(®) = (cos(t), sin(t))

is a smooth parametrized curve, since both cos(¢) and sin(¢) are smooth functions. We have

Yy = (—sin(t), cos(t)).

For example the derivative of y at the point (0, 1) is given by

y(r/2) = (—sin(x/2),cos(r/2)) = (—1,0).

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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X

SMooTH b’ I\'DIJ—ShOoTH J’
oAly SpooTH QUTSDE

THE PomT X

Figure 1.9: Example of smooth and non-smooth curves

The plot of the circle and the derivative vector at (—1,0) can be seen in Figure 1.10.

1.4 Tangent vectors

Looking at Figure 1.10, it seems like the vector

y(r/2) = (-1,0)

is tangent to the circle at the point
y(r/2) = (0. 1).

Is this a coincidence? Not that all. Let us look at the definition of derivative at a point:

v g Y@+ 6)—y(@)
v := lim 5 '

If we just look at the quantity
rE+8)—y®
)
for non-negative §, we see that this vector is parallel to the chord joining y(¢) to y(t+9), as shown in Figure 1.11
below. As § — 0, the length of the chord tends to zero. However the direction of the chord becomes parallel

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Figure 1.10: Plot of Circle and Tangent Vector at (0, 1)
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to that of the tangent vector of the curve y at y(¢). Since

o) —
M) r0 |y,

as § — 0, we see that y(¢) is parallel to the tangent of y at y(t), as showin in Figure 1.11.

Figure 1.11: Approximating the tangent vector

The above remark motivates the following definition.

Definition 1.13: Tangent vector

Lety : (a,b) > R" be a parametrized curve. The tangent vector to y at the point y(¢) is defined as

T :=y(1).

Example 1.14: Tangent vector to helix
The helix is described by the parametric curve
Yy : R—>R3

with
Y1(t) = cos(t), yo(t) = sin(t), y5(t) =t.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 22

This is plotted in Figure 1.12 below. The tangent vector at point y(t) is given by
y(@) = (—sin(t), cos(t), 1) .
For example in Figure 1.12 we plot the tangent vector at time ¢t = 7/2, that is,
y(n/2) = (-1,0,7/2).

The above looks very similar to the tangent vector to the circle. Except that there is a z component, and
that component is constant and equal to 1. Intuitively this means that the helix is lifting from the plane
xy with constant speed with respect to the z-axis. We will soon give a name to this concept.

-1.0

-0.5 _05

0.5 _
1.0 1.0

0.0

Figure 1.12: Plot of Helix with tangent vector

Remark 1.15: Avoiding potential ambiguities

Sometimes it will happen that a curve self intersects, meaning that there are two time instants #; and #,
and a point p € R"” such that

p=yt) =y).

In this case there is ambiguity in talking about the tangent vector at the point p: in principle there are
two tangent vectors y(¢;) and y(#,), and it could happen that

yt) #y(t).

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Thus the concept of tangent at p is not well-defined. We need then to be more precise and talk about
tangent at a certain time-step t, rather than at some point p. We however do not amend Definition 1.13,
but you should keep this potential ambiguity in mind.

Example 1.16: The Lemniscate, a self intersecting curve
For example consider y : [0,27] — R? defined as

Y1(®) =sin(t), y,@) = sin(t) cos(t) .

Such curve is called Lemniscate, see Wikipedia page, and is plotted in Figure 1.13 below. The orgin (0, 0)
is a point of self-intersection, meaning that

y(0) =y(7) = (0,0).

The tangent vector at point y(¢) is given by

7(®) = (cos(t), cos?(¢) — sin’(t))

and therefore we have two tangents at (0, 0), that is,

= Y(O) = (13 1)3 Ty = Y(”) = (_15 1)

1.5 Length of curves

For a vector v € R" with components

its length is defined by

The above is just an extension of the Pythagoras theorem to R”, and the length of v is computed from the
origin.

If we have a second vector u € R", then the quantity

lu—+l =

measures the length of the difference between u and v.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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Figure 1.13: The Lemniscate curve
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Figure 1.14: Interpretation of |v| in R?
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Figure 1.15: Interpretation of |u — v| in R?

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 26

We would like to define the concept of length of a curve. Intuitively, one could proceed by approximation
as in the figure below.

y(b,)
Yits)

rik,) ) o(e, ) - o)

V(o)

yle,)

Figure 1.16: Approximating the length of y
In formulae, this means choosing some time instants
£y, ..., by € (a,b).

The length of the segment connecting y(t_;) to y(t) is given by

ly() —y @G-l -
Thus .
Ly) = Y Ir@) -yl - (1.8)
i=1

Intuitively, if we increase the number of points #;, the quantity on the RHS of (1.8) should approximate L(y)
better and better. Let us make this precise.

Definition 1.17: Partition

Let (a,b) be an interval. A partition & of [a, b] is a vector of time instants

P =(ty, ..., ) € [a,b]""!

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk
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with
th=a<t;<..<ty ,<t,=hb.

If & is a partition of [a, b], we define its maximum length as

P| = E—t_q.
|2 @gﬂlz i1l

Note that | %| measures how fine the partition & is.

Definition 1.18: Length of approximating polygonal curve

Supposey : (a,b) - R" is a parametrized curve and & a partition of [a,b]. We define the length of the
polygonal curve connecting the points

Y(to). y(t), - y(ty)

as
m

Ly, P) := Y ly@) -yl .

i=1

If | 9| becomes smaller and smaller, that is, the partition & is finer and finer, it is reasonable to say that
Ly, %)

is approximating the length of y. We take this as definition of length.

Definition 1.19: Rectifiable curve and length

Supposey : (a,b) —» R" is a parametrized curve. We say that y is rectifiable if the limit

Ly)= lim Ly,&
¥) ) . %)

exists finite. In such case we call L(y) the length of y.

This definition definitely corresponds to our geometrical intuition of length of a curve.

Question 1.20

How do we use such definition in practice to compute the length of a given curve y?
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Thankfully, when y is smooth, the length L(y) can be characterized in terms of y. Indeed, when § is small,
then the quantity

ly(t +8) —y®
is approximating the length of y between y(t) and y(¢ + §). Multiplying and dividing by § we obtain

lr(t+90) —y®l

)
which for small § is close to
ly@I 6.
We can now divide the time interval (a, b) in steps ty, ..., t,,, with |t; — t;_;| < J and obtain
i@ -yl = L
t =t 4]
~ [y@)| 6

since § is small. Therefore
m m
L(y) = Z ly(®) -yl = Z ly @)l 8.
i=1 i=1

The RHS is a Riemann sum, therefore
b

MﬂzJHﬂ%dt

a

The above argument can be made rigorous, as we see in the next theorem.

Theorem 1.21: Characterizing the length of y

Assumey : [a,b] - R" is a parametrized curve, with [a, b] bounded. Then y is rectifiable and

b

Mﬂ=JHﬂmdt (19)

a

Proof

Step 1. The integral in (1.9) is bounded.
Since y is smooth, in particular y is continuous. Since [a, b] is bounded, then y is bounded, that is
sup [yl <C
te[a,b]
for some constant C > 0. Therefore
b

[ ora<co-a<e
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X(b)
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Figure 1.17: Approximating L(y) viay

Step 2. Writing (1.9) as limit.
Recalling that
Ly)= lim L(y,%),
210
whenever the limit is finite, in order to show (1.9) we then need to prove

b
1.~ | ol d
a
as [ 2| — 0. Showing the above means proving that: for every ¢ > 0 there exists a § > 0 such that, if &
is a partition of [a, b] such that || < §, then

b

j WOl di - L. )| <e. (110)

Step 3. First estimate in (1.10).
This first estimate is easy, and only relies on the Fundamental Theorem of Calculus. To be more precise,

we will show that each polygonal has shorter length than j: ly(®)| dt. To this end, take an arbitrary
partition P = (4, ...,t,) of [a,b]. Then for eachi = 1,...,m we have

t;

J l y(@)dt

ti1

t;

< j Ol dt

tiq

ly (@) =yl =
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where we used the Fundamental Theorem of calculus, and usual integral properties. Therefore by defi-
nition

Ly.9) = Z ly @) —y(-1)I
i=1

m
<y j O dt
i=1 Jti-1
b

=j ol d.

We have then shown ,
L. 7)< | 1) dr (1)
a

for all partitions &.
Step 4. Second estimate in (1.10).
The second estimate is more delicate. We need to carefully construct a polygonal so that its length is

b
close to |, |y| dt. This will be possible by uniform continuity of y. Indeed, note that y is continuous on
the compact set [a, b]. Therefore it is uniformly continuous by the Heine-Borel Theorem. Fix ¢ > 0. By
uniform continuity of y there exists § > 0 such that

t=sl<6 = O -FOI < 7—- (112)
for all t,s € [a,b]. Let P = (4, ..., t,) be a partition of [a, b] with | 2| < . Recall that
|| = max [t —t4].
i=1,...m
Therefore the condition | 2| < § implies
It —tial <6 (113)
foreachi=1,...,m. Foralli=1,...,mand s € [t,_q,t;]] we have
L
OB B I OT
til
- | 10+ 60 -yo)a
1 :
— G5O+ | GO -
tig
Therefore ,
ly(@) =yl = | — -y (s) + J (y(@) —y(s))dt (114)
li—g
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We can now use the reverse triangle inequality

[l = Iyl < =yl

for all x, y € R", which implies
lx + yl = lx = (=) = x| = ¥
for all x, y € R". Applying the above to (1.14) we get

4
ly (@) —y@-0l = (& = 1) Iy ()] = L () —y(s))dt (115)
By standard properties of integral we also have
4 L
|| do-rona < | wo -yl
so that (1.15) implies
t
ly (&) —y@Gi—0Dl = (@ = 1) Iy ()] - L ly(®) —y(s)l dt. (1.16)

Since t, s € [t;_q, %], then
t—sl <t —tial <6

where the last inequality follows by (1.13). Thus by uniform continuity (1.12) we get
€

b—a

ly(@®) =yl <

We can therefore further estimate (1.16) and obtain

[#

ly (&) —y(—Dl = @& = - [y ()] - Ji ly(®) =y (s)| at

tiq
> (4 —ti-) ly (] = @ - i—l)b ~dr.
—a
Dividing the above by t; —t;,_; we get
ly@) —y@G-Dl _ . €
LACAE AL - —
T ol -
Integrating the above over s in the interval [t_q,#;] we get
@ -y G0l > | FOlds— - n).
tiq —a
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Summing overi = 1,...,m we get

b
L(P.y) > j W)l ds—e (117)
a
since
m
Y-t =ty—ty=b—a.
i=1
Conclusion.

Putting together (1.11) and (1.17) we get
b

)

which implies (1.10), concluding the proof.

b
ly()l ds —e < L(P.y) < J ly ()]l ds

a

Thanks to the above theorem we have now a way to compute L(y). Let us check that we have given a
meaningful definition of length by computing L(y) on known examples.

Example 1.22: Length of Circle

The circle of radius R is parametrized by y : [0, 2] — R? defined by

y(@®) = (Rcos(t), Rsin(t)).

Then
y(@) = (—Rsin(t), R cos(t))
and
YOl = \¥E (@) +75@)
= R\/sinz(t) + cos?(t) = R.
Therefore

27

21
L<y>=j0 Ol d = L Rdt = 27R

as expected.
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Example 1.23: Length of helix
Let us consider one full turn of the Helix of radius R and rise H. This is parametrized by
y(@®) = (Rcos(t), Rsin(t), Ht)

fort € [0,27]. Then
y(@®) = (—Rsin(t), Rcos(t), H),

and
Ol = iF + 73+ 73
= \/Rz sin®(t) + R? cos?(t) + H2 = \R? + H2.
Therefore

21
L) = L WOl dt = 2nR? + 2.

1.6 Arc-length

We have just shown in Theorem 1.21 that the length of a regular curvey : [a,b] — R"* with [a, b] bounded is

given by
b

1) = | wola.

a

Using this formula, we introduce the notion of length of a portion of y.

Definition 1.24: Arc-length

Lety : (a,b) » R" be a curve, with (a, b) possibly unbounded. We define the arc-length of y starting at
the point y(f,) as the function s : R — R defined by

t
s@t) == | ()l dr.

fy

Remark 1.25

A few remarks:

+ Arc-length is well-defined
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b »
S(k) = S { o) Wde
o

o)

Figure 1.18: Arc-length of y starting at y(t;)

Indeed, y is smooth, and so y is continuous. WLOG assume t > t,. Then
t
s = | WO dr < (¢~ 1) max [FO)] <.
tO TE[tO)t]

« We always have
S(to) =0.

« We have
t>tg = s(t)>0

and
t<ty = s(t)<0.

+ Choosing a different starting point changes the arc-length by a constant:

For example define § as the arc-length starting from £,

t
) = j @l dr.

)
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Then by the properties of integral

s(t) =

J

t

o)l dr
by
-t t
@l dr + f ol dr
to to
7

ly(@I dr +5@).

Hence

with

Note that c is the arc-length of y between the starting points y(%,) and y(%,).

)

s=c+s

fy
¢ = j (ol dr
)

+ The arc-length is a differentiable function, with

s(t) =

Since y is continuous, the above follows by the Fundamental Theorem of Calculus.

t
AL ESOE

Example 1.26: Circle

The circle of radius R is parametrized by y : [0, 2] — R? defined by

y(@®) =

Then
y(®) = (—Rsin

Therefore, for any fixed ¢, € [0, 2] we have

(Rcos(t), Rsin(t)).

(t),Rcos(t)), [yl = R.

t t
o) = L (@l dr = j Rdr = (t — 1)R.

In particular we see that § = R is constant.
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Example 1.27: Logarithmic spiral
The Logarithmic spiral is defined by y : [0, 27] — R? with

y(®) = (€ cos(t), e sin(t)),
where k € R, k # 0, is called the growth factor. Then

71(®) = € (k cos(t) — sin(t))

o) = ¥ (k sin(t) + cos(t))

and so, after some calculations, )
YOI =y + 73 = (* + 1)e?™ .

The arc-length starting from ¢, is

t
(1) = L )l dr

t

=k + 1J ek dr
)
Vk? +1

— T(ekl‘ _ ekto) )

1.7 Scalar product in R"

Let us start by defining the scalar product in R?.

Definition 1.28: Scalar product in R?

Let u, v € R? and denote by 0 € [0, 7] the angle formed by u and v. The scalar product between u and v is
defined by
u-v = |ul|lv|cos(d).

Remark 1.29

The scalar product is maximized for 6 = 0, for which we have

u-v = |ul|v| cos(0) = |ul|v|.
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—— Log Spiral
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Figure 1.19: Plot of Logarithmic Spiral with k = 0.1
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Figure 1.20: Vectors u and v in R? forming angle 6
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It is instead minimized for 8 = 7, for which

u-v = |ul|lv|cos(d) = —|ul|v|.

Definition 1.30: Orthogonal vectors

Letu,v € R If

we say that u and v are orthogonal.

Proposition 1.31: Bilinearity and symmetry of scalar product
Let u,v,w € R? and 1 € R. Then

« Symmetry: u-v=v-u
« Bilinearity: It holds
Mu-v)=QAu)-v=u-(1v),

u-(W+rw)=u-v+u-w.

We leave the proof to the reader. The above proposition is saying that the scalar product is bilinear and
symmetric.

Proposition 1.32: Scalar products written wrt euclidean coordinates

Denote by
€1 = (1’0) s € = (0’ 1)

the euclidean basis of R. Let u, v € R? and denote by
u = (up,upy) = uje; + usey

v=(v,n) = ve +we

their coordinates with respect to ey, e;. Then

U'VZU1V2+U2VZ.
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Proof

Note that
epreg=1, e-e=1, e -e=e-e =0.

Using the bilinearity of scalar product we have

u-v=(ue; +ugey) - (vieg + voep)
= uivié1 - € + Ui\oeq - € + Us Vi€ - €1 + UgVo€9 - €9

=Uuv + UsVy .

The above proposition provides a way to generalize of the scalar product to R"..

Definition 1.33: Scalar product in R"
Let u,v € R" and denote their coordinates by
U= up,....,uy), u=MWy,...,v).

We define the scalar product between u and v by

n
u-v = Zu,-vi.
i=1

With the above definition we still have that the scalar product is bilinear and symmetric, as detailed in the
following proposition:

Proposition 1.34: Bilinearity and symmetry of scalar product in R"

Letu,v,w € R and A € R. Then

« Symmetry: u-v=v-u
« Bilinearity: It holds
Mu-v)=QAu)-v=u-(1v),

u-(W+w)=u-v+u-w.

The proof of the above proposition is an easy check, and is left to the reader for exercise.

Definition 1.35
Let u,v € R". We say that u and v are orthogonal if

u-v=20.
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Proposition 1.36: Differentiating scalar product
Lety,n : (a,b) — R" be parametrized curves. Then the scalar map
y-n: (ab) >R

is smooth, and
i(y-n) =y-n+y-n
dt

for all t € (a,b).

Proof

Denote by
Y=0nrn)s 1= 0)
the coordinates of y and 5. Clearly the map

n
toy =) v
i=1

is smooth, being sum and product of smooth functions.

Concerning the formula, by definition of scalar product and linearity of the derivative we have

d d (v
Zrm= E(;Yﬂh)

(yim)

Il
NgE
Q.l&

N
Il
—_

t

I
.M:

N
I
_

Yini + Vil

Yy n+y-n,

where in the second to last equality we used the product rule of differentiation.

1.8 Speed of a curve

Given a curve y we defined the tangent vector at y(t) to be

y@®.
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The tangent vector measures the change of direction of the curve. Therefore the magnitude of y can be

interpreted as the speed of the curve.

Definition 1.37

Lety : (a,b) > R" be a curve. We define the speed of y at the point y(¢) by
ly @I -

We say that y is a unit-speed curve if

ly®l=1, vie(ab).

Remark 1.38

The derivative of the arc-length s gives the speed of y:

t
x0=LW@MT=:%ﬂ4WN-

The reason why we introduce unit speed curves is because they make calculations easy. This is essentially

because of the next proposition.

Proposition 1.39

Lety : (a,b) — R" be a unit speed curve. Then
pp=0

for all t € (a,b).

Proof

Let us consider the identity
n
HORIOEDWAORI 1OIR
i=1

Since y is unit speed we have

YOI =1 vie(ab).

(1.18)
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and therefore p
S (F@r) =0 vie@). (1.19)

We can differentiate the LHS of (1.18) to get
Gy D=rrryy=2r-vy. (1.20)

where we used Proposition 1.36 and symmetry of the scalar product. Differentiating (1.18) and using
(1.19)-(1.20) we conclude

2y-y=0 Vvte(ab).

Remark 1.40

Proposition 1.39 is saying that if y is unit speed, then its tangent vector y is always orthogonal to the
second derivative y. This will be very useful in the future.

Y(s) '

k)
& UNIT sPeeb :

b;-'ﬁ"-.'o

Figure 1.21: If y is unit speed then y and y are orthogonal

1.9 Reparametrization

As we have observed in the Examples of Chapter 1, there is in general no unique way to parametrize a curve.
However we would like to understand when two parametrizations are related. In other words, we want to
clarify the concept of equivalence of two parametrizations.
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Definition 1.41: Diffeomorphism
Let ¢ : (a,b) — (a, b). We say that ¢ is a diffeomorphism if the following conditions are satisfied:
1. ¢ is invertible, with inverse ¢! : (@, b) - (a,b). Thus
§ep=gegt =1d,
where Id : R — R is the identity map on R, that is,
Id(t) =t, VteR.

2. ¢ is smooth,
3. ¢! is smooth.

Definition 1.42: Reparametrization

Lety : (a,b) > R be a parametrized curve. A reparametrization of y is another parametrized curve
Y : (a,b) - R" such that )

y(®) =y(¢@®)) vte(ab), (1.21)
where

¢: (a.b) > (a,b)

is a diffeomerphism. We call both ¢ and ¢! reparametrization maps.

Remark 1.43

A comment about the above definition. Given a parametrized curve y, this identifies a 1D shape I' ¢ R".
A reparametrization y is just an equivalent way to describe I. For y and y to be reparametrizations of
each other, there must exist a smooth rule ¢ to switch from one to another, according to formula (1.21)

Example 1.44: Change of orientation

The map ¢ : (a,b) — (a,b) defined by

¢t) 1= —t
is a diffeomoprhism. The inverse of ¢ is given by ¢! : (a,b) — (a,b) defined by
¢l = —t.

Note that ¢ can be used to reverse the orientation of a curve.
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b ' N

Figure 1.22: Sketch of 1D shaper Kparametrized by y and y

H
o

Example 1.45: Reversing orientation of circle

Consider the unit circle parametrized as usual by y : [0,27] — R? defined as
y(@) := (cos(t), sin(2)) .
To reverse the orientation we can reparametrize y by using the diffeomorphism
() 1= —t.
This way we obtainy :=y ¢ : [0,27] — [0, 27],

Y@ =y ()
= (cos(—t), sin(—t))
= (cos(t), — sin(t)),

where in the last identity we used the properties of cos and sin. Notice that in this way, for example,

y(z/2)=(0,1), y(r/2)=(0,-1).
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Figure 1.23: Unit circle with usual parametrization y, and with reversed orientation y

Example 1.46: Change of speed

Let k > 0. The map ¢ : (a, b) — (a,b) defined by
o) 1=kt

is a diffeomoprhism. The inverse of ¢ is given by ¢~ : (a,b) — (&, b) defined by
ROELS

Note that ¢ can be used to change the speed of a curve:

« If k > 1 the speed increases ,
« If 0 < k < 1 the speed decreases.

Example 1.47: Doubling the speed of Lemniscate

Recall the Lemniscate
y(@®) := (sin(?), sin(t) cos(t)), t€[0,2x].
We can double the speed of the Lemniscate by using the Using the diffeomorphism
o) :=2t.
This way we obtainy :=y ¢ : [0,7] — [0, 2] with
y(@) =y(¢(t)) = (sin(2t), sin(2t) cos(2t)) .
In this case we have that '
y(@®) = 2y($@®)).
The above follows by chain rule. Indeed, ¢ = 2, so that

P = 2 66O = JOrG0) = 2.
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Y

Figure 1.24: Lemniscate curve

Important

The main reason we are interested in reparametrizations is because we want to parametrize curves by
arc-lenght: This means that, for a curve y, we want to find a reparametrization y such that y is unit
speed:

l¥rl=1, vte(ab).

We will see that this is not always possible.

Definition 1.48: Regular points

Lety : (a,b) > R" be a parametrized curve. We say that:

« y(t) is a regular point if
y(@o) =0.
« A point y(t) is singular if it is not regular.

« The curvey is regular if every point of y is regular, that is,

y@) =0, Vvte(ab).

Note that when y(#,) = 0, this means the curve is stopping at time t,. Before making an example, let us prove
a useful lemma about diffeomorphisms.
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Lemma 1.49
Let¢ : (a,b) — (a, i)) be a diffeomorphism. Then

dt) =0 Vte(ab).

Proof

We know that ¢ is smooth with smooth inverse
Y i=¢7' i (@b) > (ab).

In particular it holds
Y(pt) =t, Vte(ab).

We can differentiate both sides of the above expression to get

d
AUCOVESY (122)

We can differentiate the LHS by chain rule

% UICONESICON O}

From (1.22) we then get . .
YPp®)pt) =1, vte(ab).

Since on the LHS we have a product, this means that none of the LHS terms vanishes, so that

d) =0, Vte(ab).

Example 1.50: A curve with one singular point

Consider the parabola
F:={xy)eR?: y=x% -1<x<1}.

This can be parametrized in two ways by y,n : [-1,1] — R? defined as

y® =%, n@=@E1).

We will see that the above parametrizations are not equivalent. This is intuitively clear, since the change
of variables map should be

o) =13,

This is smooth and invertible, with inverse

¢~(®) =x.
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However ¢! is not smooth at t = 0, and thus ¢ is not a diffeomorphism. Alternatively we could have
just noticed that

) =3 =  $0)=0,
and therefore ¢ cannot be a diffeomorphism due to Lemma 1.49.
Let us look at the derivatives:

Yy =(@,2t), 7@ = (3t 6t°).

We notice a difference:

« y is a regular parametrization,
« n(t) is regular only for t # 0.

Indeed if we animate the plots of the above parametrizations, we see that:

« The point y(¢) moves with constant horizontal speed
« The point 5(t) is decelerating for ¢ < 0, it stops at t = 0, and then accelerates again for ¢t > 0.

Figure 1.25: Parabola T’

Proposition 1.51: Regularity is invariant for reparametrization

Lety : (a,b) » R" be a parametrized curve and suppose that y is regular, that is,

y@) =0, Vvte(ab).

Then every reparametrization of y is also regular.
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Proof

Lety : (a, b) > R'bea reparametrization of y. Then there exist ¢ : (a, b) > (a,b) diffeomorphism such
that ]
7O =y(®), vte(@b).

By the chain rule we have
70 = £ GO = YGOMO.

Therefore ' ‘
Yy =0 = ylg®)p@) #0. (1.23)

But we are assuming that y is regular, so that

y@®) =0, vie(ab).

Thus (1.23) is equivalent to ' .
Y& =0 <= @) #0. (1.24)
Since ¢ is a diffeomorphism, by Lemma 1.49 we have that

dt) =0, Vvte(ab).

By (1.24) we conclude that ' )
y®) =0, vte(ab),

proving that y is regular.

Example 1.52

Let us go back to the parabola
F:={xy)eR?: y=x% -1<x<1},
with the two parametrizations y,n : [~1,1] — R? with
y®) =19, i =E.1°).

We have that
yO =20, 7t) = G2 60).

Therefore

+ Y is a regular parametrization,
« n(t) is regular only for ¢ = 0.

Proposition 1.51 implies that  is NOT a reparametrization of y.
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Definition 1.53: Unit speed reparametrization

Let y be a parametrized curve. A unit speed reparametrization of y is a reparametrization y such that
Y is unit speed.

The next theorem states that a curve is regular if and only if it has a unit speed reparametrization. For the
proof, it is crucial to recall the definition of arc-length of a curvey : (a,b) — R", which is given by

t
(1) = L ¥l dr.,

for some arbitrary t, € (a,b) fixed. Indeed, we will see that for ¢ regular the unit speed parametrization map
can be taken as

$=s1.
Theorem 1.54: Existence of unit speed reparametrization

Let y be a parametrized curve. They are equivalent:

« y is regular,
« ¥ has a unit speed reparametrization.

Proof

Step 1. Direct implication.
Assumey : (a,b) » R" is regular, that is,

y@) =0, Vvte(ab).

Lets : (a,b) = Rbe the arc-length of y starting at any point ¢, € (a,b). By the Fundamental Theorem of
Calculus we have

$(t) = ly (@)l (1.25)
so that
s(#)>0, Vte(ab).

Since s is a scalar function, the above condition and the Inverse Function Theorem guarantee the ex-
istsence of a smooth inverse

sL o (@,b) > (ab)
for some @ < f. Define the reparametrization map ¢ as
§i=s!
and the corresponding reparametrization of y given by the curve

7:@b)-R, ji=yeg.
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We claim that y is unit speed. Indeed, by definition
yi=yep = y=v-¢l=yes,
or in other words
y®) =yGs@®), vie(ab).
Differentiating the above expression and using the chain rule we get
Y@ = () 5() = y(s@)) [y @)

where in the last equality we used (1.25). Taking the absolute value of the above yileds

@l = [r @] ly®l - (1.26)

Since y is regular, we have

ly@®| =0, Vte(ab).
Therefore we can divide (1.26) by |y(¢)| and obtain

@) =1, vte(ab).
By invertibility of s, the above holds if and only if
y@©|=1, vte@b),

showing that y is a unit speed reparametrization of y.
Step 2. Reverse implication.
Suppose there exists a unit speed reparametrization of y denoted by

7:@bh R, p=yed
for some reparametrization map ¢ : (a,b) — (a,b). Differentiating J = y » ¢ and using the chain rule we

get . _
y(@) =y(g(®) $(2).

Taking the norm ‘ -

[r @] = @) $l.
Since y is unit speed we obtain

@O 1 =1, vte(ab). (1.27)

Since ¢ is a diffeomorphism from (4, b) into (a,b), Lemma 1.49 guarantees that

d) =0, Vte(ab).
In particular (1.27) implies )

y(@(t) =0, Vvte(ab).

As ¢ is invertible, we also have

y@) =0, Vte(ab),

proving that y is regular.
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The proof of Theorem 1.54 told us that, if y is regular, then
y=yes!
is a unit speed reparametrization of y. In the next proposition we show that the arc-length s is essentially the

only unit-speed reparametrization of a regular curve.

Proposition 1.55: Arc-length and unit speed reparametrization

Lety : (a,b) = R" be a regular curve. Letj : (&,b) — R" be reparametrization of y, so that

yY®) =y(g@®), vie(ab).

for some diffeomorphism ¢ : (a,b) — (a, b). Denote by

t
(1) := L W@l de, te(ab)

the arc-length of y starting at any point ¢, € (a,b). We have:

1. Ify is unit speed, then there exists ¢ € R such that

¢) = +£s(t) +c, Vte(ab). (1.28)

2. If ¢ is given by (1.28) for some ¢ € R, then y is unit speed.

Proof

Step 1. First Point.
First note that a unit speed reparametrization y of y exists by Theorem 1.54, since y is assumed to be
regular. Thus assume y is unit speed reparametrization of y. By differentiating both sides of

y(®) =7($®). Vte(ab),
we obtain
10 = Lpe) = 160§
Taking the norms we then have
@l = [r($®) d(@)
= lr(¢®)] 16|
= lp(®)!.

where in the last equality we used that y is unit speed, and so

rl=1.
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To summarize, so far we have proven that

Iyl = 1@, vt e (ab).
Therefore ) ,
() = j @l dr = j 90| dr
t to

By the Fundamental Theorem of Calculus we get

5(1) = |p(@)|
and therefore

p=%4s+c
for some c € R, concluding the proof.
Step 2. Second Point.
Suppose that

$:=+s+c

for some ¢ € R, so that ¢ : (a,b) — (a, b). We have

G(t) = +£5(t) = £ Jy(@)] = 0 (1.29)

where the last term is non-zero since y is regular. Therefore, due to the Inverse Function Theorem, ¢ is
invertible with smooth inverse. This proves that y defined by

Vo=vey, yoi=¢7l
is a reparametrization of y. In particular
Y=ve-¢.
Differentiating the above, and recalling (1.29), we get

7 =y (@) $(t) = y($(®) (IO -

Taking the absolute value of the above yields

ly®l = [i(e@)] @l -

Since y is regular we can divide by |y(t)| to get

Y@@ =1 vie(ab).

Since ¢ is invertible, the above is equivalent to

lF®|=1 vte(ab),

proving that y is a unit speed reparametrization.
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Remark 1.56

Let y be regular. The above proposition tells us that they are equivalent:

1. Computing a unit speed reparametrization of y,

2. Computing s the arc-length of y.

In some cases however, unit speed reparametrization and arc-length are impossible to characterize in
terms of elementary functions, even for very simple curves.

Example 1.57: Twisted cubic
Define the twisted cubicy : R — R? by

y() = (t.1%,1).

Therefore
y@) = (1,2t,3t%),

so that
y@®) =0, VteR,

meaning that y is regular. In particular we have

O] =1 +42 + o

so that the arc-length of y is

t
s(t) = J 1+ 472 +9r4dr.
fy
Since y is regular, by Proposition 1.55 we know that y admits a unit speed reparametrization y such that
Y=v°¢

with the diffeomorphism ¢ given by

t
H(t) = +s(t) + ¢ = :I:J N1+4r2 +9r4dr +¢
l

for some ¢ € R. It can be shown that the above integral does not have a closed form in terms of elementary
functions. Therefore the unit speed parametrization y cannot be computed explicitly.
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Figure 1.26: Plot of Twisted Cubic for t between -2 and 2

1.10 Closed curves

So far we have seen examples of:
+ Curves which are infinite, or unbounded. This is for example the parabola
y@® := (1), VteR,
 Curves which are finite and have end-points, such as the semi-circle
y(@) := (cos(t),sin(t)), Vtel0,x],
« Curves which form loops, such as the circle
y(@®) := (cos(t),sin(t)), Vte€[0,2x].
However there are examples of curves which are in between the above types.

Example 1.58
For example consider the curvey : R — R?

y@® ;=@ -1, —t) VvteR.
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This curve has two main properties:

« Y is unbounded: If define y as the restriction of y to the time interval [1, o), then y is unbounded.
A point which starts at y(1) = (0, 0) goes towards infinity.

« Yy contains a loop: If we define y as the restriction of y to the time interval [—1, 1], theny is a closed
loop starting at y(—1) = (0, 0) and returnning at y(1) = (0,0).

Y

Figure 1.27: Plot of curve y(t) = (t? — 1,13 — 1) for t € [-2, 2]

The aim of this section is to make precise the concept of looping curve. To do that, we need to define
periodic curves.

Definition 1.59: Periodic curve

Lety : R — R" be a parametrized curve, and let T € R. We say that y is T-periodic if

y@®) =y@t+T), VteR.

Note that every curve is 0-periodic. Therefore to define a closed curve we need to rule out this case.
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Definition 1.60: Closed curve

Lety : R — R" be a parametrized curve. We say that y is closed if:

+ Y is not constant,
» y is T-periodic for some T # 0.

Remark 1.61

We have the following basic facts:

1. If y is T-periodic, then a point moving around y returns to its starting point after time T.

This is exactly the definition of T-periodicity. Indeed let p = y(a) be the point in ques-
tion, then

y@+T)=y(@=p
by periodicity. Thus y returns to p after time T.

2. Ify is T-periodic, then y is determined by its restriction to any interval of length |T].
3. Conversely, suppose thaty : [a,b] — R" satisfies

d~ dy

_ Y o ¥
Y@ =y®), ~@ =)

for all k € IN. Set
T:=b-a.
Then y can be extended to a T-periodic curvey : R — R" defined by

t—a

J(b—a), vVteR.
b—a

y@®) =y@®, t ::t—l

The above means that y(t) is defined by y(¢) where t is the unique point in [a, b] such that

t=t+k(b-a)
with k € Z defined by
t—a
k:= ,
b—aJ

see figure below. In this way y is T-periodic.
4. If'y is T-periodic, then it is also (—T)-periodic.
Because if y is T-periodic then
yO=y(t-D+T)=yt-T)

where in the first equality we used the trivial identity ¢t = (t—T)+T, while in the second
equality we used T-periodicity of y.
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5. If y is T-periodic for some T # 0, then it is T-periodic for some T > 0.
This is an immediate consequence of Point 4.
6. Ify is T-periodic the y is (kT)-periodic, for all k € Z.
By point 4 we can assume WLOG that k > 0. We proceed by induction:

« The statement is true for k = 1, since y is T-periodic.
« Assume now that y is kT-periodic. Then

Yyt +G&+1)T) =y((t+T)+kT)
=yt +T) (by kT-periodicity)
=y() (by T-periodicity)
showing that y is (k + 1)T-periodic.
By induction we conclude that y is (kT)-periodic for all k € IN.
7. If y is Ty-periodic and T,-periodic then y is (k;T; + kyT,)-periodic, for all ky, k, € Z.

By Point 6 we know that y is k;T;-periodic and k,T5-periodic. Set T := k;T; + ko T,. We
have

Yy +T) =yt +kT1) + k. T5)
=yt +kT) (by kyT5-periodicity)
=y(®) (by k;T;-periodicity)

showing thaty is (k;T; + k,T5)-periodic.

YN

a ¢ b t+T t+ 2T t=t+3T

R

Figure 1.28: The points ¢t € Rand f € [a, b] from Point 3 in Remark 1.61. In this skectht = t+ 3T, with T = b—a.

Definition 1.62

Let y be a closed curve. The period of y is the smallest T > 0 such that y is T-periodic, that is

Period of y :=min{T : T >0, y is T-periodic}.

We need to show that the above definition is well-posed, i.e., that there exists such smallest T > 0.
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Proposition 1.63

Let y be a closed curve. Then there exists a smallest T > 0 such that y is T-periodic. In other words, the
set
S:={T: T>0, y is T-periodic}.

admits positive minumum
P=minS, P>0.

Proof

We make 2 observations about the set S:

« Since y is closed, we have that y is T-periodic for some T # 0. By Remark 1.61 Point 5, we know
that T can be chosen such that T > 0. Therefore

S+Q.
+ S is bounded below by 0. This is by definition of S.

Thus, by the Axiom of Completeness of the Real Numbers, the set S admits an infimum

P =infS.
The proof is concluded if we show that:
Claim. We have
P =minS.
This is equivalent to saying that
PeS.

Proof of claim.
To see that P € S we need to show that

1. y is P-periodic,
2. P>0.

Since P is the infimum of S, there exists an infimizing sequence {T},},cn C S such that
T, —>P.
WLOG we can choose T,, decreasing, that is, such that

Ty >T,>..>T,>...>0.
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Proof of Point 1. As T,, € S, we have that y is T,-periodic. Then
Yyt +T,) =y(t), VteR, nelN.
Since T,, — P, we can take the limit as n — oo and use the continuity of y to obtain
y®=lim yt+T)=y(t+P), VieR,

showing that y is P-periodic.
Proof of Point 2. Suppose by contradiction that

Fix t € R. Since T,, > 0, we can find unique
t, €[0,T,,], k,€Z,

such that
t=t,+k,T,,

as shown in the figure below. Indeed, it is sufficient to define

t
k, := l?J ez, t,:=t—k,T,.

n

Since T,, € S, we know that y is T,,-periodic. Remark 1.61 Point 6 implies that y is also k,T;,-periodic, since
k, € Z. Thus

Y@ =y, + k1) (definition of t,)
=yt (by k, T,,-periodicity) .

Therefore
y®=yt,), VYneN. (1.30)

Also notice that
0<t,<T,, VvnelN.

by construction. Since T,, — 0, by the Squeeze Theorem we conclude that
tl, >0 asn-— o0,
Using the continuity of y, we can pass to the limit in (1.30) and obtain
y®) = lim y(t,) =y(0).
Since t € R was arbitrary, we have shown that

y@®) =y(), vteR.

Therefore y is constant. This is a contradiction, as we were assuming that y is closed, and, in particular,
not constant.
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Y YN

0 1y T, t=t, +k, T},

Figure 1.29: For each ¢t € R there exist unique k, € Z and t, € [0,T,,] such that t = t + k,T,,. In this skecth
k, = 3.

Example 1.64

Some examples of closed curves:

« The circumference
y(@®) = (cos(t),sin(t)), t€eR

is not costant and is 27-periodic. Thusy is closed. The period of y is 27.

« The Lemniscate
y(@) = (sin(¢), sin(t) cos(t)), t€R

is not costant and is 27-periodic. Thus y is closed. The period of y is 2.

+ Consider again the curve from Example 1.58
y@® =(@* -1, -t), teR.

According to our definition, y is not periodic. Therefore y is not closed. However there is a point
of self-intersection on y, namely

p :=1(0,0),
for which we have
p=y(-1) =y().

The last curve in the above example motivates the definition of self-intersecting curve.
Definition 1.65: Self-intersecting curve
Lety : R — R" be a parametrized curve. We say that y is self-intersecting at a point p on the curve if
1. There exist two times a # b such that
p=vy@)=y®),

2. Ify is closed with period T, then b — a is not an integer multiple of T.
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Remark 1.66

The second condition in the above definition is important: if we did not require it, then any closed curve
would be self-intersecting. Indeed consider a closed curvey : R — R" and let T be its period. Then by
Point 6 in Remark 1.61 we have

Y@ =y(a+kT), VaeR keZ.

Therefore every pointy(a) would be of self-intersection. Point 2 in the above definition rules this example
out. Indeed set b := a + kT, then
b—a=kT,

meaning that b — a is an integer multiple of T.

Example 1.67
Let us go back to the curve of Example 1.58, that is,
y@® =@ -1, —t), teR.

We have that y is not periodic, and therefore not closed. However p = (0,0) is a point of self-
intersection on y, since we have

p=y(=1)=yQ).

Example 1.68: The Limacon
Define the parametrized curvey : R — R? by
y(@®) = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)), VteR.

Such curve, plotted bolow, is called limagon (French for snail). This curve is non constant and 27-periodic.
Therefore it is closed. The period of y is 27. Moreover we have

y(@) =y(b) =(0,0).

with a = 27/3 and b = 47/3. Note that

which is not an integer multiple of the period 2. Therefore y is self-intersecting at (0, 0).
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Y

Figure 1.30: Limacon curve
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2 Curvature and Torsion

We have seen how to describe curves and reparametrized them. Now we want to look at local properties of
curves:

« How much does a curve twist?
« How much does a curve bend?

We will measure two quantities:

+ Curvature: measures how much a curve y deviates from a straight line.
 Torsion: measures how much a curve y fails to lie on a plane.

For example a 2D spiral is curved, but still lies in a plane. Instead the Helix both deviates from a straight line
and pulls away from any fixed plane.

2.1 Curvature

We start with an informal discussion. Suppose y is a straight line
y@) =a+tv
with a,v € R3. The tangent vector to y is constant
y@) =v.

Whatever the definition of curvature will be, it has to hold that y has zero curvature in this case. If we further
derive the tangent vector, we obtain

() =0,
Thus y seems to be a good candidate for the definition of curvature of y at the point y(¢).

Suppose now that y is a curve in R? with unit speed. We have proven that in this case
v¥=0.

that is, the vector y is orthogonal to the tangent y at all times. Now let n(¢) be the unit vector orthogonal to
y(t) at the point y(¢). The amount that the curve y deviates from its tangent at y(t) after time ¢t is

(y( +1) —y(®) n@), (2.1)
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Ft+b)
7 ¥ (®)

rv) This g ctance

(rlesk) - ¥6) )om
Figure 2.1: Amount that y deviates from tangent is (y(t + t5) —y(t)) - n(t)

as seen in the figure below.

Equation (2.1) is what we take as measure of curvature. Since
y@®-y®)=0 and y() -n)=0,
we conclude that y(t) is parallel to n(¢). Since n(t) is a unit vector, there exists a scalar x(t) such that
7@ =x()n().

As n is unitary, we have

K(8) = [y (I
Now, approximate y at ¢t with its second order Taylor polynomial:

41 = YO + 7O + L0 + ol

where the remainder o(t) is such that

i o(ty)
im —= =

0.
tp—0 tg

Therefore, discarding the remainder,

1+ 1)y (© = yOn + 8.
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Multiplying by n(t) we get

(1t + 1) () n®) = y© -ny + T 0z
Recalling that
y®-n@) =0, y@) n@)=x@),

we then obtain

(1t + 1) = y(®) - n(®) = 5 (O

Important

The amount that y deviates from a straight line is proportional to

NOES {O]

We take this as definition of curvature for a general unit speed curve in R™.

Definition 2.1

Lety : (a,b) > R" be a unit speed curve. The curvature of y at y(¢) is

(@) = [y@] -

Note that x(¢) is a function of time. Therefore the curvature of y can change from point to point.

We now define curvature for curves which are regular, but not necessarily unit speed.

Definition 2.2

Lety : (a,b) » R" be a regular. The curvature of y at y(t) is

(@) = [y(p®)

, Vte(ab),

where y is a unit speed reparametrization of y, withy =y < ¢.

Remark 2.3

The above definition is well posed:

« Since y is regular, there exist a unit speed reparametrization y of y.
« Ify is another unit speed reaprametrization of y, withy =y o ¢, then

k¥ (t) = [p((t))

3
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showing that there is no ambiguity in the definition of Y.
Indeed, since y and y are both reparametrizations of y, then

y() =7(¢®), y@® =)

for some diffeomorphisms ¢, ¢; Hence

YO =7@0). ¢ :=ge@7, (2.2)
where ¢ is a diffeomorphism, since it is composition of diffeomorphisms. Differentiating
(2.2) we get ' . .

HOESICONOF (2.3)

Taking the norms of the above, and recalling that y and y are unit speed, we get

gl =1, vt. (2.4)

Since ¢ is a diffeomorphism, we already know that || # 0. As ¢ is continuous, this means
that the sign of ¢ is constant. Thus (2.4) implies

dH)=1 or ¢@t)=-1.

In both cases, we have

-
1l
o

Differentiating (2.3) we then obtain

P(®) = (@)@ + y(d(©))(t)

= PO
Taking the norms and using again that |¢| = 1, we get that
@] = Jr®)] -
Recalling that ¢ = ¢ » (¢)~! we get
[F@¢®)| = |7 ¢@)| . vte(ab).
Therefore
() = [F®)| = @) -
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Remark 2.4: Methods for computing curvature
In summary, the curvature of a regular curve
Y : (a,b) > R
is defined via unit speed reparametrizations of y. To compute x we do the following:

« We find a unit speed reparametrization y of the regular curve y
This can be done by computing s the arc-length of y, and then defining

yo=yey, ¢oi=s

« Then we compute

K@) = [y )

We obtain the curvature of y by )
kY () =Y (t)

When y is regular and has values in R?, there is a way to compute k without reparametrizing. To do this,
we will need the notion of cross product, or vector product. We will see this in the following sections.

R ¥ @l

ri(ab) >R
N 3D conmu® k ey,

WITHOIT ReEPARAnE T ziNg

Figure 2.2: Procedure for computing curvature

We conclude with two examples in which we compute the curvature x using unit speed reparametrizations.
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Example 2.5
Consider the circle of radius R > 0:
y(@®) = (Rcos(t), Rsin(t)), te€[0,2x].
To compute the curvature of y we need to find a unit speed reparametrization. We have shown that:

1

Yy regular = ¢ =s" unit speed reparametrization

where s is the arc length of y:
t
s = | el dr.
fy

In our case

y(®) = (—Rsin(t), Rcos(t)) = |y@®)|=R

and soy is regular. However y is not unit speed, therefore we need to find a unit speed reparametrization.
The arc length starting at t, = 0 is

t
s(t) = J Rdr = tR.
0

The inverse of s is

$(t) = s71(t) = %.

Therefore a unit speed reparametrization of y is

Y i=ye°¢

7(©) = (Reos () Rsin (%)) -

0= (con(3).co )
0-(heol) 3 )

K0 = [f0] = %

In this case k() is constant. The curvature also tells us that the smaller the circle, the higher the curvature.
For a large circle, like the Earth, the curvature is barely noticeable.

which reads

We have

Therefore the curvature of y is

Before proceeding with the next example, let us give a short overview of the Hyperbolic functions.
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Remark 2.6: Hyperbolic functions

The Hyperbloic functions are the analogous of the trigonometric functions, but defined using the hyper-
bola rather than the circle. Their formulas can be obtained by means of the exponential function e'. We

have:

« Hyperbolic cosine: The even part of the function ¢', that is,

bt 2t —2t
e +e e"+1 1+e
cosh(?) = = =
® 2 2¢t 2e!
« Hyperbolic sine: The odd part of the function €', that is,
bt 2t —2t
. e —e e"—1 1-—e
sinh(t) = = =
® 2 2¢t 2et
« Hyperbolic tangent: Defined by
sinht el —e? &1

tanh(t) =

cosht e +et 241’

Hyperbolic cotangent: The reciprocal of tanh for ¢ # 0,

cosht e +e! e +1
sinht e —e? g2 -1

cotht =
i e_

« Hyperbolic secant: The reciprocal of cosh

1 2 2¢!

sech(?) = = .
®) cosht el +et 241

Hyperbolic cosecant: The reciprocal of sinh for ¢ # 0,

12 2¢!
sinht el —et g2t _1°

csch(t) =

For a plot cosh, sinh, tanh see Figure 2.3 below. The properties of the hyperbolic functions which are of
interest to us are:

1. Identities:
cosh(t) + sinh(¢) = €'
cosh(t) — sinh(¢) = !
coshz(t) - sinhz(t) =1
sechz(t) - tanhz(t) =1
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2. Derivatives:

d . _

o [sinh(#)] = cosh(z)

d .

o [cosh(t)] = sinh(t)

% [tanh(5)] = 1 — tanh®(t) = —esch’(r)

3. Integrals:

-t
sinh(u) du = cosh(t) — cosh(t,)
o t
+
cosh(u) du = sinh(t) — sinh(%;)
Ji,
-t

),

tanh(u) du = log(cosh(t)) — log(cosh(%))

10 4

5 —— cosh(x)
—— sinh(x)
—— tanh(z)

.y
1

—10
-3 —2 —1 0 1 2 3
t

Figure 2.3: Plot of cosh, sinh, tanh.
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Example 2.7: The Catenary

The catenary is the shape of a heavy chain suspended at its ends. The chain is only subjected to gravity,
see Figure 2.4. This shape looks similar to a parabola, but it is not a parabola. This was first noted by
Galilei, see this Wikipedia page. The profile of the hanging chain can be obtained via a minimization
problem, and one can show it is of the form

y(@®) = (t,cosh(t)), teR.
See Figure 2.5 for a plot of y. Let us check if y is regular. We have

y(@®) = (1,sinh(t))
so that
Iyl? = 1+ sinh®(®) = cosh®(t) =  |y| = cosh(?).
Note that
cosh(t) > 1

showing that y is regular. However

e+el

ly (D] = cosh(1) =

=~ 1.54,

proving that y is not unit speed. Let us then compute the arc length of y starting at t, = 0

t t
s(t) = J ly(w)| du = J cosh(u) du = sinh(t)
0 0
since sinh(0) = 0. We need to invert s. We have

= eZt—Zset—lzo,

s=sinh(t) < s=
where the last equation was obtained multuplying both sides by e/. Now we substitute

y=e

and obtain
el -2 —1=0 = P -2sy-1=0 <= y=s+t1+s2.

Recalling that y = ', we only consider the positive solution, and obtain that
e=s+Vl+s* = t:log(s+\/1+sz>.

We have proven that the inverse of the arc length s(z) is

Y(t) :=s1(t) = log (t +41+ t2) .
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Therefore
y@® :=yyQ)

is a unit speed reparametrization of y. Substituting ¢/ and using the definition of y we have

Y = (log(t+\/1 +t2),\/1 +t2) .

We can now compute the curvature. We have:

f'(t)=( —— — )
V1412 1412

P 1
0= (i i)

Moreover
ot P S
(14123 (14123 (Q+12)?

Y

170]
Therefore the curvature is 1
1+12°

k() = y@®)| =

Figure 2.4: The catenary is the shape of a heavy chain suspended at its ends. Image from Wikipedia.
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—1 1

Figure 2.5: Plot of the catenary curve y(t) = (t, cosh(t)).
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2.2 Vector product in R’

The discussion in this section follows [2]. We start by defining orientation for a vector space.

Definition 2.8: Same orientation

Consider two ordered basis of R3

B =(by,by,bs), B=(by,bybs).

We say that B and B have the same orientation if the matrix of change of basis has positive determinant.

When two basis B and B have the same orientation, we write

b~b.

The above is clearly an equivalence relation on the set of ordered basis. Therefore the set of ordered basis of
R® can be decomposed into equivalence classes. Since the determinant of the matrix of change of basis can
only be positive or negative, there are only two equivalence classes.

Definition 2.9: Orientation

The two equivalence classes determined by ~ on the set of ordered basis are called orientations.

Definition 2.10: Positive orientation

Consider the standard basis of R3
E = (e, ez e3)

where we set
e; =(1,0,0), e;=1(0,1,0), e3=1(0,0,1).

Then:

« The orientation corresponding to E is called positive orientation of R3.
« The orientation corresponding to the other equivalence class is called negative orientation of R>,

For a basis B of R? we say that:

+ Bis a positive basis if it belongs to the class of e.
+ Bis a negative basis if it does not belong to the class of e.
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Example 2.11

Since we are dealing with ordered basis, the order in which vectors appear is fundamental. For example,
we defined the equivalence class of
E= (el’ €2, 03) >

to be the positive orientation of R>. In particular e is a positive basis.
Consider instead
E=(ez e, €3).

The matrix of change of variables between E and E is
010
(ez]esles)={ 1 0 0
0 01

and the latter has negative determinant. Thus E does not belong to the class of E, and is therefore a
negative basis.

We are now ready to define the vector product in R>.

Definition 2.12: Vector product in R®

Let u,v € R®. The vector product of u and v is the unique vector

uxveR3
which satisfies the property:
Uy u; us
(uxv)-w=|v v v |, YweR>. (2.5)
W1 Wy Wwg

Here |a;j| denotes the determinant of the matrix (a;;), and

i=1

3 3 3
w=Yue v=Yue, weY e,

with (eq, e, e3) standard basis of R>.

The following proposition gives an explicit formula for computing u x v.
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Proposition 2.13
Let u,v € R3. Then
Uy U Uy u Uy u
uxv=| 2 3¢ 1 % e, 1 "2 e, (2.6)
Vo V3 Vi VvV Vi W

Proof

Denote by (u x v); the i-th component of u x v with respect to the standard basis, that is,

3
uxv= Z(uxv)iei.
i=1

We can use (2.5) with w = e; to obtain

U Uy u

1 U2 U3 Uy us
(uxv)-e;=|vy v w|=

1 0 V2 V3

where we used the Laplace expansion for computing the determinant of the 3 x 3 matrix. As the standard
basis is orthonormal, by bilinearity of the scalar product we get

3

(uxv)-e; = Z(UXV)iei‘e1 = (uxv).

i=1

Therefore we have shown

(uxv); = ‘
Similarly we obtain
Uy U
(uxv)y=|v
0 1
and
Uy U
(uxv)z3=|v W
0 O
from which we conclude.
Sometimes we will denote formula (2.6) by
i
uxv=|1u
Vi

Up

Us
V3

Us
V3

Z%]
v

Us
V3

Uy
V1

Us
V3

U U

Vi W

Uy
V3
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Let us collect some crucial properties of the vector product.

Proposition 2.14
The vector product in R? satisfies the following properties: For all u,v € R?

L uxv=-vxu
2. uxv =0 if and only if u and v are linearly dependent
3. (uxv)-u=0,(uxv)-v=0
4. Forallw e R%, a,b € R
(au+bw)xv=auxv+bwxw

The proof, which is based on the properties of determinants, is omitted.
Remark 2.15: Geometric interpretation of vector product
Let u, v € R3 be linearly independent. We make some observations:
1. Property 3 in Proposition 2.14 says that
(uxv)-u=0, (uxv)-v=0.
Therefore u x v is orthogonal to both u and v.

2. In particular u x v is orthogonal to the plane generated by u and v.

3. Since u and v are linearly independent, Property 2 in Proposition 2.14 says that

uxv=+0

4. Therefore we have
xv)-(uxv) =fuxv]’ >0

5. On the other hand, using the definition of u x v with w = v x w yields
U U Us

(uxv)-(uxv)= v vy V3
(uxv); (uxv), (uxv)s

6. Therefore the determinant of the matrix
(ulvia xv)

is positive. This shows that
(u,v,uxv)

is a positive basis of R>.
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7. Forallu,v,x,y € R3 it holds

u'x v-Xx
u'y vy

(uxv)-(xxy)= : (2.7)

Indeed, one can check that the above formula holds for the standard vectors e;, and thus the general
formula follows by linearity.

8. Using (2.7) we get

u-u v-u

2
fuxvl’ = @xv)-@xv=| T8 VY

= [l v — [u - v[?

= Jul® vI* — Juf? [v]* cos?(6)
= Juf® vl (1 - cos?(6))

= Jul® |v|* sin®(0)

= A?

where A is the area of the parallelogram with sides u and v.

S X &

AN
M xT | = A

A= Irl- lul gingr

Figure 2.6: For u, v linearly independent, u x v is orthogonal to the plane generated by u, v. Moreover |u x v|
is the area of the parallelogram with sides u, v, and (u, v, u x v) is a positive basis of R3
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Let us summarize the above remark.

Remark 2.16: Summary: Properties of u x v
Let u,v € R? be linearly independent. Then

« u x v is orthogonal to the plane spanned by u, v
+ |u x v| is equal to the area of the parallelogram with sides u, v
« u x Vv is such that

(u,v,uxv)

is a positive basis of R®.

We conclude with noting that the cross product is not associative, and with a useful proposition for differen-
tiating the cross product of curves in R>.

Proposition 2.17
The vector product is not associative. In particular, for all u, v, w € R? it holds:

(uxv)xw=((u-w)v—(v-wu. (2.8)

The proof is omitted. It follows by observing that both sides of (2.8) are linear in u, v,w. Therefore it is
sufficient to verify (2.8) for the standard basis vectors e;. This is left as an exercise.

Proposition 2.18
Suppose y,n : (a,b) — R® are parametrized curves. Then the curve
yxn : (a,b) > R

is smooth, and

d . .
E(yxn)zyxnﬂ/xrl- (2.9)

The proof is omitted. It follows immediately from formula (2.6).

2.3 Curvature formula in R®

Given a unit speed curve

Y : (a,b) > R
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we defined its curvature as
k(1) = ly@) .

If y is not unit speed then the curvature is not defined. However, when y is regular, then we can find a
unit-speed reparametrization y of y, and compute k as

k() = Jy@)] -

Ify is a regular curve in R3, there is a way to compute k without passing through y. The formula for computing
K is as follows.

Proposition 2.19: Curvature formula
Lety : (a,b) — R3 be a regular curve. The curvature x(t) of y at y(t) is given by

ly > ¥l

k(t) = ——-
Iyl

(2.10)

We delay the proof of the above Proposition, as this will get easier when the Frenet frame is introduced. For
a proof which does not make use of the Frenet frame, see the proof of Proposition 2.1.2 in [6].

For now we use (2.10) the above proposition to compute the curvature on specific curves.

Example 2.20

Consider the straight line
y@) =a+tv

for some a, v € R fixed, with v = 0. Then

y@®)=v, y@)=0.
Therefore
ly@Il = vl =0

showing that y is regular. We have
Yyxy=vx0=0.

Therefore the curvature is

. ||1/'>< 3?'II )
¥l

as expected.
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Example 2.21
Consider the Helix of radius R > 0 and rise H > 0

y(@®) = (Rcos(t), Rsin(t), Ht), teR.
Then

y(@) = (—Rsin(t), R cos(t), H)
¥(@) = (—Rcos(t), —Rsin(t), 0)

From this we deduce that
Iyl = VR? + H?,

showing that y is regular. Finally

o _ | V2 13 non nnove
Xy=|. . —| . L le+ | L LT e
vy ‘ Y2 . 13 173 2 i Y ’
| Rcos(t) H _ | —Rsin(t) H N —Rsin(t) Rcos(t)
~ | =Rsin(t) 0 ¢17] R cos(t) 0 €27 R cos(t) —Rsin(t) €3
= (RH sin(t), —RH cos(t), R? cos?(t) + R? sinz(t))

= (RH sin(t), —RH cos(t), R?)

and therefore
ly x 7l = RVR? + HZ

By the general formula we have

1
<yl _ RR®+H%: R
Iyl (R? + H%)2 +
We notice the following:

« If H = 0 then the Helix is just a circle of radius R. In this case the curvature is

1
K==
R

which agrees with the curvature computed for the circle of radius R.

+ If R = 0 then the Helix is just parametrizing the z-axis. In this case the curvature is
k=0,

which agrees with the curvature of a straight line.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 84

2.4 Signed curvature of plane curves

In this section we assume to have plane curves, that is, curves with values in R2. In this case we can give a
geometric interpretation for the sign of the curvature. This cannot be done in higher dimension.

Definition 2.22

Lety : (a,b) — R? be unit speed. We define the signed unit normal to y at y(t) as the unit vector n(t)
obtained by rotating y(¢) anti-clockwise by an angle of 7 /2.

Definition 2.23

Lety : (a,b) — R? be unit speed. The signed curvature of y at y(t) is the scalar x,(t) such that

y(©) = k(t)n(t)

Remark 2.24

Notice that since n is a unit vector and y is unit speed, then

ks = POl = (@)

Thus the signed curvature is related to the curvature by

K,(t) = k().

Remark 2.25

It can be shown that the signed curvature is the rate at which the tangent vector y of the curve y rotates.
The signed curvature is:

« positive if y is rotating anti-clockwise
« negative if y is rotating clockwise

In other words,

+ ks > 0 means the curve is turning left,
+ kg < 0 means the curve is turning right.

A rigorous justification of the above statement is found in Proposition 2.2.3 in [6].
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For curves which are not unit speed, we define the signed curvature as the signed curvature of the unit speed
reparametrization.

Definition 2.26

Lety : (a,b) — R? be regular and let y be a unit speed reparametrization of y. The signed curvature
of y at y(t) is the scalar x(t) such that

Y(®) = ky(H)n(t),

where n(t) is the unit vector obtained by rotating y(t) anti-clockwise by an angle 7 /2.

The signed curvature completely characterizes plane curves, in the sense of the following theorem.
Theorem 2.27: Characterization of plane curves
Let ¢ : R — R be smooth. Then:
1. There exists a unit speed curvey : R — R? such that its signed curvature ; satisfies
k(t) = ¢p(t), VteR.
2. Suppose thaty : R — R? is a unit speed curve such that its signed curvature %, satisfies
k() =P(t), VteR.

Then

up to rotations and translations.

We do not prove the above theorem. For a proof, see Theorem 2.2.6 in [6].

2.5 Space curves

In this section we deal with space curves, that is, curves with values in R3. There are several issues compare
to the plane case:

« A 3D counterpart of the signed curvature does not exist, since there is no notion of turning left or
turning right.

+ We have seen in the previous section that the signed curvature completely characterizes plane curves.
In 3D however curvature is not enough to characterize curves: there exist y and 5 space curves such
that

K=« y=n,

that is, y and n have same curvature but are different curves.
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Example 2.28

Let y be a circle of radius R > 0
y(@®) = (Rcos(?), Rsin(t),0),

and n be a helix of radius S > 0 and rise H > 0
n(t) = (Scos(t), S sin(t), Ht) .

We have computed that

R S? + H?
If we now choose R = 2 and we impose that k¥ = k7 we get
1__5 H? = 25 - §°
R S§2+H?
Therefore choosing S = 1 and H = 1 yields
=K, y=n.

Therefore curvature is not enough for characterizing space curves, and we need a new quantity. As we did
with curvature, we start by considering the simpler case of unit speed curves. We will also need to assume
that the curvature is never zero.

Definition 2.29: Principal normal vector
Lety : (a,b) — R3 be a unit speed curve with
k(t) =0, Vte(ab).

The principal normal vector to y at y(t) is

1 .
t) := —=y{).
n(0) = ()
Remark 2.30
Since for y unit speed we defined
k() == [y@l ,
we have that
In@] =1,

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 87

thus n is a unit vector. Moreover n is orthogonal to y, that is,
Yy n=0.

This is because .
yn=-yy=0,

where the last equality follows from y -y = 0, being y unit speed.

i o
niy) = o Y (¥)

X

r(t)

Figure 2.7: Principal normal vector n(t) to y at y(t).

Question 2.31

Why is the principal normal interesting? Because it can tell the difference beween a plane curve and a
space curve. See picture below.

Definition 2.32: Binormal vector
Lety : (a,b) — R be a unit speed curve with

k(t) =0, Vte(ab).
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o

Figure 2.8: Left: Principal normal to a circle. Note that n always points towards the origin 0. Right: Principal
normal to a helix. Note that n points towards the z-axis, but never towards the same point.

The binormal vector to y at y(2) is
b(t) := (1) x n(o).

Definition 2.33: Orthonormal basis
Let v, vy, v3 be vectors in R®. We say that the triple

{V13V2,V3}

is orthonormal if
ll=1, w-vj=0, fori=j.

Proposition 2.34
Lety : (a,b) — R3 be a unit speed curve with

k(t) =0, Vte(ab).
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Then the triple
B = (y(t),n(t), b(1))

is a positive orthonormal basis of R® for all ¢ € (a, b).

Proof

Since y is unit speed we have
ly@®l=1.
Moreover we have already observed that

In@l=1, y@- -n@)=0.

As b is defined by
b:=yxn,

by the properties of the vector product, see Proposition 2.14, it follows that
b-y=0, b-n=0.
By the calculation in Remark 2.15 Point 8, we have that
IbI* = [j1Inf? - Iy -nf* = 1.

This shows that the vectors
{y.n,b}

are orthonormal. By the properties of the vector product, see Remark 2.15 Point 6, we also know that

(Y> n, b)

is a positive basis of R3.

Proposition 2.35

Lety : (a,b) — R be a unit speed curve with x # 0. Then

b=yxn, n=bxy, y=nxb. (2.11)
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Proof

The first equality in (2.11) is true by definition of b. For the other 2 equalities, recall formula (2.8):
(uxv)xw=@-w)v—(v-wu, (2.12)

for all u, v, w € R®. Applying the above with

yields

Fxn)xy = y)n—(-py
= |yl n -0

=n,
where we used that y is a unit vector and n -y = 0. Therefore, by definition of b, we have
bxy=(xn)xy=n
showing the second equality in (2.11). For showing the third equality in (2.11), we apply (2.12) with
u=y, v=n, w=n,
to get

xn)xn=(F nn-(Mn-n)y
=0—|n|’y
=y

where we used that n is a unit vector and y - n = 0. Therefore, by definition of b and anti-commutativity
of the vector product, we have

nxb=-bxn=—(yxn)xn=y,

showing the last equality in (2.11).

Proposition 2.36
Lety : (a,b) — R be a unit speed curve with k # 0. Then

b(t) = —z(t)n(t), (2.13)

for some 7(t) € R.
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Proof
By definition of b and the formula of derivation of the cross product (2.9) we have
b= xn)
=yxn+yxn
= y X n s
where we used that
yxn=0,
since n is defined by n : =y /k, and therefore n and y are parallel. Hence, we have proven that
b=yxn. (2.14)

By the properties of the cross product we have that u x v is orthogonal to both u and v. Thus (2.14)
implies that '
b-y=0.
Further, observe that
%(b~b):l}-b+b~5: 2b-b.

On the other hand, since b is a unit vector, we have
d d 2 d
—M-b)=—=(b|")=—=(1)=0
S(b-b) = Z(bl") = £:(1)

Therefore '
b-b=0.

To summarize, we have shown that b is orthogonal to b and y. Since

(y.n,b)

is an orthonormal basis of R? we conclude that b is parallel to n. Therefore there exists 7(t) € R such
that ‘
b = —z(t)n(t),

concluding the proof.

The scalar 7 in equation (2.13) is called the torsion of y.
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Definition 2.37: Torsion of unit speed curve
Lety : (a,b) — R3 be a unit speed curve, with k # 0. The torsion of y at y(¢) is the unique scalar
(t) €R

such that

b(t) = —z(t)n(t).

Remark 2.38

In particular the torsion satisfies:

() = —=b@®) - n(t).
The above can be immediately obtained by multiplying (2.13) by n. Indeed,

b=-rn = b-n=-m-n=-r1,

since n is a unit vector.

Warning

We defined the torsion only for space curvesy : (a,b) — R> which are unit speed and have non-vanishing
curvature, that is, such that

ly®OI=1, «@) =I[y@®| =0,
for all t € (a,b).

We can extend the definition of torsion to regular curves y with non-vanishing curvature. In this case the
torsion of y is defined as the torsion of a unit speed reparametrization of y.

Definition 2.39

Lety : (a,b) — R® be a regular curve with non-vanishing curvature. Let y be a unit speed reparametriza-
tion of y, with i
Y=v°¢. ¢:(ab)—>(ab).
We define the torsion of y at y(t) as )
(@) =V ($(1),

where ¥ (s) denotes the torsion of J at j(s).

As usual, it is possible to check that the above definition of torsion does not depend on the choice of unit speed
reparametrization y. As with curvature, there is a general formula to compute the torsion without having to
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reparametrize.

Proposition 2.40: Torsion formula

Lety : (a,b) — R be a regular curve with non-vanishing curvature. The torsion 7(t) of y at y(t) is given
by
_@xny

z(t) .2
ly < ¥l

We delay the proof of the above proposition for a bit. In the meantime, let us look at examples.

Example 2.41: Torsion Helix
Consider the Helix of radius R > 0 and rise H > 0
y(@®) = (Rcos(t), Rsin(t), Ht), teR.

We have already shown that

. R
ly®l =VR® + H?, «

~ RZ+HZ
Therefore the Helix is regular with non-vanishing curvature. The torsion can be then computed via the
formula

_ D)y
Iy <71

Let us compute the quantities appearing in the formula for 7

7(t)

y(@) = (—Rsin(t), Rcos(t), H)
¥(@) = (—Rcos(t), —Rsin(t), 0)
¥() = (Rsin(t), —R cos(t), 0)

Moreover we had already computed that

¥ x¥ = (RH sin(t), —RH cos(t), R?)
ly x ¥l = RVR? + H?
Finally we compute
¥ x7)-¥ = RH.
We are ready to find the torsion:
_yxnv¥y__H
pxyl? R+ H?
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Example 2.42: Curvature and Torsion of Circle
The Circle of radius R > 0 is

y(@®) := (Rcos(t), Rsin(t),0).
The curvature and torsion of the Helix of radius R and rise H > 0 are

= R = H

R*+H? R*+H?

For H = 0 the Helix coincides with the Circle y. Therefore we can set H = 0 in the above formulas to
obtain the curvature and torsion of the Circle

K= 7T=0.

1
R 3

From the above example we notice that the torsion of the circle is 0. This is true in general for space curves
which are contained in a plane: we will prove this result in general. For the moment, let us give an example
for which this happens, that is, an example of space curve y which is contained in a plane.

Example 2.43

Define the space curve
Y@ := (g cos(t), 1 — sin(t), —% cos(t)) ,

for t € R. As seen in the plot below, y is just a Circle which has been rotated an translated. Therefore y
is contained in a plane, and we expect curvature and torsion to be

for some R > 0, radius of the Circle y. Let us proceed with the calculations:
Y = (—% sin(t), — cos(t), g sin(t))

so that , 16 9
. .2 2 .2
= —sin () +cos“(t) + —sin“(t) =1,
Iyl > ®) ®) T ®)

showing that y is regular and unit speed. Further
Y= (—% cos(t), sin(t), % cos(t)> .

Asy is unit speed, we have

= 17 = 22 cost (1) + sin’(D) + = cos’()) = 1.
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Asy is unit speed, the normal vector is

n= %y = <—% cos(t), sin(t), % cos(t)) )

We can then compute the binormal

b=yxn
i j k
=| - g sin(t) —cos(t) 3 sin(t)

—zcos(t) sin(t) cos(t)

3 2 3 .2 12 . 12 . 4 . o 4 2 )
——=C0s“(t) — = sm"(t), —— cos(t) sin(t) + — cos(f) sin(¢), —— sin"(t) — — cos“(t
(=2 cos?(t) = 2 sin’(6), 5 cos(®)sin@) + 2 cos(®)sin(®), = sin’(8) = = cos* (1)

(o)
5 5

Therefore

and we obtain that the torsion is

0.4
0.2
0.0
[ —0.2
[ 0.4

4.58.7%:00

Figure 2.9: Plot of the curve in example above
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2.6 Frenet frame

For a unit speed curvey : (a,b) — R? with non-vanishing curvature we computed the triple

{y,n,b}.

We saw that the above is a positive orthonormal basis of R3. We also used this triple to compute curvature
and torsion 7 of y:
k=[yl., z=-b-n.

This triple is so important that it has a name.

Definition 2.44: Frenet frame
Lety : (a,b) — R3 be unit speed with k # 0. The positive orthonormal basis

{Y’ n, b}

is called Frenet frame of y.

We can also define the Frenet frame for regular curves with non-vanishing curvature.

Definition 2.45

Lety : (a,b) — R® be regular with k # 0. The Frenet frame of y is defined as the Frenet frame of a unit
speed reparametrization y of y.

Remark 2.46

We should check that the above definition is well-posed:

« Note that j is unit speed. Moreover the curvature of «¥ is given by

K (1) = ¥ (1))

for some ¢ diffeomorphism. Therefore k¥ # 0 as we are assuming k¥ # 0. Therefore the Frenet-
Frame of y is well defined.

« If y is another unit speed reparametrization of y, then the Frenet frame generated by y coincides
with the one generated by y. The proof is left as an exercise.

From the Frenet frame we can define the Frenet-Serret equations.
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Theorem 2.47: Frenet-Serret equations

Lety : (a,b) — R3 be unit speed with k # 0. The Frenet-Serret equations are

Y =kn
n=—-xy+r7b
b=-mn
Proof
The first Frenet-Serret equation
Yy =kn (2.15)

holds by definition of n and k. The third Frenet-Serret equation
b=—-rn (2.16)
holds by Proposition 2.36. Now, recall that in Proposition 2.35 we have proven
b=yxn, n=bxy, y=nxb. (2.17)
Differentiating the second equation in (2.17) and using (2.15)-(2.16) we get

n=bxy+bxy
=(—tnxy)+bxkn
=7(y xn) —k(n xb)
=1b — Ky,
where in the last equality we used the first and third equations in (2.17). The above is exactly the second
Frenet-Serret equation.

Remark 2.48

We can write the Frenet-Serret ODE sysyem in vectorial form. To this end, introduce the matrix

[e)

0
T
0

~

I
o |

A
N\ © X
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It is immediate to check that the Frenet-Serret equations are equivalent to

14 Y
n |=F| n
b b

Important: Summary

Recall that:

1. Curvature k is defined only for regular curves.
2. Torsion 7 is defined only for regular curves with non-vanishing .

The two strategies for computing x and 7 are discussed in the diagram in Figure 2.10 below.

Let us conclude the section with an example. We compute the Frenet frame of the helix. As a consequence
we obtain curvature and torsion.

Example 2.49: Frenet frame of helix
Consider the helix of radius 1 and rise 1 given by
() = (cos(t), sin(t), 1),
for t € R. We now proceed following the diagram at Figure 2.10. We ask the first question:
Is y unit speed?

We have that
y(@) = (=sin(t), cos(t), 1),

and therefore

vl = 2.

This shows that y is regular but not unit speed. We ask the second question in the diagram:
Can we find a unit speed reparametrization of y?

Let us try. We compute the arc length of y starting atfy = 0

t
) 1= | Iyl du= 2z,
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~ unit speed?

Compute Frenet
frame {%,n, b} Can you compute
Yes unit speed
U — reparametrization?
s = |1 [ No
T=—-b-n Use formulas
Warning o — oBatedl
Bk
k only defined
for regular ~ __ (F x &) - %
7 only defined for [y x 4||?
regular v with Kk # 0

Figure 2.10: Summary for computing k and 7 for regular curve y.
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The arc length is invertible with
— t
1) i=s1(t) = —
() ®) i

Therefore a unit speed reparametrization of y is given by

0 v () =(5)-3)

The next step in the diagram is

Compute Frenet frame {y, n, b} and curvature «, torsion 7

We compute

-3 g) (1)
y(® = %(—cos( ) —sin(%),O)

Therefore the curvature is

k() = @] = >

From the curvature we obtain the principal normal vector

w0 () e(5))

We can now compute the binormal

b(t) =y xn
— 1 —sini<%) cosz‘%) ll(
V2 —cos (%) —sin(%) 0

- L (sin (L) —cos (L) 1)
We have therefore computed the Frenet frame of y. This is given by
Yy = L (— sin (L) cos (L> 1)
\/E \/§ 3 \/E 3
t . t
nit)=|(—-cos{—|),—sin|—|,0
0= () ()

-3 (of) {3
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See below for a picture of the Frenet frame of the helix. Given the Frenet frame, we can compute the
torsion via the formula

(t) =-b-n.

Indeed, we have

and therefore

The torsion is then

The Frenet-Frame of the unit-speed Helix is plotted in Figure 2.11.

y

Figure 2.11: Frenet frame of the helix of radius 1 and rise 1.

2.7 Consequences of Frenet-Serret

The most important consequence of the Frenet-Serret equations is that they allow to fully characterize space
curves in terms of curvature and torsion. Precisely, the following theorem holds.
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Theorem 2.50: Characterization of space curves
Letk,7 : R — R be smooth functions, with x > 0. Then:
1. There exists aunit speed curvey : R — R> such that its curvature «¥ and torsion 7V satisfy

() =x«x(), @) =r1@), vteR.

2. Suppose thaty : R — R is a unit speed curve such that its curvature ¥ and torsion 7V satisfy
() =x(t), @) =1(), vteR.

Then
Y=Y

up to rotations and translations.

The proof of Theorem 2.50 is omitted, and it can be found in Theorem 2.3.6 in [6].
Theorem 2.50 is a very strong result. It is saying two things:

1. If we prescribe curvature and torsion, then there exists a unit speed curve which has such curvature
and torsion.

2. If two unit speed curves have same curvature and torsion, then they must be the same curve, up to
translations and rotations.

In other words, curvature and torsion fully characterize space curves. This result is the 3D counterpart of
Theorem 2.27, which said that signed curvature characterizes 2D curves.

Example 2.51

In Example 2.43 we have considered the unit speed curve

Y@ := (% cos(t), 1 — sin(t), —% cos(t)) ,
for t € [0,27]. We have computed that
=1, =0.

If we plot y, we clearly see that y is just obtained by translating and rotating a unit circle, see plot below.
Theorem 2.50 enables us to rigorously prove this claim. Indeed, consider the unit speed circle

yY(@) := (cos(t), sin(t),0) ,

for t € [0,27]. In Example 2.42 we have proven that curvature and torsion are
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Therefore

KYZKy TYZT);

b bl

and by Theorem 2.50 we conclude that y is equal to y up to rotations and translations.

0.4
0.2
0.0
[ —0.2
[ —0.4

£2.00
0g.23-5¢7
ok 0.0(5’-25}’)'5&'751 0y

Figure 2.12: Plot of the curve in example above

Another consequence of the Frenet-Serret equations is that they allow us to finally prove the curvature and
torsion formulas given in Proposition 2.19 and Proposition 2.40. For reader’s convenience we recall these two
results.

Proposition 2.52: Curvature and torsion formulas

Lety : (a,b) — R3 be a regular curve. The curvature x(t) of y at y(t) is given by
ly < ¥l
3
Iyl
Suppose in addition that y has non-vanishing curvature. The torsion 7(t) of y at y(t) is given by
0 )
L2
ly > ¥l

k(t) =

(t) =
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Before proceeding with the proof, we need to establish some notation.
Notation: Compact notation for arc length reparametrization
Supposey : (a,b) —» R" is regular and denote by

s: (ab) > @b), te s@)

its arc length. We already know that in this case s invertible, with inverse s™1 giving a unit speed
reparametrizationy : (a,b) - R" of y, defined by

F=vey, y:i=s1:(@b) —(ab)

Sometimes it is more convenient to adopt more compact notation. In the new notation the unit speed
reparametrization y is denoted by y(s):

tey@® o~ sey(s).

Thus, the reparametrization is denoted with the same symbol y, but this time y is considered as a function
of the arc length parameter

se(@b).
We will denote:
« The derivative of s by
ds
dt
« The derivative of / = s™! by
dt
ds’

Moreover:

« The derivative of y(¢) is denoted by
dy
—@)=y@®), t ,b
Lo =yw, te@b
« The derivative of y(s) is denoted by

Z—};(s) =y(s), se(@b).

We also have new notations for the chain rule:
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« The chain rule for y is the old notations is:

y® =y@®) = y®=y6®)it), te(ab).

In the new notations the above chain rule is written

dy . _dr, .\ ds
SO =760) ). teb).
We will often omit the dependence on the point ¢ by writing

dy _dy dr
ds dt ds’

« The chain rule for the reparametrization y in the old notation is:
FO=y@y®) = yO=y@O)Y@O, te@b).
In the new notations the above chain rule is written
d d -
Lo =TFe» 5O, se@b,
since 1 is written dt/ds in the new notations. Without dependence on the point s, the above reads

dy _dy at
ds dt ds’

Example 2.53: How to use the new notations

Let y and y be as above. We know that y is unit speed. Thus y(s) is unit speed with respect to s, that is,
ly()l =1, vse@b). (2.18)

As an exercise, let us check that (2.18) holds, using the new notations. By chain rule we have
. dy
Ol = |56
dy dt
- Ly [

= WO |26

Now, recall that p
SO =350 =0, vte@b). (219)
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According to the new notations and the inverse function theorem,

dt 1 1 -3
—(s) = = — , Vse(ab),
ds ds ly W ()
7o)
where we used (2.19) evaluated at t = /(s). Thus
) = O |56
e 1
BRARRUETCTO)
=1,

concluding (2.18).

Let us highlight the main feature of the above notation.
Important: New Notation!

Lety : (a,b) > R" be a regular curve:

1. We denote by
t—>y), te(ab)

the given curve y.

2. We denote by )
s—>y(s), se(ab)

the arc length reparametrization of the curve y. The parameter s is the arc length parameter.
In particular y(s) is unit speed with respect to s.

We will heavily rely on the new notations for proving Proposition 2.52.

Proof: Proof of Proposition 2.52

We only prove the formula for «, as the one for 7 can be obtained similarly, just with more calculations.
For a proof see Proposition 2.3.1 in [6].

Since y is regular, we can reparametrize y by arc length s(t). We denote the arc lenght reparametrization
by y(s). We know that y(s) is unit speed, that is,

dy

=1.
ds
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Therefore is well define the Frenet frame

dy

{t(s),n(s),b(s)}, t(s) :=y(s) = —=(s).

ds

The Frenet-Serret equations are

t(s) = k(s)n(s)
n(s) = —k(s)t(s) + 7(s)b(s)
b(s) = —z(s)n(s)

By chain rule
dr _dyds _ (é) ¢
dt dsdt \dt

Differentiating the above we infer

dy _d [(é) t]
dr2  dt I\dt

d%s <ds> dt
="t+

dr? dt) dt’

By chain rule we have

dt _ dt di
dt  dsds’
and therefore

d* 2
Y _d st+<ds> dt

dt? - dt? dt/ dt

d?s (ds)z dt

="t+(=) =.

dt? dt/ ds

Hence

o dy d%
t ) = —x —
Y@<yt = 2 x5

(e[ (@) 4

- \dt di? dt s
ds\ [ d?s 3

= [(E)(ﬁ)t”

B (ds>3 dt
=|— tx —,
dt ds
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since t x t = 0 by the properties of the cross product. Now we recall that

dt
I k(s)n(s)

by the first Frenet-Serret equation. Moreover

ds N

—() = t .

B0 = o)
Therefore

. Lo (ds 3 dt
Y(t)XY(t)— <E> tx%
= Iy x(s(2)) txn

=y @ k() b,

where in the last line we used the definition of b

b(s) =y(s) xn(s) = t(s) x n(s) .

We can now take the norms and obtain

lr (&) x 7O = [ O x(s(2) bl

= O <(st))
using that |b| = 1. Asy is regular, we can divide b (t)||3 and obtain
g that [b] Y is reg y ly
ly@) = y@®)I
() = L
ly®I

Recalling that the curvature of y at ¢ is defined as the curvature of y(s) at s(¢), we conclude that the above
is the desired formula.

We now state and prove two more results which directly follow from the Frenet-Serret equations. They state,
respectivley:

1. A curve has torsion 7 = 0 if and only if it is contained in a plane.

2. A curve has constant curvature and zero torsion if and only if it is part of a circle.

Before proceeding, we recall the following.
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Remark 2.54: Equation of a plane

The general equation of a plane r; in R? is given by

m;={x€R: x-P=d},

for some vector P € R3 and scalar d € R. Note that:

« If d = 0, the condition
x-P=0

is saying that the plane s, contains all the points x in R® which are orthogonal to P. In particular
7 contains the origin 0.

« If d # 0, then &, is the translation of &, by the quantity d in direction P.

In both cases, P is the normal vector to the plane, as shown in Figure 2.13 below.

Figure 2.13: The plane 7 is the set of points of R> orthogonal to P. The plane 7 is obtained by translating
7y by a quantity d in direction P.

Proposition 2.55

Lety : (a,b) — R3 be regular and such that x # 0. They are equivalent:
1. The torsion of y satisfies 7(t) = 0 for all t € (a, b).

2. The image of y is contained in a plane, that is, there exists a vector P € R3 and a scalar d € R such
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that
y@)-P=d, vte(ab).

Proof

Without loss of generality we can assume that y is unit speed. Indeed, if we were to consider y a unit
speed reparametrization of y, then

« y would still be contained in the same plane in which y is contained.
« The torsion of y would not change, i.e., it would still be identically zero.

Thefore the Frenet frame of y exists. We denote it by

{y(©),n(),b(1)}.
Step 1. Suppose that 7 = 0 for all ¢. By the Frenet-Serret equations we have
b=-tn=0,
so that b(t) is constant. As by definition
b=y xn,

we conclude that the vectors y(t) and n(¢) always span the same plane, which has constant normal vector
b. Intuition suggests that y should be contained in such plane, see Figure Figure 2.14 below. Indeed, recall
that the Frenet frame is orthonormal. Hence

Yy -b=0, Vte(ab).

Then p
E(y-b):y-bﬂ/-l’):o, vte(ab),

since b = 0. Thus Y - b is a constant scalar function, meaning that there exists costant d € R such that
y@®)-b=d, vt e(ab).

The says that y is contained in a plane.
Step 2. Suppose that y is contained in a plane. Hence there exists P € R3 and d € R such that

y®)-P=d, Vte(ab).

We can differentiate the above equation twice to obtain
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where we used that P and d are constant. By Frenet-Serret we have
7(t) = k(®)n(s) .
Therefore the already proven relation y - P = 0 implies
kt)n(t)-P=0.
As we are assuming k # 0, we deduce that
n(t)-P=0, Vte(ab).

We have shown that y(t) and n(t) are both orthogonal to P. Since b(t) is orthogonal to y(¢) and n(t), we
conclude that b(¢) is parallel to P. Hence, there exists A(t) € R such that

b(t) = A(t)PVt € (a,b). (2.20)

Since |b| = 1 and P is constant, from (2.20) we conclude that A(t) is constant. Differentiating (2.20) we
obtain
b(t) =0, Vte(ab).

By definition of torsion we thus have

t®)=-b-n(t) =0, Vte(ab).

Proposition 2.56
Lety : (a,b) — R3 be a unit speed curve. They are equivalent:

1. The image of y is contained in a circle of radius 1/c.
2. The curvature and torsion of y satisty
k(t)=c, (t)=0, Vte(ab),

for some constant ¢ € R.

Proposition 2.56 is actually a consequence of Theorem 2.50, and of the fact that we have computed that for a
circle of radius R one has

kK==, 17=0.
R

Therefore, by Theorem 2.50, every unit speed curve y with constant curvature and torsion must be equal to
a circle, up to rigid motions.

Nevertheless, we still give a proof of Proposition 2.56, to show yet another application of the Frenet-Serret
equations.
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& contauned in

)oea'ﬂe ofTh %30,‘4
kb b

Figure 2.14: If b is constant, then y lies in the plane spanned by y and n.

Proof

Step 1. Suppose the image of y is contained in a circle of radius 1/c. Then, up to a translation, y is
parametrized by

1 1 .
Y@ = (— cos(t), = sin(t), 0)
c c
for t in some interval (@, i?) We have already seen that in this case
k=c, 17=0,

concluding the proof.
Step 2. Suppose that
kt)=c, (t)=0, Vte(ab),

for some constant ¢ € R. Since y is unit speed, its Frenet-Serret equations are:

Yy =kn=cn
n=-xy+rtb=—cy
B:—Tn:O

In particular b = 0 and so b is a constant vector. As seen in the proof Proposition 2.55, this implies that
Y is contained in a plane & orthogonal to b, see Figure 2.14. As ¢ is constant we get

d 1 o1 1 .
—<y+—n):y+—n:y——cy:0,
dt c c c
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where we used the second Frenet-Serret equation. Therefore
1
y®O+-n@)=p, re(ab),
c
for some constant point p € R3. In particular
1 1
Iy® —pll = |-n0)] = <.
c c
since n is a unit vector. The above shows that y is contained in a sphere of radius 1/c and center p. In

formulas:

y((@b)cS :={xeR: |x—p|=1/c}.

The intersection of & with the plane x is a circle € with some radius R. Since

y@b)crx, y(ab)cs,

this implies

y(@b)cans =%¢. (2.21)
Thus y parametrizes part of . From Step 1 it follows that the curvature and torsion of y must satisfy
K= 1 , 7=0
R

Since we already know that x = ¢, we conclude that R = 1/c. Therefore the circle € has radius 1/c and
the thesis follows by (2.21).
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3 Topology

So far we have worked in R", where for example we have the notions of open set, continuous function and
compact set. Topology is what allows us to extend these notions to arbitrary sets.

Definition 3.1: Topological space

Let X be a set and I a collection of subsets of X. We say that 5 is a topology on X if the following 3
properties hold:

e (A1) We have 9, X € 7,

« (A2) If {A;}i¢s is an arbitrary family of elements of 7, then

UA,-E?.

i€l

e« (A3)If A,B€ T then
AnBeJ .

Further, we say:
+ The pair (X, J) is a topological space.

+ The elements of X are called points.
« The sets in the topology I are called open sets.

Remark 3.2

The intersection property of 7, Property (A3) in Definition 3.1, is equivalent to the following:

« (A3)If Aq,..., Ay € T for some M € N, then

M
(A€ .
n=1

The equivalence between (A3) and (A3’) can be immediately obtained by induction.
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Warning

Notice:

+ The union property (A2) of I holds for an arbitrary number of sets, even uncountable!
+ The intersection property (A3’) of I holds only for a finite number of sets.

There are two main examples of topologies that one should always keep in mind. These are:

« Trivial topology: The topology with the smallest possible number of sets.
+ Discrete topology: The topology with the highest possible number of sets.

Definition 3.3: Trivial topology
Let X be a set. The trivial topology on X is the topology  defined by
T :={p, X}.

Let us check that  is indeed a topology. We need to verity the 3 properties of a topology:

« (A1) We clearly have 9, X € 7.
+ (A2) The only non-trivial union to check is the one between @ and X. We have

QuX=XeT.
+ (A3) The only non-trivial intersection to check is the one between @ and X. We have
InX=0€J .

Therefore I is a topology on X.

Definition 3.4: Discrete topology

Let X be a set. The discrete topology on X is the topology  defined by
g ={A: ACX},

that is, every subset of X is open.

Let us check that I is a topology:

« (A1) We have @, X € 7, since @ and X are subsets of X.
+ (A2) The arbitrary union of subsets of X is still a subset of X. Therefore

UA,—EP/”,

iel

whenever A; € I forallie€ I
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+ (A3) The intersection of two subsets of X is still a subset of X. Therefore
AnBeT,

whenever A,Be 7.

Therefore I is a topology on X.

J

We anticipated that topology is the extension of familiar concepts of open set, continuity, etc. that we have in

R". Let us see how the usual definition of open set of R” can fit in our new abstract framework of topology.

Definition 3.5: Open set of R"
Let A C R". We say that the set A is open if it holds:

Vx€eA, Ir>0st B(x)CA, (3.1)
where B,(x) is the ball of radius r > 0 centered at x

B(x) :={y eR" : [y —x| <r},

and the Euclidean norm of x € R" is defined by

] =

See Figure 3.1 for a schematic picture of an open set.

Definition 3.6: Euclidean topology of R"
The Euclidean topology on R" is the topology I defined by

T :={A: ACR", A isopen}.

We need to check that the above definition is well-posed, in the sense that we have to prove that I is a

topology on R™.
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Figure 3.1: The set A C R" is open if for every x € A there exists r > 0 such that B,(x) C A.

Proof: Well-posedness of Definition 3.6

Let us check that J is a topology on R™:

+ (A1) We have @,R" € J: Indeed @ is open because there is no point x for which (3.1) needs to be
checked. Moreover R" is open because (3.1) holds with any radius > 0.

« (A2) Let A; € I foralli € I and define the union set

A=A

i€l

We need to check that A is open. Let x € A. By definition of union, there exists an index iy € I
such that x € A; . Since A;  is open, by (3.1) there exists r > 0 such that B.(x) C A; . As 4; C A,
we conclude that B,(x) C A. Thus Aisopenand A€ J.

« (A3) Let A,B € . We need to check that A n B is open. Let x € A n B. Therefore x € A and
x € B. Since A and B are open, by (3.1) there exist r,r, > 0 such that B, (x) C A and B, (x) C B.
Set r := min{ry,r,}. Then

B.(x) C B, (x) CA, B.(x)CB,(x)CB,
Hence B,(x) C A n B, showing that A n B open, sothat AnBe 7.

This proves that I is a topology on R".

Let us make a basic bus useful observation: balls in R" are open for the Euclidean topology.
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Proposition 3.7
Let R" be equipped with I the Euclidean topology. Let r > 0 and x € R". Then

B.(x) e T .

Proof
We need to shown that B,(x) satisfies (3.1). Therefore, let y € B,(x). In particular
Ix -yl <r. (3.2)

Define
e:=r—|x—-y|.

Note that ¢ > 0 by (3.2). We claim that
B.(y) € B(x), (3-3)

see Figure 3.2. Indeed, let z € B.(y). By triangle inequality we have
lz—x| <|x-yl+ly—z|<|x -yl +e=r,

where we used that |y — z| < ¢ and the definition of ¢. Hence z € B,(x), proving (3.3). This proves that
B,.(x) satisfies (3.1), and is therefore open.

3.1 Closed sets

The opposite of open sets are closed sets.

Definition 3.8: Closed set
Let (X, J) be a topological space. A set C C X is closed if
CteT,

where C° := X \ C is the complement of C in X.

In words, a set is closed if its complement is open.
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Figure 3.2: The ball B.(y) is contained in B,(x) if ¢ :=r — |x — y].
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Warning

There are sets which are neither open nor closed. For example consider R equipped with Euclidean
topology. Then the interval
A:=10,1)

is neither open nor closed.

For the moment we do not have the tools to prove this. We will have them shortly.

We could have defined a topology starting from closed sets. We would have had to replace the properties (A1)-
(A2)-(A3) with suitable properties for closed sets. Such properties are detailed in the following proposition.

Proposition 3.9
Let (X, 9) be a topological space. Properties (A1)-(A2)-(A3) of T are equivalent to (C1)-(C2)-(C3), where

e (C1) @, X are closed.
« (C2)If G is closed for all i € I, then

N

i€l
is closed.
« (C3) If Cy, G, are closed then
Cl V] Cz
is closed.
Proof

We have 3 points to check:
« The equivalence between (A1) and (C1) is clear, since

=X, X'=0.

« Suppose C; are closed for all i € I. Therefore C are open for all i € I. By De Morgan’s laws we

have that .
(s

i€l i€l
showing that
ﬂ G isclosed <« U Cf is open.
i€l i€l

Therefore (A2) and (C2) are equivalent.
« Suppose C;,C, are closed. Therefore Cf, C5 are open. By De Morgan’s laws we have that

(CiuCy) =C§nCS
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showing that
CiuGCyisclosed <« CinCj isopen.

Therefore (A3) and (C3) are equivalent.

As a consequence of the above proposition, we can define a topology by declaring what the closed sets are.
We then need to verify that (C1)-(C2)-(C3) are satisfied by such topology. Let us make an example.

Example 3.10: The Zariski topology

Let (K, +,-) be a field. Define
X :=K" :={(ay,...,a,) : g €K}.

Consider the set of polynomials with coefficients in the field
K[xi, ..., x,] .
Therefore f € K[x, ..., x,] has the form
FOe s %) = Apx + oo+ Ay,

where Ay, ..., A, are given elements of K. For I C K[x, ..., x,] define

V() :={(ay,...,a,) € K" : f(ay,...,a,) =0, ¥V f €I}
Define
€ :={V(I) : ICK[xq,...,x,]}.

Then € satisfies (C1), (C2) and (C3). This is an easy check, and is left as exercise. € is called the Zariski
Topology on the field K*. This is used in algebraic geometry to study Affine Varieties, an algebraic
version of surfaces, see Wikipedia page.

3.2 Comparing topologies

Consider the situation where you have two topologies 77 and 7, on the same set X. We would like to have
some notions of comparison between 77 and 5.
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Definition 3.11: Finer and coarser topology

Let X be a set and let 7, I, be topologies on X. Suppose that
T2 CT7.

We say that:

« J, is finer than 7.
« 9, is coarser than 7;.

If it holds

N
N
N

we say that:

N

1 is strictly finer than 7,.
5 is strictly coarser than 7.

N

We say that 77 and 7, are the same topology if

%:Jz.

Example 3.12
Let X be a set and consider the trivial and discrete topologies
Tuivial = {2, X}, Tdiscrete ={A 1 AC X}

Then

g g
Jtrivial & 7 discrete »

so that T giscrete 18 strictly finer than Jiyivial-

Another interesting example is given by the cofinite topology on R. The sets in this topology are open if
they are either empty, or coincide with R with a finite number of points removed.

Example 3.13: Cofinite topology on R
Consider the following family T gnite of subsets of R
T eofinite :={U C R : U° is finite, or U° = R}.
Then (R, T.ofinite) is a topological space, and T ofinite is called the cofinite topology. We have that

%oﬁnite G *%uclidean .

Exercise: Show that I anite is @ topology on R and that T.ognite & Teuclidean-
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3.3 Convergence

We have generalized the notion of open set to arbitrary sets. Next we generalize the notion of convergence
of sequences.

Definition 3.14: Convergent sequence

Let (X, ) be a topological. Consider a sequence {x,},eny € X and a point x € X. We say that x;,
converges to x if the following property holds:

vUeT st xpeU, AIN=NU)eN s.t. x,€eU,Vn>N. (3.4)

Notation

The convergence of x;, to x; is denoted by

X, > Xy oOr ’}Lngoxnzxo.

Let us analyze the definition of convergence in the topologies we have encountered so far. We will have
that:

« Trivial topology: Every sequence converges to every point.
+ Discrete topology: A sequence converges if and only if it is eventually constant.
+ Euclidean topology: Topological convergence coincides with classical notion of convergence.

We now precisely state and prove the above claims.

Proposition 3.15: Convergence for trivial topology

Let (X, ) be topological space, with I the trivial topology, that is,
T =1{0,X}.

Let {x,,} € X be a sequence and x; € X a point. Then

Xp ™ Xp -
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Proof

To show that x;, — x; we need to check that (3.4) holds. Therefore, let U € I with x, € U. We have two
cases:

« U = @: This case is not possible, since x; cannot be in U.

« U = X: Take N = 1. Since U is the whole space, then x;, € U for alln > 1.

As these are all the open sets, we conclude that x;, — x;.

Warning

This example is saying that in general the topological limit of a sequence is not unique!

Proposition 3.16: Convergence for discrete topology

Let (X, 9") be topological space, with I the discrete topology, that is,
T ={A: ACX}.

Let {x,} € X be a sequence and x; € X a point. They are equivalent:

L X, = Xp.
2. {x,} is eventually constant, that is, there exists N € IN such that

Proof

Part 1. Assume that x,, = x.
We have to prove that {x,} is eventually constant. To this end, let

U= {Xo} .
Then U € J. Since x,, = xg, by (3.4) there exists N € IN such that
x, €U, Vn>N.

As U = {xy}, the above is saying that x,, = x; for all n > N. Hence x; is eventually constant.
Part 2. Assume that x,, is eventually equal to x;.
By assumption there exists N € IN such that

X, =%, VYn>N. (3.5)
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Let U € I be an open set such that x; € U. By (3.5) we have that
x, €U, vn>N.

Since U was arbitrary, we conclude that x,, — x.

Before proceeding to examining convergence in the Euclidean topology, let us recall the classical definition
of convergence in R".

Definition 3.17: Classical convergence in R”

Let {x,} C R" and x, € R". We say that x,, converges x; in the classical sense if
lim |x, — x¢[ = 0.
n—oo

The above is equivalent to: For all ¢ > 0 there exists N € IN such that

Ix, —xo| <&, Vn>N.

Proposition 3.18: Convergence for Euclidean topology

Let R" be equipped with I the Euclidean topology. Let {x,} C R" be a sequence and x, € R" a point.
They are equivalent:

1. X, — Xo with respect to 7.
2. X, — X, in the classical sense.

Proof

Part 1. Assume x,, — X, with respect to I .
Fix € > 0 and consider the set
U := Bi(xo).

By Proposition 3.7 we know that U € 9. Moreover x,, € U. By the convergence x,, — x, with respect to
T, there exists N € IN such that
x, €U, vVvn>N.

As U = B,(xy), the above reads
Ix, —%o| <&, Vn>N,

showing that x,, — X in the classical sense.
Part 2. Assume x,, = X, in the classical sense.
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Let U € I be such that x;, € U. By definition of Euclidean topology, this means that there exists r > 0
such that
Br(XO) cU.

As x, — X, in the classical sense, there exists N € N such that
Ix, — x|l <r, Vn>N.

The above is equivalent to
x, € B.(xq), Vn>N.

Since B,(x() € U, we have proven that
x, €U, Vn>N.

Since U is arbitrary, we conclude that x, — x, with respect to 7.

Notation

Since classical convergence in R" agrees with topological convergence with respect to 7, we will just
say that x,, = x, in R"” without ambiguity.

We conclude with a useful proposition which relates convergences when multiple topologies are present.

Proposition 3.19
Let X be a set and J7, 7, be topologies on X. Suppose that
T2 CT7.

Let {x,,} € X and x; € X. We have

X, > X in I3 = x,—x in I,.

Proof

Assume x;,, — x; in ;. We need to prove that x,, = x; in 5. Therefore, let U € I, be such that x; € U.
Since 9, C 97, we have that U € ;. As x;, = x, in I7, there exists N € IN such that

x, €U, Vn>N.

Since U € 9, the above proves x, — x in 7.
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3.4 Metric spaces

We will now define a class of topological spaces known as metric spaces.
Definition 3.20: Distance

Let X be a set. A distance on X is a function
d: XxX >R
such that, for all x, y, z € X they hold:
+ (M) Positivity: The distance is non-negative
d(x,y)>0.

Moreover
dx,y)=0 < x=y.

+ (M2) Symmetry: The distance is symmetric

d(x,y) =d(y,x).

+ (M3) Triangle Inequality: It holds

d(x,z) <d(x,y)+d(y,z).

Definition 3.21: Metric space

Let X be asetand d : X x X — R be a distance on X. We say that the pair (X, d) is a metric space.

Example 3.22: R" as metric space

The Euclidean norm naturally induces a distance over R" by setting
dx,y) :=[x—-yl .

Then (R", d) is a metric space.

It is trivial to check that the Euclidean distance satisfies (M1) and (M2). To show (M3), recall-
ing the triangle inequality in R™:

Ix+yl < x| +yl.
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for all x,y € R". Using the above we obtain

d(x,y) =[x -yl
=[(x-2)+(z-y)l
<l|x-z|+lz-yl
=d(x,z) +d(z,y),

proving that d satisfies (M3). This prove that (R", d) is a metric space.

Example 3.23: p-distance on R"

For x,y € R" and p € [1, ) define

n ’
dp(x,y) := (lei—yilp) :
i=1

Note that d, coincides with the Euclidean distance. For p = oo we set
doo(X,y) = max |x; — y.
i=1...,n

We have that (R", d,) is a metric space.

Indeed properties (M1)-(M2) hold trivially. The triangle inequality is also trivially satisfied
by de. We are left with checking the triangle inequality for d,, with p > 1. To this end, define

1
p

Il := (gn; Ixilp)

Minkowski’s inequality, see Wikipedia page, states that

Ix+yl, < Ixl, +lyl,.
for all x,y € R". Therefore
dp(x, Y) = ||X - Y||p

=|x-2)+ -y,
<lx—zf, +lz-ylp

= p(X’ z)+ dp(Z, Y) ,

proving that d,, satisfies (M3). Hence (R", d),) is a metric space.
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A metric d on a set X naturally induces a topology which is compatible with the metric.

Definition 3.24: Topology induced by the metric

Let (X,d) be a metric space. We define the topology 7, induced by the metric d as the collection of
sets U C X that satisfy the following property:

VxeU,3areR,r>0 st. B(x)CU,

where B,(x) is the ball centered at x of radius r. This is defined by

B.(x) :={ye X : d(x,y) <r}.

We need to check that the above definition is well-posed, that is, we need to show that J; is actually a
topology on X. The proof follows, line by line, the proof that the Euclidean topology is indeed a topology,
see proof immediately below Definition 3.6. This is left as an exercise.

Example 3.25: Topology induced by Euclidean distance

Consider the metric space (R", d) with d the Euclidean distance. Then
Td = Teuclidean -

where Jeyclidean 18 the Euclidean topology on R™.

Exercise: Prove the above statement. It is an immediate consequence of definitions.

Example 3.26: Discrete distance

Let X be a set. Define the functiond : X x X — R by

d(x.y) 0 ifx=y
xX,y) =
Y 1 ifx=+y

Then (X, d) is a metric space, and d is called the discrete distance. Moreover
T4 = T discrete
where T giscrete 18 the discrete topology on X.

Exercise: Prove that (X, d) is a metric space and I3 = T giscrete-

The following proposition tells us that balls in a metric space X are open sets. Moreover balls are the building
blocks of all open sets in X. The proof is left as an exercise.
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Proposition 3.27
Let (X, d) be a metric space and J; the topology induced by d. Then:

« Forall x € X, r > 0 we have B,(x) C J;.
« U € 9, if and only if
U =B, ).
i€l

with I family of indices and x; € X, r; > 0.

We now define the concept of equivalent metrics.

Definition 3.28: Equivalent metrics
Let X be a set and d;, d, be metrics on X. We say that d; and d, are equivalent if

g, — G
‘/dl_‘/dz'

The following proposition gives a sufficent condition for the equivalence of two metrics.

Proposition 3.29

Let X be a set and d;, d, be metrics on X. Suppose that there exists a constant & > 0 such that
~dy(ny) (xS ady(xy), VxyeX.
a

Then d; and d, are equivalent metrics.

The proof of Proposition 3.29 is trivial, and is left as an exercise.
Example 3.30
Let p > 1. The metrics dp and d,, on R" are equivalent.
This follows from Proposition 3.29 and the estimate

do(X,y) < dp(x,y) Sndu(x,y), Vx,y€R".
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Warning

If two metrics are equivalent, that does not mean they have the same balls. For example the balls of the
metrics d;, dy and d,, on R" look very different, see Figure 3.3.

Figure 3.3: Balls B,(0) for the metrics dy, ds, d; in R%.
We can characterize the convergence of sequences in metric spaces.
Proposition 3.31: Convergence in metric space

Suppose (X, d) is a metric space and denote by I the topology induce by d. Let {x,,} C X and x;, € X.
They are equivalent:

1. X, — X, with respect to the topology 7.
2. d(x,,%9) > 0in R.
3. For all £ > 0 there exists N € IN such that

X, € B/(xg), Yvn>N.

The proof is similar to the one of Proposition 3.18, and it is left as an exercise.

3.5 Interior, closure and boundary

We now define interior, closure and boundary of a set A contained in a topological space.

Definition 3.32: Interior of a set

Let (X, J) be a topological space and A C X a set. The interior of A is the set

IntA := U U.

UCA
UeT
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Remark 3.33

The definition of Int A is well-posed, since @ C A and @ € J. Therefore the union is taken over a

non-empty family.

Proposition 3.34

Let (X, I") be a topological space and A C X a set. Then Int A is the largest open set contained in A, that

1S:

1.

2
3
4

Int A is open.
IntAC A
IfVeT andV C A, thenV C Int A.
A is open if and only if
A=IntA.

Proof

We have:

1.

2.

3.

Int A is open, since it is union of open sets, see property (Az).
Int A C A, since Int A is union of sets contained in A.

Suppose V € 5 and V C A. Therefore

ve | ) u=mta.

UCA
UeT

Suppose that A is open. Then
Ac | ) U=mtA.
UCA
Ueg

As we already know that Int A C A, we conclude that A = Int A.

Conversely, suppose that A = Int A. Since Int A is open, then also A is open.

Definition 3.35: Closure of a set

Let (X, ) be a topological space and A C X a set. The closure of A is the set

A:= ﬂ C,
ACC
C closed
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that is, A is the intersection of all closed sets containing A.

Remark 3.36

The definition of A is well-posed, since A C X, and X is closed. Therefore the intersection is taken over
a non-empty family.

Proposition 3.37

Let (X, 9) be a topological space and A C X a set. Then A is the smallest closed set containing A, that
is:

1. Ais closed.

.ACA.

. IfVisclosed ACV,then ACV.
. Ais closed if and only if

N

oW

Proof

We have:
1. Ais closed, since it is intersection of closed sets, see property (C2).
2. A C A, since A is intersection of sets which contain A.

3. Suppose V is closed and A C V. Therefore

A= () ccv.
ACC
C closed

4. Suppose that A is closed. Then

showing that A C A. As we already know that A C A, we conclude that A = A.
Conversely, suppose that A = A. Since A is closed, then also A is closed.
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Lemma 3.38

Let (X, J) be a topological space and A C X a set. They are equivalent:

1. Xy € A
2. For every U €  such that x;, € U, it holds

UnA=+9Q.

Proof
We prove the contronominal statement:
€A < 3JUeT st. xxeU, UnA=0.
Let us check the two implications hold:
« Suppose xp ¢ A. Then x, € U := (A)°. Note that U is open, since U° = A is closed. We have
AnU=An(AF =0,
since A C A.

+ Assume there exists U € I such that x; € U and U n A = @. Therefore A C U°. Since U is open, U°
is closed. Then
A= [ ccue.
ACC
C closed

Since x, ¢ U¢, we conclude that x, ¢ A.

Definition 3.39: Boundary of a set

Let (X, J) be a topological space and A C X a set. The boundary of A is the set

9A := A\Int A.

Proposition 3.40

Let (X, ) be a topological space and A C X a set. Then dA is closed.
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Proof

We can write 3 3
0A=ANIntA=An(Int AF.

Note that A is closed and (Int A)° is closed, since Int A is open. Then 9A is intersection of two closed
sets, and in hence closed by (C2).

We can characterize A as the set of limit points of sequences in A.

Definition 3.41
Let (X, J) be a topological space and A C X. The set of limit points of A is defined as

L(A) :={xe X : 3{x,} C A st. x, - x}.

Proposition 3.42

Let (X, ) be a topological space and A C X a set. Let {x,} C A and x; € X be such that x;, > xy. Then
X9 € A. Therefore

L(A)CA.

Proof

Suppose by contradiction x, ¢ A, so that
X € (A)°.

Since (A)° is open and x, — X, there exists N € N such that
X, € (AF, vn>N.

This is a contradiction, since we were assuming that {x,} C A. This shows x; € A and therefore L(A) C A.

Warning
The converse of Proposition 3.42 is false in general, that is,
A¢ L(A).

We show a counterexample of the above in Example 3.43. The above relation holds in the so-called first
countable topological spaces, such as metric spaces, see Proposition 3.44 below.
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Example 3.43: Co-countable topology
Let X = R with the co-countable topology
T :={ACR: A°=R or A® countable}.

The set
A = (—00, 0]

is not closed and A = R. Moreover, convergent sequences in (X, 7 ) are eventually constant. Therefore
L(A) = A, showing that A ¢ L(A).

Exercise: Prove all the above statements.

In metric spaces we can characterize the interior of a set and the closure in the following way.

Proposition 3.44
Let (X, d) be a metric space. Denote by 7 the topology induced by d. Let A C X. We have
IntA={x€eA: 3r>0 st B(x)C A} (3.6)

and

A=L(A) :={xe X st. 3{x,} C A st x, > x}. (3.7)

Proof

The proof of (3.6) is left as an exercise. Let us prove (3.7). The inclusion L(A) C A holds by Proposition
3.42. We are left to show that 3
ACL(A).

To this end, let x, € A. For n € N, consider the ball B, /n(xp)- Since By /,(xg) € T4 and x; € B,(xp), we can
apply Lemma 3.38 and deduce that
Bim(xp)n A+ Q.

Let x,, € By /(%) n A. Since n was arbitrary, we have constructed a sequence {x,} C A such that
X € By/p(x), VneN.

In particular, we have that

d(x,, xp) < 1 -0
n

as n — oo. Thus x,, = x, showning that x; € L(A).
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Example 3.45
Consider R with the Euclidean topology and A := [0, 1). We have that
IntA=(01), A=][0,1], aA={o0,1}.

In particular
IntA+A, A+A,

showing that A is neither open, nor closed.

The proof of the above statements is left as an exercise.

3.6 Density

Definition 3.46: Density
Let (X, 9) be a topological space and A C X a set. We say that A is dense in X if

AnU=0, YUeET,U=0Q.

Density can be characterized in terms of closure.
Proposition 3.47
Let (X, ) be a topological space and A C X a set. They are equivalent:

1. Ais dense in X.
2. It holds

Proof

Part 1. Let A be dense in X. Suppose by contradiction that
AzX.
This means (A)° # @. Note that (A)° is open, being A closed. By density of A in X we have
An(AF =0.

Since A C ;1, the above is a contradiction.
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Part 2. Suppose that A = X. Let U € J with U # @. By contradiction, assume that
AnU=09.
Therefore A C U°. As U°® is closed, we have
AcCU®,

because A is the smallest closed set containing A. Recalling that A = X, we conclude that U¢ = X.
Therefore U = @, which is a contradiction.

Example 3.48
Consider R with the Euclidean topology.

1. We have that the set of integers Z is closed in R. Indeed,

7= J(zz+1).

z€Z

Since (z,z + 1) is open in R, by (A2) we conclude that Z° is open, so that Z is closed. Therefore
z=12,

showing that Z is not dense in R.

2. The rational numbers Q are instead dense in R, as proven in the Analysis module. Therefore

Q =R.
It is also easy to check that
ntQ=0.
Therefore 3
IntQ+0Q, Q=+0Q,

showing that Q is neither open, nor closed.

Example 3.49
Consider R with the cofinite topology
T eofinite :=1{U CR : U° is finite, or U° = R}.

We have that
Z =R,
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showing that Z is dense in R.

Proof. Suppose C is a closed set such that Z C C. By definition of 7 yfnite We have C = R or
C finite. Since Z C C and Z is not finite, we conclude C = R. This proves that R is the only

closed set containing Z, and so Z =R.

3.7 Hausdorff spaces

Hausdorff space are topological spaces in which points can be separated by means of disjoint open sets.

Definition 3.50

Let (X, ) be a topological space. We say that X is a Hausdorff space if for every two points x,y € X
with x # y there exist U,V € J such that

xeU, yeV, UnV=0.

The main example of Hausdorff spaces are metrizable spaces.

Proposition 3.51

Let (X, d) be a metric space with J; the topology induced by d. Then (X, 7) is a Hausdorff space.

Proof

Let x,y € X with x # y. Set
£ 1= %d(x,y),

and define
U:=B(x), V:=By).

By Proposition 3.27 we know that U,V € J;. Moreover x € U, y € V. We are left to show that
UnV=0.
Suppose by contradiction that U n V # @ and let z € U n V. Therefore

dix,z)<e, d(y,z)<e.
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By triangle inequality we have
dix,y) <d(x,z) +d(y,z) <e+e=d(x,y),

where in the last inequality we used the definition of . This is a contradiction. Therefore UnV = @ and
(X, ;) is Hausdorft.

In general, every metrizable space is Hausdorff.

Definition 3.52: Metrizable space

Let (X, 9") be a topological space. We say that the topology I is metrizable if there exists a metric d on
X such that
I =9y,

with J; the topology induced by d.

Corollary 3.53

Let (X, J") be a metrizable space. Then X is Hausforff.

Proof

Since (X, J) is metrizable, there exists a metric d on X such that

N

T=9.

By Proposition 3.51 we know that (X, 7;) is Hausdorff. Hence (X, ) is Hausdorf.

As a conseugence of Corollary 3.53 we have that spaces which are not metrizable are not Hausdorff. Let us
make a few examples.

Example 3.54: Trivial topology is not Hausdorft

Let (X, J) be a topological space with I trivial topology. Assume that X has more than one element.
Then X is not Hausdorff.

Indeed, let x, y € X with x # y. Suppose by contradiction that X is Hausdorff. Then there
exist U,V € T such that
xeU, yeV, UnV=0.
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Recall that
g ={o,X}.

Since x € U and y € V, we deduce that U and V are non-empty. Since U and V are open, the
only possibility is that
U=V=X.

In this case we have
UnV=XnX=X=#09,

leading to a contradiciton. Hence X is not Hausdorff.

Example 3.55: Cofinite topology on R
Consider the following family J of subsets of R
I :={U CR : UC is finite, or U° = R}.

Then (R, 7) is a topological space which is not Hausdorff. The topology J is called the cofinite topol-
ogy.

Exercise: Show that (R, 9) is not HausdorfT.

Example 3.56
Consider the following family J of subsets of R

T :={U =(-,a) : —oo<a< o}
Then (R, 7) is a topological space which is not Hausdorff.

We start by showing that (R, 7) is a topological space. We need to check the properties of
topologies:

+ (A1) We have that
(0,00)=0 €T, (—00,0)=ReT .
« (A2) Suppose that A; € I for alli € I. By definition
Aj=(-00,g), —00< g <00,

Set
a:=sup g, A:=(—x,a).
i€l
Note that a always exists, and possibly a = co. Moreover A € . We claim

A=A (3.8)

i€l
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To prove (3.8) first suppose that x € A. Then x < a. Set ¢ := a — x, so that ¢ > 0. By
definition of supremum there exists iy € I such that

a—e<a.
From the above, and from the definition of ¢, we deduce
g, >a—e=a—-a+tx=x,
showing that x € (—o,q; ) = A; . Therefore
Acl A
i€l
Conversely, assume that x € uje; A;. Therefore there exists iy € I such that x € A; =

(—c0,a; ). In particular

x<a,<supag =a,
i€l

showing that x € (—co0,a) = A. Therefore

JAca,

iel
and (3.8) is proven.
« (A3) Let A,B € . Therefore
A=(-o,a), B=(-0,b),
for some a,b € [—o0, ]. Set
U:=AnB, z:=min{a,b}.

It is immediate to check that
U = (—oo, z) ,

showing thatU € 7.

Therefore (R, 7) is a topological space. We now show that (R, 9) is not Hausdorff. Suppose
by contradiction that (R, ) is Hausdorff. Let x,y € R with x # y. By assumption there
exist U,V € I such that

xeU, yeV, UnV=0.

By definition of I there exist a, b € [—o0, 00] such that
U= (—,a), V =(-—o0,b).
Since x € U and y € V, in particular U and V are non-empty. Therefore a,b > —oo. Set
z :=min{a,b}, Z :=UnV =(-c0,2).

As a,b > —oo, we have z > —oo. Therefore Z # @. This is a contradiction, sinceU nV = @.
Therefore (R, ) is not Hausdorft.
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In Hausdorff spaces the limit of a sequence is unique.

Proposition 3.57: Uniqueness of limit in Hausdorff spaces

Let (X, J) be a Hausdorff space. If a sequence {x,} C X converges, then the limit is unique.

Proof

Let {x,} C X be a convergent sequence. Suppose by contradiction that
Xn = X0, Xn ™Yo
in X, for some x, y, € X with x; # y,. Since X is Hausdorff, there exist U,V € J such that
€U, yeV, UnV=0.
As x, > xp and U € F with x; € U, there exists N; € N such that
x, €U, Vn2>Nj.
Similarly, since x,, = yy and V € I with y, € U, there exists N, € IN such that
x, €V, ¥n>N,.

Take N := max{N;, Np}. Then
x €UnV, Vn>N.

Since U n V = @, the above is a contradiction. Therefore the limit of x;, is unique.

3.8 Continuity

We extend the notion of continuity to topological spaces. To this end, we need the concept of pre-image of a
set under a function.

Definition 3.58: Images and Pre-images
Let X,Y be setsand f: X — Y be a function.

« Let U C X. The image of U under f is the subset of Y defined by

fU) :={yeY : IxeX st. y=f(x)}={f(x) : xeX}.
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« Let V C Y. The pre-image of V under f is the subset of X defined by

V) i={xeX: f(x)eV}.

Warning

The notation f~!(V) does not mean that we are inverting f. In fact, the pre-image is defined for all
functions.

Let us gather useful properties of images and pre-images.

Proposition 3.59

Let X,Y be sets and f : X — Y. We denote with the letter A sets in X and with the letter B setsin Y. We
have

- AC fT(f(A)

« A= fTI(f(A))if f is injective

- f(fTI(B)CB

f(f~Y(B)) = Bif f is surjective

If A; C A, then f(A;) C f(Ay)

If B, C B, then f~1(By) C f1(By,)
If A; € X fori € I we have

f

Al

UB

i€l

If B; CY fori € I we have

£ B,) ()

i€l
Suppose Z is another setand g: Y — Z. Let C C Z. Then

(g° A = g(f(A)
(g HHO =g O)
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It is a good exercise to try and prove a few of the above properties. We omit the proof. We can now define
continuous functions between topological spaces.

Definition 3.60: Continuous function
Let (X, Ix) and (Y, Iy) be topological spaces. Let f : X — Y be a function.
+ Let xy € X. We say that f is continuous at x; if it holds:

VVeTy st flxg)eV,IUeTx st. xpeU, fUCV.

« We say that f is continuous from (X, 7x) to (Y, Iy) if f is continuous at each point x; € X.

The following proposition presents a useful characterization of continuous functions in terms of pre-
images.

Proposition 3.61
Let (X, Ix) and (Y, Iy) be topological spaces. Let f : X — Y be a function. They are equivalent:

1. f is continuous from (X, Tx) to (Y, Ty).
2. It holds:
f_l(V)ng, VVEP/”y.

Important

In other words, a function f: X — Y is continuous if and only if the pre-image of open sets in Y are
open sets in X.

The proof of Proposition 3.61 is simple, but very tedious. We choose to skip it.
Example 3.62
Let X be a set and I, 7, be topologies on X. Define the identity map
ldy: (X,77) > (X,73), ldx(x) :=x.
They are equivalent:

1. Idy is continuous from (X, 97) to (X, 95).
2. 7 is finer than 9,
Iy C 7.

Indeed, Idy is continuous if and only if

' (V)eT;, vVeT,.
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But Id)_<1 (V) =V, so that the above reads

Veg, vWVWed,,

which is equivalent to 7, C J7.

Let us compare our new definition of contiuity with the classical notion of continuity in R". Let us recall the
definition of continuous function in R™.

Definition 3.63: Continuity in the classical sense
Let f: CR" — R™. We say that f is continuous at x;, if it holds:

Ve>0,38>0 st [f(x)— f(xg)] <e if |x—x] <8.

Proposition 3.64

Let f : R” —» R™ and suppose R", R" are equipped with the Euclidean topology. Let x, € R"”. They are
equivalent:

1. f is continuous at X in the topological sense.
2. f is continuous at X, in the classical sense.

Proof
Part 1. Suppose that f is continuous at x, in the topological sense. Let ¢ > 0 and consider the set
V := B.(f(x0))-

We have that V ¢ R™ is open and f(xy) € V. As f is continuous in the topological sense, there exists
U c R" open with x; € U and such that

fU) cV = B.(f(x0)). (3.9)
Since U is open and x; € U, there exists § > 0 such that
B5(X0) C U .

By the above inclusion and (3.9) we conclude that

f(Bs(x)) € f(U) CV = B,(f(x0))-
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This is equivalent to
x€Bs(xg) = f(x)€B(f(x0)),
which reads
x—x0l <6 = [f(x) - fxo)l <e.

Therefore f is continuous at x,, in the classical sense.
Part 2. Suppose f is continuous at x; in the classical sense. Let V C R™ be open and such that f(x,) € V.
Since V is open, there exists ¢ > 0 such that

B.(f(x¢)) C V. (3.10)

Since f is continous in the classical sense, there exists § > 0 such that

lx—x0l <6 = /&) - fxo)l <e.

The above is equivalent to
x € Bs(xg) = f(x)€B(f(x0)). (3-12)

Set
U := Bs(x)

and note that U is open in R"” and x, € U. By definition of image of a set, (3.11) reads
fU) = f(Bs(x0)) S Be(f(x0))-

Recalling (3.10) we conclude that
fU)cv.

In summary, we have shown that given V.C R™ open and such that f(x,) € V, there exists U open in R"
such that xy € U and f(U) C V. Therefore f is continuous at x, in the topological sense.

A similar proof yields the characterization of continuity in metric spaces. The proof is left as an exercise.
Proposition 3.65

Let (X,dx) and (Y, dy) be metric spaces. Denote by Ty and Jy the topologies induced by the metrics.
Let f: X — Y and x; € X. They are equivalent:

1. f is continuous at x in the topological sense.

2. It holds:
Ve>0,38 >0 st dy(f(x), f(xg)) <e if dy(x,x)<9.

Let us examine continuity in the cases of the trivial and discrete topologies.
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Example 3.66
Let (X, Ix) and (Y, Iy) be a topological space. Suppose that Fy is the trivial topology, that is,
Iy ={0,Y}.
Then every function f : X — Y is continuous.
Indeed, we know that f is continuous if and only if it holds:
fFIV)eTyx, vVVeTy.

We have two cases:

« V= @: Then
WM =r@=0ex.

« V=Y: Then
i) =f1Y)=XeIx.

Therefore f is continuous.

Example 3.67

Let (X, Ix) and (Y, Iy) be topological spaces. Suppose that Jy is the discrete topology, that is,
Iy ={V st. VCY}.

Let f: X — Y. They are equivalent:

1. f is continuous from X to Y.
2. fI{yh) e Iy forallyey.

Indeed, suppose that f is continuous. Then
iV egx, vVeTy.
AsV = {y} € Fy, we conclude that f~1({y}) € Tx.
Conversely, assume that f~1({y}) € I forall y € Y. Let V € Jy. Trivially, we have

V=]

yev

Therefore
vy =1 (U {y}) = r'm.
yev yev

As f1({y}) € I for all y € Y, by property (Az) we conclude that f~1(V) € Tx. Therefore
f is continuous.
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In a topological space, continuity preserves limits of sequences.

Proposition 3.68

Let (X, Jx) and (Y, Iy) be topological spaces. Let f: X — Y be continuous. Let {x,} C X and x; € X.
We have
X, x in X = f(x)— f(xp) inY.

Proof
Let V € Jy be such that f(x;) € V. Since f is continuous there exists U € Ty with x; € U such that
fU)cv.
Since U € Iy and x,, = x; in X, there exists N € IN such that
x, €U, Vn>N.

Therefore
f(x,) € fU), VYn>N.

Seeing that f(U) C V, we conclude
f(x,)eV, vn>N,

showing that f(x,) = f(x)inY.

Warning
The converse implication of Proposition 3.68 is false. That is, even if it holds
X~ x in X = f(x,)— f(x) inY.

for all sequences {x,} C X, the function f might not be continuous. A counterexample is given in
Example 3.70 below.

For the above to hold, it is necessary for the topologies on X and Y to be first countable, as for example
is the case for metrizable topologies, see Proposition 3.69 below.
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Proposition 3.69

Let (X,dy) and (Y, dy) be metric spaces. Let f : X — Y and suppose that for all convergent sequences
{x,} C X, the sequence {f(x,)} is convergent in Y. Then f is continuous.

Proof

Suppose by contradiction f is not continuous at some point x, € X. Then there exists ¢y > 0 such that,
for all 5 > 0 it holds

dy(f(x), f(x0)) > &, dx(x,x) <9.

We can therefore choose § = 1/n and construct a sequence {x,,} C X such that

1
Therefore x,, — x; in X. Define the sequence

x, if n even

Y= ifnoodd

As x;, — xp, we have y, — x,. However {f(y,)} does not converge to any point in Y: Indeed {f(y,)}
cannot converge to f(xg), since for n even we have

dy(f (), f(x0)) = dy(f (), f(x0)) > & -

Also {f(y,)} cannot converge to a point y # f(x,), since for n odd

dy(f(yn), ¥) = dy(f(x0),y) > 0.

Hence, we have produced a sequence {y,} which is convergent, but such that {f(y,)} does not converge.
This contradicts our assumption. Hence f must be continuous.
Example 3.70
Consider R with the co-countable topology:
Tee :={ACR: A°=R or A® countable}.

Sequences in (R, 7..) converge if and only if they are eventually constant. Also consider the discrete

topology on R, denoted by Jyiscrete- We have seen that sequences in (R, T giscrete) converge if and only if
they are eventually constant. Consider the identity function

[ R Ie) > R Tgiserete)»  f(x) :=x.

We have that:
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« f is not continuous: Indeed {x} € Jjjscrete Dut
D) = {x} ¢ T
since {x}¢ is neither R, nor countable.

o If {x,} is convergent in I, then it is eventually constant. Therefore { f(x;)} is eventually constant,
and so it is convergent in Jgiscrete-

Let us make an observation on continuity of compositions.

Proposition 3.71
Let (X, I), (Y, Jy),(Z, T ) be topological spaces. Let

f: X->Y, g:Y>Z,
be given functions. If f and g are continuous, then

(gof): X—>Z

is continuous.

Proof
Let C € 9. As g is continuous, we have that
g0 eTy.

Since f is continuous, we also have
g ©0))egx.
Therefore
(g° /7O = f (g (O) e Ix,

so that g o f is continuous.
We conclude the section by introducing homeomorphisms.
Definition 3.72: Homeomoprhim

Let (X, Ix), (Y, Jy) be topological space. A function f: X — Y is called an homeomorphism if they
hold:
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1. f is continuous.
2. There exists g : Y — X continuous such that

gef=MUdx, fog=Idy.

The above is saying that f is a homeomorphism if it is continuous and has continuous inverse. Homeomor-
phisms are the way we say that two topological spaces look the same.

3.9 Subspace topology

Any subset Y in a topological space X inherits naturally a topological structure. Such structure is called
subspace topology.

Definition 3.73: Subspace topology
Let (X, 9) be a topological space and Y C X a subset. Define the family of sets
S :={ACY:3Ue€T st. A=UnY}.

The family & is called subspace topology on Y induced by the inclusion Y C X.

Proof: Well-posedness of Definition 3.73
We have to show that (Y, &) is a topological space:

« (A1) @ € & since
@=90nY

and @ € 7. Similarly we have Y € &, since
Y=XnY,
and X € 7.
« (A2) Let A; € & fori € I. By definition there exist U; € I such that
A =UnY, viel.

Therefore
JA=JUny)= (U(J,.)ny.
i€l i€l i€l

The above proves that u;c; A; € &, since Ui U; € T
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« (A3) Let A{, Ay € §. By definition there exist U;,U, € I such that
A1:UlﬂY, AzzUzﬂY

Therefore
AlﬂAz :(Ul ﬂY)ﬂ(UzﬂY):(Ul ﬂUz)ﬂY

The above proves that A; n Ay, € &, sinceUyj nU; € T

If the set Y is open, then sets are open in the subspace topology if and only if they are open in X.

Proposition 3.74
Let (X, J) be a topological space and Y € I a subset. Let A C Y. Then

AedS — AeT .

Proof

Suppose A € §. Then there exists U € I such that
A=UnY.
Since U,Y € T, by property (A3) of topologies it follows that
A=UnYeT.

Conversely, assume that A € 9. Then
A=AnY,

showing that A € §.

Warning

Let (X, J) be a topological space, A C Y C X. In general we could have
AesS and A¢T

For example consider X = R with I the euclidean topology. Consider the subset Y = [0, 2)
and equip Y with the subspace topology &. Let A =[0,1). Then A ¢ I but A € &, since

A=(-1,1)nY

and (-1,1) € 7.

Dr. Silvio Fanzon S.Fanzon@hull.ac.uk



Differential Geometry Page 154

Example 3.75

Let X = R be equipped with J the euclidean topology. Let & be the subspace topology on Z. Then &
coincides with the discrete topology.

Proof. The set {z} is open in & for all z € Z. Indeed,
{Z}=E-1,z+1)nZ

and (z—1,z+1) € 9. Thus{z} € §. Let now A C Z. Then

A=,

z€EA

and therefore A € & by (A2). This proves that
§={Ast. ACZ},

that is, & is the discrete topology on Z.

3.10 Topological basis

We have seen that in metric spaces every open set is union of open balls, see Propostion 3.27. We can then
regard the open balls as building blocks for the whole topology. In this context, we call the open balls a basis
for the topology.

We can generalize the concept of basis to arbitrary topological spaces.

Definition 3.76: Topological basis

Let (X, 9") be a topological space and let 8 C T . We say that 2 is a topological basis for the topology
I iffor allU € J there exist open sets {B;} C &, with I family of indices, such that

U= U B;. (3.12)

i€l

Example 3.77

1. Let (X, J) be a topological space. Then B := 7 is a basis for 7.
This is true because one can just take B = U in (3.12).

2. (X, d) metric space with topology J; induced by the metric. Then
B :={B(x): x€X, r>0}
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is a basis for 7.
This is true by Propostion 3.27.
3. Let (X, J) with X the discrete topology. Then
B ={{x}: xe X}
is a basis for 7.

This is true because for any U €  we have

U=

xeU

Proposition 3.78
Let (X, J") be a topological space and & a basis for 7. They hold:

+ (B1) We have

) B=x.

Be3&

« (B2) If U, U, € & then there exist {B;} C % such that

UanZZUBi'

i€l

Proof

« (B1) This holds because X € 9. Therefore by definition of basis there exist B; € % such that

x={JB.

i€l
Therefore taking the union over all B € % yields X, and (B1) follows.

« (B2) Let U;,U, € B. Then U;,U, € T, since B C T . By property (A3) we get thatU; nU, € T
Since & is a basis we conclude (B2).

Properties (B1) and (B2) from Proposition 3.78 are sufficient for generating a topology.
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Proposition 3.79
Let X be a set and 9 a collection of subsets of X such that (B1)-(B2) hold. Define
g :=JucX: U=|JB. B e%®B{.
i€l
Then:
1. T is atopology on X.

2. A is a basis for 7.

Proof

1. We need to verify that I is a topology:

+ (A1) We have that X € J by (B1). Moreover @ € 7, since @ can be obtained as empty union.
Therefore (A1) holds.

« (A2)LetU; € T for alli € I. By definition of 7 we have

U= B

kekK;

for some family of indices K; and B;-< € 9. Therefore

vi=Ju= U B,

i€l iel, kekK;
showing that U € 7.

+ (A3) Suppose that U;,U, € . Then

u=\JB'. U=|J)B

for B, B> € &. From the above we have

1>

Unlp= ) B'nB.
i€l;, kel,

From property (B2) we have that for each pair of indices (i, k) the set B} n B,% is the union of sets in
3. Therefore U; n U, is union of sets in %, showing that Uy nU, € T .

2. This trivially follows from defintion of 7 and definition of basis.
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3.11 Product topology

Given two topological spaces (X, Tx) and (Y, Iy) we would like to equip the cartesian product
XxY={(x,y): x€X, yeY}

with a topology. We proceed as follows.

Proposition 3.80
Let (X, Ix) and (Y, Jy) be topological spaces. Define the family 98 of subsets of X xY as
B ZZ{UXV : UeJy, Vegy}CXXY.

Then 9 satisfies properties (B1) and (B2) from Proposition 3.78.

The proof is an easy check, and is left as an exercise. As 9% satisfies (B1)-(B2), by Proposition 3.79 we know
that

Txxy :={UxV : UxV=| B, Be%® (3.13)
i€l

is a topology on X x Y.

Definition 3.81: Product topology

Let (X, Ix) and (Y, Jy) be topological spaces. We call Txy at (3.13) the product topology on X xY.

Example 3.82

Let R be equipped with the Euclidean topology. The product topology on RxR coincides with the topology
on R? equipped with the Euclidean topology.

Consider the projection maps
mx: XxY > X, nx(x,y):=x

and
my: XxY >V, ay(x,y) =y
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Proposition 3.83

Let (X, 9x) and (Y, Iy) be topological spaces and equip X x Y with the product topology Jx.y. Then
my and my are continuous.

Proof

Let U € Ix. Then
i lU)=UxY.
We have that U xY € T,y since U € Ty and Y € Jy. Therefore nx is continuous. The proof that my is

continuous is similar, and is left as an exercise.

The following proposition gives a useful criterion to check whether a map into X x Y is continuous.
Proposition 3.84

Let (X, Jx) and (Y, Jy) be topological spaces and equip X x Y with the product topology Jxy. Let
(Z,T7) be a topological space and
f:Z—->XxY

a function. They are equivalent:

1. f is continuous.
2. The compositions
axef:Z—->X, nyof:Z->Y

are continuous.

The proof is left as an exercise.

3.12 Connectedness

Suppose that (X, 9) is a topological space. By property (A1) we have that
0, XeT

Therefore
=X, X=0

are closed. It follows that @ and X are both open and closed.
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Definition 3.85: Connected space

Let (X, ) be a topological space. We say that:

+ X is connected if the only subsets of X which are both open and closed are @ and X.
+ X is disconnected if it is not connected.

The following proposition gives two extremely useful equivalent definitions of connectedness. Before stating
it, we define the concept of proper set.

Definition 3.86: Proper subset
Let X be a set. A subset A C X is proper if

A0, A+X.

Proposition 3.87: Equivalent definition for connectedness

Let (X, J) be a topological space. They are equivalent:

1. X is disconnected.
2. X is the disjoint union of two proper open subsets.
3. X is the disjoint union of two proper closed subsets.

Proof

Part 1. Point 1 implies Points 2 and 3.
Suppose X is disconnected. Then there exists U € X which is open, closed, and such that

U+, U=+X. (3.14)

Define

By definition of complement we have
X=AuB, AnB=0.
Moreover:

« A and B are both open and closed, since U is both open and closed.

« A and B are proper, since (3.14) holds.
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Therefore we conclude Points 2, 3.
Part 2. Point 2z implies Point 1. Suppose A, B are open, proper, and such that

X=AuB, AnB=09.

This implies
A°=X\A=B,

showing that A° is open, and hence A is closed. Therefore A is proper, open and closed, showing that X
is disconnected.
Part 3. Point 3 implies Point 1. Suppose A, B are closed, proper, and such that

X=AuB, AnB=09Q.

This implies
A= X\ A=B,

showing that A° is closed, and hence A is open. Therefore A is proper, open and closed, showing that X
is disconnected.

In the following we will use Point 2 and Point 3 in Proposition 3.87 as equivalent definitions of disconnected
topological space.

Example 3.88

Consider the set X = {0, 1} with the subspace topology induced by the inclusion X C R, where R is
equipped with the Euclidean topology Jeyclidean- Then X is disconnected.

Proof. Note that
X ={0ju{1}, {0jn{l}=0.

The set {0} is open for the subspace topology, since
{0} =Xn(-1,1), (-1,1) € Teuclidean -
Similarly, also {1} is open for the subspace topology, since
{1} =Xn(0,2), (0,2) € Teuclidean -

Clearly
{0}=0, {1}=#0,

showing that X is disconnected.
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Example 3.89
Let p € R. The set X = R\ {p} is disconnected.

Proof. Define the sets
A:(—OO,P)> B:(p,oo)

Then A, B are proper subsets of X, since p ¢ X. Moreover
X=AuB, AnB=29.

Finally we have that A, B are open for the subspace topology, since they are open in R. There-
fore X is disconnected.

Example 3.90
Letn > 2 and A C R" be open and connected. Let p € A. Then X = A\ {p} is connected.

Exercise: Prove that X is connected.

The next theorem shows that connectedness is preserved by continuous maps.

Theorem 3.91

Let (X, Ix), (Y, Iy) be topological spaces. Suppose that f: X — Y is continuous and let f(X) C Y be
equipped with the subspace topology. If X is connected, then f(X) is connected.

Proof
Suppose that A, B are open in f(X) and such that
f(X)=AuB, AnB=0.

if we show that

A=@ or B=9Q (3.15)
the proof is concluded. Since A, B are open for the subspace topology, there exist A, B € Iy such that
A=Anf(X), B=Bn f(X). (3.16)
Since f(X) = A u B we have
X = f1(AuB)

= A@vu f7(B)
= fH (A v (B
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where in the last equality we used (3.16). Since A n B = @, we also have that

@0 1B = A0 f7U(B)
= f"'(AnB)

= @)
=9

where in the first equality we used (3.16). By continuity of f we have that
A, (B egx.
Therefore, using that X is connected, we deduce that
fUA) =0 or fTI(B)=0.

The above implies _ ~
Anf(X)=9 or Bn f(X)=9.

Recalling (3.16), we obtain (3.15), ending the proof.

An immediate corollary of Theorem 3.91 is that connectedness is a topological invariant, e.g., connectedness
is preserved by homeomorphisms.

Corollary 3.92
Let (X, I), (Y, 9y) be homeomorhic topological spaces. Then

X is connected <= Y isconnected

The proof follows immediately by Theorem 3.91, and is left to the reader as an exercise.
Example 3.93
Let n > 2. R" not homeomorphic to R.
Proof. Suppose by contradiction that there exists an omeomorphism
f:R">R.
Define p = f(0) and the restriction

g R*N{0} = RN\ {p}, g(x) = f(x).

Since g is a restriction of an omeomorphism, then g is an omeomorphism. We have that
R™ \ {0} is connected, as a consequence of
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Example 3.90. Hence, by Corollary 3.92, we infer that R \ {p} is connected. This is a contra-
diction, since R \ {p} is disconnected, as shown in Example 3.89.

Example 3.94

Define the 1D unit circle
S':={(x,y) e R? : x?+y?=1}.

Then $! and [0, 1] are not homeomorphic.
Proof. Suppose by contradiction that there exists and omeomorphism
f:[0,1] - st.

The restriction of f to [0, 1]\ {%} defines an omeomorphism

g ([0,1]\{%}) —>(S'\{p}). p ::f(%) )
The set [0, 1] \ {%} is disconnected, since

[0,1]\{1/2}=[0,1/2) u (1/2,1]

with [0,1/2) and (1/2, 1] open for the subset topology, non-empty and disjoint. Therefore,
using that g is an omeomorphism, we conclude that also $! \ {p} is disconnected. Let 6, €
[0, 27r) be the unique angle such that

p = (cos(6)), sin(6,)) .
Thus $* \ {p} is parametrized by
y(@) := (cos(t),sin(t)), t€ (6,6 +2r).

Sincey is continuous and (6, )+ 2r) is connected, by Theorem 3.91, we conclude that 1 \{p}
is connected. Contradiction.

3.13 Intermediate Value Theorem

Another consequence of Theorem 3.91 is a generalization of the Intermediate Value Theorem to arbitrary
topological spaces. Before providing statement and proof of such Theorem, we need to characterize the
connected subsets of R.
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Definition 3.95: Interval

A subset I C R is an interval if it holds:

Va,bel, x€eR st. a<x<b = xe€l.

Theorem 3.96

Let R be equipped with the Euclidean topology and let I C R. They are equivalent:

1. I is connected.
2. I1is an interval.

Proof

Part 1. Suppose I is connected. If I = {p} for some p € R then I is an interval and the thesis is achieved.
Otherwise there exist a,b € I with a < b. Assume that x € R is such that

a<x<b.
We need to show that x € I. Suppose by contradiction that x ¢ I and define the open sets
A=(—00,x), B=(x,0).

Then
A= (-0, x)nI, B=(x,00)nI

are open in [ for the subspace topology. Clearly
AnB=0.
Moreover o
I=AuB
since x ¢ I. We have:

. Since a < x and a € I, we have that a € A. Therefore A = @.
+ Similarly, b > x and b € I, therefore b € B. Hence B # @.

Therefore I is disconnected, which is a contradiction.
Part 2. Suppose I is an interval. Suppose by contradiction that I is disconnected. Then there exist A, B
proper and closed, such that

I=AuB, AnB=09.

Since A and B are proper, there exist points a € A, b € B. WLOG we can assume a < b. Define
a=sup S, S:={xeR: [a,x)n]IC A}

Note that « exists finite since b is an upper bound for the set S.
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Suppose by contradiction b is not an upper bound for S. Hence there exists x € R such that
[a,x)nI C Aandthat x > b. Asb > a, we conclude thatb € [a,x)nI C A. Thus b € A, which
is a contradiction, since b € Band An B = @.

Moreover we have that o € A.

This is because the supremum « is the limit of a sequence in S, and hence of a sequence in
A. Therefore a belongs to A. Since A is closed, we infer @ € A.

Note that A® = B, which is closed. Therefore A€ is closed, showing that A is open. As @ € A and A is
open in [, there exists ¢ > 0 such that

(a—c,a+e)nI CA.

In particular
l[a,a+e)nICA,

showing that « + ¢ € S. This is a contradiction, since « is the supremum of S.

We are finally ready to prove the Intermediate Value Theorem.

Theorem 3.97: Intermediate Value Theorem

Let (X, ) be a connected topological space. Suppose that f: X — R is continuous. Suppose that
a,b € X are such that f(a) < f(b). It holds:

VeceR st fla)<c< f(b), 3¢ e X st. f(é)=c.

Proof

As f is continuous and X is connected, by Theorem 3.91 we know that f(X) is connected in R. By
Theorem 3.96 we have that f(X) is an interval. Since a,b € X it follows f(a), f(b) € f(X). Therefore, if
¢ € Ris such that

fla) <c< f(b)

we conclude that ¢ € f(X), since f(X) is an interval. Hence there exists & € X such that f(¢) = c.

3.14 Path connectedness
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Definition 3.98: Path connectedness

Let (X, T) be a topological space. We say that X is path connected if for every x,y € X there exist
a,b € R with a < b, and a continuous function

a: la,b] > X

such that
al@)=x, abd)=y.

Example 3.99
Let A C R" be convex. Then A is path connected.
A is convex if for all x, y € A the segment connecting x to y is contained in A, namely,
[x,y] :={(1—t)x+ty : t€[0,1]} CA.
Therefore we can define
a: [0,1] > A, a():=Q—-t)x+1ty.

Clearly « is continuous, and a(0) = x,a(1) = y.

It turns out that path-connectedness implies connectedness.

Theorem 3.100

Let (X, J) be a path connected topological space. Then X is connected.

Proof

Suppose that X = A u B with A,B € 9 and non-empty. In order to conclude that X is connected, we
need to show that
AnB#Q.

Since A and B are non-empty, we can find two points x € A and b € B. As X is path connected, there
exists & : [0,1] — X continuous such that

a(0)=x, a(l)=y.

In particular
a (A=, a(B)=0.
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Moreover

[0,1] = a}(X)
=a (AuB)
=a Y(A)uva 1(B).

As a is continuous, &~ !(A) and &~ !(B) are open in [0, 1]. Suppose by contradiction that An B = @. Then
al(Ana B =a(AnB)=a1(®) =0.
Hence [0, 1] is disconnected, which is a contradiction. Therefore A n B # @ and X is connected.

The converse of the above theorem does not hold. A counterexample is given by the so-called topologist
curve, which will be examined in Proposition 3.102. Prior to this, we need a basic Lemma.

Lemma 3.101

Let (X, J) be a topological space. Let A,U C X with A connected and U open and closed. Suppose that
AnU = @, then ACU.

Proof

The following set identities hold for any pair of sets U and A:

A=(AnU)u(AnU®
@=(AnU)n(AnU°

Now, suppose by contradiction A € U. This means A n U® # @. By assumption we also have AnU # @.
Moreover the sets AnU and A nU° are open for the subspace topology on A, since U and U® are open in
X. Hence A is the disjoint union of non-empty open sets, showing that A is disconnected. Contradiction.
We conclude that A C U.

Proposition 3.102: Topologist curve
Consider R? with the Euclidean topology and define the sets

X :=AuB
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where

i ffsn(}) o

B :={(0,t) : te[-1,1]}

Then X is connected, but not path connected.

Proof

Step 1. X is not path connected.
Let x € A and y € B. There is no continuous function @ : [0,1] — X such that «(0) = x and a(1) = y. If
such «a existed, then we would obtain a continuous extension for ¢t = 0 of the function

f() = sin(%) , x>0

which is not possible. Hence X is not path connected.
Step 2. Preliminary facts.

« Ais connected: Define the curvey : (0,00) — R? by

0= on(t).

Clearly y is continuous. Since (0, ®) is connected, by Theorem 3.91 we have that y((0,00)) = A is
connected.

« B is connected: Indeed B is homeomorphic to the interval [—1,1]. Since [—1,1] is connected, by
Corollary 3.92 we conclude that B is connected.

« A = X: This is because each point y € B is of the form y = (0,f)) for some f, € [-1,1]. By
continuity of sin and the Intermediate Value Theorem there exists some z > 0 such that

sin(z) =t .
Therefore z, := z + 2nr satisfies
z, > 00, sin(z,) =ty,, VneN.

Define s, := 1/z,. Trivially

. (1
s, =0, sm(—)zto, vn eN.
Sn
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Therefore we obtain

(sn, sin (é)) — (0,1y) -

Hence the set B is contained in the set L(A) of limit points of A. Since we are in R?, we have that
L(A) = A, proving that BC A. Thus A= AuB=X.

Step 3. X is connected.

Let U C X be non-empty, open and closed. If we prove that U = X, we conclude that X is connected. Let
us proceed.

Since U is non-empty, we can fix a point x € U. We have two possibilities:

« x € A: In this case AnU # @. Since A is connected and U is open and closed, by Lemma 3.101 we
conclude A CU. AsU is closed and contains A, then A C U. But we have shown that

A=X,
and therefore U = X.

« x € B: ThenU n B # @. Since B is connected and U is open and closed, we can invoke Lemma 3.101
and conclude that B C U. Since (0, 0) € B, it follows that

(0,0)eU.

As U is open in X, and X has the subspace topology induced by the inclusion X C R?, there exists
an open set W of R? such that
U=XnW.

Therefore (0,0) € W. As W is open in R?, there exists a radius ¢ > 0 such that
B,(0,0) CW.

Hence
XnB(0,0)CXnW=U.

The ball B,(0, 0) contains points of A, and therefore
AnU=0Q.

Since A is connected and U is open and closed, we can again use Lemma 3.101 and obtain that
A CU. Since we already had B C U, and since U € X = A u B, we conclude hence U = X.

Therefore U = X in all possible cases, showing that X is connected.
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4 Surfaces

Curves are 1D objects in R, parametrized via functionsy : (a,b) — R>. There is only one available direction
in which to move on a curve:

« t — y(t) moves forward on the curve
o t — y(—t) moves backward on the curve

¥(-t)
gty

Figure 4.1: Sketch of a curvey.

Surfaces are 2D objects in R®. There are two directions in which one can move on a surface.

Question 4.1

How to dercribe a surface mathematically?

A curve T’ C R® can be described with one functiony : (a,b) — I'. The idea is that I looks locally like R.

A surface & cannot be described, in general, with just one functiono : U — &, with U C R? open set. The
idea is that, to describe &, one needs to piece together many local charts 6, : U; — & with U; C R? open.
Such charts have to cover the whole surface §, e.g.

§ = Jou®).
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N

Togus

SPUHeRE

=y .
' BAND

Figure 4.2: Sketch of a surfaces: Sphere, Torus, Mébius band.

(%)

R

@
®

Figure 4.3: A curve I can be described by a functiony : (a,b) — T.
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N

Figure 4.4: A surface § can be described by a family of charts ¢, : U; — & with U; C R? open set.

4.1 Preliminaries

Before proceeding with the formal definition of surface, we need to establish some basic notation and termi-
nology regarding linear algebra, the topology of R", and calculus for smooth maps from R" into R™.

4.1.1 Linear algebra

Definition 4.2: Bilinear form
Let V be a vector space and B: V xV — R. We say that:
+ Bis bilinear if

B(A;vy + A9ve, w) = A1 B(vy, W) + A, B(vy, W),
B(W, /11V1 + Asz) = AlB(W, Vl) + AzB(W, V2) .

forallv,weV, A4 €R.

+ Bis symmetric if
B(v,w) = B(w,v)

forallv,weV.

A bilinear map B is called bilinear form on V.
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Notation

Let V be a vector space with basis {vy, ..., v,}. Then, for a vector v € V there exist coefficients Ay, ..., A,
such that
V=4V +..+A4,v,.

We denote the vector of coefficients of v by the column vector
C— T n
X 1= (Al,...,/".n) eR".
The coefficients of a vector w are denoted by

¥ = (i)

Bilinear forms can be represented by a matrix.
Remark 4.3: Matrix representation for bilinear forms

Let {vy,...,v,} be a basis for the vector space V. Given a bilinear form B: VxV — R we define the matrix

M := (B(vi,vj)) € R,

n
ij=1

Then
B(v,w) = XTMy.

Proof. We can write v and w in cordinates as

n n
V:Z/‘livi, w:Zy,-vi,
i=1

i=1

for suitable coefficients A;, i; € R. Using bilinearity of B we get

n n
B(v,w) =B (Z Avi, Z ijj>
i=1 =1

n
= Y ApB(vi,v))

ij=1
= xTMy.
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Definition 4.4: Quadratic form

Let V be a vector space and B: V xV — R be a bilinear form. The quadratic form associated to B is the
map
Q: V>R, Q(v):=B(v,v).

A symmetric bilinear form is uniquely determinded by its quadratic form, as stated in the following proposi-
tion.

Proposition 4.5

Let B: V xV — R be a symmetric bilinear form and Q : V — R the associated quadratic form. Then

B v) = 3 (Qv +w) = 0(¥) ~ Q(w)) .

forallv,weV.

The proof is an easy check, and is left as an exercise.
Definition 4.6: Inner product
Let V be a vector space. An inner product on V is a symmetric bilinear form (-,-) : V xV — R such that
(v,v) >0, VveV.
Moreover:

+ The length of a vector v € V with respect to B is defined as
vl == (v, v).

« Two vectors v,w € V are orthogonal if

(v,w)=0.

Example 4.7

Let V = R" and consider the euclidean scalar product

n
Vew =) vw,
i=1
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where v = (v,...,v,), W = (wy, ..., w,). Then
(V,W) :=v-w

is an inner product on R".

Proposition 4.8

Let V be a vector space and (-, -) an inner product on V. There exists an orthonormal basis {vy,...,v,}

of V, that is, such that

1 ifi=j

<Vi, Vj> = p
0 ifi#j

In particular, the matrix M associated to (-, -) is the identity.

Definition 4.9: Linear map
Let V, W be vector spaces and L : V — W. We say that L is linear if
L(Av + pw) = AL(v) + pL(w)

forallv,weVand A,z € R.

Remark 4.10: Matrix representation of linear maps

Let V, W be vector spaces and L : V — W be a linear map. Let {v,..., v, } be a basis of V and {wy, ..., w,,}
be a basis of W. Then there exists a matrix M € R™" such that
Lv=Mx, VveV.

Specifically, M € R™" is called the matrix associated to L with respect to the basis {vy,...,v,} of V and
{wi...,wy,} of W, and is defined by

where the coefficients a;; are such that

L(VJ) = d41jWq +...+ AnjWm = Z ajjWi .
i=1
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In other words, the columns of M are given by the coordinates of the vectors L(v;) with respect to the
basis {w,..., wp,}.

Definition 4.11: Eigenvalues and eigenvectors
Let V be a vector space and L : V — V a linear map. We say that A € R is an eigenvalue of L if
L(v) = Av

for some v € V with v # 0. Such v is called eigenvector of L associated to the eigenvalue A.

Definition 4.12: Self-adjoint map

Let V be a vector space, (-, -) an inner product and L : V — V a linear map. We say that L is self-adjoint
if

(v, L(w)) =(L(v),w), Vv,weV.

Theorem 4.13: Spectral Theorem

Let V be a vector space, (-,-) an inner product, and L: V — V a self-adjoint linear map. There exist an
orthonormal basis of V

Vi, ., v},

where v; are eigenvectors of L, that is,
LVi = A’ivi

for some eigevalue A; € R. In particular, the matrix of L with respect to the basis {vy, ..., v,} is diagonal:

A0 .. 0
0 0 .. A

There is also a matrix version of the spectral theorem. To state it, we need to introduce some terminology.

Definition 4.14

Let A € R¥" be a matrix. We say that:
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« Ais symmetric if

+ Ais orthogonal if

where I is the identity matrix.

Remark 4.15

Let L: V — V be linear and A € R™" be the matrix associated to L with respect to any basis {vy, ..., v,}
of V. They are equivalent:

« L is self-adjoint,
+ Ais symmetric.

Let A € R¥" be a matrix. An eigenvalue of A is a number A € R such that
Av = Av,

for some v € R" with v # 0. The vector v is called an eigenvector of A with eigenvalue 1.

Remark 4.17

Let A € R The eigenvalues of A of A can be computed by solving the characteristic equation
P(A) =0,

where P is the characteristic polynomial of A, defined by

P(A) :=det(A - AI).

‘ Definition 4.16: Matrix eigenvalues

Remark 4.18

Let L: V — V be a linear map and A the associated matrix with respect to any basis of V. Then
Liv)=Ax, VveV,

where x € R” is the vector of coordinates of v. They are equivalent:
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« Ais an eigenvalue of L of eigenvector v,
+ Ais an eigenvalue of A of eigenvector x.

Theorem 4.19: Spectral Theorem for matrices

Let A € R¥" be a symmetric matrix. Consider R" equipped with the euclidean scalar product. There
exist an orthonormal basis of V

{Vla >Vn}’
where v; are eigenvectors of A, that is,
AVl' = /11‘Vi
for some eigevalue 4; € R. Moreover
A = PDPT,
where
P = (vy]...[vp)
A 0 0
0 A 0

D := dlag(ﬁ,l, ces ,An) =

Remark 4.20

The corresponedence between Theorem 4.13 and Theorem 4.19 is as follows. Let A € R”" be symmetric
and {wy, ..., w,} be any orthonormal basis of the vector space V. Define the linear map L : V — V such
that

n
L(Vj) = Zaijwi, Vi=1,...,n.
i=1

In this way A is the matrix associated to L with respect to the basis {wy, ..., w,}. Then L is self-adjoint.
Moreover L and A have the same eigenvalues. By the Spectral Theorem there exists an orthonormal
basis {vy, ..., v,} of V such that the matrix of L with respect to such basis, say D, is diagonal. Then

A = PDpPT

where P is the matrix of change of basis between {wy, ..., w,} and {vy, ..., v,}, that is, P = (pij) where

n
W= ) i
i=1
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4.1.2 Topology of R”

The Euclidean norm on R” is denoted by

x| :=

n
inz, x = (xq,...,%,) € R".
i=1

The Euclidean norm induces the distance

dx,y) :=|x—vyl| =

Definition 4.21: Euclidean Topology

The pair (R", d) is a metric space. The topology induced by the metric d is called the Euclidean topology,
denoted by I . In this chapter we will always assume that R" is equipped with the Euclidean topology
J.

A setU C R" is open if for all x € U there exists ¢ > 0 such that B.(x) C U, where
B(x) :={y eR" : |x—y|<¢

is the open ball of radius ¢ > 0 and centered at x. In this case we denote U € I, with I the Euclidean
topology in R™.

Definition 4.23: Closed Sets

AsetV CR"is closed if V¢ := R*\ U is open.

‘ Definition 4.22: Open Sets

Example 4.24

« The n-dimensional unit sphere
$"={xeR™ : x| =1}

is not open in R"*!, since for any x € $" we have

B.(x) £ §".
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+ The n-dimensional unit cube
C:={xeR": |x|+..4+ x| <1}
is open in R, since one can always find ¢ > 0 small enough so that
B.(x) Z C.

 The set
Vi={xeR": |x|+..+ x| > 1}

is closed, since V¢ = C is the unit cube, which is open.

Definition 4.25: Subspace Topology
Given a subset A C R" the subspace topology on A is the family of sets
Ty ={UCA: IWeT st. U=AnW}.

IfU € T4 we say that U is open in A.

4.1.3 Smooth functions

We recall some basic facts about smooth functions from R" into R™. For a vector valued function f : R" - R™
we denote its components by

= fmd

Definition 4.26: Continuous Function

Let f: U CR" » R™ with U open. We say that f is continuous at x e U if Ve > 0,, 36 > 0 such that

x-yl<é = IfG®-fyl<e.

We say that f is continuous in U if it is continuous for all x € U.
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Remark 4.27

Let f: U CR" —» V C R™, with U,V open. We have that f is continuous if and only if f1(A) is open in
U, for all AopeninV.

Definition 4.28: Homeomorphism

Let f: U CR" - V C R" with U,V open. We say that f is a homeomorphism if f is continuous and
there exists inverse f~! : V — U continuous.

Definition 4.29: Differentiable Function

Let f: U C R* - R™ with U open. We say that f is differentiable at x € U if there exists a linear map
dfyx : R" = R™ such that
Ok eh) - £ edfih)

&e—0 &
for all h € R", where the limit is taken in R™. The map d f is called the differential of f at x.

0,

We denote by {e;}i-; the standard basis of R".

Definition 4.30: Partial Derivative

Let f: U C R" - R™ with U open be differentiable. The partial derivative of f at x € U in direction e;

is given by
of .. fx+ee) - f(x)
— :=lim .
8xl- e—0 £

Definition 4.31: Jacobian Matrix

The linear map dfy : R" — R™ can be represented in matrix form, with respect to the Euclidean basis,
by the Jacobian matrix

Jf(x) := (Z—f) € R™",
/i)

If m = nthen Jf € R¥" is a square matrix and we can compute its determinant, denoted by

det(J ).
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Definition 4.32: Multi-index notation

For a multi-index
a = (a,...,a,) € N"

we denote by
n
o = Y o
i=1

the length of the multi-index.

Definition 4.33: Smooth Function

Let f: U CR" - R™ with U open. We say that f is smooth if the derivatives

a|05 | f o™ 9%

== o
dx ox;'  Oxy"

f

exist for each multi-index @« € IN". Note that in this case all the derivatives of f are automatically
continuous.

Let f: U C R" —» R be smooth. We denote the partial derivatives by

af:% a f: azf a f.: a3f
% ox; N ox0x; Ik 9x,0%;0%)

For f: U C R" — R smooth we denote the gradient by

V) = (fo &), fr, () -

Example 4.34
The functions f: R? - Rand g: R? — R® defined by

f(x,y) i=cos(x)y, g(x,y) :=(x*y%x—y)

are both smooth.

| Notation: Gradient and partial derivatives
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Definition 4.35: Diffeomorphism

Let f: U » V withU C R" and V C R" open. We say that f is a diffeomorphism between U and V if
f is smooth and there exists smooth inverse f~1: V — U.

We recall, without proof, the Inverse Function Theorem. Please note that in the statement the function f is
defined from R" into R™.

Theorem 4.36: Inverse Function Theorem

Let f: U —» R" with U C R" open. Suppose f is a smooth function and

det J f(x¢) # 0,

for some x;, € U. Then there exist open sets Uy, V C R" such that x5 € U, f(xg) e Vand f: Uy > Visa
diffeomorphism.

Warning

Even if

det Jf(x) # 0,
for all x € U, it is not guaranteed that f is a diffeomorphism between U and f(U).

Non-vanishing Jacobian determinant is a necessary condition for being a diffeomorphism.

Proposition 4.37
Let f: U —» R" with U C R" open. Suppose f is a diffeomorphism on U. Then

detJf(x)#0, VxeU.

Example 4.38

Define f : R? — R? by
f(x,y) := (cos(x) sin(y), sin(x) sin(y)) .
then in(x)sin(y) cos(x) cos(y)
_ [ —sin(x)sin(y) cos(x) cos(y
Jfxy) = ( cos(x) sin(y)  sin(x) cos(y) ) '
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and
det Jf(x,y) = — sin®(x) cos(y) sin(y) — cos?(x) cos(y) sin(y)
= —sin(y) cos(y)
= —% sin(2y).
Therefore

det Jf(x,y) #0 < yi%,nE]N.
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